##// END OF EJS Templates
clarify UnmetDependencyError turning into a CompositeError.
timo -
Show More
@@ -1,946 +1,944 b''
1 1 .. _parallel_multiengine:
2 2
3 3 ==========================
4 4 IPython's Direct interface
5 5 ==========================
6 6
7 7 The direct, or multiengine, interface represents one possible way of working with a set of
8 8 IPython engines. The basic idea behind the multiengine interface is that the
9 9 capabilities of each engine are directly and explicitly exposed to the user.
10 10 Thus, in the multiengine interface, each engine is given an id that is used to
11 11 identify the engine and give it work to do. This interface is very intuitive
12 12 and is designed with interactive usage in mind, and is the best place for
13 13 new users of IPython to begin.
14 14
15 15 Starting the IPython controller and engines
16 16 ===========================================
17 17
18 18 To follow along with this tutorial, you will need to start the IPython
19 19 controller and four IPython engines. The simplest way of doing this is to use
20 20 the :command:`ipcluster` command::
21 21
22 22 $ ipcluster start -n 4
23 23
24 24 For more detailed information about starting the controller and engines, see
25 25 our :ref:`introduction <parallel_overview>` to using IPython for parallel computing.
26 26
27 27 Creating a ``DirectView`` instance
28 28 ==================================
29 29
30 30 The first step is to import the IPython :mod:`IPython.parallel`
31 31 module and then create a :class:`.Client` instance:
32 32
33 33 .. sourcecode:: ipython
34 34
35 35 In [1]: from IPython.parallel import Client
36 36
37 37 In [2]: rc = Client()
38 38
39 39 This form assumes that the default connection information (stored in
40 40 :file:`ipcontroller-client.json` found in :file:`IPYTHONDIR/profile_default/security`) is
41 41 accurate. If the controller was started on a remote machine, you must copy that connection
42 42 file to the client machine, or enter its contents as arguments to the Client constructor:
43 43
44 44 .. sourcecode:: ipython
45 45
46 46 # If you have copied the json connector file from the controller:
47 47 In [2]: rc = Client('/path/to/ipcontroller-client.json')
48 48 # or to connect with a specific profile you have set up:
49 49 In [3]: rc = Client(profile='mpi')
50 50
51 51
52 52 To make sure there are engines connected to the controller, users can get a list
53 53 of engine ids:
54 54
55 55 .. sourcecode:: ipython
56 56
57 57 In [3]: rc.ids
58 58 Out[3]: [0, 1, 2, 3]
59 59
60 60 Here we see that there are four engines ready to do work for us.
61 61
62 62 For direct execution, we will make use of a :class:`DirectView` object, which can be
63 63 constructed via list-access to the client:
64 64
65 65 .. sourcecode:: ipython
66 66
67 67 In [4]: dview = rc[:] # use all engines
68 68
69 69 .. seealso::
70 70
71 71 For more information, see the in-depth explanation of :ref:`Views <parallel_details>`.
72 72
73 73
74 74 Quick and easy parallelism
75 75 ==========================
76 76
77 77 In many cases, you simply want to apply a Python function to a sequence of
78 78 objects, but *in parallel*. The client interface provides a simple way
79 79 of accomplishing this: using the DirectView's :meth:`~DirectView.map` method.
80 80
81 81 Parallel map
82 82 ------------
83 83
84 84 Python's builtin :func:`map` functions allows a function to be applied to a
85 85 sequence element-by-element. This type of code is typically trivial to
86 86 parallelize. In fact, since IPython's interface is all about functions anyway,
87 87 you can just use the builtin :func:`map` with a :class:`RemoteFunction`, or a
88 88 DirectView's :meth:`map` method:
89 89
90 90 .. sourcecode:: ipython
91 91
92 92 In [62]: serial_result = map(lambda x:x**10, range(32))
93 93
94 94 In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32))
95 95
96 96 In [67]: serial_result==parallel_result
97 97 Out[67]: True
98 98
99 99
100 100 .. note::
101 101
102 102 The :class:`DirectView`'s version of :meth:`map` does
103 103 not do dynamic load balancing. For a load balanced version, use a
104 104 :class:`LoadBalancedView`.
105 105
106 106 .. seealso::
107 107
108 108 :meth:`map` is implemented via :class:`ParallelFunction`.
109 109
110 110 Remote function decorators
111 111 --------------------------
112 112
113 113 Remote functions are just like normal functions, but when they are called,
114 114 they execute on one or more engines, rather than locally. IPython provides
115 115 two decorators:
116 116
117 117 .. sourcecode:: ipython
118 118
119 119 In [10]: @dview.remote(block=True)
120 120 ....: def getpid():
121 121 ....: import os
122 122 ....: return os.getpid()
123 123 ....:
124 124
125 125 In [11]: getpid()
126 126 Out[11]: [12345, 12346, 12347, 12348]
127 127
128 128 The ``@parallel`` decorator creates parallel functions, that break up an element-wise
129 129 operations and distribute them, reconstructing the result.
