##// END OF EJS Templates
Merge branch 'hard-reset' of https://github.com/takluyver/ipython into takluyver-hard-reset
Thomas Kluyver -
r3536:c45fd858 merge
parent child Browse files
Show More
@@ -1,327 +1,330 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Displayhook for IPython.
3 3
4 4 This defines a callable class that IPython uses for `sys.displayhook`.
5 5
6 6 Authors:
7 7
8 8 * Fernando Perez
9 9 * Brian Granger
10 10 * Robert Kern
11 11 """
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Copyright (C) 2008-2010 The IPython Development Team
15 15 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
16 16 #
17 17 # Distributed under the terms of the BSD License. The full license is in
18 18 # the file COPYING, distributed as part of this software.
19 19 #-----------------------------------------------------------------------------
20 20
21 21 #-----------------------------------------------------------------------------
22 22 # Imports
23 23 #-----------------------------------------------------------------------------
24 24
25 25 import __builtin__
26 26
27 27 from IPython.config.configurable import Configurable
28 28 from IPython.core import prompts
29 29 import IPython.utils.generics
30 30 import IPython.utils.io
31 31 from IPython.utils.traitlets import Instance, List
32 32 from IPython.utils.warn import warn
33 33
34 34 #-----------------------------------------------------------------------------
35 35 # Main displayhook class
36 36 #-----------------------------------------------------------------------------
37 37
38 38 # TODO: The DisplayHook class should be split into two classes, one that
39 39 # manages the prompts and their synchronization and another that just does the
40 40 # displayhook logic and calls into the prompt manager.
41 41
42 42 # TODO: Move the various attributes (cache_size, colors, input_sep,
43 43 # output_sep, output_sep2, ps1, ps2, ps_out, pad_left). Some of these are also
44 44 # attributes of InteractiveShell. They should be on ONE object only and the
45 45 # other objects should ask that one object for their values.
46 46
47 47 class DisplayHook(Configurable):
48 48 """The custom IPython displayhook to replace sys.displayhook.
49 49
50 50 This class does many things, but the basic idea is that it is a callable
51 51 that gets called anytime user code returns a value.
52 52
53 53 Currently this class does more than just the displayhook logic and that
54 54 extra logic should eventually be moved out of here.
55 55 """
56 56
57 57 shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
58 58
59 59 def __init__(self, shell=None, cache_size=1000,
60 60 colors='NoColor', input_sep='\n',
61 61 output_sep='\n', output_sep2='',
62 62 ps1 = None, ps2 = None, ps_out = None, pad_left=True,
63 63 config=None):
64 64 super(DisplayHook, self).__init__(shell=shell, config=config)
65 65
66 66 cache_size_min = 3
67 67 if cache_size <= 0:
68 68 self.do_full_cache = 0
69 69 cache_size = 0
70 70 elif cache_size < cache_size_min:
71 71 self.do_full_cache = 0
72 72 cache_size = 0
73 73 warn('caching was disabled (min value for cache size is %s).' %
74 74 cache_size_min,level=3)
75 75 else:
76 76 self.do_full_cache = 1
77 77
78 78 self.cache_size = cache_size
79 79 self.input_sep = input_sep
80 80
81 81 # we need a reference to the user-level namespace
82 82 self.shell = shell
83 83
84 84 # Set input prompt strings and colors
85 85 if cache_size == 0:
86 86 if ps1.find('%n') > -1 or ps1.find(r'\#') > -1 \
87 87 or ps1.find(r'\N') > -1:
88 88 ps1 = '>>> '
89 89 if ps2.find('%n') > -1 or ps2.find(r'\#') > -1 \
90 90 or ps2.find(r'\N') > -1:
91 91 ps2 = '... '
92 92 self.ps1_str = self._set_prompt_str(ps1,'In [\\#]: ','>>> ')
93 93 self.ps2_str = self._set_prompt_str(ps2,' .\\D.: ','... ')
94 94 self.ps_out_str = self._set_prompt_str(ps_out,'Out[\\#]: ','')
95 95
96 96 self.color_table = prompts.PromptColors
97 97 self.prompt1 = prompts.Prompt1(self,sep=input_sep,prompt=self.ps1_str,
98 98 pad_left=pad_left)
99 99 self.prompt2 = prompts.Prompt2(self,prompt=self.ps2_str,pad_left=pad_left)
100 100 self.prompt_out = prompts.PromptOut(self,sep='',prompt=self.ps_out_str,
101 101 pad_left=pad_left)
102 102 self.set_colors(colors)
103 103
104 104 # Store the last prompt string each time, we need it for aligning
105 105 # continuation and auto-rewrite prompts
106 106 self.last_prompt = ''
107 107 self.output_sep = output_sep
108 108 self.output_sep2 = output_sep2
109 109 self._,self.__,self.___ = '','',''
110 110
111 111 # these are deliberately global:
112 112 to_user_ns = {'_':self._,'__':self.__,'___':self.___}
113 113 self.shell.user_ns.update(to_user_ns)
114 114
115 115 @property
116 116 def prompt_count(self):
117 117 return self.shell.execution_count
118 118
119 119 def _set_prompt_str(self,p_str,cache_def,no_cache_def):
120 120 if p_str is None:
121 121 if self.do_full_cache:
122 122 return cache_def
123 123 else:
124 124 return no_cache_def
125 125 else:
126 126 return p_str
127 127
128 128 def set_colors(self, colors):
129 129 """Set the active color scheme and configure colors for the three
130 130 prompt subsystems."""
131 131
132 132 # FIXME: This modifying of the global prompts.prompt_specials needs
133 133 # to be fixed. We need to refactor all of the prompts stuff to use
134 134 # proper configuration and traits notifications.
135 135 if colors.lower()=='nocolor':
136 136 prompts.prompt_specials = prompts.prompt_specials_nocolor
137 137 else:
138 138 prompts.prompt_specials = prompts.prompt_specials_color
139 139
140 140 self.color_table.set_active_scheme(colors)
141 141 self.prompt1.set_colors()
142 142 self.prompt2.set_colors()
143 143 self.prompt_out.set_colors()
144 144
145 145 #-------------------------------------------------------------------------
146 146 # Methods used in __call__. Override these methods to modify the behavior
147 147 # of the displayhook.
148 148 #-------------------------------------------------------------------------
149 149
150 150 def check_for_underscore(self):
151 151 """Check if the user has set the '_' variable by hand."""
152 152 # If something injected a '_' variable in __builtin__, delete
153 153 # ipython's automatic one so we don't clobber that. gettext() in
154 154 # particular uses _, so we need to stay away from it.
155 155 if '_' in __builtin__.__dict__:
156 156 try:
157 157 del self.shell.user_ns['_']
158 158 except KeyError:
159 159 pass
160 160
161 161 def quiet(self):
162 162 """Should we silence the display hook because of ';'?"""
163 163 # do not print output if input ends in ';'
164 164 try:
165 165 if self.shell.history_manager.input_hist_parsed[self.prompt_count].endswith(';\n'):
166 166 return True
167 167 except IndexError:
168 168 # some uses of ipshellembed may fail here
169 169 pass
170 170 return False
171 171
172 172 def start_displayhook(self):
173 173 """Start the displayhook, initializing resources."""
174 174 pass
175 175
176 176 def write_output_prompt(self):
177 177 """Write the output prompt.
178 178
179 179 The default implementation simply writes the prompt to
180 180 ``io.Term.cout``.
181 181 """
182 182 # Use write, not print which adds an extra space.
183 183 IPython.utils.io.Term.cout.write(self.output_sep)
184 184 outprompt = str(self.prompt_out)
185 185 if self.do_full_cache:
186 186 IPython.utils.io.Term.cout.write(outprompt)
187 187
188 188 def compute_format_data(self, result):
189 189 """Compute format data of the object to be displayed.
190 190
191 191 The format data is a generalization of the :func:`repr` of an object.
192 192 In the default implementation the format data is a :class:`dict` of
193 193 key value pair where the keys are valid MIME types and the values
194 194 are JSON'able data structure containing the raw data for that MIME
195 195 type. It is up to frontends to determine pick a MIME to to use and
196 196 display that data in an appropriate manner.
197 197
198 198 This method only computes the format data for the object and should
199 199 NOT actually print or write that to a stream.
200 200
201 201 Parameters
202 202 ----------
203 203 result : object
204 204 The Python object passed to the display hook, whose format will be
205 205 computed.
206 206
207 207 Returns
208 208 -------
209 209 format_data : dict
210 210 A :class:`dict` whose keys are valid MIME types and values are
211 211 JSON'able raw data for that MIME type. It is recommended that
212 212 all return values of this should always include the "text/plain"
213 213 MIME type representation of the object.
214 214 """
215 215 return self.shell.display_formatter.format(result)
216 216
217 217 def write_format_data(self, format_dict):
218 218 """Write the format data dict to the frontend.
219 219
220 220 This default version of this method simply writes the plain text
221 221 representation of the object to ``io.Term.cout``. Subclasses should
222 222 override this method to send the entire `format_dict` to the
223 223 frontends.
224 224
225 225 Parameters
226 226 ----------
227 227 format_dict : dict
228 228 The format dict for the object passed to `sys.displayhook`.
229 229 """
230 230 # We want to print because we want to always make sure we have a
231 231 # newline, even if all the prompt separators are ''. This is the
232 232 # standard IPython behavior.
233 233 result_repr = format_dict['text/plain']
234 234 if '\n' in result_repr:
235 235 # So that multi-line strings line up with the left column of
236 236 # the screen, instead of having the output prompt mess up
237 237 # their first line.
238 238 # We use the ps_out_str template instead of the expanded prompt
239 239 # because the expansion may add ANSI escapes that will interfere
240 240 # with our ability to determine whether or not we should add
241 241 # a newline.
242 242 if self.ps_out_str and not self.ps_out_str.endswith('\n'):
243 243 # But avoid extraneous empty lines.
244 244 result_repr = '\n' + result_repr
245 245
246 246 print >>IPython.utils.io.Term.cout, result_repr
247 247
248 248 def update_user_ns(self, result):
249 249 """Update user_ns with various things like _, __, _1, etc."""
250 250
251 251 # Avoid recursive reference when displaying _oh/Out
252 252 if result is not self.shell.user_ns['_oh']:
253 253 if len(self.shell.user_ns['_oh']) >= self.cache_size and self.do_full_cache:
254 254 warn('Output cache limit (currently '+
255 255 `self.cache_size`+' entries) hit.\n'
256 256 'Flushing cache and resetting history counter...\n'
257 257 'The only history variables available will be _,__,___ and _1\n'
258 258 'with the current result.')
259 259
260 260 self.flush()
261 261 # Don't overwrite '_' and friends if '_' is in __builtin__ (otherwise
262 262 # we cause buggy behavior for things like gettext).
263 263
264 264 if '_' not in __builtin__.__dict__:
265 265 self.___ = self.__
266 266 self.__ = self._
267 267 self._ = result
268 268 self.shell.user_ns.update({'_':self._,
269 269 '__':self.__,
270 270 '___':self.___})
271 271
272 272 # hackish access to top-level namespace to create _1,_2... dynamically
273 273 to_main = {}
274 274 if self.do_full_cache:
275 275 new_result = '_'+`self.prompt_count`
276 276 to_main[new_result] = result
277 277 self.shell.user_ns.update(to_main)
278 278 self.shell.user_ns['_oh'][self.prompt_count] = result
279 279
280 280 def log_output(self, format_dict):
281 281 """Log the output."""
282 282 if self.shell.logger.log_output:
283 283 self.shell.logger.log_write(format_dict['text/plain'], 'output')
284 284 # This is a defaultdict of lists, so we can always append
285 285 self.shell.history_manager.output_hist_reprs[self.prompt_count]\
286 286 .append(format_dict['text/plain'])
287 287
288 288 def finish_displayhook(self):
289 289 """Finish up all displayhook activities."""
290 290 IPython.utils.io.Term.cout.write(self.output_sep2)
291 291 IPython.utils.io.Term.cout.flush()
292 292
293 293 def __call__(self, result=None):
294 294 """Printing with history cache management.
295 295
296 296 This is invoked everytime the interpreter needs to print, and is
297 297 activated by setting the variable sys.displayhook to it.
298 298 """
299 299 self.check_for_underscore()
300 300 if result is not None and not self.quiet():
301 301 self.start_displayhook()
302 302 self.write_output_prompt()
303 303 format_dict = self.compute_format_data(result)
304 304 self.write_format_data(format_dict)
305 305 self.update_user_ns(result)
306 306 self.log_output(format_dict)
307 307 self.finish_displayhook()
308 308
309 309 def flush(self):
310 310 if not self.do_full_cache:
311 311 raise ValueError,"You shouldn't have reached the cache flush "\
312 312 "if full caching is not enabled!"
313 313 # delete auto-generated vars from global namespace
314 314
315 315 for n in range(1,self.prompt_count + 1):
316 316 key = '_'+`n`
317 317 try:
318 318 del self.shell.user_ns[key]
319 319 except: pass
320 320 self.shell.user_ns['_oh'].clear()
321 321
322 # Release our own references to objects:
323 self._, self.__, self.___ = '', '', ''
324
322 325 if '_' not in __builtin__.__dict__:
323 326 self.shell.user_ns.update({'_':None,'__':None, '___':None})
324 327 import gc
325 328 # TODO: Is this really needed?
326 329 gc.collect()
327 330
@@ -1,2595 +1,2602 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import ast
24 24 import atexit
25 25 import codeop
26 26 import inspect
27 27 import os
28 28 import re
29 29 import sys
30 30 import tempfile
31 31 import types
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.compilerop import CachingCompiler
44 44 from IPython.core.display_trap import DisplayTrap
45 45 from IPython.core.displayhook import DisplayHook
46 46 from IPython.core.displaypub import DisplayPublisher
47 47 from IPython.core.error import TryNext, UsageError
48 48 from IPython.core.extensions import ExtensionManager
49 49 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
50 50 from IPython.core.formatters import DisplayFormatter
51 51 from IPython.core.history import HistoryManager
52 52 from IPython.core.inputsplitter import IPythonInputSplitter
53 53 from IPython.core.logger import Logger
54 54 from IPython.core.macro import Macro
55 55 from IPython.core.magic import Magic
56 56 from IPython.core.payload import PayloadManager
57 57 from IPython.core.plugin import PluginManager
58 58 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
59 59 from IPython.external.Itpl import ItplNS
60 60 from IPython.utils import PyColorize
61 61 from IPython.utils import io
62 62 from IPython.utils.doctestreload import doctest_reload
63 63 from IPython.utils.io import ask_yes_no, rprint
64 64 from IPython.utils.ipstruct import Struct
65 65 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
66 66 from IPython.utils.pickleshare import PickleShareDB
67 67 from IPython.utils.process import system, getoutput
68 68 from IPython.utils.strdispatch import StrDispatch
69 69 from IPython.utils.syspathcontext import prepended_to_syspath
70 70 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
71 71 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
72 72 List, Unicode, Instance, Type)
73 73 from IPython.utils.warn import warn, error, fatal
74 74 import IPython.core.hooks
75 75
76 76 #-----------------------------------------------------------------------------
77 77 # Globals
78 78 #-----------------------------------------------------------------------------
79 79
80 80 # compiled regexps for autoindent management
81 81 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
82 82
83 83 #-----------------------------------------------------------------------------
84 84 # Utilities
85 85 #-----------------------------------------------------------------------------
86 86
87 87 # store the builtin raw_input globally, and use this always, in case user code
88 88 # overwrites it (like wx.py.PyShell does)
89 89 raw_input_original = raw_input
90 90
91 91 def softspace(file, newvalue):
92 92 """Copied from code.py, to remove the dependency"""
93 93
94 94 oldvalue = 0
95 95 try:
96 96 oldvalue = file.softspace
97 97 except AttributeError:
98 98 pass
99 99 try:
100 100 file.softspace = newvalue
101 101 except (AttributeError, TypeError):
102 102 # "attribute-less object" or "read-only attributes"
103 103 pass
104 104 return oldvalue
105 105
106 106
107 107 def no_op(*a, **kw): pass
108 108
109 109 class SpaceInInput(Exception): pass
110 110
111 111 class Bunch: pass
112 112
113 113
114 114 def get_default_colors():
115 115 if sys.platform=='darwin':
116 116 return "LightBG"
117 117 elif os.name=='nt':
118 118 return 'Linux'
119 119 else:
120 120 return 'Linux'
121 121
122 122
123 123 class SeparateStr(Str):
124 124 """A Str subclass to validate separate_in, separate_out, etc.
