Show More
@@ -40,7 +40,7 b'' | |||
|
40 | 40 | "output_type": "pyout", |
|
41 | 41 | "prompt_number": 1, |
|
42 | 42 | "text": [ |
|
43 |
"u |
|
|
43 | "u'/home/fperez/ipython/ipython/docs/examples/notebooks'" | |
|
44 | 44 | ] |
|
45 | 45 | } |
|
46 | 46 | ], |
@@ -157,7 +157,7 b'' | |||
|
157 | 157 | "output_type": "stream", |
|
158 | 158 | "stream": "stderr", |
|
159 | 159 | "text": [ |
|
160 |
"ERROR: File |
|
|
160 | "ERROR: File `non_existent_file.py` not found." | |
|
161 | 161 | ] |
|
162 | 162 | } |
|
163 | 163 | ], |
@@ -178,9 +178,9 b'' | |||
|
178 | 178 | "evalue": "integer division or modulo by zero", |
|
179 | 179 | "output_type": "pyerr", |
|
180 | 180 | "traceback": [ |
|
181 | "<span class=\"ansired\">---------------------------------------------------------------------------</span>\n<span class=\"ansired\">ZeroDivisionError</span> Traceback (most recent call last)", | |
|
182 | "<span class=\"ansigreen\">/home/fperez/ipython/ipython/docs/examples/notebooks/<ipython-input-7-dc39888fd1d2></span> in <span class=\"ansicyan\"><module></span><span class=\"ansiblue\">()</span>\n<span class=\"ansigreen\"> 1</span> x <span class=\"ansiyellow\">=</span> <span class=\"ansicyan\">1</span><span class=\"ansiyellow\"></span>\n<span class=\"ansigreen\"> 2</span> y <span class=\"ansiyellow\">=</span> <span class=\"ansicyan\">4</span><span class=\"ansiyellow\"></span>\n<span class=\"ansigreen\">----> 3</span><span class=\"ansiyellow\"> </span>z <span class=\"ansiyellow\">=</span> y<span class=\"ansiyellow\">/</span><span class=\"ansiyellow\">(</span><span class=\"ansicyan\">1</span><span class=\"ansiyellow\">-</span>x<span class=\"ansiyellow\">)</span><span class=\"ansiyellow\"></span>\n", | |
|
183 |
" |
|
|
181 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)", | |
|
182 | "\u001b[0;32m/home/fperez/ipython/ipython/docs/examples/notebooks/<ipython-input-7-dc39888fd1d2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
|
183 | "\u001b[0;31mZeroDivisionError\u001b[0m: integer division or modulo by zero" | |
|
184 | 184 | ] |
|
185 | 185 | } |
|
186 | 186 | ], |
@@ -915,8 +915,7 b'' | |||
|
915 | 915 | "collapsed": true, |
|
916 | 916 | "input": [], |
|
917 | 917 | "language": "python", |
|
918 |
"outputs": [] |
|
|
919 | "prompt_number": " " | |
|
918 | "outputs": [] | |
|
920 | 919 | } |
|
921 | 920 | ] |
|
922 | 921 | } |
@@ -43,13 +43,13 b'' | |||
|
43 | 43 | "outputs": [ |
|
44 | 44 | { |
|
45 | 45 | "output_type": "pyout", |
|
46 |
"prompt_number": |
|
|
46 | "prompt_number": 1, | |
|
47 | 47 | "text": [ |
|
48 |
" |
|
|
48 | "'This is the new IPython notebook'" | |
|
49 | 49 | ] |
|
50 | 50 | } |
|
51 | 51 | ], |
|
52 |
"prompt_number": |
|
|
52 | "prompt_number": 1 | |
|
53 | 53 | }, |
|
54 | 54 | { |
|
55 | 55 | "cell_type": "markdown", |
@@ -82,7 +82,7 b'' | |||
|
82 | 82 | ] |
|
83 | 83 | } |
|
84 | 84 | ], |
|
85 |
"prompt_number": |
|
|
85 | "prompt_number": 2 | |
|
86 | 86 | }, |
|
87 | 87 | { |
|
88 | 88 | "cell_type": "markdown", |
@@ -113,7 +113,7 b'' | |||
|
113 | 113 | ] |
|
114 | 114 | } |
|
115 | 115 | ], |
|
116 |
"prompt_number": |
|
|
116 | "prompt_number": 3 | |
|
117 | 117 | }, |
|
118 | 118 | { |
|
119 | 119 | "cell_type": "markdown", |
@@ -237,8 +237,7 b'' | |||
|
237 | 237 | "list(" |
|
238 | 238 | ], |
|
239 | 239 | "language": "python", |
|
240 |
"outputs": [] |
|
|
241 | "prompt_number": " " | |
|
240 | "outputs": [] | |
|
242 | 241 | }, |
|
243 | 242 | { |
|
244 | 243 | "cell_type": "markdown", |
@@ -277,25 +276,25 b'' | |||
|
277 | 276 | "stream": "stdout", |
|
278 | 277 | "text": [ |
|
279 | 278 | "{", |
|
280 |
" |
|
|
281 |
" |
|
|
282 |
" |
|
|
283 | " "key": "e7b658da-b60b-42f6-b6b0-5098f5d2e533", ", | |
|
284 |
" |
|
|
285 |
" |
|
|
279 | " \"stdin_port\": 53970, ", | |
|
280 | " \"ip\": \"127.0.0.1\", ", | |
|
281 | " \"hb_port\": 53971, ", | |
|
282 | " \"key\": \"30daac61-6b73-4bae-a7d9-9dca538794d5\", ", | |
|
283 | " \"shell_port\": 53968, ", | |
|
284 | " \"iopub_port\": 53969", | |
|
286 | 285 | "}", |
|
287 | 286 | "", |
|
288 | 287 | "Paste the above JSON into a file, and connect with:", |
|
289 |
" $ |
|
|
288 | " $> ipython <app> --existing <file>", | |
|
290 | 289 | "or, if you are local, you can connect with just:", |
|
291 |
" $ |
|
|
290 | " $> ipython <app> --existing kernel-dd85d1cc-c335-44f4-bed8-f1a2173a819a.json ", | |
|
292 | 291 | "or even just:", |
|
293 |
" $ |
|
|
292 | " $> ipython <app> --existing ", | |
|
294 | 293 | "if this is the most recent IPython session you have started." |
|
295 | 294 | ] |
|
296 | 295 | } |
|
297 | 296 | ], |
|
298 |
"prompt_number": |
|
|
297 | "prompt_number": 4 | |
|
299 | 298 | }, |
|
300 | 299 | { |
|
301 | 300 | "cell_type": "markdown", |
@@ -361,14 +360,14 b'' | |||
|
361 | 360 | "text": [ |
|
362 | 361 | "", |
|
363 | 362 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", |
|
364 |
"For more information, type |
|
|
363 | "For more information, type 'help(pylab)'." | |
|
365 | 364 | ] |
|
366 | 365 | }, |
|
367 | 366 | { |
|
368 | 367 | "output_type": "pyout", |
|
369 |
"prompt_number": |
|
|
368 | "prompt_number": 5, | |
|
370 | 369 | "text": [ |
|
371 |
"[ |
|
|
370 | "[<matplotlib.lines.Line2D at 0x11165bcd0>]" | |
|
372 | 371 | ] |
|
373 | 372 | }, |
|
374 | 373 | { |
@@ -376,7 +375,7 b'' | |||
|
376 | 375 | "png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAD3CAYAAAAXDE8fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfXuUFdWd7nf63c2jG2hEEEGRNjQan0DjFaFvdJAsos6M\nmkhmnCw0czsmuWASTUImc5XMWomTuXfEMETbleDNqNHJmGRMfA7otO1dCS/HidpAEBFB3k032O9n\n3T+2m7NPnb2r9q7aVbXPOftbq1d3n1N1ap+qvb/66vv99m+nHMdxYGFhYWGRdyhKugEWFhYWFtHA\nEryFhYVFnsISvIWFhUWewhK8hYWFRZ7CEryFhYVFnsISvIWFhUWewpPg77jjDkyZMgWf/OQnhdus\nWbMGs2bNwpVXXondu3drb6CFhYWFRTB4EvzKlSvx0ksvCd/ftm0bXn/9dezYsQP33HMP7rnnHu0N\ntLCwsLAIBk+Cv+aaazBhwgTh+1u3bsUtt9yCiRMnYsWKFdi1a5f2BlpYWFhYBENJmJ23bduG22+/\n/cz/kydPxnvvvYcLLrgga9tUKhXmUBYWFhYFi6AFB0IFWR3HyTqwF5E7joNXX3XwyU86Z/YtxJ/7\n7rsv8TaY8mPPRf6ei/fec1Bdnfy5eP55B7t2JX8+gv6EQSiCb2howM6dO8/8f+LECcyaNctzn54e\nYHAwzFEtCgGPPgqMjCTdCosw6O8HenuTbgXwf/8v8MorSbdCDu3twNKl+j4vNMH/8pe/xMmTJ/Hz\nn/8c9fX1vvtYgldHXx/w/PNJtyJefOMbQGdn0q2wCIP+fmBoiPwkidOnyU8uoLMT2LdP3+d5evAr\nVqzAa6+9hvb2dpx77rlYu3Ythj6+Wk1NTViwYAEWLVqEefPmYeLEiXjiiSd8D2gJHmhsbFTa/u23\ngTVrgOXLo2lPkhCdCxOIIW6o9gvT0ddHfvf0ADU1avvqPBenTuUOwXd1AePH6/s8T4J/6qmnfD/g\ngQcewAMPPCB9wJ4eYGBAevO8hGrnHR5OD5Z8g+hcDA5ags919PeT3729yRJ8Lin4jz4Cxo3T93mx\nz2S1Cl4dw8NmeJlxYWQEcJzCI/h8AyX4np5k25FLBK9bwVuCzwEMDeWvgueB9o9CJ/j+fuCPfwR2\n7Ei6JcFgCsHnkkVjFXwBotAUPCX2Qu0n27cD06cD1dUk7rJwYW7e4FmLJikMDJB2nDqVXBtUkBcK\nfnTUpsCpYHiYdNRCOWeU4AtVwT/3HPC5zxFi3LsXmDiRKLtcgwkKnip3q+BjAr3YharOgmB4mPym\nAybfUegWzRtvAIsWAcXF5P9x44iyyzWYQvDl5blD8Hmh4AFL8CqgRFcoNk0hK3jHIZ77lVemX8t1\ngk+y3546BcyYkTsEbxV8AYIq+Fz0YYOgkBX84cPEijv33PRrJhB8ZyfQ0aG2D5sHnxROnwbOOYfc\nZMJYnCErBkjDKvgCBCV4q+DzH2+8QdQ7W9LJBIJ/6CFg3Tq1fUyxaCZMIOcwTBzjkkuAEyf0tUsE\nq+ALEJbgCweU4FmYQPCnTqm3ob8fKClJ3qKpriY/YWya48fjuQZ5oeBTKUvwKqBEV2gWTSH2kTfe\nAObNy3zNBILv6lIn6v5+YNKk5BV8TQ0h+DCpkoODaaEVJfJCwdfUFObgDQqr4AsDvAArYA7BqxJ1\nfz9J8UyS4HUp+LhKZ3R15QHBT5hgCV4FNshaGOAFWIHcJvhJk5IVJlTB19SEJ/i4FHzOWjSOYwk+\nCGyaZGGAF2AFzCH4XLRodCj40VFC7nEQfE4r+MFBoKgIGDPGErwKCs2iKVQFz/PfATMIvrs7Ny0a\n1oMPSvC0H0ZN8I6T4wTf00PIvazMErwKCs2iKXQF78b48ckTfBAF39cH1NbmfhZNXIKjrw8oLSU/\numAJPgeQCwq+rU3fZxUiwYsCrIAZCj6MB5/rCp5yVdQKXneKJJAgwRf6oh8qMD1Nsr8fuOIKfZ9X\niBaNKMAK5DbBT5yYfJCVKvigaZJxEbzuFEnAKvicwPAwufCmKvjBQfIzOqrn8wqxXLAowAokT/DD\nw8EW0DZBweu0aKyC94El+GCgBG+qgtetuAtRwYsCrED4afZh0dUFVFTknkXjOOS8VVeL0yTnzycB\nZC9YBS8JS/DBMDxM7uwmK3j2d1gUoge/axdw0UX895JW8F1dJFiqmiqYtEXT3U1KBZeW8hV8fz+J\ne/gRfFz9MS8UfFUVOemW4OUxNGQJPt/R30/GBg8mEPy4cUScqfTBpBU8DbACfII/epT89utnVsFL\nwir4YKAK3nSLRtc1pfMlCongh4bE6XFjxhCyTGpFL0rwVVVqZN3fT/rt6Ggy15L67wCf4A8fJr9N\nIfi8UPCW4NVhukWjOyg6NET6SaERfFkZ/71UipwPPyshKgRR8I5DBEllJbkxJNF33QrenUVz5Aj5\nbQrBWwVfoChEBV9VVXgE7zXBJUmbJoiCHxoipYKLi8mYT8KmoSmSADB2LHmiYPuUKsFbD94HluCD\noRA9+EJU8KYTvApR9/eTzBsgOYI/dSqt4FMpMobYbCSr4DXDEnwwmG7RREHwVVWF1UdyheBl+yBL\n8ElaNFTBA9mpktSD9+tn1oOXhCX4YMiVPHhr0QSHyQTf3a1u0Zii4FmCdwdaC0HBl+j9OG9Qggcs\nwavAWjT5D5MJPlctGjbICvAJvrraHILXXUkSsAo+J2B6kFV33rpV8NlImuDHjs09i0ZGwc+caU6Q\nVfdiH4Al+JxAIXrwVsFnImmCz0WLhqfgaark4CD5e+pUq+C1wRJ8MAwPk3zipCaM+CEKD15E8Hv2\nAF/5ip7jmIRcIHgVBd/Xl6ngk06TBDIV/LFjwOTJZFa9KQSf8wq+tzc3CP6Pf0y6BZmgg7+qykyb\nRoXgH3uMTILxgpeCP3AA2LJFvY2mY3DQfIJXVfCVleRv1RIHusCmSQKZBH/kCDBtGjnnphC8VfAx\noL8fuPTSpFuRieHhNMGbaNPIEnxPD3DHHf7fwStNcnAwuRmdUSJXFHyuWTSiNMnDh4k9o0LwMk/P\nzzxDvrsqoliuD7AEn4WBAfITxwK7shgeJrMCKytzW8HTtDS/AeAVZB0cTLa+eFTIFYIPGmQ1LU3y\nyBE1gq+okOOE73wHePdd9bZGsVwfIEHwra2tqK+vR11dHdavX89pWB++8IUv4PLLL8eSJUvw7LPP\nCj8rF1Z0MnH1JErwpip42Vo0dGKJ37n1smgGBqyCjxs6gqxJ16IBwhF8VZUcwQ8OBuO2KPx3QILg\nV69ejebmZmzevBkbNmxAe3t7xvs/+9nPMGbMGLz55pv453/+Z3z961+HIzBZc0HBm0jwtK5Hrit4\nSvA6FLyfj59ryAWCzyWLZmiIjJWxY9OvhfHgx4yRI/ihoWAEH4U9A/gQ/OmPz8bixYsxc+ZMLF26\nFFu3bs3Yprq6Gl1dXRgaGkJHRweqqqqQ4q07BvLlKyoswavCy4MfHdW3VF5QqBJ8WAU/PGxu/wmC\nkRFSK6W4WLyNKQSfK3nwdCUnlorYNEnqwctwkaqCD+LBJ6Lgt2/fjjlz5pz5f+7cudjiSmFYsWIF\nRkZGUFtbi0WLFuHJJ58Ufl5VFTnhJi/4QUklyEWKCl4WzQ9/CPyf/5NMuyh0K3gvgqfHyCcf3k+9\nA8kRPFWj5eW5lQfv9t+B8BaNTJA1qEUTlYIPXargn/7pn1BSUoIjR47g7bffxvLly/HBBx+gqCj7\n3uE49+P++4H2duDUqUYAjWEPrx0mKngvi+bDD8UrAcUFmuKnS8F7DSg6eLq7yXJw+QCTCZ4lnqB5\n8EkQvNt/B3LHg29paUFLS4v6h3DgSfDz58/Hvffee+b/trY2LFu2LGOb1tZW3HnnnaiqqkJDQwOm\nTZuGPXv2ZCh/iilTCMG/9x7w4ota2q8dlKRMIngvi6azM3k/mipuGYIvLdWj4PMp0JorBK+q4KmC\nTsKicadIAuk0yeFh4ORJYMoU/R58UIuGPc+NjY1obGw8897atWvVP/BjeFo01R+fodbWVuzfvx+b\nNm1CQ0NDxjbXXnstfvvb32J0dBT79u1DR0cHl9yBdKGxXPDgTbRoeAq+szN5u2JwkASz/AbK4cPA\n+efLK3hRHjyQ/HfWCZMJnlaSBNSDrOxEpyQsGreCp0+Fhw6Rp7+SEr0KfmSExMNMyqLxtWjWrVuH\npqYmDA0NYdWqVaitrUVzczMAoKmpCbfddht27tyJefPmYfLkyXjooYeEn5VLBG+aghd58J2dmZkC\nSYASvNc1dRxC8NdcE07BsxZNvkCG4MvLCXkMDoqX9osCQS2apD14noKni37s3k3sGYCcd5mJd5WV\ncv0WyDEPfsmSJdi1a1fGa01NTWf+rq6u9iR1Fpbgg4H14HkEn7QXLUPwXV1kgJ11llwWjVeaJFB4\nCj6VSqv4SZPiaRcQzqJJMouGF2QFyGu7d5MUSUBewU+Y4C8qaN/MmSwa3bAEHwysB+9uV0dH8mRH\nPUqva3r4MBlUFRXyefDDw9nxBS8F/9RTwAsvqLXdBPjVoaFIwqZhCb6igoyPkRH//UxQ8G6LBiAE\nv2tXpoLXZdHQ/m+SgrcE74LJHrxbCTkOUfBJz26VUfCU4GUmaw0NkT5SUpI9qLwUfGsr8B//odZ2\nEyCj4IHkCJ5agKmUvBpPmuD9FLwqwcsEWcMQfBSrOQEJETwduElP0OHBVAXPC7L29JD3klbwQ0Py\nBC+r4MvK+INvYICQDE/Bf/RROhUzl2A6wbPEI2vTsARfVkZUf5ylrr0UfBCCl8mDD2PRRLEeK5AQ\nwadS5KKbXNvcFIKnj8NFRdnqqbOT/M5HBU8LL7n7yOAgiTnwSKYQCP6jj6JvDws3wcuqcTYPPpWK\nvx4NL8gKENI/dkzdg4/aoskrBQ+Ya9OYpuCp/w5kB1k7O0nQMmkFr0Lwfgp+dJTc1GgKm/szBwYI\nwVsFHw94Cl7VogHit2l4aZJAmvSpgpcRmrIEHzaLJm8UPKBO8Bs2pOtIRAnTPHhqzwDZQdbOTmD6\n9Nwg+EOH5BQ8JbtUKpiCP3Qo+YlfqqAxBz+YQPCyRM3mwQPxZ9KIFLyb4GVmYKt68EGzaApawT/y\nSLA6y6owUcFTgucp+HPOIW1NktR0ZtGwataL4EUKvqcnuaJcQZFLCl7WajFdwZ99NvltikVT8Ap+\ncDAeS8c0gqc58ABfwU+aRCbBJNlemVIFsh48O5FHFGT1UvDV1bln0+QSwQcJsgLxE7yXgq+t9e5j\nbqgGWWUI/sUXM0VKXip4lTtdnARfVWWWRUMHv/sxt6ODTMBIakEFCj+Lhs5inTpVTcHz/FE/BT9n\njiV4nQhj0bAEH7dFIyLM6uq0PQNEo+BluOPuu4HHHyd/R7VcH2AVPPc448ebo+D9LJoJE5JbEo3C\nrxZNRwdpY1VVdAp+YIAMlFmzLMHrRC5aNI5D+lF5efZ7F1wALFyY/l83wadScsL18OE0wff2ptOC\ndSNWgmfL2ppK8END5C5vCsH7WTRUwZtA8KLrQ+0ZIDoPnk71PuccEmjNJZhM8GyxMSC4RROnCBke\nJouncCqW48orgUcfTf+vc6ITnQ/iR/BdXSRT7L33yE9U/juQYwo+jnVch4ZIh5Yh+GPHom+PX5ok\nVfAmWzSHDxPiBeSzaAA1BU8Jfto0q+B1IohFQyc1sZlBcdqIKgXZdHvw48b5WzR0PHzuc8ATT0Rn\nzwAJErzqqk5xKvjx4+VmW55/fvRevV+apCkK3ivIqqLg3RaN+zP9FLwleL0Ikgc/MEDGN7tcXpx9\nVDbtFPAn+NFRMgYrKuQsmnHj/IUojUfdfjsh+KgKjQE5puDjJHg/BX/oENnm5Mlo28Pz4GlKpCkE\n71eqgCX4sApeVNkvlwne1GJjvOCfTF9z58AD8T5l6lTw9GZRWqqP4OmC3/PmERtp06Y8VPAqBE8L\n6ZtE8AcPkt9REzzrwZeUkB96Hmip4FywaIIqeFWLxnrw+tDfT9pVwhQVl7Fa3P473S8uESJ7wwT8\nCZ6tiyRL8DIWzbRp5Ann9tvJHJ+CVvB0u7gIXsaDpwTf0RFte1gPHsgkc1MUvArB61Dw48eT88K+\nRwl+6lSikHJpNqupBM/zhmWCpaoE39sLLFgQvJ1uqCh4v1IF9LN4lU15244fL2fR0PHwF38BfPBB\nnij4oFk0cRI8vUh+d+EDB8jvOC0aINOmMSHISouhVVbqz6LhDT7q744dm0kYNBOhspKQSdTXRSdk\nCX78+PgJ3r1amKxF4yZ4rz7a3Q28+Wbwdrqh6sF78QpL8H5BVioOVQj+/POBRYuiU/C+KzrpRHFx\n+u8gBB9XFo1MmuTBg+QRKw4FzxI8DbR2dxOiKy1NVsHTx2Gqth0nM7gGqCl4L4uG5jeXlZHv3N2d\nno7OBqqoD19bq+c7Rg1ZQho7lnxn3jmOAiIFr9uiGRhIP5HpyAXX6cGrKngVi4biW9+K7sYdK8Gz\nUCF4egFM8+AvvDBeDx5IK3iq3oHkCb6sjBAOVTns4BodJemktPYHzZ4aHeXnKXtZNMPDZJ/i4mwF\nzxL8OeeQQXTJJXq/a1SQJbaSEnL+ensz7c6owCP4oArej+AB8r145QVUEYUHX1REbqyifku3VQmy\nUnzmM3JtDYJYLRoWplo07ILPXguSHDwIXHZZPBaN24Pv68sk+CQtGpbQedf0xAmisuk2qZS3TeOl\n4NnZiVTBU7gVfC4FWlWUa5w+fFCCZ2vBU3j1UdpndPVh3QqerW7qpeLZCVEi7mDLdsQBS/AuUMIq\nL/d+1DpwgBB8EhaNiQoe4Hvm7sdRwJvg3QqevebssbwUfK6lSuYSwUdl0QD6CF5nHjz7WX4+PBUg\nXnW2PvqIPAFEFVR1wxK8C3SweXnFPT3kPZFF09UF7Nihpz2iIKspCt5N8O5rxFMrXufWS8EPDKTf\n81PwluDDI4xF486D99rPdAXPEryfgi8rIzc3EcHzBE+UsATvggzBHzwInHsuKdXLI/iXXwa++U19\n7eEFWWkOPGCWgndfI97amCoKXmTRyHjwuYJcI/ggCt5LhFAy1NWHVTz44mJip4gsFRWCZ5/+LcEb\nmkXD3oVFJMQSPM+iOXqUEJsOuD14E4OsbFqj+5r29WWrOa+bpxfBswqeZpRQWA9eP+LKg09SwYtW\nDuN9lowH72fvWoLnwFQFP3EiX8EfPapveUFRmiStBU9fMzXIKiJ4mSCr29N3B1mtBx8t3JUkAXLt\nBgbS8x94yCUPHpAneBmLprTU26JxZ9BEDUvwLsgQ/IEDmQrePWvy2DF9BM+zaExT8KoEX1ERrYKf\nMoVk7/jlLZsCFUvB/b2jBE/Bp1L+cxmCWjRJKHhAjeBl/Hpr0UBtRaekCN7PoqERc/eAoxaNjuny\nshaNqUHWMAreL01SpOBLS8nN9/jxYN8pKvzqV8Df/m326yoKPs6nNVEZWz9BwSP48nLSl3k33Sgs\nGpUJU17lCoIEWf0smrhSJIEcUvBska0oQQebl8o8eBCYMYP8zbNpjh4lj7A6VLXIonFn0eSrgmc/\nT6TgR0bI57GTf0wMtP7sZ8CePdmv5xvB8/LgUynxfiYoeBG32CyagFAleK9iVjqh4sED/EDrsWOk\nQ+sItMqkSZps0fBS5rwUvF8WDS9NkhIRO33ftEBrTw/w7//OH/i5RvB+beApeK/9dCv4qDx4lSCr\nJXhFgpeZAqwDtHOICN5x0h48kK3gHYcQ/MyZenx4rzRJE4Ks7OMwTwmpKnhZi4ZNk+QtmGBaoPXl\nl8nvsAQfpx0XxqJxX3Ov/aJIk0zCg/ebJBn3LFYgQYJXWdHJb0EJnaCEJVKZnZ3kQlNCcSv4U6fI\nvlOn6iF4Lw+ezYNnFwKJE7qzaGSDrKyCzwWC//WvgeXLxQQvS0hx3sy7u7OrSQL+NxkvBR+XRaPi\nwceVRXPqFHkvjjpCFDmj4OO2aEQqk/XfgezJTkePkiyO6upoLBo6SE6dSk8gKi4mbY56+UAedHvw\nsmmSfgreJA9+aAh4/nngs5/lXyNViyYuO06VqP32E90YBgf13riiVPBhLJq47RnAEnwW/Dx41n8H\nsi2ao0dJ5cSaGn0K3k3wx4+TASRaCCRO+NWi4QXc4lLwcXnwf/gD8Nxz4vdfew2oqwNmzcotD549\n3yyCZNEA4rYPDJDxkk8ePK9/W4IXwGSCd1s0x46lFXwUHnxlJeko1H+nSCrQGmcevIqCr68Htm8H\nnnpK/Tup4j/+A1izRvz+r38N/Omfih/dTSV49nyrtEFE8CJlOzhI+nO+KHjRdY7bfwdyiODHjYvf\nouHdhdkAK+Ct4HVZNG6lfuhQNsEnqeCDlCoIkgevouDPPx/YvBn4X/8L+NKXorWvenuBd94Bdu3K\nfm90FPi3fwP+7M/EBGcqwdPVs9wIquBFxDcwoJ/go/Lgw0x0MlLBt7a2or6+HnV1dVi/fj13m+3b\nt2P+/Pmor69HY2Oj1IFVCX7MmPiyaMIq+CgtGkqOpij4IEHWoHnw7GDzU/AAcPnlwBtvkOtz1VXR\nnZ+eHtLWf/3X7Pd27CBtmzNH/OhuahZNUILn2XKA+Pvni4L3y6IxkuBXr16N5uZmbN68GRs2bEB7\ne3vG+47j4I477sAPfvAD7Nq1C88884zUgU21aOgF9SL4OIOsvDRJwByCT3Imq5eCpxg/HviXfyHk\nsX+/9NdSQm8vcOONfIL/9a+JegdyS8GPjmY/Pcq2IYiCr6nR13+T9OC9smjirkMD+BD86Y8ZavHi\nxZg5cyaWLl2KrVu3ZmyzY8cOXHLJJbjuuusAALWSC2GaSPCOQ2ZFlpSISSjpICslS5MsmiRq0bBF\nr7wIHiAToKqqonsC7O0Frr2WpK7u3Jl+vbMT2LgR+Pznyf+6PPg4buT0uvLWfg2aBy9StlFYNDaL\nhsBzTdbt27djzpw5Z/6fO3cutmzZguXLl5957eWXX0YqlcI111yDmpoafPWrX8X111/P/bz777//\nzN+zZzdicLBRqpGDg8DkydETPFXLdFk5NwmNjhL/e/r09GsiiyaViiYPnip4mgNPkS8KnlVfPAVP\nv39RUZrs/AgeUJt3oYreXiJAbr2VqPj77iOv33cfUe8XX5xugyjIaJqC9yLJoHnwohtcFBZNVLVo\nZD14XhlxWYJvaWlBS0uL/4YSCL3odn9/P/7rv/4LmzdvRm9vL/7kT/4E77zzDio5t3CW4D/4QN2D\nHxqKdkV5VknxLJpjx4j1wnbeCRMIkdPFeKlFMzAQXR48PS6LJBU8nQwjW6rALw+eDdq6FTy7eAj1\n4WUIXqW4nSp6e8n5/+xngb/+a0Lsb78NPP10pqKn58fdh020aET+O21DkCCrl4LXmSapuxYNvTZh\nsmgch1g0Mlk0jY2NGbHMtWvX+u8kgKdFM3/+fOzevfvM/21tbVi4cGHGNldddRU+/elP4+yzz8as\nWbMwb948tLa2+h5Y1aKhed+8O6iufGc/gnf77wC56GPHEjIfHQXa24GzztJn0bg9eDpwTPLgdWbR\nyKZJAmkfXlbBR0XwPT2E9BoaSD9oawNWryZEzzqWRUX8onlBCD7qWcteBB8miyaOIGvS9eB5fe3k\nSXLeeOclSngSfHV1NQCSSbN//35s2rQJDQ0NGdssXLgQr732Gnp7e9HR0YE333wTV199te+BVQm+\nrIyvwj78EJA4nBTcBO/ujB9+mGnPUNBA68mThGjKyvTlwbstmqIi0klMIXi3pcJe05ER8uMmr6C1\naNwTb1QUfNQWTVUVuTa33grccQe50Tc18dvh7sMqBF9SEk9lVT8FrzMPPlc8eK8g68gIuf7Fxfwn\nlRMniPCLG74Wzbp169DU1IShoSGsWrUKtbW1aG5uBgA0NTVh0qRJWLlyJebNm4fJkyfje9/7Hsby\nCli4oELwlER4+3R3642+04HGI6H2dhILcIMGWvv6iD0D6M2DL3FdpcpKsywakQdP1bvbUlNR8O40\nSZZ0aMlgEywaWl/k1luBBx8kk5/c1w3gP76rEDyQvtYiAtaBoArecci15e1bUcFfAW1ggAiiwUFC\nlMXFwdsN6M2DZwWMlwfPjgPeNZbpo1HAl+CXLFmCXa4ZHE0uaXLXXXfhrrvuUjqw6oIfIoLv79c3\ncNmLxLNoTp4kat0NGmjt6iIBVoAMwqEhdTXhBo/gq6r4Cl7XOrAq8CpVIMqHDlNNkj2XlGhMUfAA\nsHAh8Lvfkbx7UTvY/spmbsmCeuDuPqATojIFgDfBDw2lrSg3vILM5eXpSqkS+tATSWTRsDcV3vcU\nVeaMGonNZKUnVcZL9CL4vj59BO/nwZ88mZ29AqQVPA2wAkS16siFd3vwAHDZZdmxAJMVvBs6atEA\nago+Sg+eJfhUSkzutB3sd6ffVyVxII5rLSpTQI8vIniRPQOIPXh6XXWlgCbhwbPb8SyagiN4epf3\nSjuiYNOPeAqeZiaEhZ8H76fgaYokhY5AK2+yyXPPZUfjTUyTFBG8jlo0APnOXV1ygydKi4YGWWXg\nvtGo2jOAOsEfPw48+qjaMbwsGq8btB/B+yl4HTeuJDx4P4um4AgekPfh6eOPyKKh24SFnwff0SEm\neKrgWYLXEWjlWTQ8mJhFE0TBe1k+PAV//Dj5PD/fNi6Lxg86CF61XMHbbwM//rHaMbwIXqTEAfEk\nJ8A7TZIqeF0EH3c9eLeCtwQPNYIXZdFQEtahznRaNICeQKsswSdl0XjVoolDwR8+LBe8isqicRzx\n9+TBre7iUPC9vfyJN17wInivc5nPCt7LcWDHgbVoPoasqvILstJtwsKt4Pv7M62fJCwangfPQ65Z\nNCJbTTVN8sgROYKPyqKhGSOymR8iD14FqkTY16eX4P0UvIjg41LwSXvw1qL5GEEUvIjgdSv44uLs\nfGORRcMqeLdFo0PByxBALhF8KkW29ausKKPgZQk+KotGxZ6h7dCh4FWudW8v2V5ljHipYPodeDfo\nIAqe3kySUvAqpQpsFo0CTCN4d8dgbRrHIQTPs2ioB08X+6DQFWQ12aLxIngvP1bkw7OERwcUJZIw\nCj4qi0aRh/xQAAAgAElEQVQlwMprh6pfDART8AApfiYLLwVP6zXxyC6Igqc3bl5s4YUXgG9+U77d\n9PNUPXivUgWqQVZr0XwMVYLnqbCoPHggk+A/+oh0XJ4ymDSJBPs6OjInQukIsuaCRaMaZAX4Przj\nZF6DVCrT9+Tlwct68FFZNKoKPikPHlCzabwIHhCrcdHcB699vNIk9+4lPypIwoO3Fg0Hpil4HsHT\nzxfZMwBR9QcPkt+sF1toQVa3EvIieJ6CHx4m56+I6ZXs4OPNZO3tLTyLRjWLht5IdRK8SI2rKviR\nEfK7pITfhzs60nX/ZZG0B28tmo+hI4smSoJnVaYowAoQpV5UlOm/A9HlwfNgqgfvpebcCp6nvNjB\n57ZoaHkAmYETlUXDlimQQRJB1qgUvCrB8/Zhrynve3V2qhN8EjNZbRYNB7IE71WLhpKE7iwaINOi\nEaVIAoTcJ0zIJvg48+Dp423UVQbdCBJkBfgKnkd2bACMp+CB3LJokpjoFFTBe5Gk6Ibplwfv3oe9\nkYgIXkW40AJ3KvVsdE90Ki0lbRgdTb9vCd4DSVo07OAQKXiAvMcGWAE9Fo2sB19aSjp11FUG3fCr\nRaPiwfMerWUUfJIWTdgga1xZNJWVagTvVaoA0Kfg2f6jw6KhfUil9IOI4OmyhXT8yWbRpFLZ19kS\nvAfoyROVKgCiy6Khn+9l0QDkvagUvMqCzHHbNDoVPC/7wc+DB5LNotERZFUtRhdEwZ9zTjxBVj8P\nPoiCD0LwKhARvPtmIRtkBbJtGkvwArB3US+LJg4PXmTRAOQ9ngcfV5AVSCbQqjOLhqdm2aJ07huA\nioI3yaIJ68GrBll7e8k6BrxSvSIEDbL29fnPgGVtRPamzfteqhaNqv8OiAne/VmyQVYg+wZoCV4A\n9i4qsmiKi5O3aBYtAi6/PPO1OPPggWQUfJBSBYBYwfMsmsHBtFXFZtioKviosmhUg6xJePBxKnjR\nNaeTB0Wzk3nWEyV41s/2QpB5BVEQPHud6e8o6/eLYDzBuy0AXhYNXSwgLLzSJP0smm9/G/jv/z3z\ntfHjyZ1btnOK2mQywQe1aFQVPM8Tpso5KgW/ezfwxhve2+RCkJUqeN1BVpGC96rL497Py6KhkwtL\nSsS1i9zQreDZa+MVZHVbQ+z3TEq9AzlI8DwFX1OTvEXDQ3FxuqRtUKh48HFbNDSHmWYsULVNH8F1\nKfihIT7hFBeTz4nKg//FL4Cf/cx7G9UgaxITnYIo+CiCrHQ/90xeUZC1ry+doSbrwwfx4EWlCngK\nXtaDZ79nQRO836DzI/i+PqLgk7ZoRAhr05hs0bg7NZ2kRInf63Fdh4IHiE0TlUXT0eFPpLlSiyaI\ngvfz4EUzWXUp+M5OIqrowi4ySNKDZ68je34KmuBVFLwoi2b8+OgJ3s+iESFsJo3JQVae38leU515\n8CLL4Kc/Bc47z7+tQSwamQBf2CBrHLVoenuj8eB1KXgvgp8wQU24BPXgeTyky4P/6CNL8ELIWDQy\nCn5kBHjkEfljAdkevKpFA4TLpKFKuEjyKsWt4EV56zIErzqTVaTgb7hBblJLEItGluDjDrIGKVVw\n9tnku8isoAaEq0WjquBFFk1HByF4UxS87EQnIPMGaBW8B2QsGhkP/sQJ4J57vLcRefAjI+Qi1dR4\n789DGAWv4r8DyVs0QLaCF6k5WQXv5cGrIKhFE4WCTyLIOmYMIUvZvhhFLRogmIIfO1a+X0eRB08R\nVMEXLMHLDDpdWTR9feTHayq/yKLp7CTHUJn+TBFGwavYM0AyFo0fwetQ8IODwZSZu11BFLzf+cyV\nIGtVFXkClbVp/M53FAre/WRCPfgxY8xQ8LIrOgHZBC8TJ4oCxit4rzxrQN6i6esj6YpexxMRfFD/\nHQgXZFVJkQTMVPBhPXg/i0YWUVo0cU90otvL2C0jI+TcVVSoEXxcCt4dZGXPd1CLxoQ8eGvRQN6i\nYVdKCUPwgLfyEeXBB/XfgfAWTS4SPB0sOvPgrUWTCdlMGkq4qZRegvcKsqooeLYP0fFG540EsWhs\nFk0mcoLgRQrecchJlMmiocSuQvCUhIKmSALhLRqVwZ/rWTRBgqyycOfo+6Gvj/QpE4OsgPy1Zm9A\nuhW86oIfQPaNgT1OUVHmDYDNookyDz6KIKsleIQneKrqRH4gi6AKPqxFk88KnjeY6DVyHD0K3i9N\nUhZFRd5Ls7nR2SlHojoUfJDvJZtJw14DExS8V5AVyDznJubBq0x0shZNSIKnj58yj98yBC9Kkwxj\n0cTpwZsUZB0aIqQqan/cCh5Qs2k6OkjuuF+N/SSCrEA8Cj5okNVLwXsFWYHM78V68FHnwUdZi8YS\nvAe8smhoZ5IJoIVR8Lli0ZjiwQ8O+mdTxO3B07bJBlo7O4GzziKD2mufJIKsgDzBB1XwfjdUryCr\nioJ3Pym4FbyqRRNEwauUKrAErwAdCr6yMjqCpyRkLRo+whC8KIvGS8GHJXiVTBpKLl5E6jjJBlmT\n9OB1KXj3dRVZNFHmwVPidj+pqXjw7uNaiwbhSxVQi0ZGmVGC96pK5+XBh7FoCjEPXkbJ8fLgeQp+\ncNCfcGSgatH4TZOnTxUq8yPizqJxK3jZmvBB0iRp0kPQNEkg83yz14Cn4L/4ReDllzNfCyIEUim+\nv24VfEiEVfBxWDT9/eEtmnzOgxdl0fgpuSB58HFbNHSSjeicqqp3QJ8HLxtkDaLgh4cJ6XnduEQL\naJeWepfW4Cl4nkXjOGTceOXBv/8+cPRo5mtBPHiA78OrBlltmqQLhWTRBFkMW9WDnzYNOHBAfRX6\noPCqRRPEgzcpyCpT6Eo1wAoQknCctBIMSkhRevAyT0u8Mef31AbwFTzPounuJscoLRVbNLyJaEGF\ngCzB24lOCsiFLJqwFk1FBVE0PGtodBQ4ckS8r6pFc9ZZwOLFwFNPqbczCKLw4KMMsqp48NQe8CLS\nIAre3Q4TPXgZkuQpeL+nNkBewdMnKEBs0fBKSQRNO9VN8FbBI3wWDUvwMgo+lYrfogHEA+u114Db\nbhPvp0rwAHDXXcDDDwd7YlBFWIKXUfA0w0GHgjfBogHiJ3h6HWpqSOlaWqVUBBkFzwuy+pUp4O0n\nUvD0BguILRoewUep4INMdHIc0n/o8pJxw5fgW1tbUV9fj7q6Oqxfv1643fbt21FSUoJf/epX0geX\nGXDsAHArdVUPfsIENYIvLU0v9hzmAk2eTKpZunHkiLc/r+rBA8DSpSSou3272n5B4EXIMkWn3Asw\nx6HgdVo0qrNY2XbERfC00BhAPPXx4