##// END OF EJS Templates
add `float_precision` trait to PlainTextFormatter...
MinRK -
Show More
@@ -1,504 +1,557 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Display formatters.
3 3
4 4
5 5 Authors:
6 6
7 7 * Robert Kern
8 8 * Brian Granger
9 9 """
10 10 #-----------------------------------------------------------------------------
11 11 # Copyright (c) 2010, IPython Development Team.
12 12 #
13 13 # Distributed under the terms of the Modified BSD License.
14 14 #
15 15 # The full license is in the file COPYING.txt, distributed with this software.
16 16 #-----------------------------------------------------------------------------
17 17
18 18 #-----------------------------------------------------------------------------
19 19 # Imports
20 20 #-----------------------------------------------------------------------------
21 21
22 22 # Stdlib imports
23 import sys
23 24 import abc
24 25 # We must use StringIO, as cStringIO doesn't handle unicode properly.
25 26 from StringIO import StringIO
26 27
27 28 # Our own imports
28 29 from IPython.config.configurable import Configurable
29 30 from IPython.external import pretty
30 from IPython.utils.traitlets import Bool, Dict, Int, Str
31 from IPython.utils.traitlets import Bool, Dict, Int, Str, CStr
31 32
32 33
33 34 #-----------------------------------------------------------------------------
34 35 # The main DisplayFormatter class
35 36 #-----------------------------------------------------------------------------
36 37
37 38
38 39 class DisplayFormatter(Configurable):
39 40
40 41 # When set to true only the default plain text formatter will be used.
41 42 plain_text_only = Bool(False, config=True)
42 43
43 44 # A dict of formatter whose keys are format types (MIME types) and whose
44 45 # values are subclasses of BaseFormatter.
45 46 formatters = Dict(config=True)
46 47 def _formatters_default(self):
47 48 """Activate the default formatters."""
48 49 formatter_classes = [
49 50 PlainTextFormatter,
50 51 HTMLFormatter,
51 52 SVGFormatter,
52 53 PNGFormatter,
53 54 LatexFormatter,
54 55 JSONFormatter
55 56 ]
56 57 d = {}
57 58 for cls in formatter_classes:
58 59 f = cls(config=self.config)
59 60 d[f.format_type] = f
60 61 return d
61 62
62 63 def format(self, obj, include=None, exclude=None):
63 64 """Return a format data dict for an object.
64 65
65 66 By default all format types will be computed.
66 67
67 68 The following MIME types are currently implemented:
68 69
69 70 * text/plain
70 71 * text/html
71 72 * text/latex
72 73 * application/json
73 74 * image/png
74 75 * immage/svg+xml
75 76
76 77 Parameters
77 78 ----------
78 79 obj : object
79 80 The Python object whose format data will be computed.
80 81 include : list or tuple, optional
81 82 A list of format type strings (MIME types) to include in the
82 83 format data dict. If this is set *only* the format types included
83 84 in this list will be computed.
84 85 exclude : list or tuple, optional
85 86 A list of format type string (MIME types) to exclue in the format
86 87 data dict. If this is set all format types will be computed,
87 88 except for those included in this argument.
88 89
89 90 Returns
90 91 -------
91 92 format_dict : dict
92 93 A dictionary of key/value pairs, one or each format that was
93 94 generated for the object. The keys are the format types, which
94 95 will usually be MIME type strings and the values and JSON'able
95 96 data structure containing the raw data for the representation in
96 97 that format.
97 98 """
98 99 format_dict = {}
99 100
100 101 # If plain text only is active
101 102 if self.plain_text_only:
102 103 formatter = self.formatters['text/plain']
103 104 try:
104 105 data = formatter(obj)
105 106 except:
106 107 # FIXME: log the exception
107 108 raise
108 109 if data is not None:
109 110 format_dict['text/plain'] = data
110 111 return format_dict
111 112
112 113 for format_type, formatter in self.formatters.items():
113 114 if include is not None:
114 115 if format_type not in include:
115 116 continue
116 117 if exclude is not None:
117 118 if format_type in exclude:
118 119 continue
119 120 try:
120 121 data = formatter(obj)
121 122 except:
122 123 # FIXME: log the exception
123 124 raise
124 125 if data is not None:
125 126 format_dict[format_type] = data
126 127 return format_dict
127 128
128 129 @property
129 130 def format_types(self):
130 131 """Return the format types (MIME types) of the active formatters."""
131 132 return self.formatters.keys()
132 133
133 134
134 135 #-----------------------------------------------------------------------------
135 136 # Formatters for specific format types (text, html, svg, etc.)
136 137 #-----------------------------------------------------------------------------
137 138
138 139
139 140 class FormatterABC(object):
140 141 """ Abstract base class for Formatters.
141 142
142 143 A formatter is a callable class that is responsible for computing the
143 144 raw format data for a particular format type (MIME type). For example,
144 145 an HTML formatter would have a format type of `text/html` and would return
145 146 the HTML representation of the object when called.
146 147 """
147 148 __metaclass__ = abc.ABCMeta
148 149
149 150 # The format type of the data returned, usually a MIME type.
150 151 format_type = 'text/plain'
151 152
152 153 # Is the formatter enabled...
153 154 enabled = True
154 155
155 156 @abc.abstractmethod
156 157 def __call__(self, obj):
157 158 """Return a JSON'able representation of the object.
158 159
159 160 If the object cannot be formatted by this formatter, then return None
160 161 """
161 162 try:
162 163 return repr(obj)
163 164 except TypeError:
164 165 return None
165 166
166 167
167 168 class BaseFormatter(Configurable):
168 169 """A base formatter class that is configurable.
169 170
170 171 This formatter should usually be used as the base class of all formatters.
171 172 It is a traited :class:`Configurable` class and includes an extensible
172 173 API for users to determine how their objects are formatted. The following
173 174 logic is used to find a function to format an given object.
174 175
175 176 1. The object is introspected to see if it has a method with the name
176 177 :attr:`print_method`. If is does, that object is passed to that method
177 178 for formatting.
178 179 2. If no print method is found, three internal dictionaries are consulted
179 180 to find print method: :attr:`singleton_printers`, :attr:`type_printers`
180 181 and :attr:`deferred_printers`.
181 182
182 183 Users should use these dictionaries to register functions that will be
183 184 used to compute the format data for their objects (if those objects don't
184 185 have the special print methods). The easiest way of using these
185 186 dictionaries is through the :meth:`for_type` and :meth:`for_type_by_name`
186 187 methods.
187 188
188 189 If no function/callable is found to compute the format data, ``None`` is
189 190 returned and this format type is not used.
190 191 """
191 192
192 193 format_type = Str('text/plain')
193 194
194 195 enabled = Bool(True, config=True)
195 196
196 197 print_method = Str('__repr__')
197 198
198 199 # The singleton printers.
199 200 # Maps the IDs of the builtin singleton objects to the format functions.
200 201 singleton_printers = Dict(config=True)
201 202 def _singleton_printers_default(self):
202 203 return {}
203 204
204 205 # The type-specific printers.
205 206 # Map type objects to the format functions.
206 207 type_printers = Dict(config=True)
207 208 def _type_printers_default(self):
208 209 return {}
209 210
210 211 # The deferred-import type-specific printers.
211 212 # Map (modulename, classname) pairs to the format functions.
212 213 deferred_printers = Dict(config=True)
213 214 def _deferred_printers_default(self):
214 215 return {}
215 216
216 217 def __call__(self, obj):
217 218 """Compute the format for an object."""
218 219 if self.enabled:
219 220 obj_id = id(obj)
220 221 try:
221 222 obj_class = getattr(obj, '__class__', None) or type(obj)
222 223 if hasattr(obj_class, self.print_method):
223 224 printer = getattr(obj_class, self.print_method)
224 225 return printer(obj)
225 226 try:
226 227 printer = self.singleton_printers[obj_id]
227 228 except (TypeError, KeyError):
228 229 pass
229 230 else:
230 231 return printer(obj)
231 232 for cls in pretty._get_mro(obj_class):
232 233 if cls in self.type_printers:
233 234 return self.type_printers[cls](obj)
234 235 else:
235 236 printer = self._in_deferred_types(cls)
236 237 if printer is not None:
237 238 return printer(obj)
238 239 return None
239 240 except Exception:
240 241 pass
241 242 else:
242 243 return None
243 244
244 245 def for_type(self, typ, func):
245 246 """Add a format function for a given type.
246 247
247 248 Parameters
248 249 -----------
249 250 typ : class
250 251 The class of the object that will be formatted using `func`.
251 252 func : callable
252 253 The callable that will be called to compute the format data. The
253 254 call signature of this function is simple, it must take the
254 255 object to be formatted and return the raw data for the given
255 256 format. Subclasses may use a different call signature for the
256 257 `func` argument.
257 258 """
258 259 oldfunc = self.type_printers.get(typ, None)
259 260 if func is not None:
260 261 # To support easy restoration of old printers, we need to ignore
261 262 # Nones.
262 263 self.type_printers[typ] = func
263 264 return oldfunc
264 265
265 266 def for_type_by_name(self, type_module, type_name, func):
266 267 """Add a format function for a type specified by the full dotted
267 268 module and name of the type, rather than the type of the object.
268 269
269 270 Parameters
270 271 ----------
271 272 type_module : str
272 273 The full dotted name of the module the type is defined in, like
273 274 ``numpy``.
274 275 type_name : str
275 276 The name of the type (the class name), like ``dtype``
276 277 func : callable
277 278 The callable that will be called to compute the format data. The
278 279 call signature of this function is simple, it must take the
279 280 object to be formatted and return the raw data for the given
280 281 format. Subclasses may use a different call signature for the
281 282 `func` argument.
282 283 """
283 284 key = (type_module, type_name)
284 285 oldfunc = self.deferred_printers.get(key, None)
285 286 if func is not None:
286 287 # To support easy restoration of old printers, we need to ignore
287 288 # Nones.
288 289 self.deferred_printers[key] = func
289 290 return oldfunc
290 291
291 292 def _in_deferred_types(self, cls):
292 293 """
293 294 Check if the given class is specified in the deferred type registry.
294 295
295 296 Returns the printer from the registry if it exists, and None if the
296 297 class is not in the registry. Successful matches will be moved to the
297 298 regular type registry for future use.
298 299 """
299 300 mod = getattr(cls, '__module__', None)
300 301 name = getattr(cls, '__name__', None)
301 302 key = (mod, name)
302 303 printer = None
303 304 if key in self.deferred_printers:
304 305 # Move the printer over to the regular registry.
305 306 printer = self.deferred_printers.pop(key)
306 307 self.type_printers[cls] = printer
307 308 return printer
308 309
309 310
310 311 class PlainTextFormatter(BaseFormatter):
311 312 """The default pretty-printer.
312 313
313 314 This uses :mod:`IPython.external.pretty` to compute the format data of
314 315 the object. If the object cannot be pretty printed, :func:`repr` is used.
315 316 See the documentation of :mod:`IPython.external.pretty` for details on
316 317 how to write pretty printers. Here is a simple example::
317 318
318 319 def dtype_pprinter(obj, p, cycle):
319 320 if cycle:
320 321 return p.text('dtype(...)')
321 322 if hasattr(obj, 'fields'):
322 323 if obj.fields is None:
323 324 p.text(repr(obj))
324 325 else:
325 326 p.begin_group(7, 'dtype([')
326 327 for i, field in enumerate(obj.descr):
327 328 if i > 0:
328 329 p.text(',')
329 330 p.breakable()
330 331 p.pretty(field)
331 332 p.end_group(7, '])')
332 333 """
333 334
334 335 # The format type of data returned.
335 336 format_type = Str('text/plain')
336 337
337 338 # This subclass ignores this attribute as it always need to return
338 339 # something.
339 340 enabled = Bool(True, config=False)
340 341
341 342 # Look for a __pretty__ methods to use for pretty printing.
342 343 print_method = Str('__pretty__')
343 344
344 345 # Whether to pretty-print or not.
345 346 pprint = Bool(True, config=True)
346 347
347 348 # Whether to be verbose or not.
348 349 verbose = Bool(False, config=True)
349 350
350 351 # The maximum width.
351 352 max_width = Int(79, config=True)
352 353
353 354 # The newline character.
354 355 newline = Str('\n', config=True)
356
357 # format-string for pprinting floats
358 float_format = Str('%r')
359 # setter for float precision, either int or direct format-string
360 float_precision = CStr('', config=True)
361
362 def _float_precision_changed(self, name, old, new):
363 """float_precision changed, set float_format accordingly.
364
365 float_precision can be set by int or str.
366 This will set float_format, after interpreting input.
367 If numpy has been imported, numpy print precision will also be set.
368
369 integer `n` sets format to '%.nf', otherwise, format set directly.
370
371 An empty string returns to defaults (repr for float, 8 for numpy).
372
373 This parameter can be set via the '%precision' magic.
374 """
375
376 if '%' in new:
377 # got explicit format string
378 fmt = new
379 try:
380 fmt%3.14159
381 except Exception:
382 raise ValueError("Precision must be int or format string, not %r"%new)
383 elif new:
384 # otherwise, should be an int
385 try:
386 i = int(new)
387 assert i >= 0
388 except ValueError:
389 raise ValueError("Precision must be int or format string, not %r"%new)
390 except AssertionError:
391 raise ValueError("int precision must be non-negative, not %r"%i)
392
393 fmt = '%%.%if'%i
394 if 'numpy' in sys.modules:
395 # set numpy precision if it has been imported
396 import numpy
397 numpy.set_printoptions(precision=i)
398 else:
399 # default back to repr
400 fmt = '%r'
401 if 'numpy' in sys.modules:
402 import numpy
403 # numpy default is 8
404 numpy.set_printoptions(precision=8)
405 self.float_format = fmt
355 406
356 407 # Use the default pretty printers from IPython.external.pretty.
357 408 def _singleton_printers_default(self):
358 409 return pretty._singleton_pprinters.copy()
359 410
360 411 def _type_printers_default(self):
361 return pretty._type_pprinters.copy()
412 d = pretty._type_pprinters.copy()
413 d[float] = lambda obj,p,cycle: p.text(self.float_format%obj)
414 return d
362 415
363 416 def _deferred_printers_default(self):
364 417 return pretty._deferred_type_pprinters.copy()
365 418
366 419 #### FormatterABC interface ####
367 420
368 421 def __call__(self, obj):
369 422 """Compute the pretty representation of the object."""
370 423 if not self.pprint:
371 424 try:
372 425 return repr(obj)
373 426 except TypeError:
374 427 return ''
375 428 else:
376 429 # This uses use StringIO, as cStringIO doesn't handle unicode.
377 430 stream = StringIO()
378 431 printer = pretty.RepresentationPrinter(stream, self.verbose,
379 432 self.max_width, self.newline,
380 433 singleton_pprinters=self.singleton_printers,
381 434 type_pprinters=self.type_printers,
382 435 deferred_pprinters=self.deferred_printers)
383 436 printer.pretty(obj)
384 437 printer.flush()
385 438 return stream.getvalue()
386 439
387 440
388 441 class HTMLFormatter(BaseFormatter):
389 442 """An HTML formatter.
390 443
391 444 To define the callables that compute the HTML representation of your
392 445 objects, define a :meth:`__html__` method or use the :meth:`for_type`
393 446 or :meth:`for_type_by_name` methods to register functions that handle
394 447 this.
395 448 """
396 449 format_type = Str('text/html')
397 450
398 451 print_method = Str('__html__')
399 452
400 453
401 454 class SVGFormatter(BaseFormatter):
402 455 """An SVG formatter.
403 456
404 457 To define the callables that compute the SVG representation of your
405 458 objects, define a :meth:`__svg__` method or use the :meth:`for_type`
406 459 or :meth:`for_type_by_name` methods to register functions that handle
407 460 this.
408 461 """
409 462 format_type = Str('image/svg+xml')
410 463
411 464 print_method = Str('__svg__')
412 465
413 466
414 467 class PNGFormatter(BaseFormatter):
415 468 """A PNG formatter.
416 469
417 470 To define the callables that compute the PNG representation of your
418 471 objects, define a :meth:`__png__` method or use the :meth:`for_type`
419 472 or :meth:`for_type_by_name` methods to register functions that handle
420 473 this. The raw data should be the base64 encoded raw png data.
421 474 """
422 475 format_type = Str('image/png')
423 476
424 477 print_method = Str('__png__')
425 478
426 479
427 480 class LatexFormatter(BaseFormatter):
428 481 """A LaTeX formatter.
429 482
430 483 To define the callables that compute the LaTeX representation of your
431 484 objects, define a :meth:`__latex__` method or use the :meth:`for_type`
432 485 or :meth:`for_type_by_name` methods to register functions that handle
433 486 this.
434 487 """
435 488 format_type = Str('text/latex')
436 489
437 490 print_method = Str('__latex__')
438 491
439 492
440 493 class JSONFormatter(BaseFormatter):
441 494 """A JSON string formatter.
442 495
443 496 To define the callables that compute the JSON string representation of
444 497 your objects, define a :meth:`__json__` method or use the :meth:`for_type`
445 498 or :meth:`for_type_by_name` methods to register functions that handle
446 499 this.
447 500 """
448 501 format_type = Str('application/json')
449 502
450 503 print_method = Str('__json__')
451 504
452 505
453 506 FormatterABC.register(BaseFormatter)
454 507 FormatterABC.register(PlainTextFormatter)
455 508 FormatterABC.register(HTMLFormatter)
456 509 FormatterABC.register(SVGFormatter)
457 510 FormatterABC.register(PNGFormatter)
458 511 FormatterABC.register(LatexFormatter)
459 512 FormatterABC.register(JSONFormatter)
460 513
461 514
462 515 def format_display_data(obj, include=None, exclude=None):
463 516 """Return a format data dict for an object.
464 517
465 518 By default all format types will be computed.
466 519
467 520 The following MIME types are currently implemented:
468 521
469 522 * text/plain
470 523 * text/html
471 524 * text/latex
472 525 * application/json
473 526 * image/png
474 527 * immage/svg+xml
475 528
476 529 Parameters
477 530 ----------
478 531 obj : object
479 532 The Python object whose format data will be computed.
480 533
481 534 Returns
482 535 -------
483 536 format_dict : dict
484 537 A dictionary of key/value pairs, one or each format that was
485 538 generated for the object. The keys are the format types, which
486 539 will usually be MIME type strings and the values and JSON'able
487 540 data structure containing the raw data for the representation in
488 541 that format.
489 542 include : list or tuple, optional
490 543 A list of format type strings (MIME types) to include in the
491 544 format data dict. If this is set *only* the format types included
492 545 in this list will be computed.
493 546 exclude : list or tuple, optional
494 547 A list of format type string (MIME types) to exclue in the format
495 548 data dict. If this is set all format types will be computed,
496 549 except for those included in this argument.
497 550 """
498 551 from IPython.core.interactiveshell import InteractiveShell
499 552
500 553 InteractiveShell.instance().display_formatter.format(
501 554 obj,
502 555 include,
503 556 exclude
504 557 )
@@ -1,3535 +1,3510 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, StringTypes, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 168 def extract_input_slices(self,slices,raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 173 - slices: the set of slices is given as a list of strings (like
174 174 ['1','4:8','9'], since this function is for use by magic functions
175 175 which get their arguments as strings.
176 176
177 177 Optional inputs:
178 178
179 179 - raw(False): by default, the processed input is used. If this is
180 180 true, the raw input history is used instead.
181 181
182 182 Note that slices can be called with two notations:
183 183
184 184 N:M -> standard python form, means including items N...(M-1).
185 185
186 186 N-M -> include items N..M (closed endpoint)."""
187 187
188 188 if raw:
189 189 hist = self.shell.history_manager.input_hist_raw
190 190 else:
191 191 hist = self.shell.history_manager.input_hist_parsed
192 192
193 193 cmds = []
194 194 for chunk in slices:
195 195 if ':' in chunk:
196 196 ini,fin = map(int,chunk.split(':'))
197 197 elif '-' in chunk:
198 198 ini,fin = map(int,chunk.split('-'))
199 199 fin += 1
200 200 else:
201 201 ini = int(chunk)
202 202 fin = ini+1
203 203 cmds.append(''.join(hist[ini:fin]))
204 204 return cmds
205 205
206 206 def arg_err(self,func):
207 207 """Print docstring if incorrect arguments were passed"""
208 208 print 'Error in arguments:'
209 209 print oinspect.getdoc(func)
210 210
211 211 def format_latex(self,strng):
212 212 """Format a string for latex inclusion."""
