Show More
@@ -1,434 +1,564 | |||
|
1 | 1 | # -*- coding: utf-8 -*- |
|
2 | 2 | """ |
|
3 | 3 | ====== |
|
4 | 4 | Rmagic |
|
5 | 5 | ====== |
|
6 | 6 | |
|
7 | 7 | Magic command interface for interactive work with R via rpy2 |
|
8 | 8 | |
|
9 | 9 | Usage |
|
10 | 10 | ===== |
|
11 | 11 | |
|
12 | 12 | ``%R`` |
|
13 | 13 | |
|
14 | 14 | {R_DOC} |
|
15 | 15 | |
|
16 | 16 | ``%Rpush`` |
|
17 | 17 | |
|
18 | 18 | {RPUSH_DOC} |
|
19 | 19 | |
|
20 | 20 | ``%Rpull`` |
|
21 | 21 | |
|
22 | 22 | {RPULL_DOC} |
|
23 | 23 | |
|
24 | ``%Rget`` | |
|
25 | ||
|
26 | {RGET_DOC} | |
|
27 | ||
|
24 | 28 | """ |
|
25 | 29 | |
|
26 | 30 | #----------------------------------------------------------------------------- |
|
27 | 31 | # Copyright (C) 2012 The IPython Development Team |
|
28 | 32 | # |
|
29 | 33 | # Distributed under the terms of the BSD License. The full license is in |
|
30 | 34 | # the file COPYING, distributed as part of this software. |
|
31 | 35 | #----------------------------------------------------------------------------- |
|
32 | 36 | |
|
33 | 37 | import sys |
|
34 | 38 | import tempfile |
|
35 | 39 | from glob import glob |
|
36 | 40 | from shutil import rmtree |
|
37 | 41 | from getopt import getopt |
|
38 | 42 | |
|
39 | 43 | # numpy and rpy2 imports |
|
40 | 44 | |
|
41 | 45 | import numpy as np |
|
42 | 46 | |
|
43 | 47 | import rpy2.rinterface as ri |
|
44 | 48 | import rpy2.robjects as ro |
|
45 | 49 | from rpy2.robjects.numpy2ri import numpy2ri |
|
46 | 50 | ro.conversion.py2ri = numpy2ri |
|
47 | 51 | |
|
48 | 52 | # IPython imports |
|
49 | 53 | |
|
50 | 54 | from IPython.core.displaypub import publish_display_data |
|
51 | 55 | from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic, |
|
52 | 56 | line_cell_magic) |
|
53 | 57 | from IPython.testing.skipdoctest import skip_doctest |
|
54 | 58 | from IPython.core.magic_arguments import ( |
|
55 | 59 | argument, magic_arguments, parse_argstring |
|
56 | 60 | ) |
|
57 | 61 | from IPython.utils.py3compat import str_to_unicode, unicode_to_str |
|
58 | 62 | |
|
59 | 63 | class RMagicError(ri.RRuntimeError): |
|
60 | 64 | pass |
|
61 | 65 | |
|
62 | def Rconverter(Robj): | |
|
66 | def Rconverter(Robj, dataframe=False): | |
|
63 | 67 | """ |
|
64 | 68 | Convert an object in R's namespace to one suitable |
|
65 | 69 | for ipython's namespace. |
|
66 | 70 | |
|
67 | 71 | For a data.frame, it tries to return a structured array. |
|
72 | It first checks for colnames, then names. | |
|
73 | If all are NULL, it returns np.asarray(Robj), else | |
|
74 | it tries to construct a recarray | |
|
68 | 75 | |
|
69 | 76 | Parameters |
|
70 | 77 | ---------- |
|
71 | 78 | |
|
72 | 79 | Robj: an R object returned from rpy2 |
|
73 | 80 | """ |
|
74 | if is_data_frame(Robj): | |
|
75 | Robj = as_data_frame(Robj) | |
|
76 | dimRobj = list(np.array(dimR(Robj))) | |
|
77 | if 1 not in dimRobj: | |
|
78 | Robj = np.rec.fromarrays(Robj, names = tuple(Robj.names)) | |
|
79 | return np.squeeze(np.asarray(Robj)) | |
|
80 | ||
|
81 | is_data_frame = None | |
|
82 | as_data_frame = None | |
|
83 | dimR = None | |
|
84 | colnames = None | |
|
85 | ncol = None | |
|
86 | nrow = None | |
|