130 130
131 131 .. sourcecode:: ipython
132 132
133 133 In [12]: import numpy as np
134 134
135 135 In [13]: A = np.random.random((64,48))
136 136
137 137 In [14]: @dview.parallel(block=True)
138 138 ....: def pmul(A,B):
139 139 ....: return A*B
140 140
141 141 In [15]: C_local = A*A
142 142
143 143 In [16]: C_remote = pmul(A,A)
144 144
145 145 In [17]: (C_local == C_remote).all()
146 146 Out[17]: True
147 147
148 148 Calling a ``@parallel`` function *does not* correspond to map. It is used for splitting
149 149 element-wise operations that operate on a sequence or array. For ``map`` behavior,
150 150 parallel functions do have a map method.
151 151
152 152 ==================== ============================ =============================
153 153 call pfunc(seq) pfunc.map(seq)
154 154 ==================== ============================ =============================
155 155 # of tasks # of engines (1 per engine) # of engines (1 per engine)
156 156 # of remote calls # of engines (1 per engine) ``len(seq)``
157 157 argument to remote ``seq[i:j]`` (sub-sequence) ``seq[i]`` (single element)
158 158 ==================== ============================ =============================
159 159
160 160 A quick example to illustrate the difference in arguments for the two modes:
161 161
162 162 .. sourcecode:: ipython
163 163
164 164 In [16]: @dview.parallel(block=True)
165 165 ....: def echo(x):
166 166 ....: return str(x)
167 167 ....:
168 168
169 169 In [17]: echo(range(5))
170 170 Out[17]: ['[0, 1]', '[2]', '[3]', '[4]']
171 171
172 172 In [18]: echo.map(range(5))
173 173 Out[18]: ['0', '1', '2', '3', '4']
174 174
175 175
176 176 .. seealso::
177 177
178 178 See the :func:`~.remotefunction.parallel` and :func:`~.remotefunction.remote`
179 179 decorators for options.
180 180
181 181 Calling Python functions
182 182 ========================
183 183
184 184 The most basic type of operation that can be performed on the engines is to
185 185 execute Python code or call Python functions. Executing Python code can be
186 186 done in blocking or non-blocking mode (non-blocking is default) using the
187 187 :meth:`.View.execute` method, and calling functions can be done via the
188 188 :meth:`.View.apply` method.
189 189
190 190 apply
191 191 -----
192 192
193 193 The main method for doing remote execution (in fact, all methods that
194 194 communicate with the engines are built on top of it), is :meth:`View.apply`.
195 195
196 196 We strive to provide the cleanest interface we can, so `apply` has the following
197 197 signature:
198 198
199 199 .. sourcecode:: python
200 200
201 201 view.apply(f, *args, **kwargs)
202 202
203 203 There are various ways to call functions with IPython, and these flags are set as
204 204 attributes of the View. The ``DirectView`` has just two of these flags:
205 205
206 206 dv.block : bool
207 207 whether to wait for the result, or return an :class:`AsyncResult` object
208 208 immediately
209 209 dv.track : bool
210 210 whether to instruct pyzmq to track when zeromq is done sending the message.
211 211 This is primarily useful for non-copying sends of numpy arrays that you plan to
212 212 edit in-place. You need to know when it becomes safe to edit the buffer
213 213 without corrupting the message.
214 214 dv.targets : int, list of ints
215 215 which targets this view is associated with.
216 216
217 217
218 218 Creating a view is simple: index-access on a client creates a :class:`.DirectView`.
219 219
220 220 .. sourcecode:: ipython
221 221
222 222 In [4]: view = rc[1:3]
223 223 Out[4]: <DirectView [1, 2]>
224 224
225 225 In [5]: view.apply<tab>
226 226 view.apply view.apply_async view.apply_sync
227 227
228 228 For convenience, you can set block temporarily for a single call with the extra sync/async methods.