213 213
214 214 # Characters that need to be escaped for latex:
215 215 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
216 216 # Magic command names as headers:
217 217 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
218 218 re.MULTILINE)
219 219 # Magic commands
220 220 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
221 221 re.MULTILINE)
222 222 # Paragraph continue
223 223 par_re = re.compile(r'\\$',re.MULTILINE)
224 224
225 225 # The "\n" symbol
226 226 newline_re = re.compile(r'\\n')
227 227
228 228 # Now build the string for output:
229 229 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
230 230 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
231 231 strng)
232 232 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
233 233 strng = par_re.sub(r'\\\\',strng)
234 234 strng = escape_re.sub(r'\\\1',strng)
235 235 strng = newline_re.sub(r'\\textbackslash{}n',strng)
236 236 return strng
237 237
238 238 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
239 239 """Parse options passed to an argument string.
240 240
241 241 The interface is similar to that of getopt(), but it returns back a
242 242 Struct with the options as keys and the stripped argument string still
243 243 as a string.
244 244
245 245 arg_str is quoted as a true sys.argv vector by using shlex.split.
246 246 This allows us to easily expand variables, glob files, quote
247 247 arguments, etc.
248 248
249 249 Options:
250 250 -mode: default 'string'. If given as 'list', the argument string is
251 251 returned as a list (split on whitespace) instead of a string.
252 252
253 253 -list_all: put all option values in lists. Normally only options
254 254 appearing more than once are put in a list.
255 255
256 256 -posix (True): whether to split the input line in POSIX mode or not,
257 257 as per the conventions outlined in the shlex module from the
258 258 standard library."""
259 259
260 260 # inject default options at the beginning of the input line
261 261 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
262 262 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
263 263
264 264 mode = kw.get('mode','string')
265 265 if mode not in ['string','list']:
266 266 raise ValueError,'incorrect mode given: %s' % mode
267 267 # Get options
268 268 list_all = kw.get('list_all',0)
269 269 posix = kw.get('posix', os.name == 'posix')
270 270
271 271 # Check if we have more than one argument to warrant extra processing:
272 272 odict = {} # Dictionary with options
273 273 args = arg_str.split()
274 274 if len(args) >= 1:
275 275 # If the list of inputs only has 0 or 1 thing in it, there's no
276 276 # need to look for options
277 277 argv = arg_split(arg_str,posix)
278 278 # Do regular option processing
279 279 try:
280 280 opts,args = getopt(argv,opt_str,*long_opts)
281 281 except GetoptError,e:
282 282 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
283 283 " ".join(long_opts)))
284 284 for o,a in opts:
285 285 if o.startswith('--'):
286 286 o = o[2:]
287 287 else:
288 288 o = o[1:]
289 289 try:
290 290 odict[o].append(a)
291 291 except AttributeError:
292 292 odict[o] = [odict[o],a]
293 293 except KeyError:
294 294 if list_all:
295 295 odict[o] = [a]
296 296 else:
297 297 odict[o] = a
298 298
299 299 # Prepare opts,args for return
300 300 opts = Struct(odict)
301 301 if mode == 'string':
302 302 args = ' '.join(args)
303 303
304 304 return opts,args
305 305
306 306 #......................................................................
307 307 # And now the actual magic functions
308 308
309 309 # Functions for IPython shell work (vars,funcs, config, etc)
310 310 def magic_lsmagic(self, parameter_s = ''):
311 311 """List currently available magic functions."""
312 312 mesc = ESC_MAGIC
313 313 print 'Available magic functions:\n'+mesc+\
314 314 (' '+mesc).join(self.lsmagic())
315 315 print '\n' + Magic.auto_status[self.shell.automagic]
316 316 return None
317 317
318 318 def magic_magic(self, parameter_s = ''):
319 319 """Print information about the magic function system.
320 320
321 321 Supported formats: -latex, -brief, -rest
322 322 """
323 323
324 324 mode = ''
325 325 try:
326 326 if parameter_s.split()[0] == '-latex':
327 327 mode = 'latex'
328 328 if parameter_s.split()[0] == '-brief':
329 329 mode = 'brief'
330 330 if parameter_s.split()[0] == '-rest':
331 331 mode = 'rest'
332 332 rest_docs = []
333 333 except:
334 334 pass
335 335
336 336 magic_docs = []
337 337 for fname in self.lsmagic():
338 338 mname = 'magic_' + fname
339 339 for space in (Magic,self,self.__class__):
340 340 try:
341 341 fn = space.__dict__[mname]
342 342 except KeyError:
343 343 pass
344 344 else:
345 345 break
346 346 if mode == 'brief':
347 347 # only first line
348 348 if fn.__doc__:
349 349 fndoc = fn.__doc__.split('\n',1)[0]
350 350 else:
351 351 fndoc = 'No documentation'
352 352 else:
353 353 if fn.__doc__:
354 354 fndoc = fn.__doc__.rstrip()
355 355 else:
356 356 fndoc = 'No documentation'
357 357
358 358
359 359 if mode == 'rest':
360 360 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
361 361 fname,fndoc))
362 362
363 363 else:
364 364 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
365 365 fname,fndoc))
366 366
367 367 magic_docs = ''.join(magic_docs)
368 368
369 369 if mode == 'rest':
370 370 return "".join(rest_docs)
371 371
372 372 if mode == 'latex':
373 373 print self.format_latex(magic_docs)
374 374 return
375 375 else:
376 376 magic_docs = format_screen(magic_docs)
377 377 if mode == 'brief':
378 378 return magic_docs
379 379
380 380 outmsg = """
381 381 IPython's 'magic' functions
382 382 ===========================
383 383
384 384 The magic function system provides a series of functions which allow you to
385 385 control the behavior of IPython itself, plus a lot of system-type
386 386 features. All these functions are prefixed with a % character, but parameters
387 387 are given without parentheses or quotes.
388 388
389 389 NOTE: If you have 'automagic' enabled (via the command line option or with the
390 390 %automagic function), you don't need to type in the % explicitly. By default,
391 391 IPython ships with automagic on, so you should only rarely need the % escape.
392 392
393 393 Example: typing '%cd mydir' (without the quotes) changes you working directory
394 394 to 'mydir', if it exists.
395 395
396 396 You can define your own magic functions to extend the system. See the supplied
397 397 ipythonrc and example-magic.py files for details (in your ipython
398 398 configuration directory, typically $HOME/.ipython/).
399 399
400 400 You can also define your own aliased names for magic functions. In your
401 401 ipythonrc file, placing a line like:
402 402
403 403 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
404 404
405 405 will define %pf as a new name for %profile.
406 406
407 407 You can also call magics in code using the magic() function, which IPython
408 408 automatically adds to the builtin namespace. Type 'magic?' for details.
409 409
410 410 For a list of the available magic functions, use %lsmagic. For a description
411 411 of any of them, type %magic_name?, e.g. '%cd?'.
412 412
413 413 Currently the magic system has the following functions:\n"""
414 414
415 415 mesc = ESC_MAGIC
416 416 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
417 417 "\n\n%s%s\n\n%s" % (outmsg,
418 418 magic_docs,mesc,mesc,
419 419 (' '+mesc).join(self.lsmagic()),
420 420 Magic.auto_status[self.shell.automagic] ) )
421 421 page.page(outmsg)
422 422
423 423 def magic_automagic(self, parameter_s = ''):
424 424 """Make magic functions callable without having to type the initial %.
425 425
426 426 Without argumentsl toggles on/off (when off, you must call it as
427 427 %automagic, of course). With arguments it sets the value, and you can
428 428 use any of (case insensitive):
429 429
430 430 - on,1,True: to activate
431 431
432 432 - off,0,False: to deactivate.
433 433
434 434 Note that magic functions have lowest priority, so if there's a
435 435 variable whose name collides with that of a magic fn, automagic won't
436 436 work for that function (you get the variable instead). However, if you
437 437 delete the variable (del var), the previously shadowed magic function
438 438 becomes visible to automagic again."""
439 439
440 440 arg = parameter_s.lower()
441 441 if parameter_s in ('on','1','true'):
442 442 self.shell.automagic = True
443 443 elif parameter_s in ('off','0','false'):
444 444 self.shell.automagic = False
445 445 else:
446 446 self.shell.automagic = not self.shell.automagic
447 447 print '\n' + Magic.auto_status[self.shell.automagic]
448 448
449 449 @testdec.skip_doctest
450 450 def magic_autocall(self, parameter_s = ''):
451 451 """Make functions callable without having to type parentheses.
452 452
453 453 Usage:
454 454
455 455 %autocall [mode]
456 456
457 457 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
458 458 value is toggled on and off (remembering the previous state).
459 459
460 460 In more detail, these values mean:
461 461
462 462 0 -> fully disabled
463 463
464 464 1 -> active, but do not apply if there are no arguments on the line.
465 465
466 466 In this mode, you get:
467 467
468 468 In [1]: callable
469 469 Out[1]: <built-in function callable>
470 470
471 471 In [2]: callable 'hello'
472 472 ------> callable('hello')
473 473 Out[2]: False
474 474
475 475 2 -> Active always. Even if no arguments are present, the callable
476 476 object is called:
477 477
478 478 In [2]: float
479 479 ------> float()
480 480 Out[2]: 0.0
481 481
482 482 Note that even with autocall off, you can still use '/' at the start of
483 483 a line to treat the first argument on the command line as a function
484 484 and add parentheses to it:
485 485
486 486 In [8]: /str 43
487 487 ------> str(43)
488 488 Out[8]: '43'
489 489
490 490 # all-random (note for auto-testing)
491 491 """
492 492
493 493 if parameter_s:
494 494 arg = int(parameter_s)
495 495 else:
496 496 arg = 'toggle'
497 497
498 498 if not arg in (0,1,2,'toggle'):
499 499 error('Valid modes: (0->Off, 1->Smart, 2->Full')
500 500 return
501 501
502 502 if arg in (0,1,2):
503 503 self.shell.autocall = arg
504 504 else: # toggle
505 505 if self.shell.autocall:
506 506 self._magic_state.autocall_save = self.shell.autocall
507 507 self.shell.autocall = 0
508 508 else:
509 509 try:
510 510 self.shell.autocall = self._magic_state.autocall_save
511 511 except AttributeError:
512 512 self.shell.autocall = self._magic_state.autocall_save = 1
513 513
514 514 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
515 515
516 516
517 517 def magic_page(self, parameter_s=''):
518 518 """Pretty print the object and display it through a pager.
519 519
520 520 %page [options] OBJECT
521 521
522 522 If no object is given, use _ (last output).
523 523
524 524 Options:
525 525
526 526 -r: page str(object), don't pretty-print it."""
527 527
528 528 # After a function contributed by Olivier Aubert, slightly modified.
529 529
530 530 # Process options/args
531 531 opts,args = self.parse_options(parameter_s,'r')
532 532 raw = 'r' in opts
533 533
534 534 oname = args and args or '_'
535 535 info = self._ofind(oname)
536 536 if info['found']:
537 537 txt = (raw and str or pformat)( info['obj'] )
538 538 page.page(txt)
539 539 else:
540 540 print 'Object `%s` not found' % oname
541 541
542 542 def magic_profile(self, parameter_s=''):
543 543 """Print your currently active IPython profile."""
544 544 if self.shell.profile:
545 545 printpl('Current IPython profile: $self.shell.profile.')
546 546 else:
547 547 print 'No profile active.'
548 548
549 549 def magic_pinfo(self, parameter_s='', namespaces=None):
550 550 """Provide detailed information about an object.
551 551
552 552 '%pinfo object' is just a synonym for object? or ?object."""
553 553
554 554 #print 'pinfo par: <%s>' % parameter_s # dbg
555 555
556 556
557 557 # detail_level: 0 -> obj? , 1 -> obj??
558 558 detail_level = 0
559 559 # We need to detect if we got called as 'pinfo pinfo foo', which can
560 560 # happen if the user types 'pinfo foo?' at the cmd line.
561 561 pinfo,qmark1,oname,qmark2 = \
562 562 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
563 563 if pinfo or qmark1 or qmark2:
564 564 detail_level = 1
565 565 if "*" in oname:
566 566 self.magic_psearch(oname)
567 567 else:
568 568 self.shell._inspect('pinfo', oname, detail_level=detail_level,
569 569 namespaces=namespaces)
570 570
571 571 def magic_pinfo2(self, parameter_s='', namespaces=None):
572 572 """Provide extra detailed information about an object.
573 573
574 574 '%pinfo2 object' is just a synonym for object?? or ??object."""
575 575 self.shell._inspect('pinfo', parameter_s, detail_level=1,
576 576 namespaces=namespaces)
577 577
578 578 @testdec.skip_doctest
579 579 def magic_pdef(self, parameter_s='', namespaces=None):
580 580 """Print the definition header for any callable object.
581 581
582 582 If the object is a class, print the constructor information.
583 583
584 584 Examples
585 585 --------
586 586 ::
587 587
588 588 In [3]: %pdef urllib.urlopen
589 589 urllib.urlopen(url, data=None, proxies=None)
590 590 """
591 591 self._inspect('pdef',parameter_s, namespaces)
592 592
593 593 def magic_pdoc(self, parameter_s='', namespaces=None):
594 594 """Print the docstring for an object.
595 595
596 596 If the given object is a class, it will print both the class and the
597 597 constructor docstrings."""
598 598 self._inspect('pdoc',parameter_s, namespaces)
599 599
600 600 def magic_psource(self, parameter_s='', namespaces=None):
601 601 """Print (or run through pager) the source code for an object."""
602 602 self._inspect('psource',parameter_s, namespaces)
603 603
604 604 def magic_pfile(self, parameter_s=''):
605 605 """Print (or run through pager) the file where an object is defined.
606 606
607 607 The file opens at the line where the object definition begins. IPython
608 608 will honor the environment variable PAGER if set, and otherwise will
609 609 do its best to print the file in a convenient form.
610 610
611 611 If the given argument is not an object currently defined, IPython will
612 612 try to interpret it as a filename (automatically adding a .py extension
613 613 if needed). You can thus use %pfile as a syntax highlighting code
614 614 viewer."""
615 615
616 616 # first interpret argument as an object name
617 617 out = self._inspect('pfile',parameter_s)
618 618 # if not, try the input as a filename
619 619 if out == 'not found':
620 620 try:
621 621 filename = get_py_filename(parameter_s)
622 622 except IOError,msg:
623 623 print msg
624 624 return
625 625 page.page(self.shell.inspector.format(file(filename).read()))
626 626
627 627 def magic_psearch(self, parameter_s=''):
628 628 """Search for object in namespaces by wildcard.
629 629
630 630 %psearch [options] PATTERN [OBJECT TYPE]
631 631
632 632 Note: ? can be used as a synonym for %psearch, at the beginning or at
633 633 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
634 634 rest of the command line must be unchanged (options come first), so
635 635 for example the following forms are equivalent
636 636
637 637 %psearch -i a* function
638 638 -i a* function?
639 639 ?-i a* function
640 640
641 641 Arguments:
642 642
643 643 PATTERN
644 644
645 645 where PATTERN is a string containing * as a wildcard similar to its
646 646 use in a shell. The pattern is matched in all namespaces on the
647 647 search path. By default objects starting with a single _ are not
648 648 matched, many IPython generated objects have a single
649 649 underscore. The default is case insensitive matching. Matching is
650 650 also done on the attributes of objects and not only on the objects
651 651 in a module.
652 652
653 653 [OBJECT TYPE]
654 654
655 655 Is the name of a python type from the types module. The name is
656 656 given in lowercase without the ending type, ex. StringType is
657 657 written string. By adding a type here only objects matching the
658 658 given type are matched. Using all here makes the pattern match all
659 659 types (this is the default).
660 660
661 661 Options:
662 662
663 663 -a: makes the pattern match even objects whose names start with a
664 664 single underscore. These names are normally ommitted from the
665 665 search.
666 666
667 667 -i/-c: make the pattern case insensitive/sensitive. If neither of
668 668 these options is given, the default is read from your ipythonrc
669 669 file. The option name which sets this value is
670 670 'wildcards_case_sensitive'. If this option is not specified in your
671 671 ipythonrc file, IPython's internal default is to do a case sensitive
672 672 search.
673 673
674 674 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
675 675 specifiy can be searched in any of the following namespaces:
676 676 'builtin', 'user', 'user_global','internal', 'alias', where
677 677 'builtin' and 'user' are the search defaults. Note that you should
678 678 not use quotes when specifying namespaces.
679 679
680 680 'Builtin' contains the python module builtin, 'user' contains all
681 681 user data, 'alias' only contain the shell aliases and no python
682 682 objects, 'internal' contains objects used by IPython. The
683 683 'user_global' namespace is only used by embedded IPython instances,
684 684 and it contains module-level globals. You can add namespaces to the
685 685 search with -s or exclude them with -e (these options can be given
686 686 more than once).
687 687
688 688 Examples:
689 689
690 690 %psearch a* -> objects beginning with an a
691 691 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
692 692 %psearch a* function -> all functions beginning with an a
693 693 %psearch re.e* -> objects beginning with an e in module re
694 694 %psearch r*.e* -> objects that start with e in modules starting in r
695 695 %psearch r*.* string -> all strings in modules beginning with r
696 696
697 697 Case sensitve search:
698 698
699 699 %psearch -c a* list all object beginning with lower case a
700 700
701 701 Show objects beginning with a single _:
702 702
703 703 %psearch -a _* list objects beginning with a single underscore"""
704 704 try:
705 705 parameter_s = parameter_s.encode('ascii')
706 706 except UnicodeEncodeError:
707 707 print 'Python identifiers can only contain ascii characters.'
708 708 return
709 709
710 710 # default namespaces to be searched
711 711 def_search = ['user','builtin']
712 712
713 713 # Process options/args
714 714 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
715 715 opt = opts.get
716 716 shell = self.shell
717 717 psearch = shell.inspector.psearch
718 718
719 719 # select case options
720 720 if opts.has_key('i'):
721 721 ignore_case = True
722 722 elif opts.has_key('c'):
723 723 ignore_case = False
724 724 else:
725 725 ignore_case = not shell.wildcards_case_sensitive
726 726
727 727 # Build list of namespaces to search from user options
728 728 def_search.extend(opt('s',[]))
729 729 ns_exclude = ns_exclude=opt('e',[])
730 730 ns_search = [nm for nm in def_search if nm not in ns_exclude]
731 731
732 732 # Call the actual search
733 733 try:
734 734 psearch(args,shell.ns_table,ns_search,
735 735 show_all=opt('a'),ignore_case=ignore_case)
736 736 except:
737 737 shell.showtraceback()
738 738
739 739 @testdec.skip_doctest
740 740 def magic_who_ls(self, parameter_s=''):
741 741 """Return a sorted list of all interactive variables.
742 742
743 743 If arguments are given, only variables of types matching these
744 744 arguments are returned.
745 745
746 746 Examples
747 747 --------
748 748
749 749 Define two variables and list them with who_ls::
750 750
751 751 In [1]: alpha = 123
752 752
753 753 In [2]: beta = 'test'
754 754
755 755 In [3]: %who_ls
756 756 Out[3]: ['alpha', 'beta']
757 757
758 758 In [4]: %who_ls int
759 759 Out[4]: ['alpha']
760 760
761 761 In [5]: %who_ls str
762 762 Out[5]: ['beta']
763 763 """
764 764
765 765 user_ns = self.shell.user_ns
766 766 internal_ns = self.shell.internal_ns
767 767 user_ns_hidden = self.shell.user_ns_hidden
768 768 out = [ i for i in user_ns
769 769 if not i.startswith('_') \
770 770 and not (i in internal_ns or i in user_ns_hidden) ]
771 771
772 772 typelist = parameter_s.split()
773 773 if typelist:
774 774 typeset = set(typelist)
775 775 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
776 776
777 777 out.sort()
778 778 return out
779 779
780 780 @testdec.skip_doctest
781 781 def magic_who(self, parameter_s=''):
782 782 """Print all interactive variables, with some minimal formatting.
783 783
784 784 If any arguments are given, only variables whose type matches one of
785 785 these are printed. For example:
786 786
787 787 %who function str
788 788
789 789 will only list functions and strings, excluding all other types of
790 790 variables. To find the proper type names, simply use type(var) at a
791 791 command line to see how python prints type names. For example:
792 792
793 793 In [1]: type('hello')\\
794 794 Out[1]: <type 'str'>
795 795
796 796 indicates that the type name for strings is 'str'.
797 797
798 798 %who always excludes executed names loaded through your configuration
799 799 file and things which are internal to IPython.
800 800
801 801 This is deliberate, as typically you may load many modules and the
802 802 purpose of %who is to show you only what you've manually defined.
803 803
804 804 Examples
805 805 --------
806 806
807 807 Define two variables and list them with who::
808 808
809 809 In [1]: alpha = 123
810 810
811 811 In [2]: beta = 'test'
812 812
813 813 In [3]: %who
814 814 alpha beta
815 815
816 816 In [4]: %who int
817 817 alpha
818 818
819 819 In [5]: %who str
820 820 beta
821 821 """
822 822
823 823 varlist = self.magic_who_ls(parameter_s)
824 824 if not varlist:
825 825 if parameter_s:
826 826 print 'No variables match your requested type.'