81 | is_data_frame = ro.r('is.data.frame') | |
|
82 | colnames = ro.r('colnames') | |
|
83 | rownames = ro.r('rownames') # with pandas, these could be used for the index | |
|
84 | names = ro.r('names') | |
|
85 | ||
|
86 | ||
|
87 | if dataframe: | |
|
88 | as_data_frame = ro.r('as.data.frame') | |
|
89 | cols = colnames(Robj) | |
|
90 | rows = rownames(Robj) | |
|
91 | _names = names(Robj) | |
|
92 | if cols != ri.NULL: | |
|
93 | Robj = as_data_frame(Robj) | |
|
94 | names = tuple(np.array(cols)) | |
|
95 | elif _names != ri.NULL: | |
|
96 | names = tuple(np.array(_names)) | |
|
97 | else: # failed to find names | |
|
98 | return np.asarray(Robj) | |
|
99 | Robj = np.rec.fromarrays(Robj, names = names) | |
|
100 | return np.asarray(Robj) | |
|
87 | 101 | |
|
88 | 102 | @magics_class |
|
89 | 103 | class RMagics(Magics): |
|
90 | 104 | """A set of magics useful for interactive work with R via rpy2. |
|
91 | 105 | """ |
|
92 | 106 | |
|
93 | 107 | def __init__(self, shell, Rconverter=Rconverter, |
|
94 | 108 | pyconverter=np.asarray, |
|
95 | 109 | cache_display_data=False): |
|
96 | 110 | """ |
|
97 | 111 | Parameters |
|
98 | 112 | ---------- |
|
99 | 113 | |
|
100 | 114 | shell : IPython shell |
|
101 | 115 | |
|
102 | 116 | pyconverter : callable |
|
103 | 117 | To be called on values in ipython namespace before |
|
104 | 118 | assigning to variables in rpy2. |
|
105 | 119 | |
|
106 | 120 | cache_display_data : bool |
|
107 | 121 | If True, the published results of the final call to R are |
|
108 | 122 | cached in the variable 'display_cache'. |
|
109 | 123 | |
|
110 | 124 | """ |
|
111 | 125 | super(RMagics, self).__init__(shell) |
|
112 | 126 | self.cache_display_data = cache_display_data |
|
113 | 127 | |
|
114 | 128 | self.r = ro.R() |
|
115 | global is_data_frame, dimR, colnames, ncol, nrow, as_data_frame | |
|
116 | is_data_frame = self.r('is.data.frame') | |
|
117 | as_data_frame = self.r('as.data.frame') | |
|
118 | dimR = self.r('dim') | |
|
119 | colnames = self.r('colnames') | |
|
120 | ncol = self.r('ncol') | |
|
121 | nrow = self.r('nrow') | |
|
122 | 129 | |
|
123 | 130 | self.Rstdout_cache = [] |
|
124 | 131 | self.pyconverter = pyconverter |
|
125 | 132 | self.Rconverter = Rconverter |
|
126 | 133 | |
|
127 | 134 | def eval(self, line): |
|
128 | 135 | ''' |
|
129 | 136 | Parse and evaluate a line with rpy2. |
|
130 | 137 | Returns the output to R's stdout() connection |
|
131 | 138 | and the value of eval(parse(line)). |
|
132 | 139 | ''' |
|
133 | 140 | old_writeconsole = ri.get_writeconsole() |
|
134 | 141 | ri.set_writeconsole(self.write_console) |
|
135 | 142 | try: |
|
136 | 143 | value = ri.baseenv['eval'](ri.parse(line)) |
|
137 | 144 | except (ri.RRuntimeError, ValueError) as exception: |
|
138 | 145 | raise RMagicError(unicode_to_str('parsing and evaluating line "%s". R traceback: "%s"\n' % |
|
139 | 146 | (line, str_to_unicode(exception.message, 'utf-8')))) |
|
140 | 147 | text_output = self.flush() |
|
141 | 148 | ri.set_writeconsole(old_writeconsole) |
|
142 | 149 | return text_output, value |
|
143 | 150 | |
|
144 | 151 | def write_console(self, output): |
|
145 | 152 | ''' |
|