229 229
230 230 Blocking execution
231 231 ------------------
232 232
233 233 In blocking mode, the :class:`.DirectView` object (called ``dview`` in
234 234 these examples) submits the command to the controller, which places the
235 235 command in the engines' queues for execution. The :meth:`apply` call then
236 236 blocks until the engines are done executing the command:
237 237
238 238 .. sourcecode:: ipython
239 239
240 240 In [2]: dview = rc[:] # A DirectView of all engines
241 241 In [3]: dview.block=True
242 242 In [4]: dview['a'] = 5
243 243
244 244 In [5]: dview['b'] = 10
245 245
246 246 In [6]: dview.apply(lambda x: a+b+x, 27)
247 247 Out[6]: [42, 42, 42, 42]
248 248
249 249 You can also select blocking execution on a call-by-call basis with the :meth:`apply_sync`
250 250 method:
251 251
252 252 .. sourcecode:: ipython
253 253
254 254 In [7]: dview.block=False
255 255
256 256 In [8]: dview.apply_sync(lambda x: a+b+x, 27)
257 257 Out[8]: [42, 42, 42, 42]
258 258
259 259 Python commands can be executed as strings on specific engines by using a View's ``execute``
260 260 method:
261 261
262 262 .. sourcecode:: ipython
263 263
264 264 In [6]: rc[::2].execute('c=a+b')
265 265
266 266 In [7]: rc[1::2].execute('c=a-b')
267 267
268 268 In [8]: dview['c'] # shorthand for dview.pull('c', block=True)
269 269 Out[8]: [15, -5, 15, -5]
270 270
271 271
272 272 Non-blocking execution
273 273 ----------------------
274 274
275 275 In non-blocking mode, :meth:`apply` submits the command to be executed and
276 276 then returns a :class:`AsyncResult` object immediately. The
277 277 :class:`AsyncResult` object gives you a way of getting a result at a later
278 278 time through its :meth:`get` method.
279 279
280 280 .. seealso::
281 281
282 282 Docs on the :ref:`AsyncResult <parallel_asyncresult>` object.
283 283
284 284 This allows you to quickly submit long running commands without blocking your
285 285 local Python/IPython session:
286 286
287 287 .. sourcecode:: ipython
288 288
289 289 # define our function
290 290 In [6]: def wait(t):
291 291 ....: import time
292 292 ....: tic = time.time()
293 293 ....: time.sleep(t)
294 294 ....: return time.time()-tic
295 295
296 296 # In non-blocking mode
297 297 In [7]: ar = dview.apply_async(wait, 2)
298 298
299 299 # Now block for the result
300 300 In [8]: ar.get()
301 301 Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154]
302 302
303 303 # Again in non-blocking mode
304 304 In [9]: ar = dview.apply_async(wait, 10)
305 305
306 306 # Poll to see if the result is ready
307 307 In [10]: ar.ready()
308 308 Out[10]: False
309 309
310 310 # ask for the result, but wait a maximum of 1 second:
311 311 In [45]: ar.get(1)
312 312 ---------------------------------------------------------------------------
313 313 TimeoutError Traceback (most recent call last)
314 314 /home/you/<ipython-input-45-7cd858bbb8e0> in <module>()
315 315 ----> 1 ar.get(1)
316 316
317 317 /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout)
318 318 62 raise self._exception
319 319 63 else:
320 320 ---> 64 raise error.TimeoutError("Result not ready.")
321 321 65
322 322 66 def ready(self):
323 323
324 324 TimeoutError: Result not ready.
325 325
326 326 .. Note::
327 327
328 328 Note the import inside the function. This is a common model, to ensure
329 329 that the appropriate modules are imported where the task is run. You can
330 330 also manually import modules into the engine(s) namespace(s) via
331 331 :meth:`view.execute('import numpy')`.
332 332
333 333 Often, it is desirable to wait until a set of :class:`AsyncResult` objects
334 334 are done. For this, there is a the method :meth:`wait`. This method takes a
335 335 tuple of :class:`AsyncResult` objects (or `msg_ids` or indices to the client's History),
336 336 and blocks until all of the associated results are ready:
337 337
338 338 .. sourcecode:: ipython
339 339
340 340 In [72]: dview.block=False
341 341
342 342 # A trivial list of AsyncResults objects
343 343 In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)]
344 344
345 345 # Wait until all of them are done
346 346 In [74]: dview.wait(pr_list)
347 347
348 348 # Then, their results are ready using get() or the `.r` attribute
349 349 In [75]: pr_list[0].get()
350 350 Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752]
351 351
352 352
353 353
354 354 The ``block`` and ``targets`` keyword arguments and attributes
355 355 --------------------------------------------------------------
356 356
357 357 Most DirectView methods (excluding :meth:`apply`) accept ``block`` and
358 358 ``targets`` as keyword arguments. As we have seen above, these keyword arguments control the
359 359 blocking mode and which engines the command is applied to. The :class:`View` class also has
360 360 :attr:`block` and :attr:`targets` attributes that control the default behavior when the keyword
361 361 arguments are not provided. Thus the following logic is used for :attr:`block` and :attr:`targets`:
362 362
363 363 * If no keyword argument is provided, the instance attributes are used.