125 125
126 126 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
127 127 """
128 128
129 129 def validate(self, obj, value):
130 130 if value == '0': value = ''
131 131 value = value.replace('\\n','\n')
132 132 return super(SeparateStr, self).validate(obj, value)
133 133
134 134 class MultipleInstanceError(Exception):
135 135 pass
136 136
137 137 class ReadlineNoRecord(object):
138 138 """Context manager to execute some code, then reload readline history
139 139 so that interactive input to the code doesn't appear when pressing up."""
140 140 def __init__(self, shell):
141 141 self.shell = shell
142 142 self._nested_level = 0
143 143
144 144 def __enter__(self):
145 145 if self._nested_level == 0:
146 146 self.orig_length = self.current_length()
147 147 self.readline_tail = self.get_readline_tail()
148 148 self._nested_level += 1
149 149
150 150 def __exit__(self, type, value, traceback):
151 151 self._nested_level -= 1
152 152 if self._nested_level == 0:
153 153 # Try clipping the end if it's got longer
154 154 e = self.current_length() - self.orig_length
155 155 if e > 0:
156 156 for _ in range(e):
157 157 self.shell.readline.remove_history_item(self.orig_length)
158 158
159 159 # If it still doesn't match, just reload readline history.
160 160 if self.current_length() != self.orig_length \
161 161 or self.get_readline_tail() != self.readline_tail:
162 162 self.shell.refill_readline_hist()
163 163 # Returning False will cause exceptions to propagate
164 164 return False
165 165
166 166 def current_length(self):
167 167 return self.shell.readline.get_current_history_length()
168 168
169 169 def get_readline_tail(self, n=10):
170 170 """Get the last n items in readline history."""
171 171 end = self.shell.readline.get_current_history_length() + 1
172 172 start = max(end-n, 1)
173 173 ghi = self.shell.readline.get_history_item
174 174 return [ghi(x) for x in range(start, end)]
175 175
176 176
177 177 #-----------------------------------------------------------------------------
178 178 # Main IPython class
179 179 #-----------------------------------------------------------------------------
180 180
181 181 class InteractiveShell(Configurable, Magic):
182 182 """An enhanced, interactive shell for Python."""
183 183
184 184 _instance = None
185 185 autocall = Enum((0,1,2), default_value=1, config=True)
186 186 # TODO: remove all autoindent logic and put into frontends.
187 187 # We can't do this yet because even runlines uses the autoindent.
188 188 autoindent = CBool(True, config=True)
189 189 automagic = CBool(True, config=True)
190 190 cache_size = Int(1000, config=True)
191 191 color_info = CBool(True, config=True)
192 192 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
193 193 default_value=get_default_colors(), config=True)
194 194 debug = CBool(False, config=True)
195 195 deep_reload = CBool(False, config=True)
196 196 display_formatter = Instance(DisplayFormatter)
197 197 displayhook_class = Type(DisplayHook)
198 198 display_pub_class = Type(DisplayPublisher)
199 199
200 200 exit_now = CBool(False)
201 201 # Monotonically increasing execution counter
202 202 execution_count = Int(1)
203 203 filename = Unicode("<ipython console>")
204 204 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
205 205
206 206 # Input splitter, to split entire cells of input into either individual
207 207 # interactive statements or whole blocks.
208 208 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
209 209 (), {})
210 210 logstart = CBool(False, config=True)
211 211 logfile = Unicode('', config=True)
212 212 logappend = Unicode('', config=True)
213 213 object_info_string_level = Enum((0,1,2), default_value=0,
214 214 config=True)
215 215 pdb = CBool(False, config=True)
216 216
217 217 profile = Unicode('', config=True)
218 218 prompt_in1 = Str('In [\\#]: ', config=True)
219 219 prompt_in2 = Str(' .\\D.: ', config=True)
220 220 prompt_out = Str('Out[\\#]: ', config=True)
221 221 prompts_pad_left = CBool(True, config=True)
222 222 quiet = CBool(False, config=True)
223 223
224 224 history_length = Int(10000, config=True)
225 225
226 226 # The readline stuff will eventually be moved to the terminal subclass
227 227 # but for now, we can't do that as readline is welded in everywhere.
228 228 readline_use = CBool(True, config=True)
229 229 readline_merge_completions = CBool(True, config=True)
230 230 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
231 231 readline_remove_delims = Str('-/~', config=True)
232 232 readline_parse_and_bind = List([
233 233 'tab: complete',
234 234 '"\C-l": clear-screen',
235 235 'set show-all-if-ambiguous on',
236 236 '"\C-o": tab-insert',
237 237 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
238 238 # crash IPython.
239 239 '"\M-o": "\d\d\d\d"',
240 240 '"\M-I": "\d\d\d\d"',
241 241 '"\C-r": reverse-search-history',
242 242 '"\C-s": forward-search-history',
243 243 '"\C-p": history-search-backward',
244 244 '"\C-n": history-search-forward',
245 245 '"\e[A": history-search-backward',
246 246 '"\e[B": history-search-forward',
247 247 '"\C-k": kill-line',
248 248 '"\C-u": unix-line-discard',
249 249 ], allow_none=False, config=True)
250 250
251 251 # TODO: this part of prompt management should be moved to the frontends.
252 252 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
253 253 separate_in = SeparateStr('\n', config=True)
254 254 separate_out = SeparateStr('', config=True)
255 255 separate_out2 = SeparateStr('', config=True)
256 256 wildcards_case_sensitive = CBool(True, config=True)
257 257 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
258 258 default_value='Context', config=True)
259 259
260 260 # Subcomponents of InteractiveShell
261 261 alias_manager = Instance('IPython.core.alias.AliasManager')
262 262 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
263 263 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
264 264 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
265 265 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
266 266 plugin_manager = Instance('IPython.core.plugin.PluginManager')
267 267 payload_manager = Instance('IPython.core.payload.PayloadManager')
268 268 history_manager = Instance('IPython.core.history.HistoryManager')
269 269
270 270 # Private interface
271 271 _post_execute = set()
272 272
273 273 def __init__(self, config=None, ipython_dir=None,
274 274 user_ns=None, user_global_ns=None,
275 275 custom_exceptions=((), None)):
276 276
277 277 # This is where traits with a config_key argument are updated
278 278 # from the values on config.
279 279 super(InteractiveShell, self).__init__(config=config)
280 280
281 281 # These are relatively independent and stateless
282 282 self.init_ipython_dir(ipython_dir)
283 283 self.init_instance_attrs()
284 284 self.init_environment()
285 285
286 286 # Create namespaces (user_ns, user_global_ns, etc.)
287 287 self.init_create_namespaces(user_ns, user_global_ns)
288 288 # This has to be done after init_create_namespaces because it uses
289 289 # something in self.user_ns, but before init_sys_modules, which
290 290 # is the first thing to modify sys.
291 291 # TODO: When we override sys.stdout and sys.stderr before this class
292 292 # is created, we are saving the overridden ones here. Not sure if this
293 293 # is what we want to do.
294 294 self.save_sys_module_state()
295 295 self.init_sys_modules()
296 296
297 297 # While we're trying to have each part of the code directly access what
298 298 # it needs without keeping redundant references to objects, we have too
299 299 # much legacy code that expects ip.db to exist.
300 300 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
301 301
302 302 self.init_history()
303 303 self.init_encoding()
304 304 self.init_prefilter()
305 305
306 306 Magic.__init__(self, self)
307 307
308 308 self.init_syntax_highlighting()
309 309 self.init_hooks()
310 310 self.init_pushd_popd_magic()
311 311 # self.init_traceback_handlers use to be here, but we moved it below
312 312 # because it and init_io have to come after init_readline.
313 313 self.init_user_ns()
314 314 self.init_logger()
315 315 self.init_alias()
316 316 self.init_builtins()
317 317
318 318 # pre_config_initialization
319 319
320 320 # The next section should contain everything that was in ipmaker.
321 321 self.init_logstart()
322 322
323 323 # The following was in post_config_initialization
324 324 self.init_inspector()
325 325 # init_readline() must come before init_io(), because init_io uses
326 326 # readline related things.
327 327 self.init_readline()
328 328 # init_completer must come after init_readline, because it needs to
329 329 # know whether readline is present or not system-wide to configure the
330 330 # completers, since the completion machinery can now operate
331 331 # independently of readline (e.g. over the network)
332 332 self.init_completer()
333 333 # TODO: init_io() needs to happen before init_traceback handlers
334 334 # because the traceback handlers hardcode the stdout/stderr streams.
335 335 # This logic in in debugger.Pdb and should eventually be changed.
336 336 self.init_io()
337 337 self.init_traceback_handlers(custom_exceptions)
338 338 self.init_prompts()
339 339 self.init_display_formatter()
340 340 self.init_display_pub()
341 341 self.init_displayhook()
342 342 self.init_reload_doctest()
343 343 self.init_magics()
344 344 self.init_pdb()
345 345 self.init_extension_manager()
346 346 self.init_plugin_manager()
347 347 self.init_payload()
348 348 self.hooks.late_startup_hook()
349 349 atexit.register(self.atexit_operations)
350 350
351 351 @classmethod
352 352 def instance(cls, *args, **kwargs):
353 353 """Returns a global InteractiveShell instance."""
354 354 if cls._instance is None:
355 355 inst = cls(*args, **kwargs)
356 356 # Now make sure that the instance will also be returned by
357 357 # the subclasses instance attribute.
358 358 for subclass in cls.mro():
359 359 if issubclass(cls, subclass) and \
360 360 issubclass(subclass, InteractiveShell):
361 361 subclass._instance = inst
362 362 else:
363 363 break
364 364 if isinstance(cls._instance, cls):
365 365 return cls._instance
366 366 else:
367 367 raise MultipleInstanceError(
368 368 'Multiple incompatible subclass instances of '
369 369 'InteractiveShell are being created.'
370 370 )
371 371
372 372 @classmethod
373 373 def initialized(cls):
374 374 return hasattr(cls, "_instance")
375 375
376 376 def get_ipython(self):
377 377 """Return the currently running IPython instance."""
378 378 return self
379 379
380 380 #-------------------------------------------------------------------------
381 381 # Trait changed handlers
382 382 #-------------------------------------------------------------------------
383 383
384 384 def _ipython_dir_changed(self, name, new):
385 385 if not os.path.isdir(new):
386 386 os.makedirs(new, mode = 0777)
387 387
388 388 def set_autoindent(self,value=None):
389 389 """Set the autoindent flag, checking for readline support.
390 390
391 391 If called with no arguments, it acts as a toggle."""
392 392
393 393 if not self.has_readline:
394 394 if os.name == 'posix':
395 395 warn("The auto-indent feature requires the readline library")
396 396 self.autoindent = 0
397 397 return
398 398 if value is None:
399 399 self.autoindent = not self.autoindent
400 400 else:
401 401 self.autoindent = value
402 402
403 403 #-------------------------------------------------------------------------
404 404 # init_* methods called by __init__
405 405 #-------------------------------------------------------------------------
406 406
407 407 def init_ipython_dir(self, ipython_dir):
408 408 if ipython_dir is not None:
409 409 self.ipython_dir = ipython_dir
410 410 self.config.Global.ipython_dir = self.ipython_dir
411 411 return
412 412
413 413 if hasattr(self.config.Global, 'ipython_dir'):
414 414 self.ipython_dir = self.config.Global.ipython_dir
415 415 else:
416 416 self.ipython_dir = get_ipython_dir()
417 417
418 418 # All children can just read this
419 419 self.config.Global.ipython_dir = self.ipython_dir
420 420
421 421 def init_instance_attrs(self):
422 422 self.more = False
423 423
424 424 # command compiler
425 425 self.compile = CachingCompiler()
426 426
427 427 # User input buffers
428 428 # NOTE: these variables are slated for full removal, once we are 100%
429 429 # sure that the new execution logic is solid. We will delte runlines,
430 430 # push_line and these buffers, as all input will be managed by the
431 431 # frontends via an inputsplitter instance.
432 432 self.buffer = []
433 433 self.buffer_raw = []
434 434
435 435 # Make an empty namespace, which extension writers can rely on both
436 436 # existing and NEVER being used by ipython itself. This gives them a
437 437 # convenient location for storing additional information and state
438 438 # their extensions may require, without fear of collisions with other
439 439 # ipython names that may develop later.
440 440 self.meta = Struct()
441 441
442 442 # Object variable to store code object waiting execution. This is
443 443 # used mainly by the multithreaded shells, but it can come in handy in
444 444 # other situations. No need to use a Queue here, since it's a single
445 445 # item which gets cleared once run.
446 446 self.code_to_run = None
447 447
448 448 # Temporary files used for various purposes. Deleted at exit.
449 449 self.tempfiles = []
450 450
451 451 # Keep track of readline usage (later set by init_readline)
452 452 self.has_readline = False
453 453
454 454 # keep track of where we started running (mainly for crash post-mortem)
455 455 # This is not being used anywhere currently.
456 456 self.starting_dir = os.getcwd()
457 457
458 458 # Indentation management
459 459 self.indent_current_nsp = 0
460 460
461 461 def init_environment(self):
462 462 """Any changes we need to make to the user's environment."""
463 463 pass
464 464
465 465 def init_encoding(self):
466 466 # Get system encoding at startup time. Certain terminals (like Emacs
467 467 # under Win32 have it set to None, and we need to have a known valid
468 468 # encoding to use in the raw_input() method
469 469 try:
470 470 self.stdin_encoding = sys.stdin.encoding or 'ascii'
471 471 except AttributeError:
472 472 self.stdin_encoding = 'ascii'
473 473
474 474 def init_syntax_highlighting(self):
475 475 # Python source parser/formatter for syntax highlighting
476 476 pyformat = PyColorize.Parser().format
477 477 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
478 478
479 479 def init_pushd_popd_magic(self):
480 480 # for pushd/popd management
481 481 try:
482 482 self.home_dir = get_home_dir()
483 483 except HomeDirError, msg:
484 484 fatal(msg)
485 485
486 486 self.dir_stack = []
487 487
488 488 def init_logger(self):
489 489 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
490 490 logmode='rotate')
491 491
492 492 def init_logstart(self):
493 493 """Initialize logging in case it was requested at the command line.
494 494 """
495 495 if self.logappend:
496 496 self.magic_logstart(self.logappend + ' append')
497 497 elif self.logfile:
498 498 self.magic_logstart(self.logfile)
499 499 elif self.logstart:
500 500 self.magic_logstart()
501 501
502 502 def init_builtins(self):
503 503 self.builtin_trap = BuiltinTrap(shell=self)
504 504
505 505 def init_inspector(self):
506 506 # Object inspector
507 507 self.inspector = oinspect.Inspector(oinspect.InspectColors,
508 508 PyColorize.ANSICodeColors,
509 509 'NoColor',
510 510 self.object_info_string_level)
511 511
512 512 def init_io(self):
513 513 # This will just use sys.stdout and sys.stderr. If you want to
514 514 # override sys.stdout and sys.stderr themselves, you need to do that
515 515 # *before* instantiating this class, because Term holds onto
516 516 # references to the underlying streams.
517 517 if sys.platform == 'win32' and self.has_readline:
518 518 Term = io.IOTerm(cout=self.readline._outputfile,
519 519 cerr=self.readline._outputfile)
520 520 else:
521 521 Term = io.IOTerm()
522 522 io.Term = Term
523 523
524 524 def init_prompts(self):
525 525 # TODO: This is a pass for now because the prompts are managed inside
526 526 # the DisplayHook. Once there is a separate prompt manager, this
527 527 # will initialize that object and all prompt related information.