146 | 153 | A hook to capture R's stdout in a cache. |
|
147 | 154 | ''' |
|
148 | 155 | self.Rstdout_cache.append(output) |
|
149 | 156 | |
|
150 | 157 | def flush(self): |
|
151 | 158 | ''' |
|
152 | 159 | Flush R's stdout cache to a string, returning the string. |
|
153 | 160 | ''' |
|
154 | 161 | value = ''.join([str_to_unicode(s, 'utf-8') for s in self.Rstdout_cache]) |
|
155 | 162 | self.Rstdout_cache = [] |
|
156 | 163 | return value |
|
157 | 164 | |
|
158 | 165 | @skip_doctest |
|
159 | 166 | @line_magic |
|
160 | 167 | def Rpush(self, line): |
|
161 | 168 | ''' |
|
162 | 169 | A line-level magic for R that pushes |
|
163 | 170 | variables from python to rpy2. The line should be made up |
|
164 | 171 | of whitespace separated variable names in the IPython |
|
165 | 172 | namespace:: |
|
166 | 173 | |
|
167 | 174 | In [7]: import numpy as np |
|
168 | 175 | |
|
169 | 176 | In [8]: X = np.array([4.5,6.3,7.9]) |
|
170 | 177 | |
|
171 | 178 | In [9]: X.mean() |
|
172 | 179 | Out[9]: 6.2333333333333343 |
|
173 | 180 | |
|
174 | 181 | In [10]: %Rpush X |
|
175 | 182 | |
|
176 | 183 | In [11]: %R mean(X) |
|
177 | 184 | Out[11]: array([ 6.23333333]) |
|
178 | 185 | |
|
179 | 186 | ''' |
|
180 | 187 | |
|
181 | 188 | inputs = line.split(' ') |
|
182 | 189 | for input in inputs: |
|
183 | 190 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) |
|
184 | 191 | |
|
185 | 192 | @skip_doctest |
|
193 | @magic_arguments() | |
|
194 | @argument( | |
|
195 | '-d', '--as_dataframe', action='store_true', | |
|
196 | default=False, | |
|
197 | help='Convert objects to data.frames before returning to ipython.' | |
|
198 | ) | |
|
199 | @argument( | |
|
200 | 'outputs', | |
|
201 | nargs='*', | |
|
202 | ) | |
|
186 | 203 | @line_magic |
|
187 | 204 | def Rpull(self, line): |
|
188 | 205 | ''' |
|
189 | 206 | A line-level magic for R that pulls |
|
190 | 207 | variables from python to rpy2:: |
|
191 | 208 | |
|
192 | 209 | In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4) |
|
193 | 210 | |
|
194 | 211 | In [19]: %Rpull x y z |
|
195 | 212 | |
|
196 | 213 | In [20]: x |
|
197 | 214 | Out[20]: array([ 3. , 4. , 6.7]) |
|
198 | 215 | |
|
199 | 216 | In [21]: y |
|
200 | 217 | Out[21]: array([ 4., 6., 7.]) |
|
201 | 218 | |
|
202 | 219 | In [22]: z |
|
203 | 220 | Out[22]: |
|
204 | 221 | array(['a', '3', '4'], |
|
205 | 222 | dtype='|S1') |
|
206 | 223 | |
|
207 | 224 | |
|
225 | If --as_dataframe, then each object is returned as a structured array | |
|
226 | after first passed through "as.data.frame" in R before | |
|
227 | being calling self.Rconverter. | |
|
228 | This is useful when a structured array is desired as output, or | |
|
229 | when the object in R has mixed data types. | |
|
230 | See the %%R docstring for more examples. | |
|
231 | ||
|
208 | 232 | Notes |
|
209 | 233 | ----- |
|
210 | 234 | |
|
211 | 235 | Beware that R names can have '.' so this is not fool proof. |
|
212 | 236 | To avoid this, don't name your R objects with '.'s... |
|
213 | 237 | |
|
214 | 238 | ''' |
|
215 | outputs = line.split(' ') | |
|
239 | args = parse_argstring(self.Rpull, line) | |
|
240 | outputs = args.outputs | |
|
216 | 241 | for output in outputs: |
|