827 827 else:
828 828 print 'Interactive namespace is empty.'
829 829 return
830 830
831 831 # if we have variables, move on...
832 832 count = 0
833 833 for i in varlist:
834 834 print i+'\t',
835 835 count += 1
836 836 if count > 8:
837 837 count = 0
838 838 print
839 839 print
840 840
841 841 @testdec.skip_doctest
842 842 def magic_whos(self, parameter_s=''):
843 843 """Like %who, but gives some extra information about each variable.
844 844
845 845 The same type filtering of %who can be applied here.
846 846
847 847 For all variables, the type is printed. Additionally it prints:
848 848
849 849 - For {},[],(): their length.
850 850
851 851 - For numpy and Numeric arrays, a summary with shape, number of
852 852 elements, typecode and size in memory.
853 853
854 854 - Everything else: a string representation, snipping their middle if
855 855 too long.
856 856
857 857 Examples
858 858 --------
859 859
860 860 Define two variables and list them with whos::
861 861
862 862 In [1]: alpha = 123
863 863
864 864 In [2]: beta = 'test'
865 865
866 866 In [3]: %whos
867 867 Variable Type Data/Info
868 868 --------------------------------
869 869 alpha int 123
870 870 beta str test
871 871 """
872 872
873 873 varnames = self.magic_who_ls(parameter_s)
874 874 if not varnames:
875 875 if parameter_s:
876 876 print 'No variables match your requested type.'
877 877 else:
878 878 print 'Interactive namespace is empty.'
879 879 return
880 880
881 881 # if we have variables, move on...
882 882
883 883 # for these types, show len() instead of data:
884 884 seq_types = [types.DictType,types.ListType,types.TupleType]
885 885
886 886 # for numpy/Numeric arrays, display summary info
887 887 try:
888 888 import numpy
889 889 except ImportError:
890 890 ndarray_type = None
891 891 else:
892 892 ndarray_type = numpy.ndarray.__name__
893 893 try:
894 894 import Numeric
895 895 except ImportError:
896 896 array_type = None
897 897 else:
898 898 array_type = Numeric.ArrayType.__name__
899 899
900 900 # Find all variable names and types so we can figure out column sizes
901 901 def get_vars(i):
902 902 return self.shell.user_ns[i]
903 903
904 904 # some types are well known and can be shorter
905 905 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
906 906 def type_name(v):
907 907 tn = type(v).__name__
908 908 return abbrevs.get(tn,tn)
909 909
910 910 varlist = map(get_vars,varnames)
911 911
912 912 typelist = []
913 913 for vv in varlist:
914 914 tt = type_name(vv)
915 915
916 916 if tt=='instance':
917 917 typelist.append( abbrevs.get(str(vv.__class__),
918 918 str(vv.__class__)))
919 919 else:
920 920 typelist.append(tt)
921 921
922 922 # column labels and # of spaces as separator
923 923 varlabel = 'Variable'
924 924 typelabel = 'Type'
925 925 datalabel = 'Data/Info'
926 926 colsep = 3
927 927 # variable format strings
928 928 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
929 929 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
930 930 aformat = "%s: %s elems, type `%s`, %s bytes"
931 931 # find the size of the columns to format the output nicely
932 932 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
933 933 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
934 934 # table header
935 935 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
936 936 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
937 937 # and the table itself
938 938 kb = 1024
939 939 Mb = 1048576 # kb**2
940 940 for vname,var,vtype in zip(varnames,varlist,typelist):
941 941 print itpl(vformat),
942 942 if vtype in seq_types:
943 943 print len(var)
944 944 elif vtype in [array_type,ndarray_type]:
945 945 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
946 946 if vtype==ndarray_type:
947 947 # numpy
948 948 vsize = var.size
949 949 vbytes = vsize*var.itemsize
950 950 vdtype = var.dtype
951 951 else:
952 952 # Numeric
953 953 vsize = Numeric.size(var)
954 954 vbytes = vsize*var.itemsize()
955 955 vdtype = var.typecode()
956 956
957 957 if vbytes < 100000:
958 958 print aformat % (vshape,vsize,vdtype,vbytes)
959 959 else:
960 960 print aformat % (vshape,vsize,vdtype,vbytes),
961 961 if vbytes < Mb:
962 962 print '(%s kb)' % (vbytes/kb,)
963 963 else:
964 964 print '(%s Mb)' % (vbytes/Mb,)
965 965 else:
966 966 try:
967 967 vstr = str(var)
968 968 except UnicodeEncodeError:
969 969 vstr = unicode(var).encode(sys.getdefaultencoding(),
970 970 'backslashreplace')
971 971 vstr = vstr.replace('\n','\\n')
972 972 if len(vstr) < 50:
973 973 print vstr
974 974 else:
975 975 printpl(vfmt_short)
976 976
977 977 def magic_reset(self, parameter_s=''):
978 978 """Resets the namespace by removing all names defined by the user.
979 979
980 980 Input/Output history are left around in case you need them.
981 981
982 982 Parameters
983 983 ----------
984 984 -y : force reset without asking for confirmation.
985 985
986 986 Examples
987 987 --------
988 988 In [6]: a = 1
989 989
990 990 In [7]: a
991 991 Out[7]: 1
992 992
993 993 In [8]: 'a' in _ip.user_ns
994 994 Out[8]: True
995 995
996 996 In [9]: %reset -f
997 997
998 998 In [10]: 'a' in _ip.user_ns
999 999 Out[10]: False
1000 1000 """
1001 1001
1002 1002 if parameter_s == '-f':
1003 1003 ans = True
1004 1004 else:
1005 1005 ans = self.shell.ask_yes_no(
1006 1006 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1007 1007 if not ans:
1008 1008 print 'Nothing done.'
1009 1009 return
1010 1010 user_ns = self.shell.user_ns
1011 1011 for i in self.magic_who_ls():
1012 1012 del(user_ns[i])
1013 1013
1014 1014 # Also flush the private list of module references kept for script
1015 1015 # execution protection
1016 1016 self.shell.clear_main_mod_cache()
1017 1017
1018 1018 def magic_reset_selective(self, parameter_s=''):
1019 1019 """Resets the namespace by removing names defined by the user.
1020 1020
1021 1021 Input/Output history are left around in case you need them.
1022 1022
1023 1023 %reset_selective [-f] regex
1024 1024
1025 1025 No action is taken if regex is not included
1026 1026
1027 1027 Options
1028 1028 -f : force reset without asking for confirmation.
1029 1029
1030 1030 Examples
1031 1031 --------
1032 1032
1033 1033 We first fully reset the namespace so your output looks identical to
1034 1034 this example for pedagogical reasons; in practice you do not need a
1035 1035 full reset.
1036 1036
1037 1037 In [1]: %reset -f
1038 1038
1039 1039 Now, with a clean namespace we can make a few variables and use
1040 1040 %reset_selective to only delete names that match our regexp:
1041 1041
1042 1042 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1043 1043
1044 1044 In [3]: who_ls
1045 1045 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1046 1046
1047 1047 In [4]: %reset_selective -f b[2-3]m
1048 1048
1049 1049 In [5]: who_ls
1050 1050 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1051 1051
1052 1052 In [6]: %reset_selective -f d
1053 1053
1054 1054 In [7]: who_ls
1055 1055 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1056 1056
1057 1057 In [8]: %reset_selective -f c
1058 1058
1059 1059 In [9]: who_ls
1060 1060 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1061 1061
1062 1062 In [10]: %reset_selective -f b
1063 1063
1064 1064 In [11]: who_ls
1065 1065 Out[11]: ['a']
1066 1066 """
1067 1067
1068 1068 opts, regex = self.parse_options(parameter_s,'f')
1069 1069
1070 1070 if opts.has_key('f'):
1071 1071 ans = True
1072 1072 else:
1073 1073 ans = self.shell.ask_yes_no(
1074 1074 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1075 1075 if not ans:
1076 1076 print 'Nothing done.'
1077 1077 return
1078 1078 user_ns = self.shell.user_ns
1079 1079 if not regex:
1080 1080 print 'No regex pattern specified. Nothing done.'
1081 1081 return
1082 1082 else:
1083 1083 try:
1084 1084 m = re.compile(regex)
1085 1085 except TypeError:
1086 1086 raise TypeError('regex must be a string or compiled pattern')
1087 1087 for i in self.magic_who_ls():
1088 1088 if m.search(i):
1089 1089 del(user_ns[i])
1090 1090
1091 1091 def magic_logstart(self,parameter_s=''):
1092 1092 """Start logging anywhere in a session.
1093 1093
1094 1094 %logstart [-o|-r|-t] [log_name [log_mode]]
1095 1095
1096 1096 If no name is given, it defaults to a file named 'ipython_log.py' in your
1097 1097 current directory, in 'rotate' mode (see below).
1098 1098
1099 1099 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1100 1100 history up to that point and then continues logging.
1101 1101
1102 1102 %logstart takes a second optional parameter: logging mode. This can be one
1103 1103 of (note that the modes are given unquoted):\\
1104 1104 append: well, that says it.\\
1105 1105 backup: rename (if exists) to name~ and start name.\\
1106 1106 global: single logfile in your home dir, appended to.\\
1107 1107 over : overwrite existing log.\\
1108 1108 rotate: create rotating logs name.1~, name.2~, etc.
1109 1109
1110 1110 Options:
1111 1111
1112 1112 -o: log also IPython's output. In this mode, all commands which
1113 1113 generate an Out[NN] prompt are recorded to the logfile, right after
1114 1114 their corresponding input line. The output lines are always
1115 1115 prepended with a '#[Out]# ' marker, so that the log remains valid
1116 1116 Python code.
1117 1117
1118 1118 Since this marker is always the same, filtering only the output from
1119 1119 a log is very easy, using for example a simple awk call:
1120 1120
1121 1121 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1122 1122
1123 1123 -r: log 'raw' input. Normally, IPython's logs contain the processed
1124 1124 input, so that user lines are logged in their final form, converted
1125 1125 into valid Python. For example, %Exit is logged as
1126 1126 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1127 1127 exactly as typed, with no transformations applied.
1128 1128
1129 1129 -t: put timestamps before each input line logged (these are put in
1130 1130 comments)."""
1131 1131
1132 1132 opts,par = self.parse_options(parameter_s,'ort')
1133 1133 log_output = 'o' in opts
1134 1134 log_raw_input = 'r' in opts
1135 1135 timestamp = 't' in opts
1136 1136
1137 1137 logger = self.shell.logger
1138 1138
1139 1139 # if no args are given, the defaults set in the logger constructor by
1140 1140 # ipytohn remain valid
1141 1141 if par:
1142 1142 try:
1143 1143 logfname,logmode = par.split()
1144 1144 except:
1145 1145 logfname = par
1146 1146 logmode = 'backup'
1147 1147 else:
1148 1148 logfname = logger.logfname
1149 1149 logmode = logger.logmode
1150 1150 # put logfname into rc struct as if it had been called on the command
1151 1151 # line, so it ends up saved in the log header Save it in case we need
1152 1152 # to restore it...
1153 1153 old_logfile = self.shell.logfile
1154 1154 if logfname:
1155 1155 logfname = os.path.expanduser(logfname)
1156 1156 self.shell.logfile = logfname
1157 1157
1158 1158 loghead = '# IPython log file\n\n'
1159 1159 try:
1160 1160 started = logger.logstart(logfname,loghead,logmode,
1161 1161 log_output,timestamp,log_raw_input)
1162 1162 except:
1163 1163 self.shell.logfile = old_logfile
1164 1164 warn("Couldn't start log: %s" % sys.exc_info()[1])
1165 1165 else:
1166 1166 # log input history up to this point, optionally interleaving
1167 1167 # output if requested
1168 1168
1169 1169 if timestamp:
1170 1170 # disable timestamping for the previous history, since we've
1171 1171 # lost those already (no time machine here).
1172 1172 logger.timestamp = False
1173 1173
1174 1174 if log_raw_input:
1175 1175 input_hist = self.shell.history_manager.input_hist_raw
1176 1176 else:
1177 1177 input_hist = self.shell.history_manager.input_hist_parsed
1178 1178
1179 1179 if log_output:
1180 1180 log_write = logger.log_write
1181 1181 output_hist = self.shell.history_manager.output_hist
1182 1182 for n in range(1,len(input_hist)-1):
1183 1183 log_write(input_hist[n].rstrip())
1184 1184 if n in output_hist:
1185 1185 log_write(repr(output_hist[n]),'output')
1186 1186 else:
1187 1187 logger.log_write(''.join(input_hist[1:]))
1188 1188 if timestamp:
1189 1189 # re-enable timestamping
1190 1190 logger.timestamp = True
1191 1191
1192 1192 print ('Activating auto-logging. '
1193 1193 'Current session state plus future input saved.')
1194 1194 logger.logstate()
1195 1195
1196 1196 def magic_logstop(self,parameter_s=''):
1197 1197 """Fully stop logging and close log file.
1198 1198
1199 1199 In order to start logging again, a new %logstart call needs to be made,
1200 1200 possibly (though not necessarily) with a new filename, mode and other
1201 1201 options."""
1202 1202 self.logger.logstop()
1203 1203
1204 1204 def magic_logoff(self,parameter_s=''):
1205 1205 """Temporarily stop logging.
1206 1206
1207 1207 You must have previously started logging."""
1208 1208 self.shell.logger.switch_log(0)
1209 1209
1210 1210 def magic_logon(self,parameter_s=''):
1211 1211 """Restart logging.
1212 1212
1213 1213 This function is for restarting logging which you've temporarily
1214 1214 stopped with %logoff. For starting logging for the first time, you
1215 1215 must use the %logstart function, which allows you to specify an
1216 1216 optional log filename."""
1217 1217
1218 1218 self.shell.logger.switch_log(1)
1219 1219
1220 1220 def magic_logstate(self,parameter_s=''):
1221 1221 """Print the status of the logging system."""
1222 1222
1223 1223 self.shell.logger.logstate()
1224 1224
1225 1225 def magic_pdb(self, parameter_s=''):
1226 1226 """Control the automatic calling of the pdb interactive debugger.
1227 1227
1228 1228 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1229 1229 argument it works as a toggle.
1230 1230
1231 1231 When an exception is triggered, IPython can optionally call the
1232 1232 interactive pdb debugger after the traceback printout. %pdb toggles
1233 1233 this feature on and off.
1234 1234
1235 1235 The initial state of this feature is set in your ipythonrc
1236 1236 configuration file (the variable is called 'pdb').
1237 1237
1238 1238 If you want to just activate the debugger AFTER an exception has fired,
1239 1239 without having to type '%pdb on' and rerunning your code, you can use
1240 1240 the %debug magic."""
1241 1241
1242 1242 par = parameter_s.strip().lower()
1243 1243
1244 1244 if par:
1245 1245 try:
1246 1246 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1247 1247 except KeyError:
1248 1248 print ('Incorrect argument. Use on/1, off/0, '
1249 1249 'or nothing for a toggle.')
1250 1250 return
1251 1251 else:
1252 1252 # toggle
1253 1253 new_pdb = not self.shell.call_pdb
1254 1254
1255 1255 # set on the shell
1256 1256 self.shell.call_pdb = new_pdb
1257 1257 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1258 1258
1259 1259 def magic_debug(self, parameter_s=''):
1260 1260 """Activate the interactive debugger in post-mortem mode.
1261 1261
1262 1262 If an exception has just occurred, this lets you inspect its stack
1263 1263 frames interactively. Note that this will always work only on the last
1264 1264 traceback that occurred, so you must call this quickly after an
1265 1265 exception that you wish to inspect has fired, because if another one
1266 1266 occurs, it clobbers the previous one.
1267 1267
1268 1268 If you want IPython to automatically do this on every exception, see
1269 1269 the %pdb magic for more details.
1270 1270 """
1271 1271 self.shell.debugger(force=True)
1272 1272
1273 1273 @testdec.skip_doctest
1274 1274 def magic_prun(self, parameter_s ='',user_mode=1,
1275 1275 opts=None,arg_lst=None,prog_ns=None):
1276 1276
1277 1277 """Run a statement through the python code profiler.
1278 1278
1279 1279 Usage:
1280 1280 %prun [options] statement
1281 1281
1282 1282 The given statement (which doesn't require quote marks) is run via the
1283 1283 python profiler in a manner similar to the profile.run() function.
1284 1284 Namespaces are internally managed to work correctly; profile.run
1285 1285 cannot be used in IPython because it makes certain assumptions about
1286 1286 namespaces which do not hold under IPython.
1287 1287
1288 1288 Options:
1289 1289
1290 1290 -l <limit>: you can place restrictions on what or how much of the
1291 1291 profile gets printed. The limit value can be:
1292 1292
1293 1293 * A string: only information for function names containing this string
1294 1294 is printed.
1295 1295
1296 1296 * An integer: only these many lines are printed.
1297 1297
1298 1298 * A float (between 0 and 1): this fraction of the report is printed
1299 1299 (for example, use a limit of 0.4 to see the topmost 40% only).
1300 1300
1301 1301 You can combine several limits with repeated use of the option. For
1302 1302 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1303 1303 information about class constructors.
1304 1304
1305 1305 -r: return the pstats.Stats object generated by the profiling. This
1306 1306 object has all the information about the profile in it, and you can
1307 1307 later use it for further analysis or in other functions.
1308 1308
1309 1309 -s <key>: sort profile by given key. You can provide more than one key
1310 1310 by using the option several times: '-s key1 -s key2 -s key3...'. The
1311 1311 default sorting key is 'time'.
1312 1312
1313 1313 The following is copied verbatim from the profile documentation
1314 1314 referenced below:
1315 1315
1316 1316 When more than one key is provided, additional keys are used as
1317 1317 secondary criteria when the there is equality in all keys selected
1318 1318 before them.
1319 1319
1320 1320 Abbreviations can be used for any key names, as long as the
1321 1321 abbreviation is unambiguous. The following are the keys currently
1322 1322 defined:
1323 1323
1324 1324 Valid Arg Meaning
1325 1325 "calls" call count
1326 1326 "cumulative" cumulative time
1327 1327 "file" file name
1328 1328 "module" file name
1329 1329 "pcalls" primitive call count
1330 1330 "line" line number
1331 1331 "name" function name
1332 1332 "nfl" name/file/line
1333 1333 "stdname" standard name
1334 1334 "time" internal time
1335 1335
1336 1336 Note that all sorts on statistics are in descending order (placing
1337 1337 most time consuming items first), where as name, file, and line number
1338 1338 searches are in ascending order (i.e., alphabetical). The subtle
1339 1339 distinction between "nfl" and "stdname" is that the standard name is a
1340 1340 sort of the name as printed, which means that the embedded line
1341 1341 numbers get compared in an odd way. For example, lines 3, 20, and 40
1342 1342 would (if the file names were the same) appear in the string order
1343 1343 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1344 1344 line numbers. In fact, sort_stats("nfl") is the same as
1345 1345 sort_stats("name", "file", "line").
1346 1346
1347 1347 -T <filename>: save profile results as shown on screen to a text
1348 1348 file. The profile is still shown on screen.
1349 1349
1350 1350 -D <filename>: save (via dump_stats) profile statistics to given
1351 1351 filename. This data is in a format understod by the pstats module, and
1352 1352 is generated by a call to the dump_stats() method of profile
1353 1353 objects. The profile is still shown on screen.
1354 1354
1355 1355 If you want to run complete programs under the profiler's control, use
1356 1356 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1357 1357 contains profiler specific options as described here.
1358 1358
1359 1359 You can read the complete documentation for the profile module with::
1360 1360
1361 1361 In [1]: import profile; profile.help()
1362 1362 """
1363 1363
1364 1364 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1365 1365 # protect user quote marks
1366 1366 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1367 1367
1368 1368 if user_mode: # regular user call
1369 1369 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1370 1370 list_all=1)
1371 1371 namespace = self.shell.user_ns
1372 1372 else: # called to run a program by %run -p
1373 1373 try:
1374 1374 filename = get_py_filename(arg_lst[0])
1375 1375 except IOError,msg:
1376 1376 error(msg)
1377 1377 return
1378 1378
1379 1379 arg_str = 'execfile(filename,prog_ns)'
1380 1380 namespace = locals()
1381 1381
1382 1382 opts.merge(opts_def)
1383 1383
1384 1384 prof = profile.Profile()
1385 1385 try:
1386 1386 prof = prof.runctx(arg_str,namespace,namespace)
1387 1387 sys_exit = ''
1388 1388 except SystemExit:
1389 1389 sys_exit = """*** SystemExit exception caught in code being profiled."""