528 528 pass
529 529
530 530 def init_display_formatter(self):
531 531 self.display_formatter = DisplayFormatter(config=self.config)
532 532
533 533 def init_display_pub(self):
534 534 self.display_pub = self.display_pub_class(config=self.config)
535 535
536 536 def init_displayhook(self):
537 537 # Initialize displayhook, set in/out prompts and printing system
538 538 self.displayhook = self.displayhook_class(
539 539 config=self.config,
540 540 shell=self,
541 541 cache_size=self.cache_size,
542 542 input_sep = self.separate_in,
543 543 output_sep = self.separate_out,
544 544 output_sep2 = self.separate_out2,
545 545 ps1 = self.prompt_in1,
546 546 ps2 = self.prompt_in2,
547 547 ps_out = self.prompt_out,
548 548 pad_left = self.prompts_pad_left
549 549 )
550 550 # This is a context manager that installs/revmoes the displayhook at
551 551 # the appropriate time.
552 552 self.display_trap = DisplayTrap(hook=self.displayhook)
553 553
554 554 def init_reload_doctest(self):
555 555 # Do a proper resetting of doctest, including the necessary displayhook
556 556 # monkeypatching
557 557 try:
558 558 doctest_reload()
559 559 except ImportError:
560 560 warn("doctest module does not exist.")
561 561
562 562 #-------------------------------------------------------------------------
563 563 # Things related to injections into the sys module
564 564 #-------------------------------------------------------------------------
565 565
566 566 def save_sys_module_state(self):
567 567 """Save the state of hooks in the sys module.
568 568
569 569 This has to be called after self.user_ns is created.
570 570 """
571 571 self._orig_sys_module_state = {}
572 572 self._orig_sys_module_state['stdin'] = sys.stdin
573 573 self._orig_sys_module_state['stdout'] = sys.stdout
574 574 self._orig_sys_module_state['stderr'] = sys.stderr
575 575 self._orig_sys_module_state['excepthook'] = sys.excepthook
576 576 try:
577 577 self._orig_sys_modules_main_name = self.user_ns['__name__']
578 578 except KeyError:
579 579 pass
580 580
581 581 def restore_sys_module_state(self):
582 582 """Restore the state of the sys module."""
583 583 try:
584 584 for k, v in self._orig_sys_module_state.iteritems():
585 585 setattr(sys, k, v)
586 586 except AttributeError:
587 587 pass
588 588 # Reset what what done in self.init_sys_modules
589 589 try:
590 590 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
591 591 except (AttributeError, KeyError):
592 592 pass
593 593
594 594 #-------------------------------------------------------------------------
595 595 # Things related to hooks
596 596 #-------------------------------------------------------------------------
597 597
598 598 def init_hooks(self):
599 599 # hooks holds pointers used for user-side customizations
600 600 self.hooks = Struct()
601 601
602 602 self.strdispatchers = {}
603 603
604 604 # Set all default hooks, defined in the IPython.hooks module.
605 605 hooks = IPython.core.hooks
606 606 for hook_name in hooks.__all__:
607 607 # default hooks have priority 100, i.e. low; user hooks should have
608 608 # 0-100 priority
609 609 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
610 610
611 611 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
612 612 """set_hook(name,hook) -> sets an internal IPython hook.
613 613
614 614 IPython exposes some of its internal API as user-modifiable hooks. By
615 615 adding your function to one of these hooks, you can modify IPython's
616 616 behavior to call at runtime your own routines."""
617 617
618 618 # At some point in the future, this should validate the hook before it
619 619 # accepts it. Probably at least check that the hook takes the number
620 620 # of args it's supposed to.
621 621
622 622 f = types.MethodType(hook,self)
623 623
624 624 # check if the hook is for strdispatcher first
625 625 if str_key is not None:
626 626 sdp = self.strdispatchers.get(name, StrDispatch())
627 627 sdp.add_s(str_key, f, priority )
628 628 self.strdispatchers[name] = sdp
629 629 return
630 630 if re_key is not None:
631 631 sdp = self.strdispatchers.get(name, StrDispatch())
632 632 sdp.add_re(re.compile(re_key), f, priority )
633 633 self.strdispatchers[name] = sdp
634 634 return
635 635
636 636 dp = getattr(self.hooks, name, None)
637 637 if name not in IPython.core.hooks.__all__:
638 638 print "Warning! Hook '%s' is not one of %s" % \
639 639 (name, IPython.core.hooks.__all__ )
640 640 if not dp:
641 641 dp = IPython.core.hooks.CommandChainDispatcher()
642 642
643 643 try:
644 644 dp.add(f,priority)
645 645 except AttributeError:
646 646 # it was not commandchain, plain old func - replace
647 647 dp = f
648 648
649 649 setattr(self.hooks,name, dp)
650 650
651 651 def register_post_execute(self, func):
652 652 """Register a function for calling after code execution.
653 653 """
654 654 if not callable(func):
655 655 raise ValueError('argument %s must be callable' % func)
656 656 self._post_execute.add(func)
657 657
658 658 #-------------------------------------------------------------------------
659 659 # Things related to the "main" module
660 660 #-------------------------------------------------------------------------
661 661
662 662 def new_main_mod(self,ns=None):
663 663 """Return a new 'main' module object for user code execution.
664 664 """
665 665 main_mod = self._user_main_module
666 666 init_fakemod_dict(main_mod,ns)
667 667 return main_mod
668 668
669 669 def cache_main_mod(self,ns,fname):
670 670 """Cache a main module's namespace.
671 671
672 672 When scripts are executed via %run, we must keep a reference to the
673 673 namespace of their __main__ module (a FakeModule instance) around so
674 674 that Python doesn't clear it, rendering objects defined therein
675 675 useless.
676 676
677 677 This method keeps said reference in a private dict, keyed by the
678 678 absolute path of the module object (which corresponds to the script
679 679 path). This way, for multiple executions of the same script we only
680 680 keep one copy of the namespace (the last one), thus preventing memory
681 681 leaks from old references while allowing the objects from the last
682 682 execution to be accessible.
683 683
684 684 Note: we can not allow the actual FakeModule instances to be deleted,
685 685 because of how Python tears down modules (it hard-sets all their
686 686 references to None without regard for reference counts). This method
687 687 must therefore make a *copy* of the given namespace, to allow the
688 688 original module's __dict__ to be cleared and reused.
689 689
690 690
691 691 Parameters
692 692 ----------
693 693 ns : a namespace (a dict, typically)
694 694
695 695 fname : str
696 696 Filename associated with the namespace.
697 697
698 698 Examples
699 699 --------
700 700
701 701 In [10]: import IPython
702 702
703 703 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
704 704
705 705 In [12]: IPython.__file__ in _ip._main_ns_cache
706 706 Out[12]: True
707 707 """
708 708 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
709 709
710 710 def clear_main_mod_cache(self):
711 711 """Clear the cache of main modules.
712 712
713 713 Mainly for use by utilities like %reset.
714 714
715 715 Examples
716 716 --------
717 717
718 718 In [15]: import IPython
719 719
720 720 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
721 721
722 722 In [17]: len(_ip._main_ns_cache) > 0
723 723 Out[17]: True
724 724
725 725 In [18]: _ip.clear_main_mod_cache()
726 726
727 727 In [19]: len(_ip._main_ns_cache) == 0
728 728 Out[19]: True
729 729 """
730 730 self._main_ns_cache.clear()
731 731
732 732 #-------------------------------------------------------------------------
733 733 # Things related to debugging
734 734 #-------------------------------------------------------------------------
735 735
736 736 def init_pdb(self):
737 737 # Set calling of pdb on exceptions
738 738 # self.call_pdb is a property
739 739 self.call_pdb = self.pdb
740 740
741 741 def _get_call_pdb(self):
742 742 return self._call_pdb
743 743
744 744 def _set_call_pdb(self,val):
745 745
746 746 if val not in (0,1,False,True):
747 747 raise ValueError,'new call_pdb value must be boolean'
748 748
749 749 # store value in instance
750 750 self._call_pdb = val
751 751
752 752 # notify the actual exception handlers
753 753 self.InteractiveTB.call_pdb = val
754 754
755 755 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
756 756 'Control auto-activation of pdb at exceptions')
757 757
758 758 def debugger(self,force=False):
759 759 """Call the pydb/pdb debugger.
760 760
761 761 Keywords:
762 762
763 763 - force(False): by default, this routine checks the instance call_pdb
764 764 flag and does not actually invoke the debugger if the flag is false.
765 765 The 'force' option forces the debugger to activate even if the flag
766 766 is false.
767 767 """
768 768
769 769 if not (force or self.call_pdb):
770 770 return
771 771
772 772 if not hasattr(sys,'last_traceback'):
773 773 error('No traceback has been produced, nothing to debug.')
774 774 return
775 775
776 776 # use pydb if available
777 777 if debugger.has_pydb:
778 778 from pydb import pm
779 779 else:
780 780 # fallback to our internal debugger
781 781 pm = lambda : self.InteractiveTB.debugger(force=True)
782 782
783 783 with self.readline_no_record:
784 784 pm()
785 785
786 786 #-------------------------------------------------------------------------
787 787 # Things related to IPython's various namespaces
788 788 #-------------------------------------------------------------------------
789 789
790 790 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
791 791 # Create the namespace where the user will operate. user_ns is
792 792 # normally the only one used, and it is passed to the exec calls as
793 793 # the locals argument. But we do carry a user_global_ns namespace
794 794 # given as the exec 'globals' argument, This is useful in embedding
795 795 # situations where the ipython shell opens in a context where the
796 796 # distinction between locals and globals is meaningful. For
797 797 # non-embedded contexts, it is just the same object as the user_ns dict.
798 798
799 799 # FIXME. For some strange reason, __builtins__ is showing up at user
800 800 # level as a dict instead of a module. This is a manual fix, but I
801 801 # should really track down where the problem is coming from. Alex
802 802 # Schmolck reported this problem first.
803 803
804 804 # A useful post by Alex Martelli on this topic:
805 805 # Re: inconsistent value from __builtins__
806 806 # Von: Alex Martelli <aleaxit@yahoo.com>
807 807 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
808 808 # Gruppen: comp.lang.python
809 809
810 810 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
811 811 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
812 812 # > <type 'dict'>
813 813 # > >>> print type(__builtins__)
814 814 # > <type 'module'>
815 815 # > Is this difference in return value intentional?
816 816
817 817 # Well, it's documented that '__builtins__' can be either a dictionary
818 818 # or a module, and it's been that way for a long time. Whether it's
819 819 # intentional (or sensible), I don't know. In any case, the idea is
820 820 # that if you need to access the built-in namespace directly, you
821 821 # should start with "import __builtin__" (note, no 's') which will
822 822 # definitely give you a module. Yeah, it's somewhat confusing:-(.
823 823
824 824 # These routines return properly built dicts as needed by the rest of
825 825 # the code, and can also be used by extension writers to generate
826 826 # properly initialized namespaces.
827 827 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
828 828 user_global_ns)
829 829
830 830 # Assign namespaces
831 831 # This is the namespace where all normal user variables live
832 832 self.user_ns = user_ns
833 833 self.user_global_ns = user_global_ns
834 834
835 835 # An auxiliary namespace that checks what parts of the user_ns were
836 836 # loaded at startup, so we can list later only variables defined in
837 837 # actual interactive use. Since it is always a subset of user_ns, it
838 838 # doesn't need to be separately tracked in the ns_table.
839 839 self.user_ns_hidden = {}
840 840
841 841 # A namespace to keep track of internal data structures to prevent
842 842 # them from cluttering user-visible stuff. Will be updated later
843 843 self.internal_ns = {}
844 844
845 845 # Now that FakeModule produces a real module, we've run into a nasty
846 846 # problem: after script execution (via %run), the module where the user
847 847 # code ran is deleted. Now that this object is a true module (needed
848 848 # so docetst and other tools work correctly), the Python module
849 849 # teardown mechanism runs over it, and sets to None every variable
850 850 # present in that module. Top-level references to objects from the
851 851 # script survive, because the user_ns is updated with them. However,
852 852 # calling functions defined in the script that use other things from
853 853 # the script will fail, because the function's closure had references
854 854 # to the original objects, which are now all None. So we must protect
855 855 # these modules from deletion by keeping a cache.
856 856 #
857 857 # To avoid keeping stale modules around (we only need the one from the
858 858 # last run), we use a dict keyed with the full path to the script, so
859 859 # only the last version of the module is held in the cache. Note,
860 860 # however, that we must cache the module *namespace contents* (their
861 861 # __dict__). Because if we try to cache the actual modules, old ones
862 862 # (uncached) could be destroyed while still holding references (such as
863 863 # those held by GUI objects that tend to be long-lived)>
864 864 #
865 865 # The %reset command will flush this cache. See the cache_main_mod()
866 866 # and clear_main_mod_cache() methods for details on use.
867 867
868 868 # This is the cache used for 'main' namespaces
869 869 self._main_ns_cache = {}
870 870 # And this is the single instance of FakeModule whose __dict__ we keep
871 871 # copying and clearing for reuse on each %run
872 872 self._user_main_module = FakeModule()
873 873
874 874 # A table holding all the namespaces IPython deals with, so that
875 875 # introspection facilities can search easily.
876 876 self.ns_table = {'user':user_ns,
877 877 'user_global':user_global_ns,
878 878 'internal':self.internal_ns,
879 879 'builtin':__builtin__.__dict__
880 880 }
881 881
882 882 # Similarly, track all namespaces where references can be held and that
883 883 # we can safely clear (so it can NOT include builtin). This one can be
884 884 # a simple list. Note that the main execution namespaces, user_ns and
885 885 # user_global_ns, can NOT be listed here, as clearing them blindly
886 886 # causes errors in object __del__ methods. Instead, the reset() method
887 887 # clears them manually and carefully.
888 888 self.ns_refs_table = [ self.user_ns_hidden,
889 889 self.internal_ns, self._main_ns_cache ]
890 890
891 891 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
892 892 """Return a valid local and global user interactive namespaces.
893 893
894 894 This builds a dict with the minimal information needed to operate as a
895 895 valid IPython user namespace, which you can pass to the various
896 896 embedding classes in ipython. The default implementation returns the
897 897 same dict for both the locals and the globals to allow functions to
898 898 refer to variables in the namespace. Customized implementations can
899 899 return different dicts. The locals dictionary can actually be anything
900 900 following the basic mapping protocol of a dict, but the globals dict
901 901 must be a true dict, not even a subclass. It is recommended that any
902 902 custom object for the locals namespace synchronize with the globals
903 903 dict somehow.
904 904
905 905 Raises TypeError if the provided globals namespace is not a true dict.
906 906
907 907 Parameters
908 908 ----------
909 909 user_ns : dict-like, optional
910 910 The current user namespace. The items in this namespace should
911 911 be included in the output. If None, an appropriate blank
912 912 namespace should be created.
913 913 user_global_ns : dict, optional
914 914 The current user global namespace. The items in this namespace
915 915 should be included in the output. If None, an appropriate
916 916 blank namespace should be created.
917 917
918 918 Returns
919 919 -------
920 920 A pair of dictionary-like object to be used as the local namespace
921 921 of the interpreter and a dict to be used as the global namespace.
922 922 """
923 923
924 924
925 925 # We must ensure that __builtin__ (without the final 's') is always
926 926 # available and pointing to the __builtin__ *module*. For more details:
927 927 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
928 928
929 929 if user_ns is None:
930 930 # Set __name__ to __main__ to better match the behavior of the
931 931 # normal interpreter.
932 932 user_ns = {'__name__' :'__main__',
933 933 '__builtin__' : __builtin__,
934 934 '__builtins__' : __builtin__,
935 935 }
936 936 else:
937 937 user_ns.setdefault('__name__','__main__')
938 938 user_ns.setdefault('__builtin__',__builtin__)
939 939 user_ns.setdefault('__builtins__',__builtin__)
940 940
941 941 if user_global_ns is None:
942 942 user_global_ns = user_ns
943 943 if type(user_global_ns) is not dict:
944 944 raise TypeError("user_global_ns must be a true dict; got %r"
945 945 % type(user_global_ns))
946 946
947 947 return user_ns, user_global_ns
948 948
949 949 def init_sys_modules(self):
950 950 # We need to insert into sys.modules something that looks like a
951 951 # module but which accesses the IPython namespace, for shelve and
952 952 # pickle to work interactively. Normally they rely on getting
953 953 # everything out of __main__, but for embedding purposes each IPython
954 954 # instance has its own private namespace, so we can't go shoving
955 955 # everything into __main__.