364 364 * The Keyword arguments, if provided overrides the instance attributes for
365 365 the duration of a single call.
366 366
367 367 The following examples demonstrate how to use the instance attributes:
368 368
369 369 .. sourcecode:: ipython
370 370
371 371 In [16]: dview.targets = [0,2]
372 372
373 373 In [17]: dview.block = False
374 374
375 375 In [18]: ar = dview.apply(lambda : 10)
376 376
377 377 In [19]: ar.get()
378 378 Out[19]: [10, 10]
379 379
380 380 In [20]: dview.targets = v.client.ids # all engines (4)
381 381
382 382 In [21]: dview.block = True
383 383
384 384 In [22]: dview.apply(lambda : 42)
385 385 Out[22]: [42, 42, 42, 42]
386 386
387 387 The :attr:`block` and :attr:`targets` instance attributes of the
388 388 :class:`.DirectView` also determine the behavior of the parallel magic commands.
389 389
390 390 Parallel magic commands
391 391 -----------------------
392 392
393 393 We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``)
394 394 that make it a bit more pleasant to execute Python commands on the engines interactively.
395 395 These are simply shortcuts to :meth:`.DirectView.execute`
396 396 and :meth:`.AsyncResult.display_outputs` methods repsectively.
397 397 The ``%px`` magic executes a single Python command on the engines
398 398 specified by the :attr:`targets` attribute of the :class:`DirectView` instance:
399 399
400 400 .. sourcecode:: ipython
401 401
402 402 # Create a DirectView for all targets
403 403 In [22]: dv = rc[:]
404 404
405 405 # Make this DirectView active for parallel magic commands
406 406 In [23]: dv.activate()
407 407
408 408 In [24]: dv.block=True
409 409
410 410 # import numpy here and everywhere
411 411 In [25]: with dv.sync_imports():
412 412 ....: import numpy
413 413 importing numpy on engine(s)
414 414
415 415 In [27]: %px a = numpy.random.rand(2,2)
416 416 Parallel execution on engines: [0, 1, 2, 3]
417 417
418 418 In [28]: %px numpy.linalg.eigvals(a)
419 419 Parallel execution on engines: [0, 1, 2, 3]
420 420 [0] Out[68]: array([ 0.77120707, -0.19448286])
421 421 [1] Out[68]: array([ 1.10815921, 0.05110369])
422 422 [2] Out[68]: array([ 0.74625527, -0.37475081])
423 423 [3] Out[68]: array([ 0.72931905, 0.07159743])
424 424
425 425 In [29]: %px print 'hi'
426 426 Parallel execution on engine(s): [0, 1, 2, 3]
427 427 [stdout:0] hi
428 428 [stdout:1] hi
429 429 [stdout:2] hi
430 430 [stdout:3] hi
431 431
432 432
433 433 Since engines are IPython as well, you can even run magics remotely:
434 434
435 435 .. sourcecode:: ipython
436 436
437 437 In [28]: %px %pylab inline
438 438 Parallel execution on engine(s): [0, 1, 2, 3]
439 439 [stdout:0]
440 440 Welcome to pylab, a matplotlib-based Python environment...
441 441 For more information, type 'help(pylab)'.
442 442 [stdout:1]
443 443 Welcome to pylab, a matplotlib-based Python environment...
444 444 For more information, type 'help(pylab)'.
445 445 [stdout:2]
446 446 Welcome to pylab, a matplotlib-based Python environment...
447 447 For more information, type 'help(pylab)'.
448 448 [stdout:3]
449 449 Welcome to pylab, a matplotlib-based Python environment...
450 450 For more information, type 'help(pylab)'.
451 451
452 452 And once in pylab mode with the inline backend,
453 453 you can make plots and they will be displayed in your frontend
454 454 if it suports the inline figures (e.g. notebook or qtconsole):
455 455
456 456 .. sourcecode:: ipython
457 457
458 458 In [40]: %px plot(rand(100))
459 459 Parallel execution on engine(s): [0, 1, 2, 3]
460 460 <plot0>
461 461 <plot1>
462 462 <plot2>
463 463 <plot3>
464 464 [0] Out[79]: [<matplotlib.lines.Line2D at 0x10a6286d0>]
465 465 [1] Out[79]: [<matplotlib.lines.Line2D at 0x10b9476d0>]
466 466 [2] Out[79]: [<matplotlib.lines.Line2D at 0x110652750>]
467 467 [3] Out[79]: [<matplotlib.lines.Line2D at 0x10c6566d0>]
468 468
469 469
470 470 ``%%px`` Cell Magic
471 471 *******************
472 472
473 473 `%%px` can also be used as a Cell Magic, which accepts ``--[no]block`` flags,
474 474 and a ``--group-outputs`` argument, which adjust how the outputs of multiple
475 475 engines are presented.