217 | self.shell.push({output:self.Rconverter(self.r(output))}) | |
|
242 | self.shell.push({output:self.Rconverter(self.r(output),dataframe=args.as_dataframe)}) | |
|
243 | ||
|
244 | @skip_doctest | |
|
245 | @magic_arguments() | |
|
246 | @argument( | |
|
247 | '-d', '--as_dataframe', action='store_true', | |
|
248 | default=False, | |
|
249 | help='Convert objects to data.frames before returning to ipython.' | |
|
250 | ) | |
|
251 | @argument( | |
|
252 | 'output', | |
|
253 | nargs=1, | |
|
254 | type=str, | |
|
255 | ) | |
|
256 | @line_magic | |
|
257 | def Rget(self, line): | |
|
258 | ''' | |
|
259 | Return an object from rpy2, possibly as a structured array (if possible). | |
|
260 | Similar to Rpull except only one argument is accepted and the value is | |
|
261 | returned rather than pushed to self.shell.user_ns:: | |
|
262 | ||
|
263 | In [3]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] | |
|
264 | ||
|
265 | In [4]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) | |
|
266 | ||
|
267 | In [5]: %R -i datapy | |
|
268 | ||
|
269 | In [6]: %Rget datapy | |
|
270 | Out[6]: | |
|
271 | array([['1', '2', '3', '4'], | |
|
272 | ['2', '3', '2', '5'], | |
|
273 | ['a', 'b', 'c', 'e']], | |
|
274 | dtype='|S1') | |
|
275 | ||
|
276 | In [7]: %Rget -d datapy | |
|
277 | Out[7]: | |
|
278 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], | |
|
279 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) | |
|
280 | ||
|
281 | ''' | |
|
282 | args = parse_argstring(self.Rget, line) | |
|
283 | output = args.output | |
|
284 | return self.Rconverter(self.r(output[0]),dataframe=args.as_dataframe) | |
|
218 | 285 | |
|
219 | 286 | |
|
220 | 287 | @skip_doctest |
|
221 | 288 | @magic_arguments() |
|
222 | 289 | @argument( |
|
223 | 290 | '-i', '--input', action='append', |
|
224 | 291 | help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
225 | 292 | ) |
|
226 | 293 | @argument( |
|
227 | 294 | '-o', '--output', action='append', |
|
228 | 295 | help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.' |
|
229 | 296 | ) |
|
230 | 297 | @argument( |
|
231 | 298 | '-w', '--width', type=int, |
|
232 | 299 | help='Width of png plotting device sent as an argument to *png* in R.' |
|
233 | 300 | ) |
|
234 | 301 | @argument( |
|
235 | 302 | '-h', '--height', type=int, |
|
236 | 303 | help='Height of png plotting device sent as an argument to *png* in R.' |
|
237 | 304 | ) |
|
238 | 305 | |
|
239 | 306 | @argument( |
|
307 | '-d', '--dataframe', action='append', | |
|
308 | help='Convert these objects to data.frames and return as structured arrays.' | |
|
309 | ) | |
|
310 | @argument( | |
|
240 | 311 | '-u', '--units', type=int, |
|
241 | 312 | help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].' |
|
242 | 313 | ) |
|
243 | 314 | @argument( |
|
244 | 315 | '-p', '--pointsize', type=int, |
|
245 | 316 | help='Pointsize of png plotting device sent as an argument to *png* in R.' |
|
246 | 317 | ) |
|
247 | 318 | @argument( |
|
248 | 319 | '-b', '--bg', |
|
249 | 320 | help='Background of png plotting device sent as an argument to *png* in R.' |
|
250 | 321 | ) |
|
251 | 322 | @argument( |
|
252 | 323 | '-n', '--noreturn', |