956 956
957 957 # note, however, that we should only do this for non-embedded
958 958 # ipythons, which really mimic the __main__.__dict__ with their own
959 959 # namespace. Embedded instances, on the other hand, should not do
960 960 # this because they need to manage the user local/global namespaces
961 961 # only, but they live within a 'normal' __main__ (meaning, they
962 962 # shouldn't overtake the execution environment of the script they're
963 963 # embedded in).
964 964
965 965 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
966 966
967 967 try:
968 968 main_name = self.user_ns['__name__']
969 969 except KeyError:
970 970 raise KeyError('user_ns dictionary MUST have a "__name__" key')
971 971 else:
972 972 sys.modules[main_name] = FakeModule(self.user_ns)
973 973
974 974 def init_user_ns(self):
975 975 """Initialize all user-visible namespaces to their minimum defaults.
976 976
977 977 Certain history lists are also initialized here, as they effectively
978 978 act as user namespaces.
979 979
980 980 Notes
981 981 -----
982 982 All data structures here are only filled in, they are NOT reset by this
983 983 method. If they were not empty before, data will simply be added to
984 984 therm.
985 985 """
986 986 # This function works in two parts: first we put a few things in
987 987 # user_ns, and we sync that contents into user_ns_hidden so that these
988 988 # initial variables aren't shown by %who. After the sync, we add the
989 989 # rest of what we *do* want the user to see with %who even on a new
990 990 # session (probably nothing, so theye really only see their own stuff)
991 991
992 992 # The user dict must *always* have a __builtin__ reference to the
993 993 # Python standard __builtin__ namespace, which must be imported.
994 994 # This is so that certain operations in prompt evaluation can be
995 995 # reliably executed with builtins. Note that we can NOT use
996 996 # __builtins__ (note the 's'), because that can either be a dict or a
997 997 # module, and can even mutate at runtime, depending on the context
998 998 # (Python makes no guarantees on it). In contrast, __builtin__ is
999 999 # always a module object, though it must be explicitly imported.
1000 1000
1001 1001 # For more details:
1002 1002 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
1003 1003 ns = dict(__builtin__ = __builtin__)
1004 1004
1005 1005 # Put 'help' in the user namespace
1006 1006 try:
1007 1007 from site import _Helper
1008 1008 ns['help'] = _Helper()
1009 1009 except ImportError:
1010 1010 warn('help() not available - check site.py')
1011 1011
1012 1012 # make global variables for user access to the histories
1013 1013 ns['_ih'] = self.history_manager.input_hist_parsed
1014 1014 ns['_oh'] = self.history_manager.output_hist
1015 1015 ns['_dh'] = self.history_manager.dir_hist
1016 1016
1017 1017 ns['_sh'] = shadowns
1018 1018
1019 1019 # user aliases to input and output histories. These shouldn't show up
1020 1020 # in %who, as they can have very large reprs.
1021 1021 ns['In'] = self.history_manager.input_hist_parsed
1022 1022 ns['Out'] = self.history_manager.output_hist
1023 1023
1024 1024 # Store myself as the public api!!!
1025 1025 ns['get_ipython'] = self.get_ipython
1026 1026
1027 1027 # Sync what we've added so far to user_ns_hidden so these aren't seen
1028 1028 # by %who
1029 1029 self.user_ns_hidden.update(ns)
1030 1030
1031 1031 # Anything put into ns now would show up in %who. Think twice before
1032 1032 # putting anything here, as we really want %who to show the user their
1033 1033 # stuff, not our variables.
1034 1034
1035 1035 # Finally, update the real user's namespace
1036 1036 self.user_ns.update(ns)
1037 1037
1038 1038 def reset(self, new_session=True):
1039 1039 """Clear all internal namespaces.
1040 1040
1041 1041 Note that this is much more aggressive than %reset, since it clears
1042 1042 fully all namespaces, as well as all input/output lists.
1043 1043
1044 1044 If new_session is True, a new history session will be opened.
1045 1045 """
1046 1046 # Clear histories
1047 1047 self.history_manager.reset(new_session)
1048
1049 # Flush cached output items
1050 self.displayhook.flush()
1048 1051
1049 1052 # Reset counter used to index all histories
1050 1053 self.execution_count = 0
1051 1054
1052 1055 # Restore the user namespaces to minimal usability
1053 1056 for ns in self.ns_refs_table:
1054 1057 ns.clear()
1055 1058
1056 1059 # The main execution namespaces must be cleared very carefully,
1057 1060 # skipping the deletion of the builtin-related keys, because doing so
1058 1061 # would cause errors in many object's __del__ methods.
1059 1062 for ns in [self.user_ns, self.user_global_ns]:
1060 1063 drop_keys = set(ns.keys())
1061 1064 drop_keys.discard('__builtin__')
1062 1065 drop_keys.discard('__builtins__')
1063 1066 for k in drop_keys:
1064 1067 del ns[k]
1065 1068
1066 1069 # Restore the user namespaces to minimal usability
1067 1070 self.init_user_ns()
1068 1071
1069 1072 # Restore the default and user aliases
1070 1073 self.alias_manager.clear_aliases()
1071 1074 self.alias_manager.init_aliases()
1075
1076 # Flush the private list of module references kept for script
1077 # execution protection
1078 self.clear_main_mod_cache()
1072 1079
1073 1080 def reset_selective(self, regex=None):
1074 1081 """Clear selective variables from internal namespaces based on a
1075 1082 specified regular expression.
1076 1083
1077 1084 Parameters
1078 1085 ----------
1079 1086 regex : string or compiled pattern, optional
1080 1087 A regular expression pattern that will be used in searching
1081 1088 variable names in the users namespaces.
1082 1089 """
1083 1090 if regex is not None:
1084 1091 try:
1085 1092 m = re.compile(regex)
1086 1093 except TypeError:
1087 1094 raise TypeError('regex must be a string or compiled pattern')
1088 1095 # Search for keys in each namespace that match the given regex
1089 1096 # If a match is found, delete the key/value pair.
1090 1097 for ns in self.ns_refs_table:
1091 1098 for var in ns:
1092 1099 if m.search(var):
1093 1100 del ns[var]
1094 1101
1095 1102 def push(self, variables, interactive=True):
1096 1103 """Inject a group of variables into the IPython user namespace.
1097 1104
1098 1105 Parameters
1099 1106 ----------
1100 1107 variables : dict, str or list/tuple of str
1101 1108 The variables to inject into the user's namespace. If a dict, a
1102 1109 simple update is done. If a str, the string is assumed to have
1103 1110 variable names separated by spaces. A list/tuple of str can also
1104 1111 be used to give the variable names. If just the variable names are
1105 1112 give (list/tuple/str) then the variable values looked up in the
1106 1113 callers frame.
1107 1114 interactive : bool
1108 1115 If True (default), the variables will be listed with the ``who``
1109 1116 magic.
1110 1117 """
1111 1118 vdict = None
1112 1119
1113 1120 # We need a dict of name/value pairs to do namespace updates.
1114 1121 if isinstance(variables, dict):
1115 1122 vdict = variables
1116 1123 elif isinstance(variables, (basestring, list, tuple)):
1117 1124 if isinstance(variables, basestring):
1118 1125 vlist = variables.split()
1119 1126 else:
1120 1127 vlist = variables
1121 1128 vdict = {}
1122 1129 cf = sys._getframe(1)
1123 1130 for name in vlist:
1124 1131 try:
1125 1132 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1126 1133 except:
1127 1134 print ('Could not get variable %s from %s' %
1128 1135 (name,cf.f_code.co_name))
1129 1136 else:
1130 1137 raise ValueError('variables must be a dict/str/list/tuple')
1131 1138
1132 1139 # Propagate variables to user namespace
1133 1140 self.user_ns.update(vdict)
1134 1141
1135 1142 # And configure interactive visibility
1136 1143 config_ns = self.user_ns_hidden
1137 1144 if interactive:
1138 1145 for name, val in vdict.iteritems():
1139 1146 config_ns.pop(name, None)
1140 1147 else:
1141 1148 for name,val in vdict.iteritems():
1142 1149 config_ns[name] = val
1143 1150
1144 1151 #-------------------------------------------------------------------------
1145 1152 # Things related to object introspection
1146 1153 #-------------------------------------------------------------------------
1147 1154
1148 1155 def _ofind(self, oname, namespaces=None):
1149 1156 """Find an object in the available namespaces.
1150 1157
1151 1158 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1152 1159
1153 1160 Has special code to detect magic functions.
1154 1161 """
1155 1162 #oname = oname.strip()
1156 1163 #print '1- oname: <%r>' % oname # dbg
1157 1164 try:
1158 1165 oname = oname.strip().encode('ascii')
1159 1166 #print '2- oname: <%r>' % oname # dbg
1160 1167 except UnicodeEncodeError:
1161 1168 print 'Python identifiers can only contain ascii characters.'
1162 1169 return dict(found=False)
1163 1170
1164 1171 alias_ns = None
1165 1172 if namespaces is None:
1166 1173 # Namespaces to search in:
1167 1174 # Put them in a list. The order is important so that we
1168 1175 # find things in the same order that Python finds them.
1169 1176 namespaces = [ ('Interactive', self.user_ns),
1170 1177 ('IPython internal', self.internal_ns),
1171 1178 ('Python builtin', __builtin__.__dict__),
1172 1179 ('Alias', self.alias_manager.alias_table),
1173 1180 ]
1174 1181 alias_ns = self.alias_manager.alias_table
1175 1182
1176 1183 # initialize results to 'null'
1177 1184 found = False; obj = None; ospace = None; ds = None;
1178 1185 ismagic = False; isalias = False; parent = None
1179 1186
1180 1187 # We need to special-case 'print', which as of python2.6 registers as a
1181 1188 # function but should only be treated as one if print_function was
1182 1189 # loaded with a future import. In this case, just bail.
1183 1190 if (oname == 'print' and not (self.compile.compiler_flags &
1184 1191 __future__.CO_FUTURE_PRINT_FUNCTION)):
1185 1192 return {'found':found, 'obj':obj, 'namespace':ospace,
1186 1193 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1187 1194
1188 1195 # Look for the given name by splitting it in parts. If the head is
1189 1196 # found, then we look for all the remaining parts as members, and only
1190 1197 # declare success if we can find them all.
1191 1198 oname_parts = oname.split('.')
1192 1199 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1193 1200 for nsname,ns in namespaces:
1194 1201 try:
1195 1202 obj = ns[oname_head]
1196 1203 except KeyError:
1197 1204 continue
1198 1205 else:
1199 1206 #print 'oname_rest:', oname_rest # dbg
1200 1207 for part in oname_rest:
1201 1208 try:
1202 1209 parent = obj
1203 1210 obj = getattr(obj,part)
1204 1211 except:
1205 1212 # Blanket except b/c some badly implemented objects
1206 1213 # allow __getattr__ to raise exceptions other than
1207 1214 # AttributeError, which then crashes IPython.
1208 1215 break
1209 1216 else:
1210 1217 # If we finish the for loop (no break), we got all members
1211 1218 found = True
1212 1219 ospace = nsname
1213 1220 if ns == alias_ns:
1214 1221 isalias = True
1215 1222 break # namespace loop
1216 1223
1217 1224 # Try to see if it's magic
1218 1225 if not found:
1219 1226 if oname.startswith(ESC_MAGIC):
1220 1227 oname = oname[1:]
1221 1228 obj = getattr(self,'magic_'+oname,None)
1222 1229 if obj is not None:
1223 1230 found = True
1224 1231 ospace = 'IPython internal'
1225 1232 ismagic = True
1226 1233
1227 1234 # Last try: special-case some literals like '', [], {}, etc:
1228 1235 if not found and oname_head in ["''",'""','[]','{}','()']:
1229 1236 obj = eval(oname_head)
1230 1237 found = True
1231 1238 ospace = 'Interactive'
1232 1239
1233 1240 return {'found':found, 'obj':obj, 'namespace':ospace,
1234 1241 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1235 1242
1236 1243 def _ofind_property(self, oname, info):
1237 1244 """Second part of object finding, to look for property details."""
1238 1245 if info.found:
1239 1246 # Get the docstring of the class property if it exists.
1240 1247 path = oname.split('.')
1241 1248 root = '.'.join(path[:-1])
1242 1249 if info.parent is not None:
1243 1250 try:
1244 1251 target = getattr(info.parent, '__class__')
1245 1252 # The object belongs to a class instance.
1246 1253 try:
1247 1254 target = getattr(target, path[-1])
1248 1255 # The class defines the object.
1249 1256 if isinstance(target, property):
1250 1257 oname = root + '.__class__.' + path[-1]
1251 1258 info = Struct(self._ofind(oname))
1252 1259 except AttributeError: pass
1253 1260 except AttributeError: pass
1254 1261
1255 1262 # We return either the new info or the unmodified input if the object
1256 1263 # hadn't been found
1257 1264 return info
1258 1265
1259 1266 def _object_find(self, oname, namespaces=None):
1260 1267 """Find an object and return a struct with info about it."""
1261 1268 inf = Struct(self._ofind(oname, namespaces))
1262 1269 return Struct(self._ofind_property(oname, inf))
1263 1270
1264 1271 def _inspect(self, meth, oname, namespaces=None, **kw):
1265 1272 """Generic interface to the inspector system.
1266 1273
1267 1274 This function is meant to be called by pdef, pdoc & friends."""
1268 1275 info = self._object_find(oname)
1269 1276 if info.found:
1270 1277 pmethod = getattr(self.inspector, meth)
1271 1278 formatter = format_screen if info.ismagic else None
1272 1279 if meth == 'pdoc':
1273 1280 pmethod(info.obj, oname, formatter)
1274 1281 elif meth == 'pinfo':
1275 1282 pmethod(info.obj, oname, formatter, info, **kw)
1276 1283 else:
1277 1284 pmethod(info.obj, oname)
1278 1285 else:
1279 1286 print 'Object `%s` not found.' % oname
1280 1287 return 'not found' # so callers can take other action
1281 1288
1282 1289 def object_inspect(self, oname):
1283 1290 info = self._object_find(oname)
1284 1291 if info.found:
1285 1292 return self.inspector.info(info.obj, oname, info=info)
1286 1293 else:
1287 1294 return oinspect.object_info(name=oname, found=False)
1288 1295
1289 1296 #-------------------------------------------------------------------------
1290 1297 # Things related to history management
1291 1298 #-------------------------------------------------------------------------
1292 1299
1293 1300 def init_history(self):
1294 1301 """Sets up the command history, and starts regular autosaves."""
1295 1302 self.history_manager = HistoryManager(shell=self, config=self.config)
1296 1303
1297 1304 #-------------------------------------------------------------------------
1298 1305 # Things related to exception handling and tracebacks (not debugging)
1299 1306 #-------------------------------------------------------------------------
1300 1307
1301 1308 def init_traceback_handlers(self, custom_exceptions):
1302 1309 # Syntax error handler.
1303 1310 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1304 1311
1305 1312 # The interactive one is initialized with an offset, meaning we always
1306 1313 # want to remove the topmost item in the traceback, which is our own
1307 1314 # internal code. Valid modes: ['Plain','Context','Verbose']
1308 1315 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1309 1316 color_scheme='NoColor',
1310 1317 tb_offset = 1,
1311 1318 check_cache=self.compile.check_cache)
1312 1319
1313 1320 # The instance will store a pointer to the system-wide exception hook,
1314 1321 # so that runtime code (such as magics) can access it. This is because
1315 1322 # during the read-eval loop, it may get temporarily overwritten.