/2D/rIWDU/B+1k0Xgt+AJkKniV49zUYHSU3Kx7BR+XBFxfz\ns20AcRZNTw/5O0ihQh3wJfjVq1ejubkZmzdvxoYNG9De3p61zcjICL71rW9h2bJlcBSkoy4PXjaL\nZtIkNYIH0kWaUinvz/dCbS3AOW1ob/f2y1U9eIDYQU1NRMVHDb8gq9dgLyrKvm5RB1mDWDRRKHjW\n3og6i8bdRvfTJG+4xqngRWmSLMHzLJrTp9NpqiyiVPBFRZkrlnltS/takvYM4EPwpz++1S9evBgz\nZ87E0qVLsXXr1qzt1q9fj1tuuQWTJ09WOrhOD16G4CdOVCf4yspw9gwgVvAnTvgTvKqCB4CVK4F/\n+ze1FXyCwKtUgYyac/u4oiCrrjTJIBaNl1IOEmQF9Cj4IKUKgGyCX7MmeyGcJBU8vaGyHnxVVboa\nLEVnJ/ntvsnp9uDd10bkw4uyaIwm+O3bt2POnDln/p87dy62bNmSsc2hQ4fw7LPP4q677gIApBSk\nrirB08ccegdVtWgmTVLLgweSJfggFg093vLl/gtGh0UYDx7I9uHjUPC6LZpc8OC9FPxvfwscPpy5\nj4wdplPB8ywa1oMvLibbsH2FEnycCp5uJyJ4nkWTNMEHoI9M3H333XjggQeQSqXgOI6nRXP//fef\n+buxsRF1dY1KBA+kCYQGQGmapEwWzdSpySh4kUVz4gRpz8gI36MLquABEmy94w7g7rvD2UteCEvw\nsgqeDjwdaZIyCt5x4iX4IIQUJE0SyCT4o0eBnTuBZcsy95EJaAdV8Lxqkn4WDZAOtNKYhxfBB7lh\n8soV8PqjKBdeZNEEWY+1paUFLS0tajsJ4Ekf8+fPx7333nvm/7a2Nixz9YY33ngDt32cCtLe3o4X\nX3wRpaWluPHGG7M+jyV4sr2aggfSj9mU4CsqyEkfHRUTJZBW8Pv3yx8LSHvwYTB5MvDWW9mvU1Xf\n28vvBEE8eIr/9t/I7zffBK64Qn4/+hgssw4sL/hcVkYGom4FPzoa30QnmoNdVkYIRxQID+PBm6Dg\nX32V/HbfwFTy4B0nLSBkFLxskDWVAs49N/26O9Da2UkCxnEreC+LRpcH39jYiMbGxjP/r127Vu0D\nGHgO4+rqagAkk2b//v3YtGkTGhoaMrbZt28f3n//fbz//vu45ZZb8PDDD3PJnQdViwbIVOvUokml\n/NVZ0CBr1BYNILZpwij4VAq46CJg3z61/R57DGDu6Z4IU6oAyFZzIk8/7olO7gCfVx580CwaHUHW\nsAr+lVeABQuy+58MwRcXZ6tZWQUvE2RlLRogO9Da2Zmu9skiyjx4gE/wjsOfJGmCReOr09atW4em\npiZcd911+PKXv4za2lo0Nzejubk59MGDEDy7D6sY/NRZXx+xSkyzaMaNExN8UA+e4rzzvJ9YeNi7\n13vyFYswpQqAbAUvqkUTdzVJllx0z2QF9HnwYbJoHIcQ/I03BlPwQLYa16ngRRYNBSV4nQrezUWy\nBE+dA/ap15Qgqy99LFmyBLt27cp4rampibvtY489pnRwdpUdkU/sR/BUMUSl4HVZNG4FPzJCHv3r\n670VfFCLBgBmzgTefVdtn8OHiW8oA69SBaOjwRS8iOAdJ740SfcsSi8PfurUcO1IIovmP/+TPNkN\nDgLz5pEJdyxkb6ZuNa5Twff0ZBM8ex1OnSIE/8EHmZ+vMw9e1L/dBM87pikEn+hMVnrX85pZJ6vg\n/R6//Qh+dJT8uD38ujryEwY8gu/oIHVqamqisWgAouDdA8APhw7JE7zuLBqvIGuc1SRZ9Rh1qYKo\na9GIFPyrrwKf+hR/lqisHRa1gmeFlciiScKDl9nOFIsmdBZNWFBCEBGZewCwBM/aADIK3isPniop\n95PEj34k9z28MHEi6ZBsEPjECUL8XsuR6SB4VYvm8GF5wvEieJ0KfnCQnDsdFo1XmiyFrEWT9ESn\nMB78K68A11/P/36yN1NdCp6XB+/24HlB1ksuibcWDcC3aHjbsQp++nT19uhCogoe8PfhvYr4BLFo\nRAM86ECTQWkpifjT1C6AEHxtrTfBh/XgZ84kBK9Sl0bFogmr4N0+st+CH3GlSapYNKaXKuAp+Pb2\nTAWftAfvtmi6u0kfrKlJv85T8NOnx1tNEpAn+JISIkpOnyZjPykYT/DuQe9l0YgG78gIuSg1NeJB\noWMijRfcNg1V8F7LkYX14GtqyBMDe2PxQk8P6ZBhCV6mFg0AzJiR+YQRdZA1aBaNqUHWoAr+3XcJ\n6cycye9/KgqeJWtVBU8XCHFbNMeOkXaxdikvyHr22WSMsIQbZS0aup2b4HnCJJUi37W9vYA9eEBd\nwYssGq8MCdrx2MUE3IhSwQOEzNlMmjgsGiCt4mVw5AhRRbTOhx9450xFwV94YWYQ2G8ma1ylClh7\nwNRywWVlaeHiBXcb6fe69lryW6dFI6vgaf78yEj2wiJVVeR9d2IDz6Kh5Zz94jgy0O3BA+S7WoL3\nGXQqQVY/gi8uFh8vaoKvreUr+CgtGkAt0Hr4MNm+tFTOqw5r0Vx4IbBnj//nxV0PXsWiSWqiUyol\np+LZapJA2i5kCd4temTPNc+i8bvmRUVpkuTdSOj+rP9O2+lW8DU12ecgKQ+edw3Ly9Op0EkhcYL3\n66QqaZKiJwGWbETHi0PBswTf3p4meBGB6FDwKoHWQ4fIqlDV1XI2TViCr6sjBE/JxZRaNLIWTRgF\n39/PnyCjAr+xMzzMJ7y//EvguuvI31T0uFVw0CCrn4IH0t+fd5zSUvLjJnhWCDkOecrkEXzQfqJS\nqkDGgwesRQOAfHkvMhGVKgDks2hYsqmsTI7gg1g0YdukYtEcPkwIXqZmOBCe4CdNIgRDb3xRp0mq\nWDRsJUORrRc2yDoyki5BGwR+BE/VuzszbMOG7BRE9iYWJsjqd82B9I1B9KRQVeVt0XR1keOUlma3\nPWoPXoXgy8tJvn5BE/z48eSCieBVqkDVogGSU/A8i8Yvi0aXglexaM45h1yTsApexo8FMm0aU+rB\nswqeKlx3YS0gfJA1qJ1AIUPwMoQblOCDKnganBUdp6rK26LxmqeQRDVJL4IHCpzgx41TI/ggM1lN\nIHhRFk0cHryqgq+ullfwYYKsgBzBDw4mN9EJENs0YYOsYfucH8HLts/dB6NW8KxFwyPGMWP4Fg29\nBl4EH8aDly1VIDPjFUjf7CzBhyB4lSwaIDvqLjqObuRCFg1r0cgoeK9SBUEIXqSYBgf12FUyFg1d\nCs6dg+0meLqakMx3dIMq2LAE7xUfAMIpeNlSBe40SVkFTy0aWQXPjpMkFbyqRVNUFKyP6IIRBK/q\nwYtmspocZGUtGsfJDLJG6cFPnJiue+MHVYIXWTQDA/Jqrq6OpEqKAo6lpYR8ysrC17WXsWhOnybX\nxJ26x5tQU1wc7PqYpuB5PnbQNEkdCp7nwXtZNLTtdP1kHR786ChfYKlm0YwbF916DDJInOBlPHhe\nqYLR0cyOmEsWzenTpL0VFdEr+FSKqHg/H95xCMFPnapm0fAIvquLnEuZ4CFV8LycaCC98LmOpysZ\ni8ZtzwD8wl5BA6y0HXEQvKyCd2dyBbVoolbwrEVDn7DYazM8nF3VURZugqdPp25yVvHgKyqStWcA\nAwjey6LhqTo6OAYG0rXg2dd5MIXg29sz1TsQvQcPyAVaT58mg2PcuPAK/vRp+cfS2bNJieKBAf75\np99fB8HLWDRsBg0FzwoJGmAF0n01qNqk0Kngg3jwQSY6Ad5pkgDw138NXHWVuI0iiyZM0NpN8KJr\nozrRKWmCT7zY2LhxYo+YEhx7R2aDeGxnMp3gabpaT0/afweit2gAuUArzaABCMHzFihxQ0TwIyPy\nBD92LEmX3LePP0hSKXIOwgZYATmLRqTg3QQfNMDKtsMUBR8mTZIVZ7LHozcGUQG5jxeIywCr4E+d\n4hN8mDgaj+B5n6XqwSdN8EYoeJFaFK3ww0vDkw2yJpUHD6RtGpoiCURv0QBygVbqvwPhs2gAtcDS\nhRcC77wjPv+lpclaNDwiDUPwuoKsUXnwQevBqyp4lcwo+l1HR8UKPswTURiC98qiKXiC9/LgVfKs\nwyr4qLNogLRNwyp4+ujJm0iji+BlLBqW4MNk0QQl+LY2b4LXoeB1WjQmKHhdWTQ60iQdR92DVxlz\nxcXkeH194iCrVfDZSJzgvTx4lZmSpmfRAJkKnhJ8aSnpNKL6OLoIXlXB+xE8XaTFHRQtLia2igrB\n19URghcNTp0KXqdFY3qQNY4sGrauPV2n1Q9BFDyQtmlEa+aG8eDdpQpEpK060ckSfECC163g4yB4\nmirJEjwgtml0efCqFo1MqQJRp06lyOsmKvgwFk0UQdZc9+BZi0b2WOx+qhVC6TjxsmjiUPC8ICvv\nOlqLBt4evNdKKWEInjfRKS4F396emUUDeBO8DgU/eTL5zl7pqIcOZQZZ/RS812AqK5N7VKe48ELg\nvfeiV/BhLJp89uB1WDSy/ju7n2qFUGpnmubBm5wmmXgWTRgP3m3RmK7geRYNICZ4XRYNmwt/8cX8\nbVQtGj+CV1Hw55+fzpYRfZ4Ogqfnkl060Q2RRXPyZOZrJnjwMgqenZErQlIKvqgouEVDv5cpWTS8\nvrByJQkKJwkjFHxQDz5IFk2uWTQ6CB7wD7SqWjRe50uV4MvKCMlHbdEA/j583GmSYW5cvCcLFrKl\nFIJm0QRV8PQJRpWQqYJ3p0nStofNg2ftO9ENS3ZFJ4CIqvPPD9YeXUic4MeMISeTBu1Y6PLg2Y6e\ntIKnWTQ0TRKI3oMHvAOto6PA0aNkFiuQvul6rerkNThLS9Xrb9TVRW/RAN5C4PRpYOdO4NxzM1/n\nefAmBFlrajLrG7nhXuxDBHf/C1KqQEXBs5MVVRX88eNE9ND92JucTgV/9CgwZUr2dioTnUxA4gRf\nVJReaNcNr2qFPIKXyaIR5cHHlSaZlIKfOxf4m78Brr4a+MIXgJ/8JP3eyZOE1OmgKSkh58krBU+n\nRQMQHz4uBS/qJ/feC9x0E2kLC55SDhNkpX047EzWCy4gs4BFCKPgo/Tggyr4sWOBgwczn7Ci8uCP\nHiVrvrqh4sGbgMQ9eCDtw1dXZ76umiaZCxbNBx+QDsIGX6L24AHgq18Fbr6ZEMLevcD99wP19YTw\nWXuGgto0Y8fyPy8Kgn/nHf57cSj4zZuBl17it0Fk0fAUngyKikg7urvD9blp08i4+egjcr3cCJIm\nScuDqFaTVFXw/f3kGO4x79fODz/0JnidCl6F4KPmjqAwguBFPnxUWTRJWjS0JABbxCgOBZ9KEUKY\nNg1YvJgEGb/5TeD//b/MDBoKmknjfp1CN8EvWgQcO8Z/L2oPvquL1D959FE+Uer24Gk7whJ8UVFa\nxV9xRfb7KmmStP9RspKpgMhaNKoKPmia5N692QSvy4N3E7z7SQ7IPQWfuEUDqBF8LufB19QQYmXt\nGSAeD96Nv/xLcs6ffZav4P3KFXipliAEf8klwNq1/Pd0KnieRbNmDdDYCCxbxt9H5MEnTfBAutwy\nDyppkvT7qaQushZNEAWvmibJs2ii9OBpTMpru7DHjRrGEDwvLU8lTVIliyapPPiiIlJYS4XgdSl4\nN4qLgQceIOR24ADfovFKlfRSS0EI3gtRWjQHDgBPPw384z+K99GdBw+kC3VFSfBBJjqpqOqwCl41\nyEotGjb103rw3jCC4EW58F7FxnjVJE0vVQAQcpcleJ0ePA+f/jTpxI88ok7wui0aL5SVRWfRHD5M\nbA53aiQLUbngoFk0AOm7uhS8KNAqexOqrExXd1Qh3bAKPkiQ9cSJzGtFx/3ISHIefNh01yhhBMEX\nikUDEHJnUySBZCwagPisP/whGTRBLBpdM1n9EKVFw8t7d0Nk0YS5icVh0ciSbiqVvompEHwSCh7I\nvF6pVPqpXFctmpERklnmFmKAVfCBoBpkDUPwlZXkf3eOd1wXSUXBR2nRUMyfDzz4ILBwYebrJil4\nnUFWt0UjQ/A8i+bQIb5HKwuTPHggGMHTc+k48sv1AeEUPCCuFaRLwR8/TspV8MaeqNiYzaLxgKqC\nHxiQT5N0dz6aoubukHEp+EWLyKBkkSTBA8Ddd2e/Fobgv/AF4PLL9bQN0K/gVQmeKsTRUdJ/hoZI\nuuusWeHaocODP/ts0rbTp7NTDlVskyAET8cSHY9RK3gRwdMbsC4PXmTPALk30ckIgheRiQ6Lhubb\nsqtCUZsmCYJftSr7taQ8eC9UVxOVyqKnh8ycHBkhwS7R+frzP9fblignOskQfFER6Wt9fYRM9u8n\nllYYG0qXgk+lyLKH774LzJuX+Z6qgu/uVs9soWTd3y9/rKDlgnkWDZAez2EVPO0XfgRvLRpFeCl4\n2Zms9HW39cJTMTwfPi6C5yEpD94LvJvun/850NAAXHcdsGEDSW2MA+XlyVo0QKYP/+672U9hqqBB\nVh3EwLNphobIWJDtPzRVUjU3nZJ1EAWv06Lp7dWXBy9KkQRyj+CNUPBBgqxu4i4qSj8+sfvw6nHk\nEsEnpeB5BL9rF/D738dfQGnNGvGMWlXwLJq5c/33Y314HQSvS8EDfIKn40NmwhKQtmhUKzyyCl6l\nmmTQBT+A6BS8rEWTV1k0ra2tqK+vR11dHdavX5/1/pNPPolLL70Ul156KT7/+c9jz549yo1QIXh6\nIXiKgWfTiBS8OxfeNIKnU8aTtGjYLJq+PhJ8chfiigMzZmTXaA8Kt0XT0SGn4NlUyT17+LMcVdsR\nNcGr5OmzFk3UCp6O0yDVJIHsEshskDWsB+843gSfdxOdVq9ejebmZmzevBkbNmxAu6t83axZs9Da\n2oo//OEPuP766/F3f/d3yo1Q8eDpikFdXeEI3q3gk4yE8wh+dJR816KETDT3Ndm3j5Q/TeqGowtB\nLRqW4HUpeB1BVoBP8KppnNSiUSV4VsGrFhuLIsgalGiLisjPyEgwD97ULBpP+jj9sYRbvHgxZs6c\niaVLl2Lr1q0Z21x11VWo/jh8v3z5crz22mvKjVBR8AB57fRpvQSf5GMWj+CT9N+B7EU/9u4lwbxc\nR5AsGiDbgw+r4CsqSB80ScFTglcZB6yCD5ImqRpkXblSPJ7DjmGqzo8cyZ8gq6ce2759O+bMmXPm\n/7lz52LLli1Yvnw5d/tHH30UN9xwg/Dz7r///jN/NzY2orGxEUBwgndfaFmC55UMTtKiKS8nnYZt\nQ5L+O5C96Ec+EbxqFg2QVon9/YQAzjsvfDsAPX1u8mTSd9jlBlUVPLVoKiujV/DsXBYVYiwqAjZu\nzH5dhwcPpAk+6SyalpYWtLS0aPksbRSyefNmPPHEE/jd734n3IYleBZBCP7kyewORQOwLHIhiyaV\nSj8iU38xSf8dyLZo9u6VC0aajrAWzb59JCYQ9troJPhUKq3iGxrIa6oKnva/8ePVCV5VwdOEiO5u\nPdlROjx4QI7gRROddBI8K34BYK2oCp8EPC2a+fPnY/fu3Wf+b2trw0L3lEcAb731Fr70pS/hN7/5\nDWpkFoF0QeTBix656LRi3RZNkpaI26ZJWsGPG0cGDV1Tcu/e8L6zCWD7yNAQ+VtmYWRKIjoCrLQd\ngL4+57Zpgij4IB48tVtUFDxAtu3q0kOMuhQ8dQaGhsR16nkTnXI2i4Z6662trdi/fz82bdqEBioR\nPnfW6QQAAA+mSURBVMaBAwdw880348knn8TsgM/w48YRcpMtH0A7YFCLJlcIPsn2FBWRQU+frPLR\noqGLN8ukElIC1BFgpe0AoiX4OLJoqEWjouABcgzH0aPgdQRZAXItDh4k6l3UJ9wWDc12MzXI6qsR\n161bh6amJgwNDWHVqlWora1Fc3MzAKCpqQnf+9730NHRgS996UsAgNLSUmzbtk2tESXkBLkfK70s\nGsAq+KhBn6wqKkjVxZkzk22PDrAWjaw9A6RJZO9ePWUYaN/VSfAvvZT+X5VwwwZZgyh4QJ+CP3pU\nT5CVErwIboIfHialt2XnG8QNXwpZsmQJdu3alfFaU1PTmb9/8pOf4CfsAp8BQX14FYIXrfbEQjYP\nPulIuJvgk/bggXQufG8vyX83VaWogO0jqgRPLZrPflZPOwC9BM9OU1FV8GHTJIMo+OJi8hMWrEUT\n1oM/cECN4JPmDT8YUaoA4PvwogtGy9G675q8RT9yWcEnTaj0muSLPQNkWzSyBE89eNMtGmpzBlXw\nQUsVBFHwuspP6KgmCcgpePdEJ0vwkuBl0ngpeF7n5S36kQtpkoDZFs277+YPwYexaI4fJ6mIOmbz\n6ib4SZPI9Xr6afK/6R58RYU+YozCgxch1xS8MfMSVQmepxZEFo07SyIXFLxJFk2+KfigBP/WW2T1\nJx2ziymJ6iKHVAp44QVg6VKS+RQ0TTIIwQdR8DoLyOmc6HTgAOAxlSeL4E3OoAFyVMGXl6sRfK5a\nNEkTPGvR5EOKJBDcohkzBmhr05MiCegPsgLAxRcDmzYB994L/OpX8aVJ0n6r8l10KnidHvzBg94L\nueSagjeG4EUevKpFk08Ebz14/Qhq0VRVkWui60an26KhuOgi4JVXyDKMMvn9FGHqwZ86pV4bPwoF\nr8OiOXXK34PPJYIvCIvGj+BNyGUdO5Z0LgoTFHx1NZkxfPBg+Kn5psBt0cjOzqWVDE0neACorwfe\nfju+IOupU+pLNOpW8D09ZByHJXjA34Nng6wDA8kLMS8Yo+B1EHzQLJqREeJh6kjZCgoTPfjx44nv\nPG2aPrWVNNhyFqoWDaDPoomS4AGysDttswzCePBJK3gaZNXhwQPAlCnibdwWzYkT/MW5TUFeEbxs\nFo07Dz5p9Q6Y68H/53/mjz0DBA+y0oClLgUfhQcfBnScdXXFp+CjsGjCnM+yMtIfvNrlJvgPPwSm\nTw9+zKhhDMHzPHjRHbm8XK8HbyrBJ92m6mpSOTHfCD6Igh87lvx4Pb6rtgNI/hqzGDOGpIHGpeCj\nCLKGVfB+17e4mGQp0RpNluAlEacH786DN5XgTVDwQH4RfNAg64wZQGurvinpJhL82LEk5hIkyJqk\ngmdLFkdN8KlUpoq3BC8JEcF7zWR1I5cVPM1ioDDFgwfyJ0USCG7RpFJ6atCw7QCS73csgih4atEk\nqeBTKTLGwy5iXlrqnSJJYQk+AHTNZM1VgjdRwdOSqfmk4KlFQ9f1VUkl1N0OIPl+x4IGK1UtGtXS\nxHQ/nYF7GlAOmwcvY8FZgg8AtwfvOMGyaGRLFfT3p300Uwk+6TaNH0/U0axZybZDJ6hFc+qUfKng\nKGBakBVIr3mqquCBZLNogHQQPIwoKivLP4I3Ng/eK3Wxujq76D4gr+CLitJFkqqqzJisYKKCnzIF\n+Md/VB+8JoP2ERV7Jqp2AMmm5rpBVbCqgmd/q+ync8xVVZHPC3PD/vrX5Z7o6GSnvj4yZmtrgx8z\nahhL8F6k++UvZy8OAsgTPJC2aaqqzFTwJnjwJSXA3Xcn2wbdoKuBnTyZLMFXVpKSAibVEQ9C8KLF\nd/wwblz6iUEHKMGHgawVSSc7HToEnHOOWdfQjZwkeBEZByF4wAyCp+0ZHSVPGCZYNPmIVIqc1+PH\n0wtUJ4GiIuCHP0zu+DxQglfNomF/y+L22/XU1acYMya+8UItGtPtGcBgDz6IbeImeGrj8C58ZWV6\nspMJBF9cnJm+aYJFk68oLycrACWp4E1EEA+eEnuQIKto3dMg0KHgZWEJPgDKy4l6pUFSHQTvVaPa\nNAUPkJvciRPkbxMsmnyFJXg+wlg0Scdp4iR46sFbgldAKpVp0wQheHcWTa4R/E03AXT1Q6vgo0NZ\nGXDsmCV4N8aMIdaRSr8LquB1I24FPzRkCV4ZLMEHmbTgVvBe+bljx5IgCWBGFg1Agm7NzcSqsh58\ndLAKno+xY9VTF01S8NaDz4ZRBM/68D/9KfCZz6jtr2LR/M//CXz72+RGYoqCv+ACsiLPI49YBR8l\nLMHzMWZMsKdmIHkFH6TtQWEJPiCogj96FHj8caJoVaBC8DfcACxZQo5hCsED5Kazbh05D5bgo4G1\naPgYM0ZdwadS4hXW4oQNsvJhJMH/7/9N0qhUK/epEDxAiPT558mPKQR/ySWk5snjj1uCjwpWwfMR\nhOABQu5JK/i4g6w9PaRuz1lnxXPMoDCO4PftAzZuBL75TfX93fXg/Qi+upoc66c/NYfgAWDNGhIf\nMKlN+YTychKfsQSfiSAePEAI3gQFH6cHf+AAKUxm0kxkHozSiOPHAw88ANx2G5khpgr3ik5+BA8A\n110HfOUr6bo0JmDRIvJjCT4aUKVnCT4TQRW8aH2GOBG3RbN/v/n2DGAYwY8bRxaY+Na3gu3Ps2ho\nESIvrF+fPQM2afz858mronwFJTFL8JmYPZvEplRhgoKPO8iaKwRvlEUzeTKwciUwc2aw/VU9eIpU\nKvkO6sa555q91mMuo7ycPFonVSrYVEyZAvzgB+r7maDgzzsPmDMnnmOVluYOwRul4L/9bX4RMVmU\nlBCrZWSEDODu7uQ7noV5KCtLtlRwvuErX4mPXEW4+mryEwdKSoD33wf+9E/jOV4YGKXgS0rC+c40\nZYuq+GefJV62hQWL8nJrz+hEU1Nhnc+SEpIEYRV8AqDlCg4eBN56C7j11qRbZGEaLMFbhAF1CnKB\n4I1S8DpAFfyPfwzceafeVWMs8gNlZZbgLYKDzk/JBYLPOwVfXk4mIDzxBPDmm0m3xsJEWAVvEQal\npaQom+pEzCSQlwp+40bgmmuAGTOSbo2FibAK3iIMSkoIuefCPJW8VPCPPgo880zSLbEwFXHOerTI\nP5SU5IY9A0go+NbWVtTX16Ourg7r16/nbrNmzRrMmjULV155JXbv3q29kSooLyd312uvTbQZnmhp\naUm6CcYgiXPx1a8CX/ta7If1he0XaZh8LvKK4FevXo3m5mZs3rwZGzZsQHt7e8b727Ztw+uvv44d\nO3bgnnvuwT333BNZY2VQXk4W5S4y2HwyufPGjSTOxaRJ5Mc02H6RhsnnorQ0Twj+9OnTAIDFixdj\n5syZWLp0KbZu3ZqxzdatW3HLLbdg4sSJWLFiBXbt2hVdayWwYQPJy7WwsLCIAp/4BLBgQdKtkIMn\nwW/fvh1zmClqc+fOxZYtWzK22bZtG+bOnXvm/8mTJ+O9997T3Ex5XHGFeWUHLCws8gf/438Af/EX\nSbdCDqGDrI7jwHHVF0gJ5oCLXi9ErF27NukmGAN7LtKw5yINey7Cw5Pg58+fj3uZZZXa2tqwbNmy\njG0aGhqwc+dOXH/99QCAEydOYNasWVmf5b4JWFhYWFhEC0+Lprq6GgDJpNm/fz82bdqEhoaGjG0a\nGhrwy1/+EidPnsTPf/5z1NfXR9daCwsLCwtp+Fo069atQ1NTE4aGhrBq1SrU1taiubkZANDU1IQF\nCxZg0aJFmDdvHiZOnIgnnngi8kZbWFhYWEjAiRivvfaaM2fOHGf27NnOj370o6gPZxQOHDjgNDY2\nOnPnznWWLFniPPnkk47jOM5HH33k3Hjjjc65557r3HTTTU5XV1fCLY0Pw8PDzmWXXeZ85jOfcRyn\ncM9Fd3e381d/9VdOXV2dU19f72zZsqVgz8Wjjz7qXHXVVc4VV1zhrF692nGcwukXK1eudM466yzn\n4osvPvOa13d/6KGHnNmzZzv19fXO66+/7vv5kWeL++XR5zNKS0vx4IMPoq2tDc888wy++93voqur\nCw8//DBmzJiBd999F9OnT8cjjzySdFNjw0MPPYS5c+eeCbgX6rm47777MGPGDLz11lt46623MGfO\nnII8Fx0dHfj+97+PTZs2Yfv27dizZw9efvnlgjkXK1euxEsvvZTxmui7Hz9+HD/+8Y/xyiuv4OGH\nH8aqVat8Pz9SgpfJo89nnH322bjssssAALW1tbjooouwfft2bNu2DXfeeSfKy8txxx13FMw5+fDD\nD/HCCy/gi1/84pmge6Gei82bN+M73/kOKioqUFJSgurq6oI8F5WVlXAcB6dPn0ZfXx96e3tRU1NT\nMOfimmuuwQRXYSTRd9+6dSuWLVuGGTNmYMmSJXAcB11dXZ6fHynBy+TRFwr27t2LtrY2LFiwIOO8\nzJkzB9u2bUu4dfHga1/7Gv7hH/4BRcw040I8Fx9++CH6+/tx1113oaGhAX//93+Pvr6+gjwXlZWV\nePjhh3Heeefh7LPPxtVXX42GhoaCPBcUou++devWjCSWT3ziE77nxeAJ/fmDrq4ufO5zn8ODDz6I\nsWPHFmTK6HPPPYezzjoLl19+ecb3L8Rz0d/fjz179uDmm29GS0sL2tra8Itf/KIgz8WJEydw1113\nYefOndi/fz9+//vf47nnnivIc0Gh8t395hZFSvDz58/PKD7W1taGhQsXRnlI4zA0NISbb74Zt99+\nO2666SYA5LzQkg67du3C/Pnzk2xiLPjd736H3/zmNzj//POxYsUKvPrqq7j99tsL8lzMnj0bn/jE\nJ3DDDTegsrISK1aswEsvvVSQ52Lbtm1YuHAhZs+ejUmTJuHWW2/F66+/XpDngkL03emcI4rdu3f7\nnpdICV4mjz6f4TgO7rzzTlx88cW4++67z7ze0NCAjRs3oq+vDxs3biyIm973v/99HDx4EO+//z6e\nfvppfOpTn8Ljjz9ekOcCAOrq6rB161aMjo7i+eefx3XXXVeQ5+Kaa67Bjh070NHRgYGBAbz44otY\nunRpQZ4LCtF3X7BgAV5++WUcOHAALS0tKCoqwrhx47w/TGPGDxctLS3OnDlznAsuuMB56KGHoj6c\nUXj99dedVCrlXHrppc5ll13mXHbZZc6LL75YMClgIrS0tDg33HCD4ziFkw7nxh//+EenoaHBufTS\nS51vfOMbTnd3d8Gei8cee8xZvHixM2/ePOe73/2uMzIyUjDn4rbbbnOmTp3qlJWVOdOnT3c2btzo\n+d3XrVvnXHDBBU59fb3T2trq+/kpxylgs8vCwsIij2GDrBYWFhZ5CkvwFhYWFnkKS/AWFhYWeQpL\n8BYWFhZ5CkvwFhYWFnkKS/AWFhYWeYr/D/Y0b3ewfmEHAAAAAElFTkSuQmCC\n" |