|
253 | 324 | help='Force the magic to not return anything.', |
|
254 | 325 | action='store_true', |
|
255 | 326 | default=False |
|
256 | 327 | ) |
|
257 | 328 | @argument( |
|
258 | 329 | 'code', |
|
259 | 330 | nargs='*', |
|
260 | 331 | ) |
|
261 | 332 | @line_cell_magic |
|
262 | 333 | def R(self, line, cell=None): |
|
263 | 334 | ''' |
|
264 | 335 | Execute code in R, and pull some of the results back into the Python namespace. |
|
265 | 336 | |
|
266 | 337 | In line mode, this will evaluate an expression and convert the returned value to a Python object. |
|
267 | 338 | The return value is determined by rpy2's behaviour of returning the result of evaluating the |
|
268 | 339 | final line. Multiple R lines can be executed by joining them with semicolons:: |
|
269 | 340 | |
|
270 | 341 | In [9]: %R X=c(1,4,5,7); sd(X); mean(X) |
|
271 | 342 | Out[9]: array([ 4.25]) |
|
272 | 343 | |
|
273 | 344 | As a cell, this will run a block of R code, without bringing anything back by default:: |
|
274 | 345 | |
|
275 | 346 | In [10]: %%R |
|
276 | 347 | ....: Y = c(2,4,3,9) |
|
277 | 348 | ....: print(summary(lm(Y~X))) |
|
278 | 349 | ....: |
|
279 | 350 | |
|
280 | 351 | Call: |
|
281 | 352 | lm(formula = Y ~ X) |
|
282 | 353 | |
|
283 | 354 | Residuals: |
|
284 | 355 | 1 2 3 4 |
|
285 | 356 | 0.88 -0.24 -2.28 1.64 |
|
286 | 357 | |
|
287 | 358 | Coefficients: |
|
288 | 359 | Estimate Std. Error t value Pr(>|t|) |
|
289 | 360 | (Intercept) 0.0800 2.3000 0.035 0.975 |
|
290 | 361 | X 1.0400 0.4822 2.157 0.164 |
|
291 | 362 | |
|
292 | 363 | Residual standard error: 2.088 on 2 degrees of freedom |
|
293 | 364 | Multiple R-squared: 0.6993,Adjusted R-squared: 0.549 |
|
294 | 365 | F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638 |
|
295 | 366 | |
|
296 | 367 | In the notebook, plots are published as the output of the cell. |
|
297 | 368 | |
|
298 | 369 | %R plot(X, Y) |
|
299 | 370 | |
|
300 | 371 | will create a scatter plot of X bs Y. |
|
301 | 372 | |
|
302 | 373 | If cell is not None and line has some R code, it is prepended to |
|
303 | 374 | the R code in cell. |
|
304 | 375 | |
|
305 | 376 | Objects can be passed back and forth between rpy2 and python via the -i -o flags in line:: |
|
306 | 377 | |
|
307 | 378 | In [14]: Z = np.array([1,4,5,10]) |
|
308 | 379 | |
|
309 | 380 | In [15]: %R -i Z mean(Z) |
|
310 | 381 | Out[15]: array([ 5.]) |
|
311 | 382 | |
|
312 | 383 | |
|
313 | 384 | In [16]: %R -o W W=Z*mean(Z) |
|
314 | 385 | Out[16]: array([ 5., 20., 25., 50.]) |
|
315 | 386 | |
|
316 | 387 | In [17]: W |
|
317 | 388 | Out[17]: array([ 5., 20., 25., 50.]) |
|
318 | 389 | |
|
319 | 390 | The return value is determined by these rules: |
|
320 | 391 | |
|
321 | 392 | * If the cell is not None, the magic returns None. |
|
322 | 393 | |
|
323 | 394 | * If the cell evaluates as False, the resulting value is returned |
|
324 | 395 | unless the final line prints something to the console, in |
|
325 | 396 | which case None is returned. |
|
326 | 397 | |
|
327 | 398 | * If the final line results in a NULL value when evaluated |
|
328 | 399 | by rpy2, then None is returned. |
|
329 | 400 | |
|