1390 1390
1391 1391 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1392 1392
1393 1393 lims = opts.l
1394 1394 if lims:
1395 1395 lims = [] # rebuild lims with ints/floats/strings
1396 1396 for lim in opts.l:
1397 1397 try:
1398 1398 lims.append(int(lim))
1399 1399 except ValueError:
1400 1400 try:
1401 1401 lims.append(float(lim))
1402 1402 except ValueError:
1403 1403 lims.append(lim)
1404 1404
1405 1405 # Trap output.
1406 1406 stdout_trap = StringIO()
1407 1407
1408 1408 if hasattr(stats,'stream'):
1409 1409 # In newer versions of python, the stats object has a 'stream'
1410 1410 # attribute to write into.
1411 1411 stats.stream = stdout_trap
1412 1412 stats.print_stats(*lims)
1413 1413 else:
1414 1414 # For older versions, we manually redirect stdout during printing
1415 1415 sys_stdout = sys.stdout
1416 1416 try:
1417 1417 sys.stdout = stdout_trap
1418 1418 stats.print_stats(*lims)
1419 1419 finally:
1420 1420 sys.stdout = sys_stdout
1421 1421
1422 1422 output = stdout_trap.getvalue()
1423 1423 output = output.rstrip()
1424 1424
1425 1425 page.page(output)
1426 1426 print sys_exit,
1427 1427
1428 1428 dump_file = opts.D[0]
1429 1429 text_file = opts.T[0]
1430 1430 if dump_file:
1431 1431 prof.dump_stats(dump_file)
1432 1432 print '\n*** Profile stats marshalled to file',\
1433 1433 `dump_file`+'.',sys_exit
1434 1434 if text_file:
1435 1435 pfile = file(text_file,'w')
1436 1436 pfile.write(output)
1437 1437 pfile.close()
1438 1438 print '\n*** Profile printout saved to text file',\
1439 1439 `text_file`+'.',sys_exit
1440 1440
1441 1441 if opts.has_key('r'):
1442 1442 return stats
1443 1443 else:
1444 1444 return None
1445 1445
1446 1446 @testdec.skip_doctest
1447 1447 def magic_run(self, parameter_s ='',runner=None,
1448 1448 file_finder=get_py_filename):
1449 1449 """Run the named file inside IPython as a program.
1450 1450
1451 1451 Usage:\\
1452 1452 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1453 1453
1454 1454 Parameters after the filename are passed as command-line arguments to
1455 1455 the program (put in sys.argv). Then, control returns to IPython's
1456 1456 prompt.
1457 1457
1458 1458 This is similar to running at a system prompt:\\
1459 1459 $ python file args\\
1460 1460 but with the advantage of giving you IPython's tracebacks, and of
1461 1461 loading all variables into your interactive namespace for further use
1462 1462 (unless -p is used, see below).
1463 1463
1464 1464 The file is executed in a namespace initially consisting only of
1465 1465 __name__=='__main__' and sys.argv constructed as indicated. It thus
1466 1466 sees its environment as if it were being run as a stand-alone program
1467 1467 (except for sharing global objects such as previously imported
1468 1468 modules). But after execution, the IPython interactive namespace gets
1469 1469 updated with all variables defined in the program (except for __name__
1470 1470 and sys.argv). This allows for very convenient loading of code for
1471 1471 interactive work, while giving each program a 'clean sheet' to run in.
1472 1472
1473 1473 Options:
1474 1474
1475 1475 -n: __name__ is NOT set to '__main__', but to the running file's name
1476 1476 without extension (as python does under import). This allows running
1477 1477 scripts and reloading the definitions in them without calling code
1478 1478 protected by an ' if __name__ == "__main__" ' clause.
1479 1479
1480 1480 -i: run the file in IPython's namespace instead of an empty one. This
1481 1481 is useful if you are experimenting with code written in a text editor
1482 1482 which depends on variables defined interactively.
1483 1483
1484 1484 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1485 1485 being run. This is particularly useful if IPython is being used to
1486 1486 run unittests, which always exit with a sys.exit() call. In such
1487 1487 cases you are interested in the output of the test results, not in
1488 1488 seeing a traceback of the unittest module.
1489 1489
1490 1490 -t: print timing information at the end of the run. IPython will give
1491 1491 you an estimated CPU time consumption for your script, which under
1492 1492 Unix uses the resource module to avoid the wraparound problems of
1493 1493 time.clock(). Under Unix, an estimate of time spent on system tasks
1494 1494 is also given (for Windows platforms this is reported as 0.0).
1495 1495
1496 1496 If -t is given, an additional -N<N> option can be given, where <N>
1497 1497 must be an integer indicating how many times you want the script to
1498 1498 run. The final timing report will include total and per run results.
1499 1499
1500 1500 For example (testing the script uniq_stable.py):
1501 1501
1502 1502 In [1]: run -t uniq_stable
1503 1503
1504 1504 IPython CPU timings (estimated):\\
1505 1505 User : 0.19597 s.\\
1506 1506 System: 0.0 s.\\
1507 1507
1508 1508 In [2]: run -t -N5 uniq_stable
1509 1509
1510 1510 IPython CPU timings (estimated):\\
1511 1511 Total runs performed: 5\\
1512 1512 Times : Total Per run\\
1513 1513 User : 0.910862 s, 0.1821724 s.\\
1514 1514 System: 0.0 s, 0.0 s.
1515 1515
1516 1516 -d: run your program under the control of pdb, the Python debugger.
1517 1517 This allows you to execute your program step by step, watch variables,
1518 1518 etc. Internally, what IPython does is similar to calling:
1519 1519
1520 1520 pdb.run('execfile("YOURFILENAME")')
1521 1521
1522 1522 with a breakpoint set on line 1 of your file. You can change the line
1523 1523 number for this automatic breakpoint to be <N> by using the -bN option
1524 1524 (where N must be an integer). For example:
1525 1525
1526 1526 %run -d -b40 myscript
1527 1527
1528 1528 will set the first breakpoint at line 40 in myscript.py. Note that
1529 1529 the first breakpoint must be set on a line which actually does
1530 1530 something (not a comment or docstring) for it to stop execution.
1531 1531
1532 1532 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1533 1533 first enter 'c' (without qoutes) to start execution up to the first
1534 1534 breakpoint.
1535 1535
1536 1536 Entering 'help' gives information about the use of the debugger. You
1537 1537 can easily see pdb's full documentation with "import pdb;pdb.help()"
1538 1538 at a prompt.
1539 1539
1540 1540 -p: run program under the control of the Python profiler module (which
1541 1541 prints a detailed report of execution times, function calls, etc).
1542 1542
1543 1543 You can pass other options after -p which affect the behavior of the
1544 1544 profiler itself. See the docs for %prun for details.
1545 1545
1546 1546 In this mode, the program's variables do NOT propagate back to the
1547 1547 IPython interactive namespace (because they remain in the namespace
1548 1548 where the profiler executes them).
1549 1549
1550 1550 Internally this triggers a call to %prun, see its documentation for
1551 1551 details on the options available specifically for profiling.
1552 1552
1553 1553 There is one special usage for which the text above doesn't apply:
1554 1554 if the filename ends with .ipy, the file is run as ipython script,
1555 1555 just as if the commands were written on IPython prompt.
1556 1556 """
1557 1557
1558 1558 # get arguments and set sys.argv for program to be run.
1559 1559 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1560 1560 mode='list',list_all=1)
1561 1561
1562 1562 try:
1563 1563 filename = file_finder(arg_lst[0])
1564 1564 except IndexError:
1565 1565 warn('you must provide at least a filename.')
1566 1566 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1567 1567 return
1568 1568 except IOError,msg:
1569 1569 error(msg)
1570 1570 return
1571 1571
1572 1572 if filename.lower().endswith('.ipy'):
1573 1573 self.shell.safe_execfile_ipy(filename)
1574 1574 return
1575 1575
1576 1576 # Control the response to exit() calls made by the script being run
1577 1577 exit_ignore = opts.has_key('e')
1578 1578
1579 1579 # Make sure that the running script gets a proper sys.argv as if it
1580 1580 # were run from a system shell.
1581 1581 save_argv = sys.argv # save it for later restoring
1582 1582 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1583 1583
1584 1584 if opts.has_key('i'):
1585 1585 # Run in user's interactive namespace
1586 1586 prog_ns = self.shell.user_ns
1587 1587 __name__save = self.shell.user_ns['__name__']
1588 1588 prog_ns['__name__'] = '__main__'
1589 1589 main_mod = self.shell.new_main_mod(prog_ns)
1590 1590 else:
1591 1591 # Run in a fresh, empty namespace
1592 1592 if opts.has_key('n'):
1593 1593 name = os.path.splitext(os.path.basename(filename))[0]
1594 1594 else:
1595 1595 name = '__main__'
1596 1596
1597 1597 main_mod = self.shell.new_main_mod()
1598 1598 prog_ns = main_mod.__dict__
1599 1599 prog_ns['__name__'] = name
1600 1600
1601 1601 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1602 1602 # set the __file__ global in the script's namespace
1603 1603 prog_ns['__file__'] = filename
1604 1604
1605 1605 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1606 1606 # that, if we overwrite __main__, we replace it at the end
1607 1607 main_mod_name = prog_ns['__name__']
1608 1608
1609 1609 if main_mod_name == '__main__':
1610 1610 restore_main = sys.modules['__main__']
1611 1611 else:
1612 1612 restore_main = False
1613 1613
1614 1614 # This needs to be undone at the end to prevent holding references to
1615 1615 # every single object ever created.
1616 1616 sys.modules[main_mod_name] = main_mod
1617 1617
1618 1618 stats = None
1619 1619 try:
1620 1620 self.shell.save_history()
1621 1621
1622 1622 if opts.has_key('p'):
1623 1623 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1624 1624 else:
1625 1625 if opts.has_key('d'):
1626 1626 deb = debugger.Pdb(self.shell.colors)
1627 1627 # reset Breakpoint state, which is moronically kept
1628 1628 # in a class
1629 1629 bdb.Breakpoint.next = 1
1630 1630 bdb.Breakpoint.bplist = {}
1631 1631 bdb.Breakpoint.bpbynumber = [None]
1632 1632 # Set an initial breakpoint to stop execution
1633 1633 maxtries = 10
1634 1634 bp = int(opts.get('b',[1])[0])
1635 1635 checkline = deb.checkline(filename,bp)
1636 1636 if not checkline:
1637 1637 for bp in range(bp+1,bp+maxtries+1):
1638 1638 if deb.checkline(filename,bp):
1639 1639 break
1640 1640 else:
1641 1641 msg = ("\nI failed to find a valid line to set "
1642 1642 "a breakpoint\n"
1643 1643 "after trying up to line: %s.\n"
1644 1644 "Please set a valid breakpoint manually "
1645 1645 "with the -b option." % bp)
1646 1646 error(msg)
1647 1647 return
1648 1648 # if we find a good linenumber, set the breakpoint
1649 1649 deb.do_break('%s:%s' % (filename,bp))
1650 1650 # Start file run
1651 1651 print "NOTE: Enter 'c' at the",
1652 1652 print "%s prompt to start your script." % deb.prompt
1653 1653 try:
1654 1654 deb.run('execfile("%s")' % filename,prog_ns)
1655 1655
1656 1656 except:
1657 1657 etype, value, tb = sys.exc_info()
1658 1658 # Skip three frames in the traceback: the %run one,
1659 1659 # one inside bdb.py, and the command-line typed by the
1660 1660 # user (run by exec in pdb itself).
1661 1661 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1662 1662 else:
1663 1663 if runner is None:
1664 1664 runner = self.shell.safe_execfile
1665 1665 if opts.has_key('t'):
1666 1666 # timed execution
1667 1667 try:
1668 1668 nruns = int(opts['N'][0])
1669 1669 if nruns < 1:
1670 1670 error('Number of runs must be >=1')
1671 1671 return
1672 1672 except (KeyError):
1673 1673 nruns = 1
1674 1674 if nruns == 1:
1675 1675 t0 = clock2()
1676 1676 runner(filename,prog_ns,prog_ns,
1677 1677 exit_ignore=exit_ignore)
1678 1678 t1 = clock2()
1679 1679 t_usr = t1[0]-t0[0]
1680 1680 t_sys = t1[1]-t0[1]
1681 1681 print "\nIPython CPU timings (estimated):"
1682 1682 print " User : %10s s." % t_usr
1683 1683 print " System: %10s s." % t_sys
1684 1684 else:
1685 1685 runs = range(nruns)
1686 1686 t0 = clock2()
1687 1687 for nr in runs:
1688 1688 runner(filename,prog_ns,prog_ns,
1689 1689 exit_ignore=exit_ignore)
1690 1690 t1 = clock2()
1691 1691 t_usr = t1[0]-t0[0]
1692 1692 t_sys = t1[1]-t0[1]
1693 1693 print "\nIPython CPU timings (estimated):"
1694 1694 print "Total runs performed:",nruns
1695 1695 print " Times : %10s %10s" % ('Total','Per run')
1696 1696 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1697 1697 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1698 1698
1699 1699 else:
1700 1700 # regular execution
1701 1701 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1702 1702
1703 1703 if opts.has_key('i'):
1704 1704 self.shell.user_ns['__name__'] = __name__save
1705 1705 else:
1706 1706 # The shell MUST hold a reference to prog_ns so after %run
1707 1707 # exits, the python deletion mechanism doesn't zero it out
1708 1708 # (leaving dangling references).
1709 1709 self.shell.cache_main_mod(prog_ns,filename)
1710 1710 # update IPython interactive namespace
1711 1711
1712 1712 # Some forms of read errors on the file may mean the
1713 1713 # __name__ key was never set; using pop we don't have to
1714 1714 # worry about a possible KeyError.
1715 1715 prog_ns.pop('__name__', None)
1716 1716
1717 1717 self.shell.user_ns.update(prog_ns)
1718 1718 finally:
1719 1719 # It's a bit of a mystery why, but __builtins__ can change from
1720 1720 # being a module to becoming a dict missing some key data after
1721 1721 # %run. As best I can see, this is NOT something IPython is doing
1722 1722 # at all, and similar problems have been reported before:
1723 1723 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1724 1724 # Since this seems to be done by the interpreter itself, the best
1725 1725 # we can do is to at least restore __builtins__ for the user on
1726 1726 # exit.
1727 1727 self.shell.user_ns['__builtins__'] = __builtin__
1728 1728
1729 1729 # Ensure key global structures are restored
1730 1730 sys.argv = save_argv
1731 1731 if restore_main:
1732 1732 sys.modules['__main__'] = restore_main
1733 1733 else:
1734 1734 # Remove from sys.modules the reference to main_mod we'd
1735 1735 # added. Otherwise it will trap references to objects
1736 1736 # contained therein.
1737 1737 del sys.modules[main_mod_name]
1738 1738
1739 1739 self.shell.reload_history()
1740 1740
1741 1741 return stats
1742 1742
1743 1743 @testdec.skip_doctest
1744 1744 def magic_timeit(self, parameter_s =''):
1745 1745 """Time execution of a Python statement or expression
1746 1746
1747 1747 Usage:\\
1748 1748 %timeit [-n<N> -r<R> [-t|-c]] statement
1749 1749
1750 1750 Time execution of a Python statement or expression using the timeit
1751 1751 module.
1752 1752
1753 1753 Options:
1754 1754 -n<N>: execute the given statement <N> times in a loop. If this value
1755 1755 is not given, a fitting value is chosen.
1756 1756
1757 1757 -r<R>: repeat the loop iteration <R> times and take the best result.
1758 1758 Default: 3
1759 1759
1760 1760 -t: use time.time to measure the time, which is the default on Unix.
1761 1761 This function measures wall time.
1762 1762
1763 1763 -c: use time.clock to measure the time, which is the default on
1764 1764 Windows and measures wall time. On Unix, resource.getrusage is used
1765 1765 instead and returns the CPU user time.
1766 1766
1767 1767 -p<P>: use a precision of <P> digits to display the timing result.
1768 1768 Default: 3
1769 1769
1770 1770
1771 1771 Examples:
1772 1772
1773 1773 In [1]: %timeit pass
1774 1774 10000000 loops, best of 3: 53.3 ns per loop
1775 1775
1776 1776 In [2]: u = None
1777 1777
1778 1778 In [3]: %timeit u is None
1779 1779 10000000 loops, best of 3: 184 ns per loop
1780 1780
1781 1781 In [4]: %timeit -r 4 u == None
1782 1782 1000000 loops, best of 4: 242 ns per loop
1783 1783
1784 1784 In [5]: import time
1785 1785
1786 1786 In [6]: %timeit -n1 time.sleep(2)
1787 1787 1 loops, best of 3: 2 s per loop
1788 1788
1789 1789
1790 1790 The times reported by %timeit will be slightly higher than those
1791 1791 reported by the timeit.py script when variables are accessed. This is
1792 1792 due to the fact that %timeit executes the statement in the namespace
1793 1793 of the shell, compared with timeit.py, which uses a single setup
1794 1794 statement to import function or create variables. Generally, the bias
1795 1795 does not matter as long as results from timeit.py are not mixed with
1796 1796 those from %timeit."""
1797 1797
1798 1798 import timeit
1799 1799 import math
1800 1800
1801 1801 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1802 1802 # certain terminals. Until we figure out a robust way of
1803 1803 # auto-detecting if the terminal can deal with it, use plain 'us' for
1804 1804 # microseconds. I am really NOT happy about disabling the proper
1805 1805 # 'micro' prefix, but crashing is worse... If anyone knows what the
1806 1806 # right solution for this is, I'm all ears...
1807 1807 #
1808 1808 # Note: using
1809 1809 #
1810 1810 # s = u'\xb5'
1811 1811 # s.encode(sys.getdefaultencoding())
1812 1812 #
1813 1813 # is not sufficient, as I've seen terminals where that fails but
1814 1814 # print s
1815 1815 #
1816 1816 # succeeds
1817 1817 #
1818 1818 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1819 1819
1820 1820 #units = [u"s", u"ms",u'\xb5',"ns"]
1821 1821 units = [u"s", u"ms",u'us',"ns"]
1822 1822
1823 1823 scaling = [1, 1e3, 1e6, 1e9]
1824 1824
1825 1825 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1826 1826 posix=False)
1827 1827 if stmt == "":
1828 1828 return
1829 1829 timefunc = timeit.default_timer
1830 1830 number = int(getattr(opts, "n", 0))
1831 1831 repeat = int(getattr(opts, "r", timeit.default_repeat))
1832 1832 precision = int(getattr(opts, "p", 3))
1833 1833 if hasattr(opts, "t"):
1834 1834 timefunc = time.time
1835 1835 if hasattr(opts, "c"):
1836 1836 timefunc = clock
1837 1837
1838 1838 timer = timeit.Timer(timer=timefunc)
1839 1839 # this code has tight coupling to the inner workings of timeit.Timer,
1840 1840 # but is there a better way to achieve that the code stmt has access
1841 1841 # to the shell namespace?
1842 1842
1843 1843 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1844 1844 'setup': "pass"}
1845 1845 # Track compilation time so it can be reported if too long
1846 1846 # Minimum time above which compilation time will be reported
1847 1847 tc_min = 0.1
1848 1848
1849 1849 t0 = clock()
1850 1850 code = compile(src, "<magic-timeit>", "exec")
1851 1851 tc = clock()-t0
1852 1852
1853 1853 ns = {}
1854 1854 exec code in self.shell.user_ns, ns
1855 1855 timer.inner = ns["inner"]
1856 1856
1857 1857 if number == 0:
1858 1858 # determine number so that 0.2 <= total time < 2.0
1859 1859 number = 1
1860 1860 for i in range(1, 10):
1861 1861 if timer.timeit(number) >= 0.2:
1862 1862 break
1863 1863 number *= 10
1864 1864
1865 1865 best = min(timer.repeat(repeat, number)) / number
1866 1866
1867 1867 if best > 0.0 and best < 1000.0:
1868 1868 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1869 1869 elif best >= 1000.0:
1870 1870 order = 0
1871 1871 else:
1872 1872 order = 3
1873 1873 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1874 1874 precision,
1875 1875 best * scaling[order],
1876 1876 units[order])
1877 1877 if tc > tc_min:
1878 1878 print "Compiler time: %.2f s" % tc
1879 1879
1880 1880 @testdec.skip_doctest
1881 1881 def magic_time(self,parameter_s = ''):
1882 1882 """Time execution of a Python statement or expression.
1883 1883
1884 1884 The CPU and wall clock times are printed, and the value of the
1885 1885 expression (if any) is returned. Note that under Win32, system time
1886 1886 is always reported as 0, since it can not be measured.