|
377 | 376 | } |
|
378 | 377 | ], |
|
379 |
"prompt_number": |
|
|
378 | "prompt_number": 5 | |
|
380 | 379 | }, |
|
381 | 380 | { |
|
382 | 381 | "cell_type": "markdown", |
@@ -412,8 +411,7 b'' | |||
|
412 | 411 | "collapsed": true, |
|
413 | 412 | "input": [], |
|
414 | 413 | "language": "python", |
|
415 |
"outputs": [] |
|
|
416 | "prompt_number": " " | |
|
414 | "outputs": [] | |
|
417 | 415 | } |
|
418 | 416 | ] |
|
419 | 417 | } |
|
1 | NO CONTENT: modified file |
@@ -40,7 +40,7 b'' | |||
|
40 | 40 | "text": [ |
|
41 | 41 | "", |
|
42 | 42 | "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", |
|
43 |
"For more information, type |
|
|
43 | "For more information, type 'help(pylab)'." | |
|
44 | 44 | ] |
|
45 | 45 | } |
|
46 | 46 | ], |
@@ -123,7 +123,7 b'' | |||
|
123 | 123 | "output_type": "pyout", |
|
124 | 124 | "prompt_number": 6, |
|
125 | 125 | "text": [ |
|
126 |
"Add(Symbol( |
|
|
126 | "Add(Symbol('x'), Mul(Integer(2), Symbol('y')))" | |
|
127 | 127 | ] |
|
128 | 128 | } |
|
129 | 129 | ], |
@@ -317,10 +317,11 b'' | |||
|
317 | 317 | "", |
|
318 | 318 | " b ", |
|
319 | 319 | " ___ ", |
|
320 |
" \ |
|
|
321 |
" \ |
|
|
322 |
" |
|
|
323 |
" |
|
|
320 | " \u2572 ", | |
|
321 | " \u2572 \u239b n 2\u239e", | |
|
322 | " \u2571 \u239d2 + 6\u22c5n \u23a0", | |
|
323 | " \u2571 ", | |
|
324 | " \u203e\u203e\u203e ", | |
|
324 | 325 | "n = a " |
|
325 | 326 | ] |
|
326 | 327 | } |
@@ -110,8 +110,7 b'' | |||
|
110 | 110 | "collapsed": true, |
|
111 | 111 | "input": [], |
|
112 | 112 | "language": "python", |
|
113 |
"outputs": [] |
|
|
114 | "prompt_number": " " | |
|
113 | "outputs": [] | |
|
115 | 114 | } |
|
116 | 115 | ] |
|
117 | 116 | } |
@@ -1,63 +1,90 b'' | |||
|
1 | 1 | { |
|
2 | "nbformat": 2, | |
|
3 | 2 |
|
|
4 | 3 |
|
|
5 | 4 |
|
|
5 | "nbformat": 2, | |
|
6 | 6 |
|
|
7 | 7 | { |
|
8 | 8 |
|
|
9 | 9 | { |
|
10 | "source": "# Distributed hello world\n\nOriginally by Ken Kinder (ken at kenkinder dom com)", | |
|
11 | "cell_type": "markdown" | |
|
10 | "cell_type": "markdown", | |
|
11 | "source": [ | |
|
12 | "# Distributed hello world", | |
|
13 | "", | |
|
14 | "Originally by Ken Kinder (ken at kenkinder dom com)" | |
|
15 | ] | |
|
12 | 16 | }, |
|
13 | 17 | { |
|
14 | 18 |
|
|
19 | "collapsed": true, | |
|
20 | "input": [ | |
|
21 | "from IPython.parallel import Client" | |
|
22 | ], | |
|
15 | 23 |
|
|
16 | 24 |
|
|
17 | "collapsed": true, | |
|
18 | "prompt_number": 3, | |
|
19 | "input": "from IPython.parallel import Client" | |
|
25 | "prompt_number": 1 | |
|
20 | 26 | }, |
|
21 | 27 | { |
|
22 | 28 |
|
|
29 | "collapsed": true, | |
|
30 | "input": [ | |
|
31 | "rc = Client()", | |
|
32 | "view = rc.load_balanced_view()" | |
|
33 | ], | |
|
23 | 34 |
|
|
24 | 35 |
|
|
25 | "collapsed": true, | |
|
26 | "prompt_number": 4, | |
|
27 | "input": "rc = Client()\nview = rc.load_balanced_view()" | |
|
36 | "prompt_number": 2 | |
|
28 | 37 | }, |
|
29 | 38 | { |
|
30 | 39 |
|
|
40 | "collapsed": true, | |
|
41 | "input": [ | |
|
42 | "def sleep_and_echo(t, msg):", | |
|
43 | " import time", | |
|
44 | " time.sleep(t)", | |
|
45 | " return msg" | |
|
46 | ], | |
|
31 | 47 |
|
|
32 | 48 |
|
|
33 | "collapsed": true, | |
|
34 | "prompt_number": 5, | |
|
35 | "input": "def sleep_and_echo(t, msg):\n import time\n time.sleep(t)\n return msg" | |
|
49 | "prompt_number": 3 | |
|
36 | 50 | }, |
|
37 | 51 | { |
|
38 | 52 |
|
|
53 | "collapsed": true, | |
|
54 | "input": [ | |
|
55 | "world = view.apply_async(sleep_and_echo, 3, 'World!')", | |
|
56 | "hello = view.apply_async(sleep_and_echo, 2, 'Hello')" | |
|
57 | ], | |
|
39 | 58 |
|
|
40 | 59 |
|
|
41 | "collapsed": true, | |
|
42 | "prompt_number": 6, | |
|
43 | "input": "world = view.apply_async(sleep_and_echo, 3, 'World!')\nhello = view.apply_async(sleep_and_echo, 2, 'Hello')\n" | |
|
60 | "prompt_number": 4 | |
|
44 | 61 | }, |
|
45 | 62 | { |
|
46 | 63 |
|
|
64 | "collapsed": false, | |
|
65 | "input": [ | |
|
66 | "print \"Submitted tasks:\", hello.msg_ids, world.msg_ids", | |
|
67 | "print hello.get(), world.get()" | |
|
68 | ], | |
|
47 | 69 |
|
|
48 | 70 |
|
|
49 | 71 | { |
|
50 | 72 |
|
|
51 | "text": "Submitted tasks: ['9e533683-d54e-4588-929e-984dd3eb6dc4'] ['90395f15-723f-44df-a743-a5d88cdeb6a0']\nHello" | |
|
73 | "stream": "stdout", | |
|
74 | "text": [ | |
|
75 | "Submitted tasks: ['dd1052e0-aa75-4b25-9d35-ecbdaf6e3ed7'] ['1b46aa21-20d1-459c-bc36-2d8d03336f74']", | |
|
76 | "Hello" | |
|
77 | ] | |
|
52 | 78 | }, |
|
53 | 79 | { |
|
54 | 80 |
|
|
55 | "text": "World!" | |
|
81 | "stream": "stdout", | |
|
82 | "text": [ | |
|
83 | " World!" | |
|
84 | ] | |
|
56 | 85 | } |
|
57 | 86 | ], |
|
58 | "collapsed": false, | |
|
59 | "prompt_number": 7, | |
|
60 | "input": "print \"Submitted tasks:\", hello.msg_ids, world.msg_ids\nprint hello.get(), world.get()" | |
|
87 | "prompt_number": 5 | |
|
61 | 88 | } |
|
62 | 89 | ] |
|
63 | 90 | } |
@@ -1,139 +1,224 b'' | |||
|
1 | 1 | { |
|
2 | "metadata": { | |
|
3 | "name": "parallel_mpi" | |
|
4 | }, | |
|
5 | "nbformat": 2, | |
|
2 | 6 |
|
|
3 | 7 | { |
|
4 | 8 |
|
|
5 | 9 | { |
|
6 | "source": "# Simple usage of a set of MPI engines\n\nThis example assumes you've started a cluster of N engines (4 in this example) as part\nof an MPI world. \n\nOur documentation describes [how to create an MPI profile](http://ipython.org/ipython-doc/dev/parallel/parallel_process.html#using-ipcluster-in-mpiexec-mpirun-mode)\nand explains [basic MPI usage of the IPython cluster](http://ipython.org/ipython-doc/dev/parallel/parallel_mpi.html).\n\n\nFor the simplest possible way to start 4 engines that belong to the same MPI world, \nyou can run this in a terminal or antoher notebook:\n\n<pre>\nipcluster start --engines=MPIExecEngineSetLauncher -n 4\n</pre>\n\nNote: to run the above in a notebook, use a *new* notebook and prepend the command with `!`, but do not run\nit in *this* notebook, as this command will block until you shut down the cluster. To stop the cluster, use \nthe 'Interrupt' button on the left, which is the equivalent of sending `Ctrl-C` to the kernel.\n\nOnce the cluster is running, we can connect to it and open a view into it:", | |
|
7 | "cell_type": "markdown" | |
|
10 | "cell_type": "markdown", | |
|
11 | "source": [ | |
|
12 | "# Simple usage of a set of MPI engines", | |
|
13 | "", | |
|
14 | "This example assumes you've started a cluster of N engines (4 in this example) as part", | |
|
15 | "of an MPI world. ", | |
|
16 | "", | |
|
17 | "Our documentation describes [how to create an MPI profile](http://ipython.org/ipython-doc/dev/parallel/parallel_process.html#using-ipcluster-in-mpiexec-mpirun-mode)", | |