476 476
477 477 .. seealso::
478 478
479 479 :meth:`.AsyncResult.display_outputs` for the grouping options.
480 480
481 481 .. sourcecode:: ipython
482 482
483 483 In [50]: %%px --block --group-outputs=engine
484 484 ....: import numpy as np
485 485 ....: A = np.random.random((2,2))
486 486 ....: ev = numpy.linalg.eigvals(A)
487 487 ....: print ev
488 488 ....: ev.max()
489 489 ....:
490 490 Parallel execution on engine(s): [0, 1, 2, 3]
491 491 [stdout:0] [ 0.60640442 0.95919621]
492 492 [0] Out[73]: 0.9591962130899806
493 493 [stdout:1] [ 0.38501813 1.29430871]
494 494 [1] Out[73]: 1.2943087091452372
495 495 [stdout:2] [-0.85925141 0.9387692 ]
496 496 [2] Out[73]: 0.93876920456230284
497 497 [stdout:3] [ 0.37998269 1.24218246]
498 498 [3] Out[73]: 1.2421824618493817
499 499
500 500 ``%result`` Magic
501 501 *****************
502 502
503 503 If you are using ``%px`` in non-blocking mode, you won't get output.
504 504 You can use ``%result`` to display the outputs of the latest command,
505 505 just as is done when ``%px`` is blocking:
506 506
507 507 .. sourcecode:: ipython
508 508
509 509 In [39]: dv.block = False
510 510
511 511 In [40]: %px print 'hi'
512 512 Async parallel execution on engine(s): [0, 1, 2, 3]
513 513
514 514 In [41]: %result
515 515 [stdout:0] hi
516 516 [stdout:1] hi
517 517 [stdout:2] hi
518 518 [stdout:3] hi
519 519
520 520 ``%result`` simply calls :meth:`.AsyncResult.display_outputs` on the most recent request.
521 521 You can pass integers as indices if you want a result other than the latest,
522 522 e.g. ``%result -2``, or ``%result 0`` for the first.
523 523
524 524
525 525 ``%autopx``
526 526 ***********
527 527
528 528 The ``%autopx`` magic switches to a mode where everything you type is executed
529 529 on the engines until you do ``%autopx`` again.
530 530
531 531 .. sourcecode:: ipython
532 532
533 533 In [30]: dv.block=True
534 534
535 535 In [31]: %autopx
536 536 %autopx enabled
537 537
538 538 In [32]: max_evals = []
539 539
540 540 In [33]: for i in range(100):
541 541 ....: a = numpy.random.rand(10,10)
542 542 ....: a = a+a.transpose()
543 543 ....: evals = numpy.linalg.eigvals(a)
544 544 ....: max_evals.append(evals[0].real)
545 545 ....:
546 546
547 547 In [34]: print "Average max eigenvalue is: %f" % (sum(max_evals)/len(max_evals))
548 548 [stdout:0] Average max eigenvalue is: 10.193101
549 549 [stdout:1] Average max eigenvalue is: 10.064508
550 550 [stdout:2] Average max eigenvalue is: 10.055724
551 551 [stdout:3] Average max eigenvalue is: 10.086876
552 552
553 553 In [35]: %autopx
554 554 Auto Parallel Disabled
555 555
556 556
557 557 Moving Python objects around
558 558 ============================
559 559
560 560 In addition to calling functions and executing code on engines, you can
561 561 transfer Python objects to and from your IPython session and the engines. In
562 562 IPython, these operations are called :meth:`push` (sending an object to the
563 563 engines) and :meth:`pull` (getting an object from the engines).