1887 1887
1888 1888 This function provides very basic timing functionality. In Python
1889 1889 2.3, the timeit module offers more control and sophistication, so this
1890 1890 could be rewritten to use it (patches welcome).
1891 1891
1892 1892 Some examples:
1893 1893
1894 1894 In [1]: time 2**128
1895 1895 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1896 1896 Wall time: 0.00
1897 1897 Out[1]: 340282366920938463463374607431768211456L
1898 1898
1899 1899 In [2]: n = 1000000
1900 1900
1901 1901 In [3]: time sum(range(n))
1902 1902 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1903 1903 Wall time: 1.37
1904 1904 Out[3]: 499999500000L
1905 1905
1906 1906 In [4]: time print 'hello world'
1907 1907 hello world
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00
1910 1910
1911 1911 Note that the time needed by Python to compile the given expression
1912 1912 will be reported if it is more than 0.1s. In this example, the
1913 1913 actual exponentiation is done by Python at compilation time, so while
1914 1914 the expression can take a noticeable amount of time to compute, that
1915 1915 time is purely due to the compilation:
1916 1916
1917 1917 In [5]: time 3**9999;
1918 1918 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1919 1919 Wall time: 0.00 s
1920 1920
1921 1921 In [6]: time 3**999999;
1922 1922 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1923 1923 Wall time: 0.00 s
1924 1924 Compiler : 0.78 s
1925 1925 """
1926 1926
1927 1927 # fail immediately if the given expression can't be compiled
1928 1928
1929 1929 expr = self.shell.prefilter(parameter_s,False)
1930 1930
1931 1931 # Minimum time above which compilation time will be reported
1932 1932 tc_min = 0.1
1933 1933
1934 1934 try:
1935 1935 mode = 'eval'
1936 1936 t0 = clock()
1937 1937 code = compile(expr,'<timed eval>',mode)
1938 1938 tc = clock()-t0
1939 1939 except SyntaxError:
1940 1940 mode = 'exec'
1941 1941 t0 = clock()
1942 1942 code = compile(expr,'<timed exec>',mode)
1943 1943 tc = clock()-t0
1944 1944 # skew measurement as little as possible
1945 1945 glob = self.shell.user_ns
1946 1946 clk = clock2
1947 1947 wtime = time.time
1948 1948 # time execution
1949 1949 wall_st = wtime()
1950 1950 if mode=='eval':
1951 1951 st = clk()
1952 1952 out = eval(code,glob)
1953 1953 end = clk()
1954 1954 else:
1955 1955 st = clk()
1956 1956 exec code in glob
1957 1957 end = clk()
1958 1958 out = None
1959 1959 wall_end = wtime()
1960 1960 # Compute actual times and report
1961 1961 wall_time = wall_end-wall_st
1962 1962 cpu_user = end[0]-st[0]
1963 1963 cpu_sys = end[1]-st[1]
1964 1964 cpu_tot = cpu_user+cpu_sys
1965 1965 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1966 1966 (cpu_user,cpu_sys,cpu_tot)
1967 1967 print "Wall time: %.2f s" % wall_time
1968 1968 if tc > tc_min:
1969 1969 print "Compiler : %.2f s" % tc
1970 1970 return out
1971 1971
1972 1972 @testdec.skip_doctest
1973 1973 def magic_macro(self,parameter_s = ''):
1974 1974 """Define a set of input lines as a macro for future re-execution.
1975 1975
1976 1976 Usage:\\
1977 1977 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1978 1978
1979 1979 Options:
1980 1980
1981 1981 -r: use 'raw' input. By default, the 'processed' history is used,
1982 1982 so that magics are loaded in their transformed version to valid
1983 1983 Python. If this option is given, the raw input as typed as the
1984 1984 command line is used instead.
1985 1985
1986 1986 This will define a global variable called `name` which is a string
1987 1987 made of joining the slices and lines you specify (n1,n2,... numbers
1988 1988 above) from your input history into a single string. This variable
1989 1989 acts like an automatic function which re-executes those lines as if
1990 1990 you had typed them. You just type 'name' at the prompt and the code
1991 1991 executes.
1992 1992
1993 1993 The notation for indicating number ranges is: n1-n2 means 'use line
1994 1994 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1995 1995 using the lines numbered 5,6 and 7.
1996 1996
1997 1997 Note: as a 'hidden' feature, you can also use traditional python slice
1998 1998 notation, where N:M means numbers N through M-1.
1999 1999
2000 2000 For example, if your history contains (%hist prints it):
2001 2001
2002 2002 44: x=1
2003 2003 45: y=3
2004 2004 46: z=x+y
2005 2005 47: print x
2006 2006 48: a=5
2007 2007 49: print 'x',x,'y',y
2008 2008
2009 2009 you can create a macro with lines 44 through 47 (included) and line 49
2010 2010 called my_macro with:
2011 2011
2012 2012 In [55]: %macro my_macro 44-47 49
2013 2013
2014 2014 Now, typing `my_macro` (without quotes) will re-execute all this code
2015 2015 in one pass.
2016 2016
2017 2017 You don't need to give the line-numbers in order, and any given line
2018 2018 number can appear multiple times. You can assemble macros with any
2019 2019 lines from your input history in any order.
2020 2020
2021 2021 The macro is a simple object which holds its value in an attribute,
2022 2022 but IPython's display system checks for macros and executes them as
2023 2023 code instead of printing them when you type their name.
2024 2024
2025 2025 You can view a macro's contents by explicitly printing it with:
2026 2026
2027 2027 'print macro_name'.
2028 2028
2029 2029 For one-off cases which DON'T contain magic function calls in them you
2030 2030 can obtain similar results by explicitly executing slices from your
2031 2031 input history with:
2032 2032
2033 2033 In [60]: exec In[44:48]+In[49]"""
2034 2034
2035 2035 opts,args = self.parse_options(parameter_s,'r',mode='list')
2036 2036 if not args:
2037 2037 macs = [k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)]
2038 2038 macs.sort()
2039 2039 return macs
2040 2040 if len(args) == 1:
2041 2041 raise UsageError(
2042 2042 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2043 2043 name,ranges = args[0], args[1:]
2044 2044
2045 2045 #print 'rng',ranges # dbg
2046 2046 lines = self.extract_input_slices(ranges,opts.has_key('r'))
2047 2047 macro = Macro(lines)
2048 2048 self.shell.define_macro(name, macro)
2049 2049 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2050 2050 print 'Macro contents:'
2051 2051 print macro,
2052 2052
2053 2053 def magic_save(self,parameter_s = ''):
2054 2054 """Save a set of lines to a given filename.
2055 2055
2056 2056 Usage:\\
2057 2057 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2058 2058
2059 2059 Options:
2060 2060
2061 2061 -r: use 'raw' input. By default, the 'processed' history is used,
2062 2062 so that magics are loaded in their transformed version to valid
2063 2063 Python. If this option is given, the raw input as typed as the
2064 2064 command line is used instead.
2065 2065
2066 2066 This function uses the same syntax as %macro for line extraction, but
2067 2067 instead of creating a macro it saves the resulting string to the
2068 2068 filename you specify.
2069 2069
2070 2070 It adds a '.py' extension to the file if you don't do so yourself, and
2071 2071 it asks for confirmation before overwriting existing files."""
2072 2072
2073 2073 opts,args = self.parse_options(parameter_s,'r',mode='list')
2074 2074 fname,ranges = args[0], args[1:]
2075 2075 if not fname.endswith('.py'):
2076 2076 fname += '.py'
2077 2077 if os.path.isfile(fname):
2078 2078 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2079 2079 if ans.lower() not in ['y','yes']:
2080 2080 print 'Operation cancelled.'
2081 2081 return
2082 2082 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
2083 2083 f = file(fname,'w')
2084 2084 f.write(cmds)
2085 2085 f.close()
2086 2086 print 'The following commands were written to file `%s`:' % fname
2087 2087 print cmds
2088 2088
2089 2089 def _edit_macro(self,mname,macro):
2090 2090 """open an editor with the macro data in a file"""
2091 2091 filename = self.shell.mktempfile(macro.value)
2092 2092 self.shell.hooks.editor(filename)
2093 2093
2094 2094 # and make a new macro object, to replace the old one
2095 2095 mfile = open(filename)
2096 2096 mvalue = mfile.read()
2097 2097 mfile.close()
2098 2098 self.shell.user_ns[mname] = Macro(mvalue)
2099 2099
2100 2100 def magic_ed(self,parameter_s=''):
2101 2101 """Alias to %edit."""
2102 2102 return self.magic_edit(parameter_s)
2103 2103
2104 2104 @testdec.skip_doctest
2105 2105 def magic_edit(self,parameter_s='',last_call=['','']):
2106 2106 """Bring up an editor and execute the resulting code.
2107 2107
2108 2108 Usage:
2109 2109 %edit [options] [args]
2110 2110
2111 2111 %edit runs IPython's editor hook. The default version of this hook is
2112 2112 set to call the __IPYTHON__.rc.editor command. This is read from your
2113 2113 environment variable $EDITOR. If this isn't found, it will default to
2114 2114 vi under Linux/Unix and to notepad under Windows. See the end of this
2115 2115 docstring for how to change the editor hook.
2116 2116
2117 2117 You can also set the value of this editor via the command line option
2118 2118 '-editor' or in your ipythonrc file. This is useful if you wish to use
2119 2119 specifically for IPython an editor different from your typical default
2120 2120 (and for Windows users who typically don't set environment variables).
2121 2121
2122 2122 This command allows you to conveniently edit multi-line code right in
2123 2123 your IPython session.
2124 2124
2125 2125 If called without arguments, %edit opens up an empty editor with a
2126 2126 temporary file and will execute the contents of this file when you
2127 2127 close it (don't forget to save it!).
2128 2128
2129 2129
2130 2130 Options:
2131 2131
2132 2132 -n <number>: open the editor at a specified line number. By default,
2133 2133 the IPython editor hook uses the unix syntax 'editor +N filename', but
2134 2134 you can configure this by providing your own modified hook if your
2135 2135 favorite editor supports line-number specifications with a different
2136 2136 syntax.
2137 2137
2138 2138 -p: this will call the editor with the same data as the previous time
2139 2139 it was used, regardless of how long ago (in your current session) it
2140 2140 was.
2141 2141
2142 2142 -r: use 'raw' input. This option only applies to input taken from the
2143 2143 user's history. By default, the 'processed' history is used, so that
2144 2144 magics are loaded in their transformed version to valid Python. If
2145 2145 this option is given, the raw input as typed as the command line is
2146 2146 used instead. When you exit the editor, it will be executed by
2147 2147 IPython's own processor.
2148 2148
2149 2149 -x: do not execute the edited code immediately upon exit. This is
2150 2150 mainly useful if you are editing programs which need to be called with
2151 2151 command line arguments, which you can then do using %run.
2152 2152
2153 2153
2154 2154 Arguments:
2155 2155
2156 2156 If arguments are given, the following possibilites exist:
2157 2157
2158 2158 - The arguments are numbers or pairs of colon-separated numbers (like
2159 2159 1 4:8 9). These are interpreted as lines of previous input to be
2160 2160 loaded into the editor. The syntax is the same of the %macro command.
2161 2161
2162 2162 - If the argument doesn't start with a number, it is evaluated as a
2163 2163 variable and its contents loaded into the editor. You can thus edit
2164 2164 any string which contains python code (including the result of
2165 2165 previous edits).
2166 2166
2167 2167 - If the argument is the name of an object (other than a string),
2168 2168 IPython will try to locate the file where it was defined and open the
2169 2169 editor at the point where it is defined. You can use `%edit function`
2170 2170 to load an editor exactly at the point where 'function' is defined,
2171 2171 edit it and have the file be executed automatically.
2172 2172
2173 2173 If the object is a macro (see %macro for details), this opens up your
2174 2174 specified editor with a temporary file containing the macro's data.
2175 2175 Upon exit, the macro is reloaded with the contents of the file.
2176 2176
2177 2177 Note: opening at an exact line is only supported under Unix, and some
2178 2178 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2179 2179 '+NUMBER' parameter necessary for this feature. Good editors like
2180 2180 (X)Emacs, vi, jed, pico and joe all do.
2181 2181
2182 2182 - If the argument is not found as a variable, IPython will look for a
2183 2183 file with that name (adding .py if necessary) and load it into the
2184 2184 editor. It will execute its contents with execfile() when you exit,
2185 2185 loading any code in the file into your interactive namespace.
2186 2186
2187 2187 After executing your code, %edit will return as output the code you
2188 2188 typed in the editor (except when it was an existing file). This way
2189 2189 you can reload the code in further invocations of %edit as a variable,
2190 2190 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2191 2191 the output.
2192 2192
2193 2193 Note that %edit is also available through the alias %ed.
2194 2194
2195 2195 This is an example of creating a simple function inside the editor and
2196 2196 then modifying it. First, start up the editor:
2197 2197
2198 2198 In [1]: ed
2199 2199 Editing... done. Executing edited code...
2200 2200 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2201 2201
2202 2202 We can then call the function foo():
2203 2203
2204 2204 In [2]: foo()
2205 2205 foo() was defined in an editing session
2206 2206
2207 2207 Now we edit foo. IPython automatically loads the editor with the
2208 2208 (temporary) file where foo() was previously defined:
2209 2209
2210 2210 In [3]: ed foo
2211 2211 Editing... done. Executing edited code...
2212 2212
2213 2213 And if we call foo() again we get the modified version:
2214 2214
2215 2215 In [4]: foo()
2216 2216 foo() has now been changed!
2217 2217
2218 2218 Here is an example of how to edit a code snippet successive
2219 2219 times. First we call the editor:
2220 2220
2221 2221 In [5]: ed
2222 2222 Editing... done. Executing edited code...
2223 2223 hello
2224 2224 Out[5]: "print 'hello'n"
2225 2225
2226 2226 Now we call it again with the previous output (stored in _):
2227 2227
2228 2228 In [6]: ed _
2229 2229 Editing... done. Executing edited code...
2230 2230 hello world
2231 2231 Out[6]: "print 'hello world'n"
2232 2232
2233 2233 Now we call it with the output #8 (stored in _8, also as Out[8]):
2234 2234
2235 2235 In [7]: ed _8
2236 2236 Editing... done. Executing edited code...
2237 2237 hello again
2238 2238 Out[7]: "print 'hello again'n"
2239 2239
2240 2240
2241 2241 Changing the default editor hook:
2242 2242
2243 2243 If you wish to write your own editor hook, you can put it in a
2244 2244 configuration file which you load at startup time. The default hook
2245 2245 is defined in the IPython.core.hooks module, and you can use that as a
2246 2246 starting example for further modifications. That file also has
2247 2247 general instructions on how to set a new hook for use once you've
2248 2248 defined it."""
2249 2249
2250 2250 # FIXME: This function has become a convoluted mess. It needs a
2251 2251 # ground-up rewrite with clean, simple logic.
2252 2252
2253 2253 def make_filename(arg):
2254 2254 "Make a filename from the given args"
2255 2255 try:
2256 2256 filename = get_py_filename(arg)
2257 2257 except IOError:
2258 2258 if args.endswith('.py'):
2259 2259 filename = arg
2260 2260 else:
2261 2261 filename = None
2262 2262 return filename
2263 2263
2264 2264 # custom exceptions
2265 2265 class DataIsObject(Exception): pass
2266 2266
2267 2267 opts,args = self.parse_options(parameter_s,'prxn:')
2268 2268 # Set a few locals from the options for convenience:
2269 2269 opts_p = opts.has_key('p')
2270 2270 opts_r = opts.has_key('r')
2271 2271
2272 2272 # Default line number value
2273 2273 lineno = opts.get('n',None)
2274 2274
2275 2275 if opts_p:
2276 2276 args = '_%s' % last_call[0]
2277 2277 if not self.shell.user_ns.has_key(args):
2278 2278 args = last_call[1]
2279 2279
2280 2280 # use last_call to remember the state of the previous call, but don't
2281 2281 # let it be clobbered by successive '-p' calls.
2282 2282 try:
2283 2283 last_call[0] = self.shell.displayhook.prompt_count
2284 2284 if not opts_p:
2285 2285 last_call[1] = parameter_s
2286 2286 except:
2287 2287 pass
2288 2288
2289 2289 # by default this is done with temp files, except when the given
2290 2290 # arg is a filename
2291 2291 use_temp = 1
2292 2292
2293 2293 if re.match(r'\d',args):
2294 2294 # Mode where user specifies ranges of lines, like in %macro.
2295 2295 # This means that you can't edit files whose names begin with
2296 2296 # numbers this way. Tough.
2297 2297 ranges = args.split()
2298 2298 data = ''.join(self.extract_input_slices(ranges,opts_r))
2299 2299 elif args.endswith('.py'):
2300 2300 filename = make_filename(args)
2301 2301 data = ''
2302 2302 use_temp = 0
2303 2303 elif args:
2304 2304 try:
2305 2305 # Load the parameter given as a variable. If not a string,
2306 2306 # process it as an object instead (below)
2307 2307
2308 2308 #print '*** args',args,'type',type(args) # dbg
2309 2309 data = eval(args,self.shell.user_ns)
2310 2310 if not type(data) in StringTypes:
2311 2311 raise DataIsObject
2312 2312
2313 2313 except (NameError,SyntaxError):
2314 2314 # given argument is not a variable, try as a filename
2315 2315 filename = make_filename(args)
2316 2316 if filename is None:
2317 2317 warn("Argument given (%s) can't be found as a variable "
2318 2318 "or as a filename." % args)
2319 2319 return
2320 2320
2321 2321 data = ''
2322 2322 use_temp = 0
2323 2323 except DataIsObject:
2324 2324
2325 2325 # macros have a special edit function
2326 2326 if isinstance(data,Macro):
2327 2327 self._edit_macro(args,data)
2328 2328 return
2329 2329
2330 2330 # For objects, try to edit the file where they are defined
2331 2331 try:
2332 2332 filename = inspect.getabsfile(data)
2333 2333 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2334 2334 # class created by %edit? Try to find source
2335 2335 # by looking for method definitions instead, the
2336 2336 # __module__ in those classes is FakeModule.
2337 2337 attrs = [getattr(data, aname) for aname in dir(data)]
2338 2338 for attr in attrs:
2339 2339 if not inspect.ismethod(attr):
2340 2340 continue
2341 2341 filename = inspect.getabsfile(attr)
2342 2342 if filename and 'fakemodule' not in filename.lower():
2343 2343 # change the attribute to be the edit target instead
2344 2344 data = attr
2345 2345 break
2346 2346
2347 2347 datafile = 1
2348 2348 except TypeError:
2349 2349 filename = make_filename(args)
2350 2350 datafile = 1
2351 2351 warn('Could not find file where `%s` is defined.\n'
2352 2352 'Opening a file named `%s`' % (args,filename))
2353 2353 # Now, make sure we can actually read the source (if it was in
2354 2354 # a temp file it's gone by now).
2355 2355 if datafile:
2356 2356 try:
2357 2357 if lineno is None:
2358 2358 lineno = inspect.getsourcelines(data)[1]
2359 2359 except IOError:
2360 2360 filename = make_filename(args)
2361 2361 if filename is None:
2362 2362 warn('The file `%s` where `%s` was defined cannot '
2363 2363 'be read.' % (filename,data))
2364 2364 return
2365 2365 use_temp = 0
2366 2366 else:
2367 2367 data = ''
2368 2368
2369 2369 if use_temp:
2370 2370 filename = self.shell.mktempfile(data)
2371 2371 print 'IPython will make a temporary file named:',filename
2372 2372
2373 2373 # do actual editing here
2374 2374 print 'Editing...',
2375 2375 sys.stdout.flush()
2376 2376 try:
2377 2377 # Quote filenames that may have spaces in them
2378 2378 if ' ' in filename:
2379 2379 filename = "%s" % filename
2380 2380 self.shell.hooks.editor(filename,lineno)
2381 2381 except TryNext:
2382 2382 warn('Could not open editor')
2383 2383 return
2384 2384
2385 2385 # XXX TODO: should this be generalized for all string vars?
2386 2386 # For now, this is special-cased to blocks created by cpaste
2387 2387 if args.strip() == 'pasted_block':
2388 2388 self.shell.user_ns['pasted_block'] = file_read(filename)
2389 2389
2390 2390 if opts.has_key('x'): # -x prevents actual execution
2391 2391 print
2392 2392 else:
2393 2393 print 'done. Executing edited code...'
2394 2394 if opts_r:
2395 2395 self.shell.run_cell(file_read(filename))
2396 2396 else:
2397 2397 self.shell.safe_execfile(filename,self.shell.user_ns,
2398 2398 self.shell.user_ns)
2399 2399
2400 2400
2401 2401 if use_temp:
2402 2402 try:
2403 2403 return open(filename).read()
2404 2404 except IOError,msg:
2405 2405 if msg.filename == filename:
2406 2406 warn('File not found. Did you forget to save?')