|
18 | "and explains [basic MPI usage of the IPython cluster](http://ipython.org/ipython-doc/dev/parallel/parallel_mpi.html).", | |
|
19 | "", | |
|
20 | "", | |
|
21 | "For the simplest possible way to start 4 engines that belong to the same MPI world, ", | |
|
22 | "you can run this in a terminal or antoher notebook:", | |
|
23 | "", | |
|
24 | "<pre>", | |
|
25 | "ipcluster start --engines=MPI -n 4", | |
|
26 | "</pre>", | |
|
27 | "", | |
|
28 | "Note: to run the above in a notebook, use a *new* notebook and prepend the command with `!`, but do not run", | |
|
29 | "it in *this* notebook, as this command will block until you shut down the cluster. To stop the cluster, use ", | |
|
30 | "the 'Interrupt' button on the left, which is the equivalent of sending `Ctrl-C` to the kernel.", | |
|
31 | "", | |
|
32 | "Once the cluster is running, we can connect to it and open a view into it:" | |
|
33 | ] | |
|
8 | 34 | }, |
|
9 | 35 | { |
|
10 | 36 |
|
|
37 | "collapsed": true, | |
|
38 | "input": [ | |
|
39 | "from IPython.parallel import Client", | |
|
40 | "c = Client()", | |
|
41 | "view = c[:]" | |
|
42 | ], | |
|
11 | 43 |
|
|
12 | 44 |
|
|
13 | "collapsed": true, | |
|
14 | "prompt_number": 21, | |
|
15 | "input": "from IPython.parallel import Client\nc = Client()\nview = c[:]" | |
|
45 | "prompt_number": 21 | |
|
16 | 46 | }, |
|
17 | 47 | { |
|
18 | "source": "Let's define a simple function that ", | |
|
19 | "cell_type": "markdown" | |
|
48 | "cell_type": "markdown", | |
|
49 | "source": [ | |
|
50 | "Let's define a simple function that gets the MPI rank from each engine." | |
|
51 | ] | |
|
20 | 52 | }, |
|
21 | 53 | { |
|
22 | 54 |
|
|
55 | "collapsed": true, | |
|
56 | "input": [ | |
|
57 | "@view.remote(block=True)", | |
|
58 | "def mpi_rank():", | |
|
59 | " from mpi4py import MPI", | |
|
60 | " comm = MPI.COMM_WORLD", | |
|
61 | " return comm.Get_rank()" | |
|
62 | ], | |
|
23 | 63 |
|
|
24 | 64 |
|
|
25 | "collapsed": true, | |
|
26 | "prompt_number": 22, | |
|
27 | "input": "@view.remote(block=True)\ndef mpi_rank():\n from mpi4py import MPI\n comm = MPI.COMM_WORLD\n return comm.Get_rank()" | |
|
65 | "prompt_number": 22 | |
|
28 | 66 | }, |
|
29 | 67 | { |
|
30 | 68 |
|
|
69 | "collapsed": false, | |
|
70 | "input": [ | |
|
71 | "mpi_rank()" | |
|
72 | ], | |
|
31 | 73 |
|
|
32 | 74 |
|
|
33 | 75 | { |
|
34 | 76 |
|
|
35 | 77 |
|
|
36 | "text": "[3, 0, 2, 1]" | |
|
78 | "text": [ | |
|
79 | "[3, 0, 2, 1]" | |
|
80 | ] | |
|
37 | 81 | } |
|
38 | 82 | ], |
|
39 | "collapsed": false, | |
|
40 | "prompt_number": 23, | |
|
41 | "input": "mpi_rank()" | |
|
83 | "prompt_number": 23 | |
|
42 | 84 | }, |
|
43 | 85 | { |
|
44 | "source": "For interactive convenience, we load the parallel magic extensions and make this view\nthe active one for the automatic parallelism magics.\n\nThis is not necessary and in production codes likely won't be used, as the engines will \nload their own MPI codes separately. But it makes it easy to illustrate everything from\nwithin a single notebook here.", | |
|
45 | "cell_type": "markdown" | |
|
86 | "cell_type": "markdown", | |
|
87 | "source": [ | |
|
88 | "For interactive convenience, we load the parallel magic extensions and make this view", | |
|
89 | "the active one for the automatic parallelism magics.", | |
|
90 | "", | |
|
91 | "This is not necessary and in production codes likely won't be used, as the engines will ", | |
|
92 | "load their own MPI codes separately. But it makes it easy to illustrate everything from", | |
|
93 | "within a single notebook here." | |
|
94 | ] | |
|
46 | 95 | }, |
|
47 | 96 | { |
|
48 | 97 |
|
|
98 | "collapsed": true, | |
|
99 | "input": [ | |
|
100 | "%load_ext parallelmagic", | |
|
101 | "view.activate()" | |
|
102 | ], | |
|
49 | 103 |
|
|
50 | 104 |
|
|
51 | "collapsed": true, | |
|
52 | "prompt_number": 4, | |
|
53 | "input": "%load_ext parallelmagic\nview.activate()" | |
|
105 | "prompt_number": 4 | |
|
54 | 106 | }, |
|
55 | 107 | { |
|
56 | "source": "Use the autopx magic to make the rest of this cell execute on the engines instead\nof locally", | |
|
57 | "cell_type": "markdown" | |
|
108 | "cell_type": "markdown", | |
|
109 | "source": [ | |
|
110 | "Use the autopx magic to make the rest of this cell execute on the engines instead", | |
|
111 | "of locally" | |
|
112 | ] | |
|
58 | 113 | }, |
|
59 | 114 | { |
|
60 | 115 |
|
|
116 | "collapsed": true, | |
|
117 | "input": [ | |
|
118 | "view.block = True" | |
|
119 | ], | |
|
61 | 120 |
|
|
62 | 121 |
|
|
63 | "collapsed": true, | |
|
64 | "prompt_number": 24, | |
|
65 | "input": "view.block = True" | |
|
122 | "prompt_number": 24 | |
|
66 | 123 | }, |
|
67 | 124 | { |
|
68 | 125 |
|
|
126 | "collapsed": false, | |
|
127 | "input": [ | |
|
128 | "%autopx" | |
|
129 | ], | |
|
69 | 130 |
|
|
70 | 131 |
|
|
71 | 132 | { |
|
72 | 133 |
|
|
73 | 134 |
|
|
74 | "text": "%autopx enabled\n\n" | |
|
135 | "text": [ | |
|
136 | "%autopx enabled" | |
|
137 | ] | |
|
75 | 138 | } |
|
76 | 139 | ], |
|
77 | "collapsed": false, | |
|
78 | "prompt_number": 32, | |
|
79 | "input": "%autopx" | |
|
140 | "prompt_number": 32 | |
|
80 | 141 | }, |
|
81 | 142 | { |
|
82 | "source": "With autopx enabled, the next cell will actually execute *entirely on each engine*:", | |
|
83 | "cell_type": "markdown" | |
|
143 | "cell_type": "markdown", | |
|
144 | "source": [ | |
|
145 | "With autopx enabled, the next cell will actually execute *entirely on each engine*:" | |
|
146 | ] | |
|
84 | 147 | }, |
|
85 | 148 | { |
|
86 | 149 |
|
|
150 | "collapsed": true, | |
|
151 | "input": [ | |
|
152 | "from mpi4py import MPI", | |
|
153 | "", | |
|
154 | "comm = MPI.COMM_WORLD", | |
|
155 | "size = comm.Get_size()", | |
|
156 | "rank = comm.Get_rank()", | |
|
157 | "", | |
|
158 | "if rank == 0:", | |
|
159 | " data = [(i+1)**2 for i in range(size)]", | |
|
160 | "else:", | |
|
161 | " data = None", | |
|
162 | "data = comm.scatter(data, root=0)", | |
|
163 | "", | |
|
164 | "assert data == (rank+1)**2, 'data=%s, rank=%s' % (data, rank)" | |
|
165 | ], | |
|
87 | 166 |
|
|
88 | 167 |
|
|
89 | "collapsed": true, | |
|
90 | "prompt_number": 29, | |
|
91 | "input": "from mpi4py import MPI\n\ncomm = MPI.COMM_WORLD\nsize = comm.Get_size()\nrank = comm.Get_rank()\n\nif rank == 0:\n data = [(i+1)**2 for i in range(size)]\nelse:\n data = None\ndata = comm.scatter(data, root=0)\n\nassert data == (rank+1)**2, 'data=%s, rank=%s' % (data, rank)" | |
|
168 | "prompt_number": 29 | |
|
92 | 169 | }, |
|
93 | 170 | { |
|
94 | "source": "Though the assertion at the end of the previous block validated the code, we can now \npull the 'data' variable from all the nodes for local inspection.\nFirst, don't forget to toggle off `autopx` mode so code runs again in the notebook:\n", | |