401 | The --dataframe argument will return structured arrays | |
|
402 | from dataframes in R. This is useful for dataframes with | |
|
403 | mixed data types. Note also that for a data.frame, | |
|
404 | if it is returned as an ndarray, it is transposed:: | |
|
405 | ||
|
406 | In [18]: dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')] | |
|
407 | ||
|
408 | In [19]: datapy = np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5, 'e')], dtype=dtype) | |
|
409 | ||
|
410 | In [20]: %%R -o datar | |
|
411 | datar = datapy | |
|
412 | ....: | |
|
413 | ||
|
414 | In [21]: datar | |
|
415 | Out[21]: | |
|
416 | array([['1', '2', '3', '4'], | |
|
417 | ['2', '3', '2', '5'], | |
|
418 | ['a', 'b', 'c', 'e']], | |
|
419 | dtype='|S1') | |
|
420 | ||
|
421 | In [22]: %%R -d datar | |
|
422 | datar = datapy | |
|
423 | ....: | |
|
424 | ||
|
425 | In [23]: datar | |
|
426 | Out[23]: | |
|
427 | array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c'), (4, 5.0, 'e')], | |
|
428 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) | |
|
429 | ||
|
430 | The --dataframe argument first tries colnames, then rownames, then names. | |
|
431 | If all are NULL, it returns an ndarray (i.e. unstructured):: | |
|
432 | ||
|
433 | ||
|
434 | In [1]: %R mydata=c(4,6,8.3); NULL | |
|
435 | ||
|
436 | In [2]: %R -d mydata | |
|
437 | ||
|
438 | In [3]: mydata | |
|
439 | Out[3]: array([ 4. , 6. , 8.3]) | |
|
440 | ||
|
441 | In [4]: %R names(mydata) = c('a','b','c'); NULL | |
|
442 | ||
|
443 | In [5]: %R -d mydata | |
|
444 | ||
|
445 | In [6]: mydata | |
|
446 | Out[6]: | |
|
447 | array((4.0, 6.0, 8.3), | |
|
448 | dtype=[('a', '<f8'), ('b', '<f8'), ('c', '<f8')]) | |
|
449 | ||
|
450 | In [7]: %R -o mydata | |
|
451 | ||
|
452 | In [8]: mydata | |
|
453 | Out[8]: array([ 4. , 6. , 8.3]) | |
|
454 | ||
|
330 | 455 | |
|
331 | 456 | ''' |
|
332 | 457 | |
|
333 | 458 | args = parse_argstring(self.R, line) |
|
334 | 459 | |
|
335 | 460 | # arguments 'code' in line are prepended to |
|
336 | 461 | # the cell lines |
|
337 | 462 | if not cell: |
|
338 | 463 | code = '' |
|
339 | 464 | return_output = True |
|
340 | 465 | line_mode = True |
|
341 | 466 | else: |
|
342 | 467 | code = cell |
|
343 | 468 | return_output = False |
|
344 | 469 | line_mode = False |
|
345 | 470 | |
|
346 | 471 | code = ' '.join(args.code) + code |
|
347 | 472 | |
|
348 | 473 | if args.input: |
|
349 | 474 | for input in ','.join(args.input).split(','): |
|
350 | 475 | self.r.assign(input, self.pyconverter(self.shell.user_ns[input])) |
|
351 | 476 | |
|
352 | 477 | png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']]) |
|
353 | 478 | png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None]) |
|
354 | 479 | # execute the R code in a temporary directory |
|
355 | 480 | |
|
356 | 481 | tmpd = tempfile.mkdtemp() |
|
357 | 482 | self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args)) |
|
358 | 483 | |
|
359 | 484 | text_output = '' |
|
360 | 485 | if line_mode: |
|
361 | 486 | for line in code.split(';'): |
|
362 | 487 | text_result, result = self.eval(line) |
|
363 | 488 | text_output += text_result |
|
364 | 489 | if text_result: |
|