2407 2407 return
2408 2408 else:
2409 2409 self.shell.showtraceback()
2410 2410
2411 2411 def magic_xmode(self,parameter_s = ''):
2412 2412 """Switch modes for the exception handlers.
2413 2413
2414 2414 Valid modes: Plain, Context and Verbose.
2415 2415
2416 2416 If called without arguments, acts as a toggle."""
2417 2417
2418 2418 def xmode_switch_err(name):
2419 2419 warn('Error changing %s exception modes.\n%s' %
2420 2420 (name,sys.exc_info()[1]))
2421 2421
2422 2422 shell = self.shell
2423 2423 new_mode = parameter_s.strip().capitalize()
2424 2424 try:
2425 2425 shell.InteractiveTB.set_mode(mode=new_mode)
2426 2426 print 'Exception reporting mode:',shell.InteractiveTB.mode
2427 2427 except:
2428 2428 xmode_switch_err('user')
2429 2429
2430 2430 def magic_colors(self,parameter_s = ''):
2431 2431 """Switch color scheme for prompts, info system and exception handlers.
2432 2432
2433 2433 Currently implemented schemes: NoColor, Linux, LightBG.
2434 2434
2435 2435 Color scheme names are not case-sensitive.
2436 2436
2437 2437 Examples
2438 2438 --------
2439 2439 To get a plain black and white terminal::
2440 2440
2441 2441 %colors nocolor
2442 2442 """
2443 2443
2444 2444 def color_switch_err(name):
2445 2445 warn('Error changing %s color schemes.\n%s' %
2446 2446 (name,sys.exc_info()[1]))
2447 2447
2448 2448
2449 2449 new_scheme = parameter_s.strip()
2450 2450 if not new_scheme:
2451 2451 raise UsageError(
2452 2452 "%colors: you must specify a color scheme. See '%colors?'")
2453 2453 return
2454 2454 # local shortcut
2455 2455 shell = self.shell
2456 2456
2457 2457 import IPython.utils.rlineimpl as readline
2458 2458
2459 2459 if not readline.have_readline and sys.platform == "win32":
2460 2460 msg = """\
2461 2461 Proper color support under MS Windows requires the pyreadline library.
2462 2462 You can find it at:
2463 2463 http://ipython.scipy.org/moin/PyReadline/Intro
2464 2464 Gary's readline needs the ctypes module, from:
2465 2465 http://starship.python.net/crew/theller/ctypes
2466 2466 (Note that ctypes is already part of Python versions 2.5 and newer).
2467 2467
2468 2468 Defaulting color scheme to 'NoColor'"""
2469 2469 new_scheme = 'NoColor'
2470 2470 warn(msg)
2471 2471
2472 2472 # readline option is 0
2473 2473 if not shell.has_readline:
2474 2474 new_scheme = 'NoColor'
2475 2475
2476 2476 # Set prompt colors
2477 2477 try:
2478 2478 shell.displayhook.set_colors(new_scheme)
2479 2479 except:
2480 2480 color_switch_err('prompt')
2481 2481 else:
2482 2482 shell.colors = \
2483 2483 shell.displayhook.color_table.active_scheme_name
2484 2484 # Set exception colors
2485 2485 try:
2486 2486 shell.InteractiveTB.set_colors(scheme = new_scheme)
2487 2487 shell.SyntaxTB.set_colors(scheme = new_scheme)
2488 2488 except:
2489 2489 color_switch_err('exception')
2490 2490
2491 2491 # Set info (for 'object?') colors
2492 2492 if shell.color_info:
2493 2493 try:
2494 2494 shell.inspector.set_active_scheme(new_scheme)
2495 2495 except:
2496 2496 color_switch_err('object inspector')
2497 2497 else:
2498 2498 shell.inspector.set_active_scheme('NoColor')
2499 2499
2500 2500 def magic_pprint(self, parameter_s=''):
2501 2501 """Toggle pretty printing on/off."""
2502 2502 ptformatter = self.shell.display_formatter.formatters['text/plain']
2503 2503 ptformatter.pprint = bool(1 - ptformatter.pprint)
2504 2504 print 'Pretty printing has been turned', \
2505 2505 ['OFF','ON'][ptformatter.pprint]
2506 2506
2507 2507 def magic_Exit(self, parameter_s=''):
2508 2508 """Exit IPython."""
2509 2509
2510 2510 self.shell.ask_exit()
2511 2511
2512 2512 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2513 2513 magic_exit = magic_quit = magic_Quit = magic_Exit
2514 2514
2515 2515 #......................................................................
2516 2516 # Functions to implement unix shell-type things
2517 2517
2518 2518 @testdec.skip_doctest
2519 2519 def magic_alias(self, parameter_s = ''):
2520 2520 """Define an alias for a system command.
2521 2521
2522 2522 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2523 2523
2524 2524 Then, typing 'alias_name params' will execute the system command 'cmd
2525 2525 params' (from your underlying operating system).
2526 2526
2527 2527 Aliases have lower precedence than magic functions and Python normal
2528 2528 variables, so if 'foo' is both a Python variable and an alias, the
2529 2529 alias can not be executed until 'del foo' removes the Python variable.
2530 2530
2531 2531 You can use the %l specifier in an alias definition to represent the
2532 2532 whole line when the alias is called. For example:
2533 2533
2534 2534 In [2]: alias bracket echo "Input in brackets: <%l>"
2535 2535 In [3]: bracket hello world
2536 2536 Input in brackets: <hello world>
2537 2537
2538 2538 You can also define aliases with parameters using %s specifiers (one
2539 2539 per parameter):
2540 2540
2541 2541 In [1]: alias parts echo first %s second %s
2542 2542 In [2]: %parts A B
2543 2543 first A second B
2544 2544 In [3]: %parts A
2545 2545 Incorrect number of arguments: 2 expected.
2546 2546 parts is an alias to: 'echo first %s second %s'
2547 2547
2548 2548 Note that %l and %s are mutually exclusive. You can only use one or
2549 2549 the other in your aliases.
2550 2550
2551 2551 Aliases expand Python variables just like system calls using ! or !!
2552 2552 do: all expressions prefixed with '$' get expanded. For details of
2553 2553 the semantic rules, see PEP-215:
2554 2554 http://www.python.org/peps/pep-0215.html. This is the library used by
2555 2555 IPython for variable expansion. If you want to access a true shell
2556 2556 variable, an extra $ is necessary to prevent its expansion by IPython:
2557 2557
2558 2558 In [6]: alias show echo
2559 2559 In [7]: PATH='A Python string'
2560 2560 In [8]: show $PATH
2561 2561 A Python string
2562 2562 In [9]: show $$PATH
2563 2563 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2564 2564
2565 2565 You can use the alias facility to acess all of $PATH. See the %rehash
2566 2566 and %rehashx functions, which automatically create aliases for the
2567 2567 contents of your $PATH.
2568 2568
2569 2569 If called with no parameters, %alias prints the current alias table."""
2570 2570
2571 2571 par = parameter_s.strip()
2572 2572 if not par:
2573 2573 stored = self.db.get('stored_aliases', {} )
2574 2574 aliases = sorted(self.shell.alias_manager.aliases)
2575 2575 # for k, v in stored:
2576 2576 # atab.append(k, v[0])
2577 2577
2578 2578 print "Total number of aliases:", len(aliases)
2579 2579 sys.stdout.flush()
2580 2580 return aliases
2581 2581
2582 2582 # Now try to define a new one
2583 2583 try:
2584 2584 alias,cmd = par.split(None, 1)
2585 2585 except:
2586 2586 print oinspect.getdoc(self.magic_alias)
2587 2587 else:
2588 2588 self.shell.alias_manager.soft_define_alias(alias, cmd)
2589 2589 # end magic_alias
2590 2590
2591 2591 def magic_unalias(self, parameter_s = ''):
2592 2592 """Remove an alias"""
2593 2593
2594 2594 aname = parameter_s.strip()
2595 2595 self.shell.alias_manager.undefine_alias(aname)
2596 2596 stored = self.db.get('stored_aliases', {} )
2597 2597 if aname in stored:
2598 2598 print "Removing %stored alias",aname
2599 2599 del stored[aname]
2600 2600 self.db['stored_aliases'] = stored
2601 2601
2602 2602 def magic_rehashx(self, parameter_s = ''):
2603 2603 """Update the alias table with all executable files in $PATH.
2604 2604
2605 2605 This version explicitly checks that every entry in $PATH is a file
2606 2606 with execute access (os.X_OK), so it is much slower than %rehash.
2607 2607
2608 2608 Under Windows, it checks executability as a match agains a
2609 2609 '|'-separated string of extensions, stored in the IPython config
2610 2610 variable win_exec_ext. This defaults to 'exe|com|bat'.
2611 2611
2612 2612 This function also resets the root module cache of module completer,
2613 2613 used on slow filesystems.
2614 2614 """
2615 2615 from IPython.core.alias import InvalidAliasError
2616 2616
2617 2617 # for the benefit of module completer in ipy_completers.py
2618 2618 del self.db['rootmodules']
2619 2619
2620 2620 path = [os.path.abspath(os.path.expanduser(p)) for p in
2621 2621 os.environ.get('PATH','').split(os.pathsep)]
2622 2622 path = filter(os.path.isdir,path)
2623 2623
2624 2624 syscmdlist = []
2625 2625 # Now define isexec in a cross platform manner.
2626 2626 if os.name == 'posix':
2627 2627 isexec = lambda fname:os.path.isfile(fname) and \
2628 2628 os.access(fname,os.X_OK)
2629 2629 else:
2630 2630 try:
2631 2631 winext = os.environ['pathext'].replace(';','|').replace('.','')
2632 2632 except KeyError:
2633 2633 winext = 'exe|com|bat|py'
2634 2634 if 'py' not in winext:
2635 2635 winext += '|py'
2636 2636 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2637 2637 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2638 2638 savedir = os.getcwd()
2639 2639
2640 2640 # Now walk the paths looking for executables to alias.
2641 2641 try:
2642 2642 # write the whole loop for posix/Windows so we don't have an if in
2643 2643 # the innermost part
2644 2644 if os.name == 'posix':
2645 2645 for pdir in path:
2646 2646 os.chdir(pdir)
2647 2647 for ff in os.listdir(pdir):
2648 2648 if isexec(ff):
2649 2649 try:
2650 2650 # Removes dots from the name since ipython
2651 2651 # will assume names with dots to be python.
2652 2652 self.shell.alias_manager.define_alias(
2653 2653 ff.replace('.',''), ff)
2654 2654 except InvalidAliasError:
2655 2655 pass
2656 2656 else:
2657 2657 syscmdlist.append(ff)
2658 2658 else:
2659 2659 no_alias = self.shell.alias_manager.no_alias
2660 2660 for pdir in path:
2661 2661 os.chdir(pdir)
2662 2662 for ff in os.listdir(pdir):
2663 2663 base, ext = os.path.splitext(ff)
2664 2664 if isexec(ff) and base.lower() not in no_alias:
2665 2665 if ext.lower() == '.exe':
2666 2666 ff = base
2667 2667 try:
2668 2668 # Removes dots from the name since ipython
2669 2669 # will assume names with dots to be python.
2670 2670 self.shell.alias_manager.define_alias(
2671 2671 base.lower().replace('.',''), ff)
2672 2672 except InvalidAliasError:
2673 2673 pass
2674 2674 syscmdlist.append(ff)
2675 2675 db = self.db
2676 2676 db['syscmdlist'] = syscmdlist
2677 2677 finally:
2678 2678 os.chdir(savedir)
2679 2679
2680 2680 @testdec.skip_doctest
2681 2681 def magic_pwd(self, parameter_s = ''):
2682 2682 """Return the current working directory path.
2683 2683
2684 2684 Examples
2685 2685 --------
2686 2686 ::
2687 2687
2688 2688 In [9]: pwd
2689 2689 Out[9]: '/home/tsuser/sprint/ipython'
2690 2690 """
2691 2691 return os.getcwd()
2692 2692
2693 2693 @testdec.skip_doctest
2694 2694 def magic_cd(self, parameter_s=''):
2695 2695 """Change the current working directory.
2696 2696
2697 2697 This command automatically maintains an internal list of directories
2698 2698 you visit during your IPython session, in the variable _dh. The
2699 2699 command %dhist shows this history nicely formatted. You can also
2700 2700 do 'cd -<tab>' to see directory history conveniently.
2701 2701
2702 2702 Usage:
2703 2703
2704 2704 cd 'dir': changes to directory 'dir'.
2705 2705
2706 2706 cd -: changes to the last visited directory.
2707 2707
2708 2708 cd -<n>: changes to the n-th directory in the directory history.
2709 2709
2710 2710 cd --foo: change to directory that matches 'foo' in history
2711 2711
2712 2712 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2713 2713 (note: cd <bookmark_name> is enough if there is no
2714 2714 directory <bookmark_name>, but a bookmark with the name exists.)
2715 2715 'cd -b <tab>' allows you to tab-complete bookmark names.
2716 2716
2717 2717 Options:
2718 2718
2719 2719 -q: quiet. Do not print the working directory after the cd command is
2720 2720 executed. By default IPython's cd command does print this directory,
2721 2721 since the default prompts do not display path information.
2722 2722
2723 2723 Note that !cd doesn't work for this purpose because the shell where
2724 2724 !command runs is immediately discarded after executing 'command'.
2725 2725
2726 2726 Examples
2727 2727 --------
2728 2728 ::
2729 2729
2730 2730 In [10]: cd parent/child
2731 2731 /home/tsuser/parent/child
2732 2732 """
2733 2733
2734 2734 parameter_s = parameter_s.strip()
2735 2735 #bkms = self.shell.persist.get("bookmarks",{})
2736 2736
2737 2737 oldcwd = os.getcwd()
2738 2738 numcd = re.match(r'(-)(\d+)$',parameter_s)
2739 2739 # jump in directory history by number
2740 2740 if numcd:
2741 2741 nn = int(numcd.group(2))
2742 2742 try:
2743 2743 ps = self.shell.user_ns['_dh'][nn]
2744 2744 except IndexError:
2745 2745 print 'The requested directory does not exist in history.'
2746 2746 return
2747 2747 else:
2748 2748 opts = {}
2749 2749 elif parameter_s.startswith('--'):
2750 2750 ps = None
2751 2751 fallback = None
2752 2752 pat = parameter_s[2:]
2753 2753 dh = self.shell.user_ns['_dh']
2754 2754 # first search only by basename (last component)
2755 2755 for ent in reversed(dh):
2756 2756 if pat in os.path.basename(ent) and os.path.isdir(ent):
2757 2757 ps = ent
2758 2758 break
2759 2759
2760 2760 if fallback is None and pat in ent and os.path.isdir(ent):
2761 2761 fallback = ent
2762 2762
2763 2763 # if we have no last part match, pick the first full path match
2764 2764 if ps is None:
2765 2765 ps = fallback
2766 2766
2767 2767 if ps is None:
2768 2768 print "No matching entry in directory history"
2769 2769 return
2770 2770 else:
2771 2771 opts = {}
2772 2772
2773 2773
2774 2774 else:
2775 2775 #turn all non-space-escaping backslashes to slashes,
2776 2776 # for c:\windows\directory\names\
2777 2777 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2778 2778 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2779 2779 # jump to previous
2780 2780 if ps == '-':
2781 2781 try:
2782 2782 ps = self.shell.user_ns['_dh'][-2]
2783 2783 except IndexError:
2784 2784 raise UsageError('%cd -: No previous directory to change to.')
2785 2785 # jump to bookmark if needed
2786 2786 else:
2787 2787 if not os.path.isdir(ps) or opts.has_key('b'):
2788 2788 bkms = self.db.get('bookmarks', {})
2789 2789
2790 2790 if bkms.has_key(ps):
2791 2791 target = bkms[ps]
2792 2792 print '(bookmark:%s) -> %s' % (ps,target)
2793 2793 ps = target
2794 2794 else:
2795 2795 if opts.has_key('b'):
2796 2796 raise UsageError("Bookmark '%s' not found. "
2797 2797 "Use '%%bookmark -l' to see your bookmarks." % ps)
2798 2798
2799 2799 # at this point ps should point to the target dir
2800 2800 if ps:
2801 2801 try:
2802 2802 os.chdir(os.path.expanduser(ps))
2803 2803 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2804 2804 set_term_title('IPython: ' + abbrev_cwd())
2805 2805 except OSError:
2806 2806 print sys.exc_info()[1]
2807 2807 else:
2808 2808 cwd = os.getcwd()
2809 2809 dhist = self.shell.user_ns['_dh']
2810 2810 if oldcwd != cwd:
2811 2811 dhist.append(cwd)
2812 2812 self.db['dhist'] = compress_dhist(dhist)[-100:]
2813 2813
2814 2814 else:
2815 2815 os.chdir(self.shell.home_dir)
2816 2816 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2817 2817 set_term_title('IPython: ' + '~')
2818 2818 cwd = os.getcwd()
2819 2819 dhist = self.shell.user_ns['_dh']
2820 2820
2821 2821 if oldcwd != cwd:
2822 2822 dhist.append(cwd)
2823 2823 self.db['dhist'] = compress_dhist(dhist)[-100:]
2824 2824 if not 'q' in opts and self.shell.user_ns['_dh']:
2825 2825 print self.shell.user_ns['_dh'][-1]
2826 2826
2827 2827
2828 2828 def magic_env(self, parameter_s=''):
2829 2829 """List environment variables."""
2830 2830
2831 2831 return os.environ.data
2832 2832
2833 2833 def magic_pushd(self, parameter_s=''):
2834 2834 """Place the current dir on stack and change directory.
2835 2835
2836 2836 Usage:\\
2837 2837 %pushd ['dirname']
2838 2838 """
2839 2839
2840 2840 dir_s = self.shell.dir_stack
2841 2841 tgt = os.path.expanduser(parameter_s)
2842 2842 cwd = os.getcwd().replace(self.home_dir,'~')
2843 2843 if tgt:
2844 2844 self.magic_cd(parameter_s)
2845 2845 dir_s.insert(0,cwd)
2846 2846 return self.magic_dirs()
2847 2847
2848 2848 def magic_popd(self, parameter_s=''):
2849 2849 """Change to directory popped off the top of the stack.
2850 2850 """
2851 2851 if not self.shell.dir_stack:
2852 2852 raise UsageError("%popd on empty stack")
2853 2853 top = self.shell.dir_stack.pop(0)
2854 2854 self.magic_cd(top)
2855 2855 print "popd ->",top
2856 2856
2857 2857 def magic_dirs(self, parameter_s=''):
2858 2858 """Return the current directory stack."""
2859 2859
2860 2860 return self.shell.dir_stack
2861 2861
2862 2862 def magic_dhist(self, parameter_s=''):
2863 2863 """Print your history of visited directories.
2864 2864
2865 2865 %dhist -> print full history\\
2866 2866 %dhist n -> print last n entries only\\
2867 2867 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2868 2868
2869 2869 This history is automatically maintained by the %cd command, and
2870 2870 always available as the global list variable _dh. You can use %cd -<n>
2871 2871 to go to directory number <n>.
2872 2872
2873 2873 Note that most of time, you should view directory history by entering
2874 2874 cd -<TAB>.
2875 2875
2876 2876 """
2877 2877
2878 2878 dh = self.shell.user_ns['_dh']
2879 2879 if parameter_s:
2880 2880 try:
2881 2881 args = map(int,parameter_s.split())
2882 2882 except:
2883 2883 self.arg_err(Magic.magic_dhist)
2884 2884 return
2885 2885 if len(args) == 1:
2886 2886 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2887 2887 elif len(args) == 2:
2888 2888 ini,fin = args
2889 2889 else:
2890 2890 self.arg_err(Magic.magic_dhist)
2891 2891 return
2892 2892 else:
2893 2893 ini,fin = 0,len(dh)
2894 2894 nlprint(dh,
2895 2895 header = 'Directory history (kept in _dh)',
2896 2896 start=ini,stop=fin)
2897 2897
2898 2898 @testdec.skip_doctest
2899 2899 def magic_sc(self, parameter_s=''):
2900 2900 """Shell capture - execute a shell command and capture its output.
2901 2901
2902 2902 DEPRECATED. Suboptimal, retained for backwards compatibility.
2903 2903
2904 2904 You should use the form 'var = !command' instead. Example:
2905 2905
2906 2906 "%sc -l myfiles = ls ~" should now be written as
2907 2907
2908 2908 "myfiles = !ls ~"
2909 2909
2910 2910 myfiles.s, myfiles.l and myfiles.n still apply as documented
2911 2911 below.