|
95 | "cell_type": "markdown" | |
|
171 | "cell_type": "markdown", | |
|
172 | "source": [ | |
|
173 | "Though the assertion at the end of the previous block validated the code, we can now ", | |
|
174 | "pull the 'data' variable from all the nodes for local inspection.", | |
|
175 | "First, don't forget to toggle off `autopx` mode so code runs again in the notebook:" | |
|
176 | ] | |
|
96 | 177 | }, |
|
97 | 178 | { |
|
98 | 179 |
|
|
180 | "collapsed": false, | |
|
181 | "input": [ | |
|
182 | "%autopx" | |
|
183 | ], | |
|
99 | 184 |
|
|
100 | 185 |
|
|
101 | 186 | { |
|
102 | 187 |
|
|
103 | 188 |
|
|
104 | "text": "%autopx disabled\n\n" | |
|
189 | "text": [ | |
|
190 | "%autopx disabled" | |
|
191 | ] | |
|
105 | 192 | } |
|
106 | 193 | ], |
|
107 | "collapsed": false, | |
|
108 | "prompt_number": 33, | |
|
109 | "input": "%autopx" | |
|
194 | "prompt_number": 33 | |
|
110 | 195 | }, |
|
111 | 196 | { |
|
112 | 197 |
|
|
198 | "collapsed": false, | |
|
199 | "input": [ | |
|
200 | "view['data']" | |
|
201 | ], | |
|
113 | 202 |
|
|
114 | 203 |
|
|
115 | 204 | { |
|
116 | 205 |
|
|
117 | 206 |
|
|
118 | "text": "[16, 1, 9, 4]" | |
|
207 | "text": [ | |
|
208 | "[16, 1, 9, 4]" | |
|
209 | ] | |
|
119 | 210 | } |
|
120 | 211 | ], |
|
121 | "collapsed": false, | |
|
122 | "prompt_number": 34, | |
|
123 | "input": "view['data']" | |
|
212 | "prompt_number": 34 | |
|
124 | 213 | }, |
|
125 | 214 | { |
|
126 | "input": "", | |
|
127 | 215 |
|
|
128 | 216 |
|
|
217 | "input": [], | |
|
129 | 218 |
|
|
130 | 219 |
|
|
131 | 220 | } |
|
132 | 221 | ] |
|
133 | 222 | } |
|
134 | ], | |
|
135 | "metadata": { | |
|
136 | "name": "parallel_mpi" | |
|
137 | }, | |
|
138 | "nbformat": 2 | |
|
223 | ] | |
|
139 | 224 | } No newline at end of file |
@@ -1,69 +1,107 b'' | |||
|
1 | 1 | { |
|
2 | "nbformat": 2, | |
|
3 | 2 |
|
|
4 | 3 |
|
|
5 | 4 |
|
|
5 | "nbformat": 2, | |
|
6 | 6 |
|
|
7 | 7 | { |
|
8 | 8 |
|
|
9 | 9 | { |
|
10 | "source": "# Load balanced map and parallel function decorator", | |
|
11 | "cell_type": "markdown" | |
|
10 | "cell_type": "markdown", | |
|
11 | "source": [ | |
|
12 | "# Load balanced map and parallel function decorator" | |
|
13 | ] | |
|
12 | 14 | }, |
|
13 | 15 | { |
|
14 | 16 |
|
|
17 | "collapsed": true, | |
|
18 | "input": [ | |
|
19 | "from IPython.parallel import Client" | |
|
20 | ], | |
|
15 | 21 |
|
|
16 | 22 |
|
|
17 | "collapsed": true, | |
|
18 | "prompt_number": 4, | |
|
19 | "input": "from IPython.parallel import Client" | |
|
23 | "prompt_number": 1 | |
|
20 | 24 | }, |
|
21 | 25 | { |
|
22 | 26 |
|
|
27 | "collapsed": false, | |
|
28 | "input": [ | |
|
29 | "rc = Client()", | |
|
30 | "v = rc.load_balanced_view()" | |
|
31 | ], | |
|
23 | 32 |
|
|
24 | 33 |
|
|
25 | "collapsed": true, | |
|
26 | "prompt_number": 5, | |
|
27 | "input": "rc = Client()\nv = rc.load_balanced_view()" | |
|
34 | "prompt_number": 3 | |
|
28 | 35 | }, |
|
29 | 36 | { |
|
30 | 37 |
|
|
38 | "collapsed": false, | |
|
39 | "input": [ | |
|
40 | "result = v.map(lambda x: 2*x, range(10))", | |
|
41 | "print \"Simple, default map: \", list(result)" | |
|
42 | ], | |
|
31 | 43 |
|
|
32 | 44 |
|
|
33 | 45 | { |
|
34 | 46 |
|
|
35 | "text": "Simple, default map: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
47 | "stream": "stdout", | |
|
48 | "text": [ | |
|
49 | "Simple, default map: " | |
|
50 | ] | |
|
51 | }, | |
|
52 | { | |
|
53 | "output_type": "stream", | |
|
54 | "stream": "stdout", | |
|
55 | "text": [ | |
|
56 | "[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
57 | ] | |
|
36 | 58 | } |
|
37 | 59 | ], |
|
38 | "collapsed": false, | |
|
39 | "prompt_number": 6, | |
|
40 | "input": "result = v.map(lambda x: 2*x, range(10))\nprint \"Simple, default map: \", list(result)" | |
|
60 | "prompt_number": 4 | |
|
41 | 61 | }, |
|
42 | 62 | { |
|
43 | 63 |
|
|
64 | "collapsed": false, | |
|
65 | "input": [ | |
|
66 | "ar = v.map_async(lambda x: 2*x, range(10))", | |
|
67 | "print \"Submitted tasks, got ids: \", ar.msg_ids", | |
|
68 | "result = ar.get()", | |
|
69 | "print \"Using a mapper: \", result" | |
|
70 | ], | |
|
44 | 71 |
|
|
45 | 72 |
|
|
46 | 73 | { |
|
47 | 74 |
|
|
48 | "text": "Submitted tasks, got ids: ['2a25ff3f-f0d0-4428-909a-3fe808ca61f9', 'edd42168-fac2-4b3f-a696-ce61b37aa71d', '8a548908-7812-44e6-a8b1-68e941bee608', '26435a77-fe86-49b6-b59f-de864d59c99f', '6750c7b4-2168-49ec-bcc4-feb1e17c5e53', '117240d1-5dfc-4783-948f-e9523b2b2f6a', '6de16d46-f2e2-49bd-8180-e43d1d875529', '3d372b84-0c68-4315-92c8-a080c68478b7', '43acedae-e35c-4a17-87f0-9e5e672500f7', 'eb71dd1f-9500-4375-875d-c2c42999848c']\nUsing a mapper: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
75 | "stream": "stdout", | |
|
76 | "text": [ | |
|
77 | "Submitted tasks, got ids: ['5100a4c7-73a4-4832-aa91-e774f6f3ede8', 'd0cae1cf-2b32-4092-9eb7-f17b43fb3849', 'e08d3ee2-f221-47fe-9556-ed938e692030', '065585e4-cdf9-4240-a5fe-e44b2ae5d023', 'd2162f23-68e5-4318-ba1e-e34fd03a72ac', '5b3b835f-2099-4a70-9896-d1aa810c77e6', 'e2c2a823-bd44-4f91-8db3-c154d0d86e56', '991e0c25-f98a-44b5-9d9e-889d4180b9a5', '4ad41221-28bd-482f-a300-97c404648161', '5b730eb3-e0bb-4cdd-b228-c3b8d158828a']", | |
|
78 | "Using a mapper: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
79 | ] | |
|
49 | 80 | } |
|
50 | 81 | ], |
|
51 | "collapsed": false, | |
|
52 | "prompt_number": 7, | |
|
53 | "input": "ar = v.map_async(lambda x: 2*x, range(10))\nprint \"Submitted tasks, got ids: \", ar.msg_ids\nresult = ar.get()\nprint \"Using a mapper: \", result" | |
|
82 | "prompt_number": 5 | |
|
54 | 83 | }, |
|
55 | 84 | { |
|
56 | 85 |
|
|
86 | "collapsed": false, | |
|
87 | "input": [ | |
|
88 | "@v.parallel(block=True)", | |
|
89 | "def f(x): return 2*x", | |
|
90 | "", | |
|
91 | "result = f.map(range(10))", | |
|
92 | "print \"Using a parallel function: \", result" | |
|
93 | ], | |
|
57 | 94 |
|
|
58 | 95 |
|
|
59 | 96 | { |
|
60 | 97 |
|
|
61 | "text": "Using a parallel function: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
98 | "stream": "stdout", | |
|
99 | "text": [ | |
|
100 | "Using a parallel function: [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
|
101 | ] | |
|
62 | 102 | } |
|
63 | 103 | ], |
|
64 | "collapsed": false, | |
|
65 | "prompt_number": 8, | |
|
66 | "input": "@v.parallel(block=True)\ndef f(x): return 2*x\n\nresult = f.map(range(10))\nprint \"Using a parallel function: \", result" | |
|
104 | "prompt_number": 6 | |
|
67 | 105 | } |
|
68 | 106 | ] |
|
69 | 107 | } |
General Comments 0
You need to be logged in to leave comments.
Login now