##// END OF EJS Templates
update ref pyfile
Matthias BUSSONNIER -
Show More
@@ -100,7 +100,7 b" plt.fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)"
100 100 plt.text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
101 101
102 102 # Out[3]:
103 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_00.svg
103 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_00.svg
104 104
105 105 # Compute the integral both at high accuracy and with the trapezoid approximation
106 106
@@ -749,7 +749,7 b" plt.xlabel('x')"
749 749 plt.ylabel('y');
750 750
751 751 # Out[60]:
752 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_01.svg
752 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_01.svg
753 753
754 754 # You can control the style, color and other properties of the markers, for example:
755 755
@@ -757,13 +757,13 b" plt.ylabel('y');"
757 757 plt.plot(x, y, linewidth=2);
758 758
759 759 # Out[61]:
760 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_02.svg
760 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_02.svg
761 761
762 762 # In[62]:
763 763 plt.plot(x, y, 'o', markersize=5, color='r');
764 764
765 765 # Out[62]:
766 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_03.svg
766 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_03.svg
767 767
768 768 # We will now see how to create a few other common plot types, such as a simple error plot:
769 769
@@ -782,7 +782,7 b' plt.errorbar(x, y, xerr=0.2, yerr=0.4)'
782 782 plt.title("Simplest errorbars, 0.2 in x, 0.4 in y");
783 783
784 784 # Out[63]:
785 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_04.svg
785 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_04.svg
786 786
787 787 # A simple log plot
788 788
@@ -792,7 +792,7 b' y = np.exp(-x**2)'
792 792 plt.semilogy(x, y);
793 793
794 794 # Out[64]:
795 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_05.svg
795 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_05.svg
796 796
797 797 # A histogram annotated with text inside the plot, using the `text` function:
798 798
@@ -812,7 +812,7 b' plt.axis([40, 160, 0, 0.03])'
812 812 plt.grid(True)
813 813
814 814 # Out[65]:
815 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_06.svg
815 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_06.svg
816 816
817 817 ### Image display
818 818
@@ -823,7 +823,7 b' from matplotlib import cm'
823 823 plt.imshow(np.random.rand(5, 10), cmap=cm.gray, interpolation='nearest');
824 824
825 825 # Out[66]:
826 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_07.svg
826 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_07.svg
827 827
828 828 # A real photograph is a multichannel image, `imshow` interprets it correctly:
829 829
@@ -835,7 +835,7 b' plt.imshow(img);'
835 835 # Out[67]:
836 836 # Dimensions of the array img: (375, 500, 3)
837 837 #
838 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_08.svg
838 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_08.svg
839 839
840 840 ### Simple 3d plotting with matplotlib
841 841
@@ -867,7 +867,7 b' surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet,'
867 867 ax.set_zlim3d(-1.01, 1.01);
868 868
869 869 # Out[72]:
870 # image file: tests/ipynbref/IntroNumPy.orig_files/IntroNumPy.orig_fig_09.svg
870 # image file: tests/ipynbref/IntroNumPy_orig_files/IntroNumPy_orig_fig_09.svg
871 871
872 872 ## IPython: a powerful interactive environment
873 873
General Comments 0
You need to be logged in to leave comments. Login now