365 | 490 | # the last line printed something to the console so we won't return it |
|
366 | 491 | return_output = False |
|
367 | 492 | else: |
|
368 | 493 | text_result, result = self.eval(code) |
|
369 | 494 | text_output += text_result |
|
370 | 495 | |
|
371 | 496 | self.r('dev.off()') |
|
372 | 497 | |
|
373 | 498 | # read out all the saved .png files |
|
374 | 499 | |
|
375 | 500 | images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)] |
|
376 | 501 | |
|
377 | 502 | # now publish the images |
|
378 | 503 | # mimicking IPython/zmq/pylab/backend_inline.py |
|
379 | 504 | fmt = 'png' |
|
380 | 505 | mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' } |
|
381 | 506 | mime = mimetypes[fmt] |
|
382 | 507 | |
|
383 | 508 | # publish the printed R objects, if any |
|
384 | 509 | |
|
385 | 510 | display_data = [] |
|
386 | 511 | if text_output: |
|
387 | 512 | display_data.append(('RMagic.R', {'text/plain':text_output})) |
|
388 | 513 | |
|
389 | 514 | # flush text streams before sending figures, helps a little with output |
|
390 | 515 | for image in images: |
|
391 | 516 | # synchronization in the console (though it's a bandaid, not a real sln) |
|
392 | 517 | sys.stdout.flush(); sys.stderr.flush() |
|
393 | 518 | display_data.append(('RMagic.R', {mime: image})) |
|
394 | 519 | |
|
395 | 520 | # kill the temporary directory |
|
396 | 521 | rmtree(tmpd) |
|
397 | 522 | |
|
398 | 523 | # try to turn every output into a numpy array |
|
399 | 524 | # this means that output are assumed to be castable |
|
400 | 525 | # as numpy arrays |
|
401 | 526 | |
|
402 | 527 | if args.output: |
|
403 | 528 | for output in ','.join(args.output).split(','): |
|
404 | self.shell.push({output:self.Rconverter(self.r(output))}) | |
|
529 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=False)}) | |
|
530 | ||
|
531 | if args.dataframe: | |
|
532 | for output in ','.join(args.dataframe).split(','): | |
|
533 | self.shell.push({output:self.Rconverter(self.r(output), dataframe=True)}) | |
|
405 | 534 | |
|
406 | 535 | for tag, disp_d in display_data: |
|
407 | 536 | publish_display_data(tag, disp_d) |
|
408 | 537 | |
|
409 | 538 | # this will keep a reference to the display_data |
|
410 | 539 | # which might be useful to other objects who happen to use |
|
411 | 540 | # this method |
|
412 | 541 | |
|
413 | 542 | if self.cache_display_data: |
|
414 | 543 | self.display_cache = display_data |
|
415 | 544 | |
|
416 | 545 | # if in line mode and return_output, return the result as an ndarray |
|
417 | 546 | if return_output and not args.noreturn: |
|
418 | 547 | if result != ri.NULL: |
|
419 | return self.Rconverter(result) | |
|
548 | return self.Rconverter(result, dataframe=False) | |
|
420 | 549 | |
|
421 | 550 | __doc__ = __doc__.format( |
|
422 | 551 | R_DOC = ' '*8 + RMagics.R.__doc__, |
|
423 | 552 | RPUSH_DOC = ' '*8 + RMagics.Rpush.__doc__, |
|
424 | 553 | RPULL_DOC = ' '*8 + RMagics.Rpull.__doc__ |
|
554 | RGET_DOC = ' '*8 + RMagics.Rget.__doc__ | |
|
425 | 555 | ) |
|
426 | 556 | |
|
427 | 557 | |
|
428 | 558 | _loaded = False |
|
429 | 559 | def load_ipython_extension(ip): |
|
430 | 560 | """Load the extension in IPython.""" |
|
431 | 561 | global _loaded |