1316 1323 self.sys_excepthook = sys.excepthook
1317 1324
1318 1325 # and add any custom exception handlers the user may have specified
1319 1326 self.set_custom_exc(*custom_exceptions)
1320 1327
1321 1328 # Set the exception mode
1322 1329 self.InteractiveTB.set_mode(mode=self.xmode)
1323 1330
1324 1331 def set_custom_exc(self, exc_tuple, handler):
1325 1332 """set_custom_exc(exc_tuple,handler)
1326 1333
1327 1334 Set a custom exception handler, which will be called if any of the
1328 1335 exceptions in exc_tuple occur in the mainloop (specifically, in the
1329 1336 run_code() method.
1330 1337
1331 1338 Inputs:
1332 1339
1333 1340 - exc_tuple: a *tuple* of valid exceptions to call the defined
1334 1341 handler for. It is very important that you use a tuple, and NOT A
1335 1342 LIST here, because of the way Python's except statement works. If
1336 1343 you only want to trap a single exception, use a singleton tuple:
1337 1344
1338 1345 exc_tuple == (MyCustomException,)
1339 1346
1340 1347 - handler: this must be defined as a function with the following
1341 1348 basic interface::
1342 1349
1343 1350 def my_handler(self, etype, value, tb, tb_offset=None)
1344 1351 ...
1345 1352 # The return value must be
1346 1353 return structured_traceback
1347 1354
1348 1355 This will be made into an instance method (via types.MethodType)
1349 1356 of IPython itself, and it will be called if any of the exceptions
1350 1357 listed in the exc_tuple are caught. If the handler is None, an
1351 1358 internal basic one is used, which just prints basic info.
1352 1359
1353 1360 WARNING: by putting in your own exception handler into IPython's main
1354 1361 execution loop, you run a very good chance of nasty crashes. This
1355 1362 facility should only be used if you really know what you are doing."""
1356 1363
1357 1364 assert type(exc_tuple)==type(()) , \
1358 1365 "The custom exceptions must be given AS A TUPLE."
1359 1366
1360 1367 def dummy_handler(self,etype,value,tb):
1361 1368 print '*** Simple custom exception handler ***'
1362 1369 print 'Exception type :',etype
1363 1370 print 'Exception value:',value
1364 1371 print 'Traceback :',tb
1365 1372 print 'Source code :','\n'.join(self.buffer)
1366 1373
1367 1374 if handler is None: handler = dummy_handler
1368 1375
1369 1376 self.CustomTB = types.MethodType(handler,self)
1370 1377 self.custom_exceptions = exc_tuple
1371 1378
1372 1379 def excepthook(self, etype, value, tb):
1373 1380 """One more defense for GUI apps that call sys.excepthook.
1374 1381
1375 1382 GUI frameworks like wxPython trap exceptions and call
1376 1383 sys.excepthook themselves. I guess this is a feature that
1377 1384 enables them to keep running after exceptions that would
1378 1385 otherwise kill their mainloop. This is a bother for IPython
1379 1386 which excepts to catch all of the program exceptions with a try:
1380 1387 except: statement.
1381 1388
1382 1389 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1383 1390 any app directly invokes sys.excepthook, it will look to the user like
1384 1391 IPython crashed. In order to work around this, we can disable the
1385 1392 CrashHandler and replace it with this excepthook instead, which prints a
1386 1393 regular traceback using our InteractiveTB. In this fashion, apps which
1387 1394 call sys.excepthook will generate a regular-looking exception from
1388 1395 IPython, and the CrashHandler will only be triggered by real IPython
1389 1396 crashes.
1390 1397
1391 1398 This hook should be used sparingly, only in places which are not likely
1392 1399 to be true IPython errors.
1393 1400 """
1394 1401 self.showtraceback((etype,value,tb),tb_offset=0)
1395 1402
1396 1403 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1397 1404 exception_only=False):
1398 1405 """Display the exception that just occurred.
1399 1406
1400 1407 If nothing is known about the exception, this is the method which
1401 1408 should be used throughout the code for presenting user tracebacks,
1402 1409 rather than directly invoking the InteractiveTB object.
1403 1410
1404 1411 A specific showsyntaxerror() also exists, but this method can take
1405 1412 care of calling it if needed, so unless you are explicitly catching a
1406 1413 SyntaxError exception, don't try to analyze the stack manually and
1407 1414 simply call this method."""
1408 1415
1409 1416 try:
1410 1417 if exc_tuple is None:
1411 1418 etype, value, tb = sys.exc_info()
1412 1419 else:
1413 1420 etype, value, tb = exc_tuple
1414 1421
1415 1422 if etype is None:
1416 1423 if hasattr(sys, 'last_type'):
1417 1424 etype, value, tb = sys.last_type, sys.last_value, \
1418 1425 sys.last_traceback
1419 1426 else:
1420 1427 self.write_err('No traceback available to show.\n')
1421 1428 return
1422 1429
1423 1430 if etype is SyntaxError:
1424 1431 # Though this won't be called by syntax errors in the input
1425 1432 # line, there may be SyntaxError cases whith imported code.
1426 1433 self.showsyntaxerror(filename)
1427 1434 elif etype is UsageError:
1428 1435 print "UsageError:", value
1429 1436 else:
1430 1437 # WARNING: these variables are somewhat deprecated and not
1431 1438 # necessarily safe to use in a threaded environment, but tools
1432 1439 # like pdb depend on their existence, so let's set them. If we
1433 1440 # find problems in the field, we'll need to revisit their use.
1434 1441 sys.last_type = etype
1435 1442 sys.last_value = value
1436 1443 sys.last_traceback = tb
1437 1444
1438 1445 if etype in self.custom_exceptions:
1439 1446 # FIXME: Old custom traceback objects may just return a
1440 1447 # string, in that case we just put it into a list
1441 1448 stb = self.CustomTB(etype, value, tb, tb_offset)
1442 1449 if isinstance(ctb, basestring):
1443 1450 stb = [stb]
1444 1451 else:
1445 1452 if exception_only:
1446 1453 stb = ['An exception has occurred, use %tb to see '
1447 1454 'the full traceback.\n']
1448 1455 stb.extend(self.InteractiveTB.get_exception_only(etype,
1449 1456 value))
1450 1457 else:
1451 1458 stb = self.InteractiveTB.structured_traceback(etype,
1452 1459 value, tb, tb_offset=tb_offset)
1453 1460 # FIXME: the pdb calling should be done by us, not by
1454 1461 # the code computing the traceback.
1455 1462 if self.InteractiveTB.call_pdb:
1456 1463 # pdb mucks up readline, fix it back
1457 1464 self.set_readline_completer()
1458 1465
1459 1466 # Actually show the traceback
1460 1467 self._showtraceback(etype, value, stb)
1461 1468
1462 1469 except KeyboardInterrupt:
1463 1470 self.write_err("\nKeyboardInterrupt\n")
1464 1471
1465 1472 def _showtraceback(self, etype, evalue, stb):
1466 1473 """Actually show a traceback.
1467 1474
1468 1475 Subclasses may override this method to put the traceback on a different
1469 1476 place, like a side channel.
1470 1477 """
1471 1478 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1472 1479
1473 1480 def showsyntaxerror(self, filename=None):
1474 1481 """Display the syntax error that just occurred.
1475 1482
1476 1483 This doesn't display a stack trace because there isn't one.
1477 1484
1478 1485 If a filename is given, it is stuffed in the exception instead
1479 1486 of what was there before (because Python's parser always uses
1480 1487 "<string>" when reading from a string).
1481 1488 """
1482 1489 etype, value, last_traceback = sys.exc_info()
1483 1490
1484 1491 # See note about these variables in showtraceback() above
1485 1492 sys.last_type = etype
1486 1493 sys.last_value = value
1487 1494 sys.last_traceback = last_traceback
1488 1495
1489 1496 if filename and etype is SyntaxError:
1490 1497 # Work hard to stuff the correct filename in the exception
1491 1498 try:
1492 1499 msg, (dummy_filename, lineno, offset, line) = value
1493 1500 except:
1494 1501 # Not the format we expect; leave it alone
1495 1502 pass
1496 1503 else:
1497 1504 # Stuff in the right filename
1498 1505 try:
1499 1506 # Assume SyntaxError is a class exception
1500 1507 value = SyntaxError(msg, (filename, lineno, offset, line))
1501 1508 except:
1502 1509 # If that failed, assume SyntaxError is a string
1503 1510 value = msg, (filename, lineno, offset, line)
1504 1511 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1505 1512 self._showtraceback(etype, value, stb)
1506 1513
1507 1514 #-------------------------------------------------------------------------
1508 1515 # Things related to readline
1509 1516 #-------------------------------------------------------------------------
1510 1517
1511 1518 def init_readline(self):
1512 1519 """Command history completion/saving/reloading."""
1513 1520
1514 1521 if self.readline_use:
1515 1522 import IPython.utils.rlineimpl as readline
1516 1523
1517 1524 self.rl_next_input = None
1518 1525 self.rl_do_indent = False
1519 1526
1520 1527 if not self.readline_use or not readline.have_readline:
1521 1528 self.has_readline = False
1522 1529 self.readline = None
1523 1530 # Set a number of methods that depend on readline to be no-op
1524 1531 self.set_readline_completer = no_op
1525 1532 self.set_custom_completer = no_op
1526 1533 self.set_completer_frame = no_op
1527 1534 warn('Readline services not available or not loaded.')
1528 1535 else:
1529 1536 self.has_readline = True
1530 1537 self.readline = readline
1531 1538 sys.modules['readline'] = readline
1532 1539
1533 1540 # Platform-specific configuration
1534 1541 if os.name == 'nt':
1535 1542 # FIXME - check with Frederick to see if we can harmonize
1536 1543 # naming conventions with pyreadline to avoid this
1537 1544 # platform-dependent check
1538 1545 self.readline_startup_hook = readline.set_pre_input_hook
1539 1546 else:
1540 1547 self.readline_startup_hook = readline.set_startup_hook
1541 1548
1542 1549 # Load user's initrc file (readline config)
1543 1550 # Or if libedit is used, load editrc.
1544 1551 inputrc_name = os.environ.get('INPUTRC')
1545 1552 if inputrc_name is None:
1546 1553 home_dir = get_home_dir()
1547 1554 if home_dir is not None:
1548 1555 inputrc_name = '.inputrc'
1549 1556 if readline.uses_libedit:
1550 1557 inputrc_name = '.editrc'
1551 1558 inputrc_name = os.path.join(home_dir, inputrc_name)
1552 1559 if os.path.isfile(inputrc_name):
1553 1560 try:
1554 1561 readline.read_init_file(inputrc_name)
1555 1562 except:
1556 1563 warn('Problems reading readline initialization file <%s>'
1557 1564 % inputrc_name)
1558 1565
1559 1566 # Configure readline according to user's prefs
1560 1567 # This is only done if GNU readline is being used. If libedit
1561 1568 # is being used (as on Leopard) the readline config is
1562 1569 # not run as the syntax for libedit is different.
1563 1570 if not readline.uses_libedit:
1564 1571 for rlcommand in self.readline_parse_and_bind:
1565 1572 #print "loading rl:",rlcommand # dbg
1566 1573 readline.parse_and_bind(rlcommand)
1567 1574
1568 1575 # Remove some chars from the delimiters list. If we encounter
1569 1576 # unicode chars, discard them.
1570 1577 delims = readline.get_completer_delims().encode("ascii", "ignore")
1571 1578 delims = delims.translate(None, self.readline_remove_delims)
1572 1579 delims = delims.replace(ESC_MAGIC, '')
1573 1580 readline.set_completer_delims(delims)
1574 1581 # otherwise we end up with a monster history after a while:
1575 1582 readline.set_history_length(self.history_length)
1576 1583
1577 1584 self.refill_readline_hist()
1578 1585 self.readline_no_record = ReadlineNoRecord(self)
1579 1586
1580 1587 # Configure auto-indent for all platforms
1581 1588 self.set_autoindent(self.autoindent)
1582 1589
1583 1590 def refill_readline_hist(self):
1584 1591 # Load the last 1000 lines from history
1585 1592 self.readline.clear_history()
1586 1593 stdin_encoding = sys.stdin.encoding or "utf-8"
1587 1594 for _, _, cell in self.history_manager.get_tail(1000,
1588 1595 include_latest=True):
1589 1596 if cell.strip(): # Ignore blank lines
1590 1597 for line in cell.splitlines():
1591 1598 self.readline.add_history(line.encode(stdin_encoding))
1592 1599
1593 1600 def set_next_input(self, s):
1594 1601 """ Sets the 'default' input string for the next command line.
1595 1602
1596 1603 Requires readline.
1597 1604
1598 1605 Example:
1599 1606
1600 1607 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1601 1608 [D:\ipython]|2> Hello Word_ # cursor is here
1602 1609 """
1603 1610
1604 1611 self.rl_next_input = s
1605 1612
1606 1613 # Maybe move this to the terminal subclass?
1607 1614 def pre_readline(self):
1608 1615 """readline hook to be used at the start of each line.
1609 1616
1610 1617 Currently it handles auto-indent only."""
1611 1618
1612 1619 if self.rl_do_indent:
1613 1620 self.readline.insert_text(self._indent_current_str())
1614 1621 if self.rl_next_input is not None:
1615 1622 self.readline.insert_text(self.rl_next_input)
1616 1623 self.rl_next_input = None
1617 1624
1618 1625 def _indent_current_str(self):
1619 1626 """return the current level of indentation as a string"""
1620 1627 return self.input_splitter.indent_spaces * ' '
1621 1628
1622 1629 #-------------------------------------------------------------------------
1623 1630 # Things related to text completion
1624 1631 #-------------------------------------------------------------------------
1625 1632
1626 1633 def init_completer(self):
1627 1634 """Initialize the completion machinery.
1628 1635
1629 1636 This creates completion machinery that can be used by client code,
1630 1637 either interactively in-process (typically triggered by the readline
1631 1638 library), programatically (such as in test suites) or out-of-prcess
1632 1639 (typically over the network by remote frontends).
1633 1640 """
1634 1641 from IPython.core.completer import IPCompleter
1635 1642 from IPython.core.completerlib import (module_completer,
1636 1643 magic_run_completer, cd_completer)
1637 1644
1638 1645 self.Completer = IPCompleter(self,
1639 1646 self.user_ns,
1640 1647 self.user_global_ns,
1641 1648 self.readline_omit__names,
1642 1649 self.alias_manager.alias_table,
1643 1650 self.has_readline)
1644 1651
1645 1652 # Add custom completers to the basic ones built into IPCompleter
1646 1653 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1647 1654 self.strdispatchers['complete_command'] = sdisp
1648 1655 self.Completer.custom_completers = sdisp
1649 1656
1650 1657 self.set_hook('complete_command', module_completer, str_key = 'import')
1651 1658 self.set_hook('complete_command', module_completer, str_key = 'from')
1652 1659 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1653 1660 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1654 1661
1655 1662 # Only configure readline if we truly are using readline. IPython can
1656 1663 # do tab-completion over the network, in GUIs, etc, where readline
1657 1664 # itself may be absent
1658 1665 if self.has_readline:
1659 1666 self.set_readline_completer()
1660 1667
1661 1668 def complete(self, text, line=None, cursor_pos=None):
1662 1669 """Return the completed text and a list of completions.
1663 1670
1664 1671 Parameters
1665 1672 ----------
1666 1673
1667 1674 text : string
1668 1675 A string of text to be completed on. It can be given as empty and
1669 1676 instead a line/position pair are given. In this case, the
1670 1677 completer itself will split the line like readline does.
1671 1678
1672 1679 line : string, optional
1673 1680 The complete line that text is part of.
1674 1681
1675 1682 cursor_pos : int, optional
1676 1683 The position of the cursor on the input line.
1677 1684
1678 1685 Returns
1679 1686 -------
1680 1687 text : string
1681 1688 The actual text that was completed.
1682 1689
1683 1690 matches : list
1684 1691 A sorted list with all possible completions.
1685 1692
1686 1693 The optional arguments allow the completion to take more context into
1687 1694 account, and are part of the low-level completion API.
1688 1695
1689 1696 This is a wrapper around the completion mechanism, similar to what
1690 1697 readline does at the command line when the TAB key is hit. By
1691 1698 exposing it as a method, it can be used by other non-readline
1692 1699 environments (such as GUIs) for text completion.