2912 2912
2913 2913 --
2914 2914 %sc [options] varname=command
2915 2915
2916 2916 IPython will run the given command using commands.getoutput(), and
2917 2917 will then update the user's interactive namespace with a variable
2918 2918 called varname, containing the value of the call. Your command can
2919 2919 contain shell wildcards, pipes, etc.
2920 2920
2921 2921 The '=' sign in the syntax is mandatory, and the variable name you
2922 2922 supply must follow Python's standard conventions for valid names.
2923 2923
2924 2924 (A special format without variable name exists for internal use)
2925 2925
2926 2926 Options:
2927 2927
2928 2928 -l: list output. Split the output on newlines into a list before
2929 2929 assigning it to the given variable. By default the output is stored
2930 2930 as a single string.
2931 2931
2932 2932 -v: verbose. Print the contents of the variable.
2933 2933
2934 2934 In most cases you should not need to split as a list, because the
2935 2935 returned value is a special type of string which can automatically
2936 2936 provide its contents either as a list (split on newlines) or as a
2937 2937 space-separated string. These are convenient, respectively, either
2938 2938 for sequential processing or to be passed to a shell command.
2939 2939
2940 2940 For example:
2941 2941
2942 2942 # all-random
2943 2943
2944 2944 # Capture into variable a
2945 2945 In [1]: sc a=ls *py
2946 2946
2947 2947 # a is a string with embedded newlines
2948 2948 In [2]: a
2949 2949 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2950 2950
2951 2951 # which can be seen as a list:
2952 2952 In [3]: a.l
2953 2953 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2954 2954
2955 2955 # or as a whitespace-separated string:
2956 2956 In [4]: a.s
2957 2957 Out[4]: 'setup.py win32_manual_post_install.py'
2958 2958
2959 2959 # a.s is useful to pass as a single command line:
2960 2960 In [5]: !wc -l $a.s
2961 2961 146 setup.py
2962 2962 130 win32_manual_post_install.py
2963 2963 276 total
2964 2964
2965 2965 # while the list form is useful to loop over:
2966 2966 In [6]: for f in a.l:
2967 2967 ...: !wc -l $f
2968 2968 ...:
2969 2969 146 setup.py
2970 2970 130 win32_manual_post_install.py
2971 2971
2972 2972 Similiarly, the lists returned by the -l option are also special, in
2973 2973 the sense that you can equally invoke the .s attribute on them to
2974 2974 automatically get a whitespace-separated string from their contents:
2975 2975
2976 2976 In [7]: sc -l b=ls *py
2977 2977
2978 2978 In [8]: b
2979 2979 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2980 2980
2981 2981 In [9]: b.s
2982 2982 Out[9]: 'setup.py win32_manual_post_install.py'
2983 2983
2984 2984 In summary, both the lists and strings used for ouptut capture have
2985 2985 the following special attributes:
2986 2986
2987 2987 .l (or .list) : value as list.
2988 2988 .n (or .nlstr): value as newline-separated string.
2989 2989 .s (or .spstr): value as space-separated string.
2990 2990 """
2991 2991
2992 2992 opts,args = self.parse_options(parameter_s,'lv')
2993 2993 # Try to get a variable name and command to run
2994 2994 try:
2995 2995 # the variable name must be obtained from the parse_options
2996 2996 # output, which uses shlex.split to strip options out.
2997 2997 var,_ = args.split('=',1)
2998 2998 var = var.strip()
2999 2999 # But the the command has to be extracted from the original input
3000 3000 # parameter_s, not on what parse_options returns, to avoid the
3001 3001 # quote stripping which shlex.split performs on it.
3002 3002 _,cmd = parameter_s.split('=',1)
3003 3003 except ValueError:
3004 3004 var,cmd = '',''
3005 3005 # If all looks ok, proceed
3006 3006 split = 'l' in opts
3007 3007 out = self.shell.getoutput(cmd, split=split)
3008 3008 if opts.has_key('v'):
3009 3009 print '%s ==\n%s' % (var,pformat(out))
3010 3010 if var:
3011 3011 self.shell.user_ns.update({var:out})
3012 3012 else:
3013 3013 return out
3014 3014
3015 3015 def magic_sx(self, parameter_s=''):
3016 3016 """Shell execute - run a shell command and capture its output.
3017 3017
3018 3018 %sx command
3019 3019
3020 3020 IPython will run the given command using commands.getoutput(), and
3021 3021 return the result formatted as a list (split on '\\n'). Since the
3022 3022 output is _returned_, it will be stored in ipython's regular output
3023 3023 cache Out[N] and in the '_N' automatic variables.
3024 3024
3025 3025 Notes:
3026 3026
3027 3027 1) If an input line begins with '!!', then %sx is automatically
3028 3028 invoked. That is, while:
3029 3029 !ls
3030 3030 causes ipython to simply issue system('ls'), typing
3031 3031 !!ls
3032 3032 is a shorthand equivalent to:
3033 3033 %sx ls
3034 3034
3035 3035 2) %sx differs from %sc in that %sx automatically splits into a list,
3036 3036 like '%sc -l'. The reason for this is to make it as easy as possible
3037 3037 to process line-oriented shell output via further python commands.
3038 3038 %sc is meant to provide much finer control, but requires more
3039 3039 typing.
3040 3040
3041 3041 3) Just like %sc -l, this is a list with special attributes:
3042 3042
3043 3043 .l (or .list) : value as list.
3044 3044 .n (or .nlstr): value as newline-separated string.
3045 3045 .s (or .spstr): value as whitespace-separated string.
3046 3046
3047 3047 This is very useful when trying to use such lists as arguments to
3048 3048 system commands."""
3049 3049
3050 3050 if parameter_s:
3051 3051 return self.shell.getoutput(parameter_s)
3052 3052
3053 3053 def magic_r(self, parameter_s=''):
3054 3054 """Repeat previous input.
3055 3055
3056 3056 Note: Consider using the more powerfull %rep instead!
3057 3057
3058 3058 If given an argument, repeats the previous command which starts with
3059 3059 the same string, otherwise it just repeats the previous input.
3060 3060
3061 3061 Shell escaped commands (with ! as first character) are not recognized
3062 3062 by this system, only pure python code and magic commands.
3063 3063 """
3064 3064
3065 3065 start = parameter_s.strip()
3066 3066 esc_magic = ESC_MAGIC
3067 3067 # Identify magic commands even if automagic is on (which means
3068 3068 # the in-memory version is different from that typed by the user).
3069 3069 if self.shell.automagic:
3070 3070 start_magic = esc_magic+start
3071 3071 else:
3072 3072 start_magic = start
3073 3073 # Look through the input history in reverse
3074 3074 for n in range(len(self.shell.history_manager.input_hist_parsed)-2,0,-1):
3075 3075 input = self.shell.history_manager.input_hist_parsed[n]
3076 3076 # skip plain 'r' lines so we don't recurse to infinity
3077 3077 if input != '_ip.magic("r")\n' and \
3078 3078 (input.startswith(start) or input.startswith(start_magic)):
3079 3079 #print 'match',`input` # dbg
3080 3080 print 'Executing:',input,
3081 3081 self.shell.run_cell(input)
3082 3082 return
3083 3083 print 'No previous input matching `%s` found.' % start
3084 3084
3085 3085
3086 3086 def magic_bookmark(self, parameter_s=''):
3087 3087 """Manage IPython's bookmark system.
3088 3088
3089 3089 %bookmark <name> - set bookmark to current dir
3090 3090 %bookmark <name> <dir> - set bookmark to <dir>
3091 3091 %bookmark -l - list all bookmarks
3092 3092 %bookmark -d <name> - remove bookmark
3093 3093 %bookmark -r - remove all bookmarks
3094 3094
3095 3095 You can later on access a bookmarked folder with:
3096 3096 %cd -b <name>
3097 3097 or simply '%cd <name>' if there is no directory called <name> AND
3098 3098 there is such a bookmark defined.
3099 3099
3100 3100 Your bookmarks persist through IPython sessions, but they are
3101 3101 associated with each profile."""
3102 3102
3103 3103 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3104 3104 if len(args) > 2:
3105 3105 raise UsageError("%bookmark: too many arguments")
3106 3106
3107 3107 bkms = self.db.get('bookmarks',{})
3108 3108
3109 3109 if opts.has_key('d'):
3110 3110 try:
3111 3111 todel = args[0]
3112 3112 except IndexError:
3113 3113 raise UsageError(
3114 3114 "%bookmark -d: must provide a bookmark to delete")
3115 3115 else:
3116 3116 try:
3117 3117 del bkms[todel]
3118 3118 except KeyError:
3119 3119 raise UsageError(
3120 3120 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3121 3121
3122 3122 elif opts.has_key('r'):
3123 3123 bkms = {}
3124 3124 elif opts.has_key('l'):
3125 3125 bks = bkms.keys()
3126 3126 bks.sort()
3127 3127 if bks:
3128 3128 size = max(map(len,bks))
3129 3129 else:
3130 3130 size = 0
3131 3131 fmt = '%-'+str(size)+'s -> %s'
3132 3132 print 'Current bookmarks:'
3133 3133 for bk in bks:
3134 3134 print fmt % (bk,bkms[bk])
3135 3135 else:
3136 3136 if not args:
3137 3137 raise UsageError("%bookmark: You must specify the bookmark name")
3138 3138 elif len(args)==1:
3139 3139 bkms[args[0]] = os.getcwd()
3140 3140 elif len(args)==2:
3141 3141 bkms[args[0]] = args[1]
3142 3142 self.db['bookmarks'] = bkms
3143 3143
3144 3144 def magic_pycat(self, parameter_s=''):
3145 3145 """Show a syntax-highlighted file through a pager.
3146 3146
3147 3147 This magic is similar to the cat utility, but it will assume the file
3148 3148 to be Python source and will show it with syntax highlighting. """
3149 3149
3150 3150 try:
3151 3151 filename = get_py_filename(parameter_s)
3152 3152 cont = file_read(filename)
3153 3153 except IOError:
3154 3154 try:
3155 3155 cont = eval(parameter_s,self.user_ns)
3156 3156 except NameError:
3157 3157 cont = None
3158 3158 if cont is None:
3159 3159 print "Error: no such file or variable"
3160 3160 return
3161 3161
3162 3162 page.page(self.shell.pycolorize(cont))
3163 3163
3164 3164 def _rerun_pasted(self):
3165 3165 """ Rerun a previously pasted command.
3166 3166 """
3167 3167 b = self.user_ns.get('pasted_block', None)
3168 3168 if b is None:
3169 3169 raise UsageError('No previous pasted block available')
3170 3170 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3171 3171 exec b in self.user_ns
3172 3172
3173 3173 def _get_pasted_lines(self, sentinel):
3174 3174 """ Yield pasted lines until the user enters the given sentinel value.
3175 3175 """
3176 3176 from IPython.core import interactiveshell
3177 3177 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3178 3178 while True:
3179 3179 l = interactiveshell.raw_input_original(':')
3180 3180 if l == sentinel:
3181 3181 return
3182 3182 else:
3183 3183 yield l
3184 3184
3185 3185 def _strip_pasted_lines_for_code(self, raw_lines):
3186 3186 """ Strip non-code parts of a sequence of lines to return a block of
3187 3187 code.
3188 3188 """
3189 3189 # Regular expressions that declare text we strip from the input:
3190 3190 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3191 3191 r'^\s*(\s?>)+', # Python input prompt
3192 3192 r'^\s*\.{3,}', # Continuation prompts
3193 3193 r'^\++',
3194 3194 ]
3195 3195
3196 3196 strip_from_start = map(re.compile,strip_re)
3197 3197
3198 3198 lines = []
3199 3199 for l in raw_lines:
3200 3200 for pat in strip_from_start:
3201 3201 l = pat.sub('',l)
3202 3202 lines.append(l)
3203 3203
3204 3204 block = "\n".join(lines) + '\n'
3205 3205 #print "block:\n",block
3206 3206 return block
3207 3207
3208 3208 def _execute_block(self, block, par):
3209 3209 """ Execute a block, or store it in a variable, per the user's request.
3210 3210 """
3211 3211 if not par:
3212 3212 b = textwrap.dedent(block)
3213 3213 self.user_ns['pasted_block'] = b
3214 3214 exec b in self.user_ns
3215 3215 else:
3216 3216 self.user_ns[par] = SList(block.splitlines())
3217 3217 print "Block assigned to '%s'" % par
3218 3218
3219 3219 def magic_quickref(self,arg):
3220 3220 """ Show a quick reference sheet """
3221 3221 import IPython.core.usage
3222 3222 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3223 3223
3224 3224 page.page(qr)
3225 3225
3226 3226 def magic_doctest_mode(self,parameter_s=''):
3227 3227 """Toggle doctest mode on and off.
3228 3228
3229 3229 This mode is intended to make IPython behave as much as possible like a
3230 3230 plain Python shell, from the perspective of how its prompts, exceptions
3231 3231 and output look. This makes it easy to copy and paste parts of a
3232 3232 session into doctests. It does so by:
3233 3233
3234 3234 - Changing the prompts to the classic ``>>>`` ones.
3235 3235 - Changing the exception reporting mode to 'Plain'.
3236 3236 - Disabling pretty-printing of output.
3237 3237
3238 3238 Note that IPython also supports the pasting of code snippets that have
3239 3239 leading '>>>' and '...' prompts in them. This means that you can paste
3240 3240 doctests from files or docstrings (even if they have leading
3241 3241 whitespace), and the code will execute correctly. You can then use
3242 3242 '%history -t' to see the translated history; this will give you the
3243 3243 input after removal of all the leading prompts and whitespace, which
3244 3244 can be pasted back into an editor.
3245 3245
3246 3246 With these features, you can switch into this mode easily whenever you
3247 3247 need to do testing and changes to doctests, without having to leave
3248 3248 your existing IPython session.
3249 3249 """
3250 3250
3251 3251 from IPython.utils.ipstruct import Struct
3252 3252
3253 3253 # Shorthands
3254 3254 shell = self.shell
3255 3255 oc = shell.displayhook
3256 3256 meta = shell.meta
3257 3257 disp_formatter = self.shell.display_formatter
3258 3258 ptformatter = disp_formatter.formatters['text/plain']
3259 3259 # dstore is a data store kept in the instance metadata bag to track any
3260 3260 # changes we make, so we can undo them later.
3261 3261 dstore = meta.setdefault('doctest_mode',Struct())
3262 3262 save_dstore = dstore.setdefault
3263 3263
3264 3264 # save a few values we'll need to recover later
3265 3265 mode = save_dstore('mode',False)
3266 3266 save_dstore('rc_pprint',ptformatter.pprint)
3267 3267 save_dstore('xmode',shell.InteractiveTB.mode)
3268 3268 save_dstore('rc_separate_out',shell.separate_out)
3269 3269 save_dstore('rc_separate_out2',shell.separate_out2)
3270 3270 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3271 3271 save_dstore('rc_separate_in',shell.separate_in)
3272 3272 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3273 3273
3274 3274 if mode == False:
3275 3275 # turn on
3276 3276 oc.prompt1.p_template = '>>> '
3277 3277 oc.prompt2.p_template = '... '
3278 3278 oc.prompt_out.p_template = ''
3279 3279
3280 3280 # Prompt separators like plain python
3281 3281 oc.input_sep = oc.prompt1.sep = ''
3282 3282 oc.output_sep = ''
3283 3283 oc.output_sep2 = ''
3284 3284
3285 3285 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3286 3286 oc.prompt_out.pad_left = False
3287 3287
3288 3288 ptformatter.pprint = False
3289 3289 disp_formatter.plain_text_only = True
3290 3290
3291 3291 shell.magic_xmode('Plain')
3292 3292 else:
3293 3293 # turn off
3294 3294 oc.prompt1.p_template = shell.prompt_in1
3295 3295 oc.prompt2.p_template = shell.prompt_in2
3296 3296 oc.prompt_out.p_template = shell.prompt_out
3297 3297
3298 3298 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3299 3299
3300 3300 oc.output_sep = dstore.rc_separate_out
3301 3301 oc.output_sep2 = dstore.rc_separate_out2
3302 3302
3303 3303 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3304 3304 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3305 3305
3306 3306 ptformatter.pprint = dstore.rc_pprint
3307 3307 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3308 3308
3309 3309 shell.magic_xmode(dstore.xmode)
3310 3310
3311 3311 # Store new mode and inform
3312 3312 dstore.mode = bool(1-int(mode))
3313 3313 mode_label = ['OFF','ON'][dstore.mode]
3314 3314 print 'Doctest mode is:', mode_label
3315 3315
3316 3316 def magic_gui(self, parameter_s=''):
3317 3317 """Enable or disable IPython GUI event loop integration.
3318 3318
3319 3319 %gui [GUINAME]
3320 3320
3321 3321 This magic replaces IPython's threaded shells that were activated
3322 3322 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3323 3323 can now be enabled, disabled and swtiched at runtime and keyboard
3324 3324 interrupts should work without any problems. The following toolkits
3325 3325 are supported: wxPython, PyQt4, PyGTK, and Tk::
3326 3326
3327 3327 %gui wx # enable wxPython event loop integration
3328 3328 %gui qt4|qt # enable PyQt4 event loop integration
3329 3329 %gui gtk # enable PyGTK event loop integration
3330 3330 %gui tk # enable Tk event loop integration
3331 3331 %gui # disable all event loop integration
3332 3332
3333 3333 WARNING: after any of these has been called you can simply create
3334 3334 an application object, but DO NOT start the event loop yourself, as
3335 3335 we have already handled that.
3336 3336 """
3337 3337 from IPython.lib.inputhook import enable_gui
3338 3338 opts, arg = self.parse_options(parameter_s, '')
3339 3339 if arg=='': arg = None
3340 3340 return enable_gui(arg)
3341 3341
3342 3342 def magic_load_ext(self, module_str):
3343 3343 """Load an IPython extension by its module name."""
3344 3344 return self.extension_manager.load_extension(module_str)
3345 3345
3346 3346 def magic_unload_ext(self, module_str):
3347 3347 """Unload an IPython extension by its module name."""
3348 3348 self.extension_manager.unload_extension(module_str)
3349 3349
3350 3350 def magic_reload_ext(self, module_str):
3351 3351 """Reload an IPython extension by its module name."""
3352 3352 self.extension_manager.reload_extension(module_str)
3353 3353
3354 3354 @testdec.skip_doctest
3355 3355 def magic_install_profiles(self, s):
3356 3356 """Install the default IPython profiles into the .ipython dir.
3357 3357
3358 3358 If the default profiles have already been installed, they will not
3359 3359 be overwritten. You can force overwriting them by using the ``-o``
3360 3360 option::
3361 3361
3362 3362 In [1]: %install_profiles -o
3363 3363 """
3364 3364 if '-o' in s:
3365 3365 overwrite = True
3366 3366 else:
3367 3367 overwrite = False
3368 3368 from IPython.config import profile
3369 3369 profile_dir = os.path.split(profile.__file__)[0]
3370 3370 ipython_dir = self.ipython_dir
3371 3371 files = os.listdir(profile_dir)
3372 3372
3373 3373 to_install = []
3374 3374 for f in files:
3375 3375 if f.startswith('ipython_config'):
3376 3376 src = os.path.join(profile_dir, f)
3377 3377 dst = os.path.join(ipython_dir, f)
3378 3378 if (not os.path.isfile(dst)) or overwrite:
3379 3379 to_install.append((f, src, dst))
3380 3380 if len(to_install)>0:
3381 3381 print "Installing profiles to: ", ipython_dir
3382 3382 for (f, src, dst) in to_install:
3383 3383 shutil.copy(src, dst)
3384 3384 print " %s" % f
3385 3385
3386 3386 def magic_install_default_config(self, s):
3387 3387 """Install IPython's default config file into the .ipython dir.
3388 3388
3389 3389 If the default config file (:file:`ipython_config.py`) is already
3390 3390 installed, it will not be overwritten. You can force overwriting
3391 3391 by using the ``-o`` option::
3392 3392
3393 3393 In [1]: %install_default_config
3394 3394 """
3395 3395 if '-o' in s:
3396 3396 overwrite = True
3397 3397 else:
3398 3398 overwrite = False
3399 3399 from IPython.config import default
3400 3400 config_dir = os.path.split(default.__file__)[0]
3401 3401 ipython_dir = self.ipython_dir
3402 3402 default_config_file_name = 'ipython_config.py'
3403 3403 src = os.path.join(config_dir, default_config_file_name)
3404 3404 dst = os.path.join(ipython_dir, default_config_file_name)
3405 3405 if (not os.path.isfile(dst)) or overwrite:
3406 3406 shutil.copy(src, dst)
3407 3407 print "Installing default config file: %s" % dst
3408 3408
3409 3409 # Pylab support: simple wrappers that activate pylab, load gui input
3410 3410 # handling and modify slightly %run
3411 3411
3412 3412 @testdec.skip_doctest
3413 3413 def _pylab_magic_run(self, parameter_s=''):
3414 3414 Magic.magic_run(self, parameter_s,
3415 3415 runner=mpl_runner(self.shell.safe_execfile))
3416 3416
3417 3417 _pylab_magic_run.__doc__ = magic_run.__doc__
3418 3418
3419 3419 @testdec.skip_doctest
3420 3420 def magic_pylab(self, s):
3421 3421 """Load numpy and matplotlib to work interactively.