564 564
565 565 Basic push and pull
566 566 -------------------
567 567
568 568 Here are some examples of how you use :meth:`push` and :meth:`pull`:
569 569
570 570 .. sourcecode:: ipython
571 571
572 572 In [38]: dview.push(dict(a=1.03234,b=3453))
573 573 Out[38]: [None,None,None,None]
574 574
575 575 In [39]: dview.pull('a')
576 576 Out[39]: [ 1.03234, 1.03234, 1.03234, 1.03234]
577 577
578 578 In [40]: dview.pull('b', targets=0)
579 579 Out[40]: 3453
580 580
581 581 In [41]: dview.pull(('a','b'))
582 582 Out[41]: [ [1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453] ]
583 583
584 584 In [42]: dview.push(dict(c='speed'))
585 585 Out[42]: [None,None,None,None]
586 586
587 587 In non-blocking mode :meth:`push` and :meth:`pull` also return
588 588 :class:`AsyncResult` objects:
589 589
590 590 .. sourcecode:: ipython
591 591
592 592 In [48]: ar = dview.pull('a', block=False)
593 593
594 594 In [49]: ar.get()
595 595 Out[49]: [1.03234, 1.03234, 1.03234, 1.03234]
596 596
597 597
598 598 Dictionary interface
599 599 --------------------
600 600
601 601 Since a Python namespace is just a :class:`dict`, :class:`DirectView` objects provide
602 602 dictionary-style access by key and methods such as :meth:`get` and
603 603 :meth:`update` for convenience. This make the remote namespaces of the engines
604 604 appear as a local dictionary. Underneath, these methods call :meth:`apply`:
605 605
606 606 .. sourcecode:: ipython
607 607
608 608 In [51]: dview['a']=['foo','bar']
609 609
610 610 In [52]: dview['a']
611 611 Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ]
612 612
613 613 Scatter and gather
614 614 ------------------
615 615
616 616 Sometimes it is useful to partition a sequence and push the partitions to
617 617 different engines. In MPI language, this is know as scatter/gather and we
618 618 follow that terminology. However, it is important to remember that in
619 619 IPython's :class:`Client` class, :meth:`scatter` is from the
620 620 interactive IPython session to the engines and :meth:`gather` is from the
621 621 engines back to the interactive IPython session. For scatter/gather operations
622 622 between engines, MPI, pyzmq, or some other direct interconnect should be used.
623 623
624 624 .. sourcecode:: ipython
625 625
626 626 In [58]: dview.scatter('a',range(16))
627 627 Out[58]: [None,None,None,None]
628 628
629 629 In [59]: dview['a']
630 630 Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ]
631 631
632 632 In [60]: dview.gather('a')
633 633 Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
634 634
635 635 Other things to look at
636 636 =======================
637 637
638 638 How to do parallel list comprehensions
639 639 --------------------------------------
640 640
641 641 In many cases list comprehensions are nicer than using the map function. While
642 642 we don't have fully parallel list comprehensions, it is simple to get the
643 643 basic effect using :meth:`scatter` and :meth:`gather`:
644 644
645 645 .. sourcecode:: ipython
646 646
647 647 In [66]: dview.scatter('x',range(64))
648 648
649 649 In [67]: %px y = [i**10 for i in x]
650 650 Parallel execution on engines: [0, 1, 2, 3]
651 651
652 652 In [68]: y = dview.gather('y')
653 653
654 654 In [69]: print y
655 655 [0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...]
656 656
657 657 Remote imports
658 658 --------------
659 659
660 660 Sometimes you will want to import packages both in your interactive session
661 661 and on your remote engines. This can be done with the :class:`ContextManager`
662 662 created by a DirectView's :meth:`sync_imports` method:
663 663
664 664 .. sourcecode:: ipython
665 665
666 666 In [69]: with dview.sync_imports():
667 667 ....: import numpy
668 668 importing numpy on engine(s)
669 669
670 670 Any imports made inside the block will also be performed on the view's engines.
671 671 sync_imports also takes a `local` boolean flag that defaults to True, which specifies
672 672 whether the local imports should also be performed. However, support for `local=False`
673 673 has not been implemented, so only packages that can be imported locally will work
674 674 this way.
675 675
676 676 You can also specify imports via the ``@require`` decorator. This is a decorator
677 677 designed for use in Dependencies, but can be used to handle remote imports as well.
678 678 Modules or module names passed to ``@require`` will be imported before the decorated
679 679 function is called. If they cannot be imported, the decorated function will never
680 execute and will fail with an UnmetDependencyError.
681
682 ..
683 what about single engines failing to import? will none of them execute the function?
680 execute and will fail with an UnmetDependencyError. Failures of single Engines will
681 be collected and raise a CompositeError, as demonstrated in the next section.