1693 1700
1694 1701 Simple usage example:
1695 1702
1696 1703 In [1]: x = 'hello'
1697 1704
1698 1705 In [2]: _ip.complete('x.l')
1699 1706 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1700 1707 """
1701 1708
1702 1709 # Inject names into __builtin__ so we can complete on the added names.
1703 1710 with self.builtin_trap:
1704 1711 return self.Completer.complete(text, line, cursor_pos)
1705 1712
1706 1713 def set_custom_completer(self, completer, pos=0):
1707 1714 """Adds a new custom completer function.
1708 1715
1709 1716 The position argument (defaults to 0) is the index in the completers
1710 1717 list where you want the completer to be inserted."""
1711 1718
1712 1719 newcomp = types.MethodType(completer,self.Completer)
1713 1720 self.Completer.matchers.insert(pos,newcomp)
1714 1721
1715 1722 def set_readline_completer(self):
1716 1723 """Reset readline's completer to be our own."""
1717 1724 self.readline.set_completer(self.Completer.rlcomplete)
1718 1725
1719 1726 def set_completer_frame(self, frame=None):
1720 1727 """Set the frame of the completer."""
1721 1728 if frame:
1722 1729 self.Completer.namespace = frame.f_locals
1723 1730 self.Completer.global_namespace = frame.f_globals
1724 1731 else:
1725 1732 self.Completer.namespace = self.user_ns
1726 1733 self.Completer.global_namespace = self.user_global_ns
1727 1734
1728 1735 #-------------------------------------------------------------------------
1729 1736 # Things related to magics
1730 1737 #-------------------------------------------------------------------------
1731 1738
1732 1739 def init_magics(self):
1733 1740 # FIXME: Move the color initialization to the DisplayHook, which
1734 1741 # should be split into a prompt manager and displayhook. We probably
1735 1742 # even need a centralize colors management object.
1736 1743 self.magic_colors(self.colors)
1737 1744 # History was moved to a separate module
1738 1745 from . import history
1739 1746 history.init_ipython(self)
1740 1747
1741 1748 def magic(self,arg_s):
1742 1749 """Call a magic function by name.
1743 1750
1744 1751 Input: a string containing the name of the magic function to call and
1745 1752 any additional arguments to be passed to the magic.
1746 1753
1747 1754 magic('name -opt foo bar') is equivalent to typing at the ipython
1748 1755 prompt:
1749 1756
1750 1757 In[1]: %name -opt foo bar
1751 1758
1752 1759 To call a magic without arguments, simply use magic('name').
1753 1760
1754 1761 This provides a proper Python function to call IPython's magics in any
1755 1762 valid Python code you can type at the interpreter, including loops and
1756 1763 compound statements.
1757 1764 """
1758 1765 args = arg_s.split(' ',1)
1759 1766 magic_name = args[0]
1760 1767 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1761 1768
1762 1769 try:
1763 1770 magic_args = args[1]
1764 1771 except IndexError:
1765 1772 magic_args = ''
1766 1773 fn = getattr(self,'magic_'+magic_name,None)
1767 1774 if fn is None:
1768 1775 error("Magic function `%s` not found." % magic_name)
1769 1776 else:
1770 1777 magic_args = self.var_expand(magic_args,1)
1771 1778 # Grab local namespace if we need it:
1772 1779 if getattr(fn, "needs_local_scope", False):
1773 1780 self._magic_locals = sys._getframe(1).f_locals
1774 1781 with nested(self.builtin_trap,):
1775 1782 result = fn(magic_args)
1776 1783 # Ensure we're not keeping object references around:
1777 1784 self._magic_locals = {}
1778 1785 return result
1779 1786
1780 1787 def define_magic(self, magicname, func):
1781 1788 """Expose own function as magic function for ipython
1782 1789
1783 1790 def foo_impl(self,parameter_s=''):
1784 1791 'My very own magic!. (Use docstrings, IPython reads them).'
1785 1792 print 'Magic function. Passed parameter is between < >:'
1786 1793 print '<%s>' % parameter_s
1787 1794 print 'The self object is:',self
1788 1795
1789 1796 self.define_magic('foo',foo_impl)
1790 1797 """
1791 1798
1792 1799 import new
1793 1800 im = types.MethodType(func,self)
1794 1801 old = getattr(self, "magic_" + magicname, None)
1795 1802 setattr(self, "magic_" + magicname, im)
1796 1803 return old
1797 1804
1798 1805 #-------------------------------------------------------------------------
1799 1806 # Things related to macros
1800 1807 #-------------------------------------------------------------------------
1801 1808
1802 1809 def define_macro(self, name, themacro):
1803 1810 """Define a new macro
1804 1811
1805 1812 Parameters
1806 1813 ----------
1807 1814 name : str
1808 1815 The name of the macro.
1809 1816 themacro : str or Macro
1810 1817 The action to do upon invoking the macro. If a string, a new
1811 1818 Macro object is created by passing the string to it.
1812 1819 """
1813 1820
1814 1821 from IPython.core import macro
1815 1822
1816 1823 if isinstance(themacro, basestring):
1817 1824 themacro = macro.Macro(themacro)
1818 1825 if not isinstance(themacro, macro.Macro):
1819 1826 raise ValueError('A macro must be a string or a Macro instance.')
1820 1827 self.user_ns[name] = themacro
1821 1828
1822 1829 #-------------------------------------------------------------------------
1823 1830 # Things related to the running of system commands
1824 1831 #-------------------------------------------------------------------------
1825 1832
1826 1833 def system(self, cmd):
1827 1834 """Call the given cmd in a subprocess.
1828 1835
1829 1836 Parameters
1830 1837 ----------
1831 1838 cmd : str
1832 1839 Command to execute (can not end in '&', as bacground processes are
1833 1840 not supported.
1834 1841 """
1835 1842 # We do not support backgrounding processes because we either use
1836 1843 # pexpect or pipes to read from. Users can always just call
1837 1844 # os.system() if they really want a background process.
1838 1845 if cmd.endswith('&'):
1839 1846 raise OSError("Background processes not supported.")
1840 1847
1841 1848 return system(self.var_expand(cmd, depth=2))
1842 1849
1843 1850 def getoutput(self, cmd, split=True):
1844 1851 """Get output (possibly including stderr) from a subprocess.
1845 1852
1846 1853 Parameters
1847 1854 ----------
1848 1855 cmd : str
1849 1856 Command to execute (can not end in '&', as background processes are
1850 1857 not supported.
1851 1858 split : bool, optional
1852 1859
1853 1860 If True, split the output into an IPython SList. Otherwise, an
1854 1861 IPython LSString is returned. These are objects similar to normal
1855 1862 lists and strings, with a few convenience attributes for easier
1856 1863 manipulation of line-based output. You can use '?' on them for
1857 1864 details.
1858 1865 """
1859 1866 if cmd.endswith('&'):
1860 1867 raise OSError("Background processes not supported.")
1861 1868 out = getoutput(self.var_expand(cmd, depth=2))
1862 1869 if split:
1863 1870 out = SList(out.splitlines())
1864 1871 else:
1865 1872 out = LSString(out)
1866 1873 return out
1867 1874
1868 1875 #-------------------------------------------------------------------------
1869 1876 # Things related to aliases
1870 1877 #-------------------------------------------------------------------------
1871 1878
1872 1879 def init_alias(self):
1873 1880 self.alias_manager = AliasManager(shell=self, config=self.config)
1874 1881 self.ns_table['alias'] = self.alias_manager.alias_table,
1875 1882
1876 1883 #-------------------------------------------------------------------------
1877 1884 # Things related to extensions and plugins
1878 1885 #-------------------------------------------------------------------------
1879 1886
1880 1887 def init_extension_manager(self):
1881 1888 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1882 1889
1883 1890 def init_plugin_manager(self):
1884 1891 self.plugin_manager = PluginManager(config=self.config)
1885 1892
1886 1893 #-------------------------------------------------------------------------
1887 1894 # Things related to payloads
1888 1895 #-------------------------------------------------------------------------
1889 1896
1890 1897 def init_payload(self):
1891 1898 self.payload_manager = PayloadManager(config=self.config)
1892 1899
1893 1900 #-------------------------------------------------------------------------
1894 1901 # Things related to the prefilter
1895 1902 #-------------------------------------------------------------------------
1896 1903
1897 1904 def init_prefilter(self):
1898 1905 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1899 1906 # Ultimately this will be refactored in the new interpreter code, but
1900 1907 # for now, we should expose the main prefilter method (there's legacy
1901 1908 # code out there that may rely on this).
1902 1909 self.prefilter = self.prefilter_manager.prefilter_lines
1903 1910
1904 1911 def auto_rewrite_input(self, cmd):
1905 1912 """Print to the screen the rewritten form of the user's command.
1906 1913
1907 1914 This shows visual feedback by rewriting input lines that cause
1908 1915 automatic calling to kick in, like::
1909 1916
1910 1917 /f x
1911 1918
1912 1919 into::
1913 1920
1914 1921 ------> f(x)
1915 1922
1916 1923 after the user's input prompt. This helps the user understand that the
1917 1924 input line was transformed automatically by IPython.
1918 1925 """
1919 1926 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1920 1927
1921 1928 try:
1922 1929 # plain ascii works better w/ pyreadline, on some machines, so
1923 1930 # we use it and only print uncolored rewrite if we have unicode
1924 1931 rw = str(rw)
1925 1932 print >> IPython.utils.io.Term.cout, rw
1926 1933 except UnicodeEncodeError:
1927 1934 print "------> " + cmd
1928 1935
1929 1936 #-------------------------------------------------------------------------
1930 1937 # Things related to extracting values/expressions from kernel and user_ns
1931 1938 #-------------------------------------------------------------------------
1932 1939
1933 1940 def _simple_error(self):
1934 1941 etype, value = sys.exc_info()[:2]
1935 1942 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1936 1943
1937 1944 def user_variables(self, names):
1938 1945 """Get a list of variable names from the user's namespace.
1939 1946
1940 1947 Parameters
1941 1948 ----------
1942 1949 names : list of strings
1943 1950 A list of names of variables to be read from the user namespace.
1944 1951
1945 1952 Returns
1946 1953 -------
1947 1954 A dict, keyed by the input names and with the repr() of each value.
1948 1955 """
1949 1956 out = {}
1950 1957 user_ns = self.user_ns
1951 1958 for varname in names:
1952 1959 try:
1953 1960 value = repr(user_ns[varname])
1954 1961 except:
1955 1962 value = self._simple_error()
1956 1963 out[varname] = value
1957 1964 return out
1958 1965
1959 1966 def user_expressions(self, expressions):
1960 1967 """Evaluate a dict of expressions in the user's namespace.
1961 1968
1962 1969 Parameters
1963 1970 ----------
1964 1971 expressions : dict
1965 1972 A dict with string keys and string values. The expression values
1966 1973 should be valid Python expressions, each of which will be evaluated
1967 1974 in the user namespace.
1968 1975
1969 1976 Returns
1970 1977 -------
1971 1978 A dict, keyed like the input expressions dict, with the repr() of each
1972 1979 value.
1973 1980 """
1974 1981 out = {}
1975 1982 user_ns = self.user_ns
1976 1983 global_ns = self.user_global_ns
1977 1984 for key, expr in expressions.iteritems():
1978 1985 try:
1979 1986 value = repr(eval(expr, global_ns, user_ns))
1980 1987 except:
1981 1988 value = self._simple_error()
1982 1989 out[key] = value
1983 1990 return out
1984 1991
1985 1992 #-------------------------------------------------------------------------
1986 1993 # Things related to the running of code
1987 1994 #-------------------------------------------------------------------------
1988 1995
1989 1996 def ex(self, cmd):
1990 1997 """Execute a normal python statement in user namespace."""
1991 1998 with nested(self.builtin_trap,):
1992 1999 exec cmd in self.user_global_ns, self.user_ns
1993 2000
1994 2001 def ev(self, expr):
1995 2002 """Evaluate python expression expr in user namespace.
1996 2003
1997 2004 Returns the result of evaluation
1998 2005 """
1999 2006 with nested(self.builtin_trap,):
2000 2007 return eval(expr, self.user_global_ns, self.user_ns)
2001 2008
2002 2009 def safe_execfile(self, fname, *where, **kw):
2003 2010 """A safe version of the builtin execfile().
2004 2011
2005 2012 This version will never throw an exception, but instead print
2006 2013 helpful error messages to the screen. This only works on pure
2007 2014 Python files with the .py extension.
2008 2015
2009 2016 Parameters
2010 2017 ----------
2011 2018 fname : string
2012 2019 The name of the file to be executed.
2013 2020 where : tuple
2014 2021 One or two namespaces, passed to execfile() as (globals,locals).
2015 2022 If only one is given, it is passed as both.
2016 2023 exit_ignore : bool (False)
2017 2024 If True, then silence SystemExit for non-zero status (it is always
2018 2025 silenced for zero status, as it is so common).
2019 2026 """
2020 2027 kw.setdefault('exit_ignore', False)
2021 2028
2022 2029 fname = os.path.abspath(os.path.expanduser(fname))
2023 2030 # Make sure we have a .py file
2024 2031 if not fname.endswith('.py'):
2025 2032 warn('File must end with .py to be run using execfile: <%s>' % fname)
2026 2033
2027 2034 # Make sure we can open the file
2028 2035 try:
2029 2036 with open(fname) as thefile:
2030 2037 pass
2031 2038 except:
2032 2039 warn('Could not open file <%s> for safe execution.' % fname)
2033 2040 return
2034 2041
2035 2042 # Find things also in current directory. This is needed to mimic the
2036 2043 # behavior of running a script from the system command line, where
2037 2044 # Python inserts the script's directory into sys.path
2038 2045 dname = os.path.dirname(fname)
2039 2046
2040 2047 if isinstance(fname, unicode):
2041 2048 # execfile uses default encoding instead of filesystem encoding
2042 2049 # so unicode filenames will fail
2043 2050 fname = fname.encode(sys.getfilesystemencoding() or sys.getdefaultencoding())
2044 2051
2045 2052 with prepended_to_syspath(dname):
2046 2053 try:
2047 2054 execfile(fname,*where)
2048 2055 except SystemExit, status:
2049 2056 # If the call was made with 0 or None exit status (sys.exit(0)
2050 2057 # or sys.exit() ), don't bother showing a traceback, as both of
2051 2058 # these are considered normal by the OS:
2052 2059 # > python -c'import sys;sys.exit(0)'; echo $?
2053 2060 # 0
2054 2061 # > python -c'import sys;sys.exit()'; echo $?
2055 2062 # 0
2056 2063 # For other exit status, we show the exception unless
2057 2064 # explicitly silenced, but only in short form.
2058 2065 if status.code not in (0, None) and not kw['exit_ignore']:
2059 2066 self.showtraceback(exception_only=True)
2060 2067 except:
2061 2068 self.showtraceback()
2062 2069
2063 2070 def safe_execfile_ipy(self, fname):
2064 2071 """Like safe_execfile, but for .ipy files with IPython syntax.
2065 2072
2066 2073 Parameters
2067 2074 ----------
2068 2075 fname : str
2069 2076 The name of the file to execute. The filename must have a
2070 2077 .ipy extension.
2071 2078 """
2072 2079 fname = os.path.abspath(os.path.expanduser(fname))
2073 2080
2074 2081 # Make sure we have a .py file
2075 2082 if not fname.endswith('.ipy'):
2076 2083 warn('File must end with .py to be run using execfile: <%s>' % fname)
2077 2084
2078 2085 # Make sure we can open the file
2079 2086 try:
2080 2087 with open(fname) as thefile:
2081 2088 pass
2082 2089 except:
2083 2090 warn('Could not open file <%s> for safe execution.' % fname)
2084 2091 return
2085 2092
2086 2093 # Find things also in current directory. This is needed to mimic the
2087 2094 # behavior of running a script from the system command line, where
2088 2095 # Python inserts the script's directory into sys.path
2089 2096 dname = os.path.dirname(fname)
2090 2097
2091 2098 with prepended_to_syspath(dname):
2092 2099 try:
2093 2100 with open(fname) as thefile:
2094 2101 # self.run_cell currently captures all exceptions
2095 2102 # raised in user code. It would be nice if there were
2096 2103 # versions of runlines, execfile that did raise, so
2097 2104 # we could catch the errors.