3422 3422
3423 3423 %pylab [GUINAME]
3424 3424
3425 3425 This function lets you activate pylab (matplotlib, numpy and
3426 3426 interactive support) at any point during an IPython session.
3427 3427
3428 3428 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3429 3429 pylab and mlab, as well as all names from numpy and pylab.
3430 3430
3431 3431 Parameters
3432 3432 ----------
3433 3433 guiname : optional
3434 3434 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3435 3435 'tk'). If given, the corresponding Matplotlib backend is used,
3436 3436 otherwise matplotlib's default (which you can override in your
3437 3437 matplotlib config file) is used.
3438 3438
3439 3439 Examples
3440 3440 --------
3441 3441 In this case, where the MPL default is TkAgg:
3442 3442 In [2]: %pylab
3443 3443
3444 3444 Welcome to pylab, a matplotlib-based Python environment.
3445 3445 Backend in use: TkAgg
3446 3446 For more information, type 'help(pylab)'.
3447 3447
3448 3448 But you can explicitly request a different backend:
3449 3449 In [3]: %pylab qt
3450 3450
3451 3451 Welcome to pylab, a matplotlib-based Python environment.
3452 3452 Backend in use: Qt4Agg
3453 3453 For more information, type 'help(pylab)'.
3454 3454 """
3455 3455 self.shell.enable_pylab(s)
3456 3456
3457 3457 def magic_tb(self, s):
3458 3458 """Print the last traceback with the currently active exception mode.
3459 3459
3460 3460 See %xmode for changing exception reporting modes."""
3461 3461 self.shell.showtraceback()
3462 3462
3463 3463 @testdec.skip_doctest
3464 3464 def magic_precision(self, s=''):
3465 3465 """Set floating point precision for pretty printing.
3466 3466
3467 3467 Can set either integer precision or a format string.
3468 3468
3469 3469 If numpy has been imported and precision is an int,
3470 3470 numpy display precision will also be set, via ``numpy.set_printoptions``.
3471 3471
3472 3472 If no argument is given, defaults will be restored.
3473 3473
3474 3474 Examples
3475 3475 --------
3476 3476 ::
3477 3477
3478 3478 In [1]: from math import pi
3479 3479
3480 3480 In [2]: %precision 3
3481 Out[2]: '%.3f'
3481 3482
3482 3483 In [3]: pi
3483 3484 Out[3]: 3.142
3484 3485
3485 3486 In [4]: %precision %i
3487 Out[4]: '%i'
3486 3488
3487 3489 In [5]: pi
3488 3490 Out[5]: 3
3489 3491
3490 3492 In [6]: %precision %e
3493 Out[6]: '%e'
3491 3494
3492 3495 In [7]: pi**10
3493 3496 Out[7]: 9.364805e+04
3494 3497
3495 3498 In [8]: %precision
3499 Out[8]: '%r'
3496 3500
3497 3501 In [9]: pi**10
3498 3502 Out[9]: 93648.047476082982
3499 3503
3500 3504 """
3501 3505
3502 if '%' in s:
3503 # got explicit format string
3504 fmt = s
3505 try:
3506 fmt%3.14159
3507 except Exception:
3508 raise ValueError("Precision must be int or format string, not %r"%s)
3509 elif s:
3510 # otherwise, should be an int
3511 try:
3512 i = int(s)
3513 assert i >= 0
3514 except (ValueError, AssertionError):
3515 raise ValueError("Precision must be non-negative int or format string, not %r"%s)
3516
3517 fmt = '%%.%if'%i
3518 if 'numpy' in sys.modules:
3519 import numpy
3520 numpy.set_printoptions(precision=i)
3521 else:
3522 # default back to repr
3523 fmt = '%r'
3524 if 'numpy' in sys.modules:
3525 import numpy
3526 # numpy default is 8
3527 numpy.set_printoptions(precision=8)
3528
3529 def _pretty_float(obj,p,cycle):
3530 p.text(fmt%obj)
3531
3532 3506 ptformatter = self.shell.display_formatter.formatters['text/plain']
3533 ptformatter.for_type(float, _pretty_float)
3507 ptformatter.float_precision = s
3508 return ptformatter.float_format
3534 3509
3535 3510 # end Magic
@@ -1,30 +1,74 b''
1 1 """Tests for the Formatters.
2 2 """
3 3
4 from math import pi
5
6 try:
7 import numpy
8 except:
9 numpy = None
4 10 import nose.tools as nt
5 11
6 from IPython.core.formatters import FormatterABC, DefaultFormatter
12 from IPython.core.formatters import FormatterABC, PlainTextFormatter
7 13
8 14 class A(object):
9 15 def __repr__(self):
10 16 return 'A()'
11 17
12 18 class B(A):
13 19 def __repr__(self):
14 20 return 'B()'
15 21
16 22 def foo_printer(obj, pp, cycle):
17 23 pp.text('foo')
18 24
19 25 def test_pretty():
20 f = DefaultFormatter()
26 f = PlainTextFormatter()
21 27 f.for_type(A, foo_printer)
22 28 nt.assert_equals(f(A()), 'foo')
23 29 nt.assert_equals(f(B()), 'foo')
24 30 f.pprint = False
25 31 nt.assert_equals(f(A()), 'A()')
26 32 nt.assert_equals(f(B()), 'B()')
27 33
28 34 def test_deferred():
29 f = DefaultFormatter()
35 f = PlainTextFormatter()
36
37 def test_precision():
38 """test various values for float_precision."""
39 f = PlainTextFormatter()
40 nt.assert_equals(f(pi), repr(pi))
41 f.float_precision = 0
42 if numpy:
43 po = numpy.get_printoptions()
44 nt.assert_equals(po['precision'], 0)
45 nt.assert_equals(f(pi), '3')
46 f.float_precision = 2
47 if numpy:
48 po = numpy.get_printoptions()
49 nt.assert_equals(po['precision'], 2)
50 nt.assert_equals(f(pi), '3.14')
51 f.float_precision = '%g'
52 if numpy:
53 po = numpy.get_printoptions()
54 nt.assert_equals(po['precision'], 2)
55 nt.assert_equals(f(pi), '3.14159')
56 f.float_precision = '%e'
57 nt.assert_equals(f(pi), '3.141593e+00')
58 f.float_precision = ''
59 if numpy:
60 po = numpy.get_printoptions()
61 nt.assert_equals(po['precision'], 8)
62 nt.assert_equals(f(pi), repr(pi))
63
64 def test_bad_precision():
65 """test various invalid values for float_precision."""
66 f = PlainTextFormatter()
67 def set_fp(p):
68 f.float_precision=p
69 nt.assert_raises(ValueError, set_fp, '%')
70 nt.assert_raises(ValueError, set_fp, '%.3f%i')
71 nt.assert_raises(ValueError, set_fp, 'foo')
72 nt.assert_raises(ValueError, set_fp, -1)
73
30 74
@@ -1,389 +1,408 b''
1 1 """Tests for various magic functions.
2 2
3 3 Needs to be run by nose (to make ipython session available).
4 4 """
5 5 from __future__ import absolute_import
6 6
7 7 #-----------------------------------------------------------------------------
8 8 # Imports
9 9 #-----------------------------------------------------------------------------
10 10
11 11 import os
12 12 import sys
13 13 import tempfile
14 14 import types
15 15 from cStringIO import StringIO
16 16
17 17 import nose.tools as nt
18 18
19 19 from IPython.utils.path import get_long_path_name
20 20 from IPython.testing import decorators as dec
21 21 from IPython.testing import tools as tt
22 22
23 23 #-----------------------------------------------------------------------------
24 24 # Test functions begin
25 25 #-----------------------------------------------------------------------------
26 26 def test_rehashx():
27 27 # clear up everything
28 28 _ip = get_ipython()
29 29 _ip.alias_manager.alias_table.clear()
30 30 del _ip.db['syscmdlist']
31 31
32 32 _ip.magic('rehashx')
33 33 # Practically ALL ipython development systems will have more than 10 aliases
34 34
35 35 yield (nt.assert_true, len(_ip.alias_manager.alias_table) > 10)
36 36 for key, val in _ip.alias_manager.alias_table.iteritems():
37 37 # we must strip dots from alias names
38 38 nt.assert_true('.' not in key)
39 39
40 40 # rehashx must fill up syscmdlist
41 41 scoms = _ip.db['syscmdlist']
42 42 yield (nt.assert_true, len(scoms) > 10)
43 43
44 44
45 45 def test_magic_parse_options():
46 46 """Test that we don't mangle paths when parsing magic options."""
47 47 ip = get_ipython()
48 48 path = 'c:\\x'
49 49 opts = ip.parse_options('-f %s' % path,'f:')[0]
50 50 # argv splitting is os-dependent
51 51 if os.name == 'posix':
52 52 expected = 'c:x'
53 53 else:
54 54 expected = path
55 55 nt.assert_equals(opts['f'], expected)
56 56
57 57
58 58 def doctest_hist_f():
59 59 """Test %hist -f with temporary filename.
60 60
61 61 In [9]: import tempfile
62 62
63 63 In [10]: tfile = tempfile.mktemp('.py','tmp-ipython-')
64 64
65 65 In [11]: %hist -n -f $tfile 3
66 66
67 67 In [13]: import os; os.unlink(tfile)
68 68 """
69 69
70 70
71 71 def doctest_hist_r():
72 72 """Test %hist -r
73 73
74 74 XXX - This test is not recording the output correctly. For some reason, in
75 75 testing mode the raw history isn't getting populated. No idea why.
76 76 Disabling the output checking for now, though at least we do run it.
77 77
78 78 In [1]: 'hist' in _ip.lsmagic()
79 79 Out[1]: True
80 80
81 81 In [2]: x=1
82 82
83 83 In [3]: %hist -r 2
84 84 x=1 # random
85 85 %hist -r 2
86 86 """
87 87
88 88 def doctest_hist_op():
89 89 """Test %hist -op
90 90
91 91 In [1]: class b:
92 92 ...: pass
93 93 ...:
94 94
95 95 In [2]: class s(b):
96 96 ...: def __str__(self):
97 97 ...: return 's'
98 98 ...:
99 99
100 100 In [3]:
101 101
102 102 In [4]: class r(b):
103 103 ...: def __repr__(self):
104 104 ...: return 'r'
105 105 ...:
106 106
107 107 In [5]: class sr(s,r): pass
108 108 ...:
109 109
110 110 In [6]:
111 111
112 112 In [7]: bb=b()
113 113
114 114 In [8]: ss=s()
115 115
116 116 In [9]: rr=r()
117 117
118 118 In [10]: ssrr=sr()
119 119
120 120 In [11]: bb
121 121 Out[11]: <...b instance at ...>
122 122
123 123 In [12]: ss
124 124 Out[12]: <...s instance at ...>
125 125
126 126 In [13]:
127 127
128 128 In [14]: %hist -op
129 129 >>> class b:
130 130 ... pass
131 131 ...
132 132 >>> class s(b):
133 133 ... def __str__(self):
134 134 ... return 's'
135 135 ...
136 136 >>>
137 137 >>> class r(b):
138 138 ... def __repr__(self):
139 139 ... return 'r'
140 140 ...
141 141 >>> class sr(s,r): pass
142 142 >>>
143 143 >>> bb=b()
144 144 >>> ss=s()
145 145 >>> rr=r()
146 146 >>> ssrr=sr()
147 147 >>> bb
148 148 <...b instance at ...>
149 149 >>> ss
150 150 <...s instance at ...>
151 151 >>>
152 152 """
153 153
154 154 def test_shist():
155 155 # Simple tests of ShadowHist class - test generator.
156 156 import os, shutil, tempfile
157 157
158 158 from IPython.utils import pickleshare
159 159 from IPython.core.history import ShadowHist
160 160
161 161 tfile = tempfile.mktemp('','tmp-ipython-')
162 162
163 163 db = pickleshare.PickleShareDB(tfile)
164 164 s = ShadowHist(db, get_ipython())
165 165 s.add('hello')
166 166 s.add('world')
167 167 s.add('hello')
168 168 s.add('hello')
169 169 s.add('karhu')
170 170
171 171 yield nt.assert_equals,s.all(),[(1, 'hello'), (2, 'world'), (3, 'karhu')]
172 172
173 173 yield nt.assert_equal,s.get(2),'world'
174 174
175 175 shutil.rmtree(tfile)
176 176
177 177
178 178 # XXX failing for now, until we get clearcmd out of quarantine. But we should
179 179 # fix this and revert the skip to happen only if numpy is not around.
180 180 #@dec.skipif_not_numpy
181 181 @dec.skip_known_failure
182 182 def test_numpy_clear_array_undec():
183 183 from IPython.extensions import clearcmd
184 184
185 185 _ip.ex('import numpy as np')
186 186 _ip.ex('a = np.empty(2)')
187 187 yield (nt.assert_true, 'a' in _ip.user_ns)
188 188 _ip.magic('clear array')
189 189 yield (nt.assert_false, 'a' in _ip.user_ns)
190 190
191 191
192 192 # Multiple tests for clipboard pasting
193 193 @dec.parametric
194 194 def test_paste():
195 195 _ip = get_ipython()
196 196 def paste(txt, flags='-q'):
197 197 """Paste input text, by default in quiet mode"""
198 198 hooks.clipboard_get = lambda : txt
199 199 _ip.magic('paste '+flags)
200 200
201 201 # Inject fake clipboard hook but save original so we can restore it later
202 202 hooks = _ip.hooks
203 203 user_ns = _ip.user_ns
204 204 original_clip = hooks.clipboard_get
205 205
206 206 try:
207 207 # This try/except with an emtpy except clause is here only because
208 208 # try/yield/finally is invalid syntax in Python 2.4. This will be
209 209 # removed when we drop 2.4-compatibility, and the emtpy except below
210 210 # will be changed to a finally.
211 211
212 212 # Run tests with fake clipboard function
213 213 user_ns.pop('x', None)
214 214 paste('x=1')
215 215 yield nt.assert_equal(user_ns['x'], 1)
216 216
217 217 user_ns.pop('x', None)
218 218 paste('>>> x=2')
219 219 yield nt.assert_equal(user_ns['x'], 2)
220 220
221 221 paste("""
222 222 >>> x = [1,2,3]
223 223 >>> y = []
224 224 >>> for i in x:
225 225 ... y.append(i**2)
226 226 ...
227 227 """)
228 228 yield nt.assert_equal(user_ns['x'], [1,2,3])
229 229 yield nt.assert_equal(user_ns['y'], [1,4,9])
230 230
231 231 # Now, test that paste -r works
232 232 user_ns.pop('x', None)
233 233 yield nt.assert_false('x' in user_ns)
234 234 _ip.magic('paste -r')
235 235 yield nt.assert_equal(user_ns['x'], [1,2,3])
236 236
237 237 # Also test paste echoing, by temporarily faking the writer
238 238 w = StringIO()
239 239 writer = _ip.write
240 240 _ip.write = w.write
241 241 code = """
242 242 a = 100
243 243 b = 200"""
244 244 try:
245 245 paste(code,'')
246 246 out = w.getvalue()
247 247 finally:
248 248 _ip.write = writer
249 249 yield nt.assert_equal(user_ns['a'], 100)
250 250 yield nt.assert_equal(user_ns['b'], 200)
251 251 yield nt.assert_equal(out, code+"\n## -- End pasted text --\n")
252 252
253 253 finally:
254 254 # This should be in a finally clause, instead of the bare except above.
255 255 # Restore original hook
256 256 hooks.clipboard_get = original_clip
257 257
258 258
259 259 def test_time():
260 260 _ip.magic('time None')
261 261
262 262
263 263 def doctest_time():
264 264 """
265 265 In [10]: %time None
266 266 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
267 267 Wall time: 0.00 s
268 268 """
269 269
270 270
271 271 def test_doctest_mode():
272 272 "Toggle doctest_mode twice, it should be a no-op and run without error"
273 273 _ip.magic('doctest_mode')
274 274 _ip.magic('doctest_mode')
275 275
276 276
277 277 def test_parse_options():
278 278 """Tests for basic options parsing in magics."""
279 279 # These are only the most minimal of tests, more should be added later. At
280 280 # the very least we check that basic text/unicode calls work OK.
281 281 nt.assert_equal(_ip.parse_options('foo', '')[1], 'foo')
282 282 nt.assert_equal(_ip.parse_options(u'foo', '')[1], u'foo')
283 283
284 284
285 285 def test_dirops():
286 286 """Test various directory handling operations."""
287 287 curpath = lambda :os.path.splitdrive(os.getcwd())[1].replace('\\','/')
288 288
289 289 startdir = os.getcwd()
290 290 ipdir = _ip.ipython_dir
291 291 try:
292 292 _ip.magic('cd "%s"' % ipdir)
293 293 nt.assert_equal(curpath(), ipdir)
294 294 _ip.magic('cd -')
295 295 nt.assert_equal(curpath(), startdir)
296 296 _ip.magic('pushd "%s"' % ipdir)
297 297 nt.assert_equal(curpath(), ipdir)
298 298 _ip.magic('popd')
299 299 nt.assert_equal(curpath(), startdir)
300 300 finally:
301 301 os.chdir(startdir)
302 302
303 303
304 304 def check_cpaste(code, should_fail=False):
305 305 """Execute code via 'cpaste' and ensure it was executed, unless
306 306 should_fail is set.
307 307 """
308 308 _ip.user_ns['code_ran'] = False
309 309
310 310 src = StringIO()
311 311 src.write('\n')
312 312 src.write(code)
313 313 src.write('\n--\n')
314 314 src.seek(0)
315 315
316 316 stdin_save = sys.stdin
317 317 sys.stdin = src
318 318
319 319 try:
320 320 _ip.magic('cpaste')
321 321 except:
322 322 if not should_fail:
323 323 raise AssertionError("Failure not expected : '%s'" %
324 324 code)
325 325 else:
326 326 assert _ip.user_ns['code_ran']
327 327 if should_fail:
328 328 raise AssertionError("Failure expected : '%s'" % code)
329 329 finally:
330 330 sys.stdin = stdin_save
331 331
332 332
333 333 def test_cpaste():
334 334 """Test cpaste magic"""
335 335
336 336 def run():
337 337 """Marker function: sets a flag when executed.
338 338 """
339 339 _ip.user_ns['code_ran'] = True
340 340 return 'run' # return string so '+ run()' doesn't result in success
341 341
342 342 tests = {'pass': ["> > > run()",
343 343 ">>> > run()",
344 344 "+++ run()",
345 345 "++ run()",
346 346 " >>> run()"],
347 347
348 348 'fail': ["+ + run()",
349 349 " ++ run()"]}
350 350
351 351 _ip.user_ns['run'] = run
352 352
353 353 for code in tests['pass']:
354 354 check_cpaste(code)
355 355
356 356 for code in tests['fail']:
357 357 check_cpaste(code, should_fail=True)
358 358
359 359 def test_xmode():
360 360 # Calling xmode three times should be a no-op
361 361 xmode = _ip.InteractiveTB.mode
362 362 for i in range(3):
363 363 _ip.magic("xmode")
364 364 nt.assert_equal(_ip.InteractiveTB.mode, xmode)
365 365
366 366 def doctest_who():
367 367 """doctest for %who
368 368
369 369 In [1]: %reset -f
370 370
371 371 In [2]: alpha = 123
372 372
373 373 In [3]: beta = 'beta'
374 374
375 375 In [4]: %who int
376 376 alpha
377 377
378 378 In [5]: %who str
379 379 beta
380 380
381 381 In [6]: %whos
382 382 Variable Type Data/Info
383 383 ----------------------------
384 384 alpha int 123
385 385 beta str beta
386 386
387 387 In [7]: %who_ls
388 388 Out[7]: ['alpha', 'beta']
389 """ No newline at end of file
389 """
390
391 def doctest_precision():
392 """doctest for %precision
393
394 In [1]: f = get_ipython().shell.display_formatter.formatters['text/plain']
395
396 In [2]: %precision 5
397 Out[2]: '%.5f'
398
399 In [3]: f.float_format
400 Out[3]: '%.5f'
401
402 In [4]: %precision %e
403 Out[4]: '%e'
404
405 In [5]: f(3.1415927)
406 Out[5]: '3.141593e+00'
407 """
408
General Comments 0
You need to be logged in to leave comments. Login now