|
432 | 562 | if not _loaded: |
|
433 | 563 | ip.register_magics(RMagics) |
|
434 | 564 | _loaded = True |
@@ -1,62 +1,62 | |||
|
1 | 1 | import numpy as np |
|
2 | 2 | from IPython.core.interactiveshell import InteractiveShell |
|
3 | 3 | from IPython.extensions import rmagic |
|
4 | 4 | import nose.tools as nt |
|
5 | 5 | |
|
6 | 6 | ip = get_ipython() |
|
7 | 7 | ip.magic('load_ext rmagic') |
|
8 | 8 | |
|
9 | 9 | |
|
10 | 10 | def test_push(): |
|
11 | 11 | rm = rmagic.RMagics(ip) |
|
12 | 12 | ip.push({'X':np.arange(5), 'Y':np.array([3,5,4,6,7])}) |
|
13 | 13 | ip.run_line_magic('Rpush', 'X Y') |
|
14 | 14 | np.testing.assert_almost_equal(np.asarray(rm.r('X')), ip.user_ns['X']) |
|
15 | 15 | np.testing.assert_almost_equal(np.asarray(rm.r('Y')), ip.user_ns['Y']) |
|
16 | 16 | |
|
17 | 17 | def test_pull(): |
|
18 | 18 | rm = rmagic.RMagics(ip) |
|
19 | 19 | rm.r('Z=c(11:20)') |
|
20 | 20 | ip.run_line_magic('Rpull', 'Z') |
|
21 | 21 | np.testing.assert_almost_equal(np.asarray(rm.r('Z')), ip.user_ns['Z']) |
|
22 | 22 | np.testing.assert_almost_equal(ip.user_ns['Z'], np.arange(11,21)) |
|
23 | 23 | |
|
24 | 24 | def test_Rconverter(): |
|
25 | 25 | datapy= np.array([(1, 2.9, 'a'), (2, 3.5, 'b'), (3, 2.1, 'c')], |
|
26 | 26 | dtype=[('x', '<i4'), ('y', '<f8'), ('z', '|S1')]) |
|
27 | 27 | ip.user_ns['datapy'] = datapy |
|
28 | 28 | ip.run_line_magic('Rpush', 'datapy') |
|
29 | 29 | |
|
30 | 30 | # test to see if a copy is being made |
|
31 | v = ip.run_line_magic('R', 'datapy') | |
|
32 | w = ip.run_line_magic('R', 'datapy') | |
|
31 | v = ip.run_line_magic('Rget', '-d datapy') | |
|
32 | w = ip.run_line_magic('Rget', '-d datapy') | |
|
33 | 33 | np.testing.assert_almost_equal(w['x'], v['x']) |
|
34 | 34 | np.testing.assert_almost_equal(w['y'], v['y']) |
|
35 | 35 | nt.assert_true(np.all(w['z'] == v['z'])) |
|
36 | 36 | np.testing.assert_equal(id(w.data), id(v.data)) |
|
37 | 37 | nt.assert_equal(w.dtype, v.dtype) |
|
38 | 38 | |
|
39 |
ip.run_cell_magic('R', ' - |
|
|
39 | ip.run_cell_magic('R', ' -d datar datar=datapy', '') | |
|
40 | 40 | |
|
41 | u = ip.run_line_magic('R', 'datar') | |
|
41 | u = ip.run_line_magic('Rget', ' -d datar') | |
|
42 | 42 | np.testing.assert_almost_equal(u['x'], v['x']) |
|
43 | 43 | np.testing.assert_almost_equal(u['y'], v['y']) |
|
44 | 44 | nt.assert_true(np.all(u['z'] == v['z'])) |
|
45 | 45 | np.testing.assert_equal(id(u.data), id(v.data)) |
|
46 | 46 | nt.assert_equal(u.dtype, v.dtype) |
|
47 | 47 | |
|
48 | 48 | |
|
49 | 49 | def test_cell_magic(): |
|
50 | 50 | |
|
51 | 51 | ip.push({'x':np.arange(5), 'y':np.array([3,5,4,6,7])}) |
|
52 | 52 | snippet = ''' |
|
53 | 53 | print(summary(a)) |
|
54 | 54 | plot(x, y, pch=23, bg='orange', cex=2) |
|
55 | 55 | plot(x, x) |
|
56 | 56 | print(summary(x)) |
|
57 | 57 | r = resid(a) |
|
58 | 58 | xc = coef(a) |
|
59 | 59 | ''' |
|
60 | 60 | ip.run_cell_magic('R', '-i x,y -o r,xc a=lm(y~x)', snippet) |
|
61 | 61 | np.testing.assert_almost_equal(ip.user_ns['xc'], [3.2, 0.9]) |
|
62 | 62 | np.testing.assert_almost_equal(ip.user_ns['r'], np.array([-0.2, 0.9, -1. , 0.1, 0.2])) |
General Comments 0
You need to be logged in to leave comments.
Login now