2098 2105 self.run_cell(thefile.read(), store_history=False)
2099 2106 except:
2100 2107 self.showtraceback()
2101 2108 warn('Unknown failure executing file: <%s>' % fname)
2102 2109
2103 2110 def run_cell(self, cell, store_history=True):
2104 2111 """Run a complete IPython cell.
2105 2112
2106 2113 Parameters
2107 2114 ----------
2108 2115 cell : str
2109 2116 The code (including IPython code such as %magic functions) to run.
2110 2117 store_history : bool
2111 2118 If True, the raw and translated cell will be stored in IPython's
2112 2119 history. For user code calling back into IPython's machinery, this
2113 2120 should be set to False.
2114 2121 """
2115 2122 raw_cell = cell
2116 2123 with self.builtin_trap:
2117 2124 cell = self.prefilter_manager.prefilter_lines(cell)
2118 2125
2119 2126 # Store raw and processed history
2120 2127 if store_history:
2121 2128 self.history_manager.store_inputs(self.execution_count,
2122 2129 cell, raw_cell)
2123 2130
2124 2131 self.logger.log(cell, raw_cell)
2125 2132
2126 2133 cell_name = self.compile.cache(cell, self.execution_count)
2127 2134
2128 2135 with self.display_trap:
2129 2136 try:
2130 2137 code_ast = ast.parse(cell, filename=cell_name)
2131 2138 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2132 2139 # Case 1
2133 2140 self.showsyntaxerror()
2134 2141 self.execution_count += 1
2135 2142 return None
2136 2143
2137 2144 interactivity = 'last' # Last node to be run interactive
2138 2145 if len(cell.splitlines()) == 1:
2139 2146 interactivity = 'all' # Single line; run fully interactive
2140 2147
2141 2148 self.run_ast_nodes(code_ast.body, cell_name, interactivity)
2142 2149
2143 2150 if store_history:
2144 2151 # Write output to the database. Does nothing unless
2145 2152 # history output logging is enabled.
2146 2153 self.history_manager.store_output(self.execution_count)
2147 2154 # Each cell is a *single* input, regardless of how many lines it has
2148 2155 self.execution_count += 1
2149 2156
2150 2157 def run_ast_nodes(self, nodelist, cell_name, interactivity='last'):
2151 2158 """Run a sequence of AST nodes. The execution mode depends on the
2152 2159 interactivity parameter.
2153 2160
2154 2161 Parameters
2155 2162 ----------
2156 2163 nodelist : list
2157 2164 A sequence of AST nodes to run.
2158 2165 cell_name : str
2159 2166 Will be passed to the compiler as the filename of the cell. Typically
2160 2167 the value returned by ip.compile.cache(cell).
2161 2168 interactivity : str
2162 2169 'all', 'last' or 'none', specifying which nodes should be run
2163 2170 interactively (displaying output from expressions). Other values for
2164 2171 this parameter will raise a ValueError.
2165 2172 """
2166 2173 if not nodelist:
2167 2174 return
2168 2175
2169 2176 if interactivity == 'none':
2170 2177 to_run_exec, to_run_interactive = nodelist, []
2171 2178 elif interactivity == 'last':
2172 2179 to_run_exec, to_run_interactive = nodelist[:-1], nodelist[-1:]
2173 2180 elif interactivity == 'all':
2174 2181 to_run_exec, to_run_interactive = [], nodelist
2175 2182 else:
2176 2183 raise ValueError("Interactivity was %r" % interactivity)
2177 2184
2178 2185 exec_count = self.execution_count
2179 2186 if to_run_exec:
2180 2187 mod = ast.Module(to_run_exec)
2181 2188 self.code_to_run = code = self.compile(mod, cell_name, "exec")
2182 2189 if self.run_code(code) == 1:
2183 2190 return
2184 2191
2185 2192 if to_run_interactive:
2186 2193 mod = ast.Interactive(to_run_interactive)
2187 2194 self.code_to_run = code = self.compile(mod, cell_name, "single")
2188 2195 return self.run_code(code)
2189 2196
2190 2197
2191 2198 # PENDING REMOVAL: this method is slated for deletion, once our new
2192 2199 # input logic has been 100% moved to frontends and is stable.
2193 2200 def runlines(self, lines, clean=False):
2194 2201 """Run a string of one or more lines of source.
2195 2202
2196 2203 This method is capable of running a string containing multiple source
2197 2204 lines, as if they had been entered at the IPython prompt. Since it
2198 2205 exposes IPython's processing machinery, the given strings can contain
2199 2206 magic calls (%magic), special shell access (!cmd), etc.
2200 2207 """
2201 2208
2202 2209 if not isinstance(lines, (list, tuple)):
2203 2210 lines = lines.splitlines()
2204 2211
2205 2212 if clean:
2206 2213 lines = self._cleanup_ipy_script(lines)
2207 2214
2208 2215 # We must start with a clean buffer, in case this is run from an
2209 2216 # interactive IPython session (via a magic, for example).
2210 2217 self.reset_buffer()
2211 2218
2212 2219 # Since we will prefilter all lines, store the user's raw input too
2213 2220 # before we apply any transformations
2214 2221 self.buffer_raw[:] = [ l+'\n' for l in lines]
2215 2222
2216 2223 more = False
2217 2224 prefilter_lines = self.prefilter_manager.prefilter_lines
2218 2225 with nested(self.builtin_trap, self.display_trap):
2219 2226 for line in lines:
2220 2227 # skip blank lines so we don't mess up the prompt counter, but
2221 2228 # do NOT skip even a blank line if we are in a code block (more
2222 2229 # is true)
2223 2230
2224 2231 if line or more:
2225 2232 more = self.push_line(prefilter_lines(line, more))
2226 2233 # IPython's run_source returns None if there was an error
2227 2234 # compiling the code. This allows us to stop processing
2228 2235 # right away, so the user gets the error message at the
2229 2236 # right place.
2230 2237 if more is None:
2231 2238 break
2232 2239 # final newline in case the input didn't have it, so that the code
2233 2240 # actually does get executed
2234 2241 if more:
2235 2242 self.push_line('\n')
2236 2243
2237 2244 def run_source(self, source, filename=None,
2238 2245 symbol='single', post_execute=True):
2239 2246 """Compile and run some source in the interpreter.
2240 2247
2241 2248 Arguments are as for compile_command().
2242 2249
2243 2250 One several things can happen:
2244 2251
2245 2252 1) The input is incorrect; compile_command() raised an
2246 2253 exception (SyntaxError or OverflowError). A syntax traceback
2247 2254 will be printed by calling the showsyntaxerror() method.
2248 2255
2249 2256 2) The input is incomplete, and more input is required;
2250 2257 compile_command() returned None. Nothing happens.
2251 2258
2252 2259 3) The input is complete; compile_command() returned a code
2253 2260 object. The code is executed by calling self.run_code() (which
2254 2261 also handles run-time exceptions, except for SystemExit).
2255 2262
2256 2263 The return value is:
2257 2264
2258 2265 - True in case 2
2259 2266
2260 2267 - False in the other cases, unless an exception is raised, where
2261 2268 None is returned instead. This can be used by external callers to
2262 2269 know whether to continue feeding input or not.
2263 2270
2264 2271 The return value can be used to decide whether to use sys.ps1 or
2265 2272 sys.ps2 to prompt the next line."""
2266 2273
2267 2274 # We need to ensure that the source is unicode from here on.
2268 2275 if type(source)==str:
2269 2276 usource = source.decode(self.stdin_encoding)
2270 2277 else:
2271 2278 usource = source
2272 2279
2273 2280 if False: # dbg
2274 2281 print 'Source:', repr(source) # dbg
2275 2282 print 'USource:', repr(usource) # dbg
2276 2283 print 'type:', type(source) # dbg
2277 2284 print 'encoding', self.stdin_encoding # dbg
2278 2285
2279 2286 try:
2280 2287 code_name = self.compile.cache(usource, self.execution_count)
2281 2288 code = self.compile(usource, code_name, symbol)
2282 2289 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2283 2290 # Case 1
2284 2291 self.showsyntaxerror(filename)
2285 2292 return None
2286 2293
2287 2294 if code is None:
2288 2295 # Case 2
2289 2296 return True
2290 2297
2291 2298 # Case 3
2292 2299 # We store the code object so that threaded shells and
2293 2300 # custom exception handlers can access all this info if needed.
2294 2301 # The source corresponding to this can be obtained from the
2295 2302 # buffer attribute as '\n'.join(self.buffer).
2296 2303 self.code_to_run = code
2297 2304 # now actually execute the code object
2298 2305 if self.run_code(code, post_execute) == 0:
2299 2306 return False
2300 2307 else:
2301 2308 return None
2302 2309
2303 2310 # For backwards compatibility
2304 2311 runsource = run_source
2305 2312
2306 2313 def run_code(self, code_obj, post_execute=True):
2307 2314 """Execute a code object.
2308 2315
2309 2316 When an exception occurs, self.showtraceback() is called to display a
2310 2317 traceback.
2311 2318
2312 2319 Return value: a flag indicating whether the code to be run completed
2313 2320 successfully:
2314 2321
2315 2322 - 0: successful execution.
2316 2323 - 1: an error occurred.
2317 2324 """
2318 2325
2319 2326 # Set our own excepthook in case the user code tries to call it
2320 2327 # directly, so that the IPython crash handler doesn't get triggered
2321 2328 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2322 2329
2323 2330 # we save the original sys.excepthook in the instance, in case config
2324 2331 # code (such as magics) needs access to it.
2325 2332 self.sys_excepthook = old_excepthook
2326 2333 outflag = 1 # happens in more places, so it's easier as default
2327 2334 try:
2328 2335 try:
2329 2336 self.hooks.pre_run_code_hook()
2330 2337 #rprint('Running code', repr(code_obj)) # dbg
2331 2338 exec code_obj in self.user_global_ns, self.user_ns
2332 2339 finally:
2333 2340 # Reset our crash handler in place
2334 2341 sys.excepthook = old_excepthook
2335 2342 except SystemExit:
2336 2343 self.reset_buffer()
2337 2344 self.showtraceback(exception_only=True)
2338 2345 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2339 2346 except self.custom_exceptions:
2340 2347 etype,value,tb = sys.exc_info()
2341 2348 self.CustomTB(etype,value,tb)
2342 2349 except:
2343 2350 self.showtraceback()
2344 2351 else:
2345 2352 outflag = 0
2346 2353 if softspace(sys.stdout, 0):
2347 2354 print
2348 2355
2349 2356 # Execute any registered post-execution functions. Here, any errors
2350 2357 # are reported only minimally and just on the terminal, because the
2351 2358 # main exception channel may be occupied with a user traceback.
2352 2359 # FIXME: we need to think this mechanism a little more carefully.
2353 2360 if post_execute:
2354 2361 for func in self._post_execute:
2355 2362 try:
2356 2363 func()
2357 2364 except:
2358 2365 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2359 2366 func
2360 2367 print >> io.Term.cout, head
2361 2368 print >> io.Term.cout, self._simple_error()
2362 2369 print >> io.Term.cout, 'Removing from post_execute'
2363 2370 self._post_execute.remove(func)
2364 2371
2365 2372 # Flush out code object which has been run (and source)
2366 2373 self.code_to_run = None
2367 2374 return outflag
2368 2375
2369 2376 # For backwards compatibility
2370 2377 runcode = run_code
2371 2378
2372 2379 # PENDING REMOVAL: this method is slated for deletion, once our new
2373 2380 # input logic has been 100% moved to frontends and is stable.
2374 2381 def push_line(self, line):
2375 2382 """Push a line to the interpreter.
2376 2383
2377 2384 The line should not have a trailing newline; it may have
2378 2385 internal newlines. The line is appended to a buffer and the
2379 2386 interpreter's run_source() method is called with the
2380 2387 concatenated contents of the buffer as source. If this
2381 2388 indicates that the command was executed or invalid, the buffer
2382 2389 is reset; otherwise, the command is incomplete, and the buffer
2383 2390 is left as it was after the line was appended. The return
2384 2391 value is 1 if more input is required, 0 if the line was dealt
2385 2392 with in some way (this is the same as run_source()).
2386 2393 """
2387 2394
2388 2395 # autoindent management should be done here, and not in the
2389 2396 # interactive loop, since that one is only seen by keyboard input. We
2390 2397 # need this done correctly even for code run via runlines (which uses
2391 2398 # push).
2392 2399
2393 2400 #print 'push line: <%s>' % line # dbg
2394 2401 self.buffer.append(line)
2395 2402 full_source = '\n'.join(self.buffer)
2396 2403 more = self.run_source(full_source, self.filename)
2397 2404 if not more:
2398 2405 self.history_manager.store_inputs(self.execution_count,
2399 2406 '\n'.join(self.buffer_raw), full_source)
2400 2407 self.reset_buffer()
2401 2408 self.execution_count += 1
2402 2409 return more
2403 2410
2404 2411 def reset_buffer(self):
2405 2412 """Reset the input buffer."""
2406 2413 self.buffer[:] = []
2407 2414 self.buffer_raw[:] = []
2408 2415 self.input_splitter.reset()
2409 2416
2410 2417 # For backwards compatibility
2411 2418 resetbuffer = reset_buffer
2412 2419
2413 2420 def _is_secondary_block_start(self, s):
2414 2421 if not s.endswith(':'):
2415 2422 return False
2416 2423 if (s.startswith('elif') or
2417 2424 s.startswith('else') or
2418 2425 s.startswith('except') or
2419 2426 s.startswith('finally')):
2420 2427 return True
2421 2428
2422 2429 def _cleanup_ipy_script(self, script):
2423 2430 """Make a script safe for self.runlines()
2424 2431
2425 2432 Currently, IPython is lines based, with blocks being detected by
2426 2433 empty lines. This is a problem for block based scripts that may
2427 2434 not have empty lines after blocks. This script adds those empty
2428 2435 lines to make scripts safe for running in the current line based
2429 2436 IPython.
2430 2437 """
2431 2438 res = []
2432 2439 lines = script.splitlines()
2433 2440 level = 0
2434 2441
2435 2442 for l in lines:
2436 2443 lstripped = l.lstrip()
2437 2444 stripped = l.strip()
2438 2445 if not stripped:
2439 2446 continue
2440 2447 newlevel = len(l) - len(lstripped)
2441 2448 if level > 0 and newlevel == 0 and \
2442 2449 not self._is_secondary_block_start(stripped):
2443 2450 # add empty line
2444 2451 res.append('')
2445 2452 res.append(l)
2446 2453 level = newlevel
2447 2454
2448 2455 return '\n'.join(res) + '\n'
2449 2456
2450 2457 #-------------------------------------------------------------------------
2451 2458 # Things related to GUI support and pylab
2452 2459 #-------------------------------------------------------------------------
2453 2460
2454 2461 def enable_pylab(self, gui=None):
2455 2462 raise NotImplementedError('Implement enable_pylab in a subclass')
2456 2463
2457 2464 #-------------------------------------------------------------------------
2458 2465 # Utilities
2459 2466 #-------------------------------------------------------------------------
2460 2467
2461 2468 def var_expand(self,cmd,depth=0):
2462 2469 """Expand python variables in a string.
2463 2470
2464 2471 The depth argument indicates how many frames above the caller should
2465 2472 be walked to look for the local namespace where to expand variables.
2466 2473
2467 2474 The global namespace for expansion is always the user's interactive
2468 2475 namespace.
2469 2476 """
2470 2477 res = ItplNS(cmd, self.user_ns, # globals
2471 2478 # Skip our own frame in searching for locals:
2472 2479 sys._getframe(depth+1).f_locals # locals
2473 2480 )
2474 2481 return str(res).decode(res.codec)
2475 2482
2476 2483 def mktempfile(self, data=None, prefix='ipython_edit_'):
2477 2484 """Make a new tempfile and return its filename.