684 682
685 683 .. sourcecode:: ipython
686 684
687 685 In [69]: from IPython.parallel import require
688 686
689 687 In [70]: @require('re'):
690 688 ....: def findall(pat, x):
691 689 ....: # re is guaranteed to be available
692 690 ....: return re.findall(pat, x)
693 691
694 692 # you can also pass modules themselves, that you already have locally:
695 693 In [71]: @require(time):
696 694 ....: def wait(t):
697 695 ....: time.sleep(t)
698 696 ....: return t
699 697
700 698 .. _parallel_exceptions:
701 699
702 700 Parallel exceptions
703 701 -------------------
704 702
705 703 In the multiengine interface, parallel commands can raise Python exceptions,
706 704 just like serial commands. But, it is a little subtle, because a single
707 705 parallel command can actually raise multiple exceptions (one for each engine
708 706 the command was run on). To express this idea, we have a
709 707 :exc:`CompositeError` exception class that will be raised in most cases. The
710 708 :exc:`CompositeError` class is a special type of exception that wraps one or
711 709 more other types of exceptions. Here is how it works:
712 710
713 711 .. sourcecode:: ipython
714 712
715 713 In [76]: dview.block=True
716 714
717 715 In [77]: dview.execute('1/0')
718 716 ---------------------------------------------------------------------------
719 717 CompositeError Traceback (most recent call last)
720 718 /home/user/<ipython-input-10-5d56b303a66c> in <module>()
721 719 ----> 1 dview.execute('1/0')
722 720
723 721 /path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block)
724 722 591 default: self.block
725 723 592 """
726 724 --> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets)
727 725 594
728 726 595 def run(self, filename, targets=None, block=None):
729 727
730 728 /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)
731 729
732 730 /path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs)
733 731 55 def sync_results(f, self, *args, **kwargs):
734 732 56 """sync relevant results from self.client to our results attribute."""
735 733 ---> 57 ret = f(self, *args, **kwargs)
736 734 58 delta = self.outstanding.difference(self.client.outstanding)
737 735 59 completed = self.outstanding.intersection(delta)
738 736
739 737 /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)
740 738
741 739 /path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs)
742 740 44 n_previous = len(self.client.history)
743 741 45 try:
744 742 ---> 46 ret = f(self, *args, **kwargs)
745 743 47 finally:
746 744 48 nmsgs = len(self.client.history) - n_previous
747 745
748 746 /path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track)
749 747 529 if block:
750 748 530 try:
751 749 --> 531 return ar.get()
752 750 532 except KeyboardInterrupt:
753 751 533 pass
754 752
755 753 /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
756 754 101 return self._result
757 755 102 else:
758 756 --> 103 raise self._exception
759 757 104 else:
760 758 105 raise error.TimeoutError("Result not ready.")
761 759
762 760 CompositeError: one or more exceptions from call to method: _execute
763 761 [0:apply]: ZeroDivisionError: integer division or modulo by zero
764 762 [1:apply]: ZeroDivisionError: integer division or modulo by zero
765 763 [2:apply]: ZeroDivisionError: integer division or modulo by zero
766 764 [3:apply]: ZeroDivisionError: integer division or modulo by zero
767 765
768 766 Notice how the error message printed when :exc:`CompositeError` is raised has
769 767 information about the individual exceptions that were raised on each engine.
770 768 If you want, you can even raise one of these original exceptions:
771 769
772 770 .. sourcecode:: ipython
773 771
774 772 In [80]: try:
775 773 ....: dview.execute('1/0')
776 774 ....: except parallel.error.CompositeError, e:
777 775 ....: e.raise_exception()
778 776 ....:
779 777 ....:
780 778 ---------------------------------------------------------------------------
781 779 RemoteError Traceback (most recent call last)
782 780 /home/user/<ipython-input-17-8597e7e39858> in <module>()
783 781 2 dview.execute('1/0')
784 782 3 except CompositeError as e:
785 783 ----> 4 e.raise_exception()
786 784
787 785 /path/to/site-packages/IPython/parallel/error.pyc in raise_exception(self, excid)
788 786 266 raise IndexError("an exception with index %i does not exist"%excid)
789 787 267 else:
790 788 --> 268 raise RemoteError(en, ev, etb, ei)
791 789 269
792 790 270
793 791
794 792 RemoteError: ZeroDivisionError(integer division or modulo by zero)
795 793 Traceback (most recent call last):
796 794 File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
797 795 exec code in working,working
798 796 File "<string>", line 1, in <module>
799 797 File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute
800 798 exec code in globals()
801 799 File "<string>", line 1, in <module>
802 800 ZeroDivisionError: integer division or modulo by zero
803 801
804 802 If you are working in IPython, you can simple type ``%debug`` after one of
805 803 these :exc:`CompositeError` exceptions is raised, and inspect the exception
806 804 instance:
807 805
808 806 .. sourcecode:: ipython
809 807
810 808 In [81]: dview.execute('1/0')
811 809 ---------------------------------------------------------------------------
812 810 CompositeError Traceback (most recent call last)
813 811 /home/user/<ipython-input-10-5d56b303a66c> in <module>()
814 812 ----> 1 dview.execute('1/0')
815 813
816 814 /path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block)
817 815 591 default: self.block
818 816 592 """
819 817 --> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets)
820 818 594
821 819 595 def run(self, filename, targets=None, block=None):
822 820
823 821 /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)
824 822
825 823 /path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs)
826 824 55 def sync_results(f, self, *args, **kwargs):
827 825 56 """sync relevant results from self.client to our results attribute."""
828 826 ---> 57 ret = f(self, *args, **kwargs)
829 827 58 delta = self.outstanding.difference(self.client.outstanding)
830 828 59 completed = self.outstanding.intersection(delta)
831 829
832 830 /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track)
833 831
834 832 /path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs)
835 833 44 n_previous = len(self.client.history)
836 834 45 try:
837 835 ---> 46 ret = f(self, *args, **kwargs)
838 836 47 finally:
839 837 48 nmsgs = len(self.client.history) - n_previous
840 838
841 839 /path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track)
842 840 529 if block:
843 841 530 try:
844 842 --> 531 return ar.get()
845 843 532 except KeyboardInterrupt:
846 844 533 pass
847 845
848 846 /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
849 847 101 return self._result
850 848 102 else:
851 849 --> 103 raise self._exception
852 850 104 else:
853 851 105 raise error.TimeoutError("Result not ready.")
854 852
855 853 CompositeError: one or more exceptions from call to method: _execute
856 854 [0:apply]: ZeroDivisionError: integer division or modulo by zero
857 855 [1:apply]: ZeroDivisionError: integer division or modulo by zero
858 856 [2:apply]: ZeroDivisionError: integer division or modulo by zero
859 857 [3:apply]: ZeroDivisionError: integer division or modulo by zero
860 858
861 859 In [82]: %debug
862 860 > /path/to/site-packages/IPython/parallel/client/asyncresult.py(103)get()
863 861 102 else:
864 862 --> 103 raise self._exception
865 863 104 else:
866 864
867 865 # With the debugger running, self._exception is the exceptions instance. We can tab complete
868 866 # on it and see the extra methods that are available.
869 867 ipdb> self._exception.<tab>
870 868 e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args
871 869 e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist
872 870 e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message
873 871 e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks
874 872 e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception
875 873 ipdb> self._exception.print_tracebacks()
876 874 [0:apply]:
877 875 Traceback (most recent call last):
878 876 File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
879 877 exec code in working,working
880 878 File "<string>", line 1, in <module>
881 879 File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute
882 880 exec code in globals()
883 881 File "<string>", line 1, in <module>
884 882 ZeroDivisionError: integer division or modulo by zero
885 883
886 884
887 885 [1:apply]:
888 886 Traceback (most recent call last):
889 887 File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
890 888 exec code in working,working
891 889 File "<string>", line 1, in <module>
892 890 File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute
893 891 exec code in globals()
894 892 File "<string>", line 1, in <module>
895 893 ZeroDivisionError: integer division or modulo by zero
896 894
897 895
898 896 [2:apply]:
899 897 Traceback (most recent call last):
900 898 File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
901 899 exec code in working,working
902 900 File "<string>", line 1, in <module>
903 901 File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute
904 902 exec code in globals()
905 903 File "<string>", line 1, in <module>
906 904 ZeroDivisionError: integer division or modulo by zero
907 905
908 906
909 907 [3:apply]:
910 908 Traceback (most recent call last):
911 909 File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request
912 910 exec code in working,working
913 911 File "<string>", line 1, in <module>
914 912 File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute
915 913 exec code in globals()
916 914 File "<string>", line 1, in <module>
917 915 ZeroDivisionError: integer division or modulo by zero
918 916
919 917
920 918 All of this same error handling magic even works in non-blocking mode:
921 919
922 920 .. sourcecode:: ipython
923 921
924 922 In [83]: dview.block=False
925 923
926 924 In [84]: ar = dview.execute('1/0')
927 925
928 926 In [85]: ar.get()
929 927 ---------------------------------------------------------------------------
930 928 CompositeError Traceback (most recent call last)
931 929 /home/user/<ipython-input-21-8531eb3d26fb> in <module>()
932 930 ----> 1 ar.get()
933 931
934 932 /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout)
935 933 101 return self._result
936 934 102 else:
937 935 --> 103 raise self._exception
938 936 104 else:
939 937 105 raise error.TimeoutError("Result not ready.")
940 938
941 939 CompositeError: one or more exceptions from call to method: _execute
942 940 [0:apply]: ZeroDivisionError: integer division or modulo by zero
943 941 [1:apply]: ZeroDivisionError: integer division or modulo by zero
944 942 [2:apply]: ZeroDivisionError: integer division or modulo by zero
945 943 [3:apply]: ZeroDivisionError: integer division or modulo by zero
946 944
General Comments 0
You need to be logged in to leave comments. Login now