2478 2485
2479 2486 This makes a call to tempfile.mktemp, but it registers the created
2480 2487 filename internally so ipython cleans it up at exit time.
2481 2488
2482 2489 Optional inputs:
2483 2490
2484 2491 - data(None): if data is given, it gets written out to the temp file
2485 2492 immediately, and the file is closed again."""
2486 2493
2487 2494 filename = tempfile.mktemp('.py', prefix)
2488 2495 self.tempfiles.append(filename)
2489 2496
2490 2497 if data:
2491 2498 tmp_file = open(filename,'w')
2492 2499 tmp_file.write(data)
2493 2500 tmp_file.close()
2494 2501 return filename
2495 2502
2496 2503 # TODO: This should be removed when Term is refactored.
2497 2504 def write(self,data):
2498 2505 """Write a string to the default output"""
2499 2506 io.Term.cout.write(data)
2500 2507
2501 2508 # TODO: This should be removed when Term is refactored.
2502 2509 def write_err(self,data):
2503 2510 """Write a string to the default error output"""
2504 2511 io.Term.cerr.write(data)
2505 2512
2506 2513 def ask_yes_no(self,prompt,default=True):
2507 2514 if self.quiet:
2508 2515 return True
2509 2516 return ask_yes_no(prompt,default)
2510 2517
2511 2518 def show_usage(self):
2512 2519 """Show a usage message"""
2513 2520 page.page(IPython.core.usage.interactive_usage)
2514 2521
2515 2522 def find_user_code(self, target, raw=True):
2516 2523 """Get a code string from history, file, or a string or macro.
2517 2524
2518 2525 This is mainly used by magic functions.
2519 2526
2520 2527 Parameters
2521 2528 ----------
2522 2529 target : str
2523 2530 A string specifying code to retrieve. This will be tried respectively
2524 2531 as: ranges of input history (see %history for syntax), a filename, or
2525 2532 an expression evaluating to a string or Macro in the user namespace.
2526 2533 raw : bool
2527 2534 If true (default), retrieve raw history. Has no effect on the other
2528 2535 retrieval mechanisms.
2529 2536
2530 2537 Returns
2531 2538 -------
2532 2539 A string of code.
2533 2540
2534 2541 ValueError is raised if nothing is found, and TypeError if it evaluates
2535 2542 to an object of another type. In each case, .args[0] is a printable
2536 2543 message.
2537 2544 """
2538 2545 code = self.extract_input_lines(target, raw=raw) # Grab history
2539 2546 if code:
2540 2547 return code
2541 2548 if os.path.isfile(target): # Read file
2542 2549 return open(target, "r").read()
2543 2550
2544 2551 try: # User namespace
2545 2552 codeobj = eval(target, self.user_ns)
2546 2553 except Exception:
2547 2554 raise ValueError(("'%s' was not found in history, as a file, nor in"
2548 2555 " the user namespace.") % target)
2549 2556 if isinstance(codeobj, basestring):
2550 2557 return codeobj
2551 2558 elif isinstance(codeobj, Macro):
2552 2559 return codeobj.value
2553 2560
2554 2561 raise TypeError("%s is neither a string nor a macro." % target,
2555 2562 codeobj)
2556 2563
2557 2564 #-------------------------------------------------------------------------
2558 2565 # Things related to IPython exiting
2559 2566 #-------------------------------------------------------------------------
2560 2567 def atexit_operations(self):
2561 2568 """This will be executed at the time of exit.
2562 2569
2563 2570 Cleanup operations and saving of persistent data that is done
2564 2571 unconditionally by IPython should be performed here.
2565 2572
2566 2573 For things that may depend on startup flags or platform specifics (such
2567 2574 as having readline or not), register a separate atexit function in the
2568 2575 code that has the appropriate information, rather than trying to
2569 2576 clutter
2570 2577 """
2571 2578 # Cleanup all tempfiles left around
2572 2579 for tfile in self.tempfiles:
2573 2580 try:
2574 2581 os.unlink(tfile)
2575 2582 except OSError:
2576 2583 pass
2577 2584
2578 2585 # Close the history session (this stores the end time and line count)
2579 2586 self.history_manager.end_session()
2580 2587
2581 2588 # Clear all user namespaces to release all references cleanly.
2582 2589 self.reset(new_session=False)
2583 2590
2584 2591 # Run user hooks
2585 2592 self.hooks.shutdown_hook()
2586 2593
2587 2594 def cleanup(self):
2588 2595 self.restore_sys_module_state()
2589 2596
2590 2597
2591 2598 class InteractiveShellABC(object):
2592 2599 """An abstract base class for InteractiveShell."""
2593 2600 __metaclass__ = abc.ABCMeta
2594 2601
2595 2602 InteractiveShellABC.register(InteractiveShell)
@@ -1,3472 +1,3478 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31 from xmlrpclib import ServerProxy
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89 def needs_local_scope(func):
90 90 """Decorator to mark magic functions which need to local scope to run."""
91 91 func.needs_local_scope = True
92 92 return func
93 93
94 94 #***************************************************************************
95 95 # Main class implementing Magic functionality
96 96
97 97 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
98 98 # on construction of the main InteractiveShell object. Something odd is going
99 99 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
100 100 # eventually this needs to be clarified.
101 101 # BG: This is because InteractiveShell inherits from this, but is itself a
102 102 # Configurable. This messes up the MRO in some way. The fix is that we need to
103 103 # make Magic a configurable that InteractiveShell does not subclass.
104 104
105 105 class Magic:
106 106 """Magic functions for InteractiveShell.
107 107
108 108 Shell functions which can be reached as %function_name. All magic
109 109 functions should accept a string, which they can parse for their own
110 110 needs. This can make some functions easier to type, eg `%cd ../`
111 111 vs. `%cd("../")`
112 112
113 113 ALL definitions MUST begin with the prefix magic_. The user won't need it
114 114 at the command line, but it is is needed in the definition. """
115 115
116 116 # class globals
117 117 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
118 118 'Automagic is ON, % prefix NOT needed for magic functions.']
119 119
120 120 #......................................................................
121 121 # some utility functions
122 122
123 123 def __init__(self,shell):
124 124
125 125 self.options_table = {}
126 126 if profile is None:
127 127 self.magic_prun = self.profile_missing_notice
128 128 self.shell = shell
129 129
130 130 # namespace for holding state we may need
131 131 self._magic_state = Bunch()
132 132
133 133 def profile_missing_notice(self, *args, **kwargs):
134 134 error("""\
135 135 The profile module could not be found. It has been removed from the standard
136 136 python packages because of its non-free license. To use profiling, install the
137 137 python-profiler package from non-free.""")
138 138
139 139 def default_option(self,fn,optstr):
140 140 """Make an entry in the options_table for fn, with value optstr"""
141 141
142 142 if fn not in self.lsmagic():
143 143 error("%s is not a magic function" % fn)
144 144 self.options_table[fn] = optstr
145 145
146 146 def lsmagic(self):
147 147 """Return a list of currently available magic functions.
148 148
149 149 Gives a list of the bare names after mangling (['ls','cd', ...], not
150 150 ['magic_ls','magic_cd',...]"""
151 151
152 152 # FIXME. This needs a cleanup, in the way the magics list is built.
153 153
154 154 # magics in class definition
155 155 class_magic = lambda fn: fn.startswith('magic_') and \
156 156 callable(Magic.__dict__[fn])
157 157 # in instance namespace (run-time user additions)
158 158 inst_magic = lambda fn: fn.startswith('magic_') and \
159 159 callable(self.__dict__[fn])
160 160 # and bound magics by user (so they can access self):
161 161 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
162 162 callable(self.__class__.__dict__[fn])
163 163 magics = filter(class_magic,Magic.__dict__.keys()) + \
164 164 filter(inst_magic,self.__dict__.keys()) + \
165 165 filter(inst_bound_magic,self.__class__.__dict__.keys())
166 166 out = []
167 167 for fn in set(magics):
168 168 out.append(fn.replace('magic_','',1))
169 169 out.sort()
170 170 return out
171 171
172 172 def extract_input_lines(self, range_str, raw=False):
173 173 """Return as a string a set of input history slices.
174 174
175 175 Inputs:
176 176
177 177 - range_str: the set of slices is given as a string, like
178 178 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
179 179 which get their arguments as strings. The number before the / is the
180 180 session number: ~n goes n back from the current session.
181 181
182 182 Optional inputs:
183 183
184 184 - raw(False): by default, the processed input is used. If this is
185 185 true, the raw input history is used instead.
186 186
187 187 Note that slices can be called with two notations:
188 188
189 189 N:M -> standard python form, means including items N...(M-1).
190 190
191 191 N-M -> include items N..M (closed endpoint)."""
192 192 lines = self.shell.history_manager.\
193 193 get_range_by_str(range_str, raw=raw)
194 194 return "\n".join(x for _, _, x in lines)
195 195
196 196 def arg_err(self,func):
197 197 """Print docstring if incorrect arguments were passed"""
198 198 print 'Error in arguments:'
199 199 print oinspect.getdoc(func)
200 200
201 201 def format_latex(self,strng):
202 202 """Format a string for latex inclusion."""
203 203
204 204 # Characters that need to be escaped for latex:
205 205 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
206 206 # Magic command names as headers:
207 207 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
208 208 re.MULTILINE)
209 209 # Magic commands
210 210 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
211 211 re.MULTILINE)
212 212 # Paragraph continue
213 213 par_re = re.compile(r'\\$',re.MULTILINE)
214 214
215 215 # The "\n" symbol
216 216 newline_re = re.compile(r'\\n')
217 217
218 218 # Now build the string for output:
219 219 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
220 220 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
221 221 strng)
222 222 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
223 223 strng = par_re.sub(r'\\\\',strng)
224 224 strng = escape_re.sub(r'\\\1',strng)
225 225 strng = newline_re.sub(r'\\textbackslash{}n',strng)
226 226 return strng
227 227
228 228 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
229 229 """Parse options passed to an argument string.
230 230
231 231 The interface is similar to that of getopt(), but it returns back a
232 232 Struct with the options as keys and the stripped argument string still
233 233 as a string.
234 234
235 235 arg_str is quoted as a true sys.argv vector by using shlex.split.
236 236 This allows us to easily expand variables, glob files, quote
237 237 arguments, etc.
238 238
239 239 Options:
240 240 -mode: default 'string'. If given as 'list', the argument string is
241 241 returned as a list (split on whitespace) instead of a string.
242 242
243 243 -list_all: put all option values in lists. Normally only options
244 244 appearing more than once are put in a list.
245 245
246 246 -posix (True): whether to split the input line in POSIX mode or not,
247 247 as per the conventions outlined in the shlex module from the
248 248 standard library."""
249 249
250 250 # inject default options at the beginning of the input line
251 251 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
252 252 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
253 253
254 254 mode = kw.get('mode','string')
255 255 if mode not in ['string','list']:
256 256 raise ValueError,'incorrect mode given: %s' % mode
257 257 # Get options
258 258 list_all = kw.get('list_all',0)
259 259 posix = kw.get('posix', os.name == 'posix')
260 260
261 261 # Check if we have more than one argument to warrant extra processing:
262 262 odict = {} # Dictionary with options
263 263 args = arg_str.split()
264 264 if len(args) >= 1:
265 265 # If the list of inputs only has 0 or 1 thing in it, there's no
266 266 # need to look for options
267 267 argv = arg_split(arg_str,posix)
268 268 # Do regular option processing
269 269 try:
270 270 opts,args = getopt(argv,opt_str,*long_opts)
271 271 except GetoptError,e:
272 272 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
273 273 " ".join(long_opts)))
274 274 for o,a in opts:
275 275 if o.startswith('--'):
276 276 o = o[2:]
277 277 else:
278 278 o = o[1:]
279 279 try:
280 280 odict[o].append(a)
281 281 except AttributeError:
282 282 odict[o] = [odict[o],a]
283 283 except KeyError:
284 284 if list_all:
285 285 odict[o] = [a]
286 286 else:
287 287 odict[o] = a
288 288
289 289 # Prepare opts,args for return
290 290 opts = Struct(odict)
291 291 if mode == 'string':
292 292 args = ' '.join(args)
293 293
294 294 return opts,args
295 295
296 296 #......................................................................
297 297 # And now the actual magic functions
298 298
299 299 # Functions for IPython shell work (vars,funcs, config, etc)
300 300 def magic_lsmagic(self, parameter_s = ''):
301 301 """List currently available magic functions."""
302 302 mesc = ESC_MAGIC
303 303 print 'Available magic functions:\n'+mesc+\
304 304 (' '+mesc).join(self.lsmagic())
305 305 print '\n' + Magic.auto_status[self.shell.automagic]
306 306 return None
307 307
308 308 def magic_magic(self, parameter_s = ''):
309 309 """Print information about the magic function system.
310 310
311 311 Supported formats: -latex, -brief, -rest
312 312 """
313 313
314 314 mode = ''
315 315 try:
316 316 if parameter_s.split()[0] == '-latex':
317 317 mode = 'latex'
318 318 if parameter_s.split()[0] == '-brief':
319 319 mode = 'brief'
320 320 if parameter_s.split()[0] == '-rest':
321 321 mode = 'rest'
322 322 rest_docs = []
323 323 except:
324 324 pass
325 325
326 326 magic_docs = []
327 327 for fname in self.lsmagic():
328 328 mname = 'magic_' + fname
329 329 for space in (Magic,self,self.__class__):
330 330 try:
331 331 fn = space.__dict__[mname]
332 332 except KeyError:
333 333 pass
334 334 else:
335 335 break
336 336 if mode == 'brief':
337 337 # only first line
338 338 if fn.__doc__:
339 339 fndoc = fn.__doc__.split('\n',1)[0]
340 340 else:
341 341 fndoc = 'No documentation'
342 342 else:
343 343 if fn.__doc__:
344 344 fndoc = fn.__doc__.rstrip()
345 345 else:
346 346 fndoc = 'No documentation'
347 347
348 348
349 349 if mode == 'rest':
350 350 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
351 351 fname,fndoc))
352 352
353 353 else:
354 354 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
355 355 fname,fndoc))
356 356
357 357 magic_docs = ''.join(magic_docs)
358 358
359 359 if mode == 'rest':
360 360 return "".join(rest_docs)
361 361
362 362 if mode == 'latex':
363 363 print self.format_latex(magic_docs)
364 364 return
365 365 else:
366 366 magic_docs = format_screen(magic_docs)
367 367 if mode == 'brief':
368 368 return magic_docs
369 369
370 370 outmsg = """
371 371 IPython's 'magic' functions
372 372 ===========================
373 373
374 374 The magic function system provides a series of functions which allow you to
375 375 control the behavior of IPython itself, plus a lot of system-type
376 376 features. All these functions are prefixed with a % character, but parameters
377 377 are given without parentheses or quotes.
378 378
379 379 NOTE: If you have 'automagic' enabled (via the command line option or with the
380 380 %automagic function), you don't need to type in the % explicitly. By default,
381 381 IPython ships with automagic on, so you should only rarely need the % escape.
382 382
383 383 Example: typing '%cd mydir' (without the quotes) changes you working directory
384 384 to 'mydir', if it exists.
385 385
386 386 You can define your own magic functions to extend the system. See the supplied
387 387 ipythonrc and example-magic.py files for details (in your ipython
388 388 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
389 389
390 390 You can also define your own aliased names for magic functions. In your
391 391 ipythonrc file, placing a line like:
392 392
393 393 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
394 394
395 395 will define %pf as a new name for %profile.
396 396
397 397 You can also call magics in code using the magic() function, which IPython
398 398 automatically adds to the builtin namespace. Type 'magic?' for details.
399 399
400 400 For a list of the available magic functions, use %lsmagic. For a description
401 401 of any of them, type %magic_name?, e.g. '%cd?'.
402 402
403 403 Currently the magic system has the following functions:\n"""
404 404
405 405 mesc = ESC_MAGIC
406 406 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
407 407 "\n\n%s%s\n\n%s" % (outmsg,
408 408 magic_docs,mesc,mesc,
409 409 (' '+mesc).join(self.lsmagic()),
410 410 Magic.auto_status[self.shell.automagic] ) )
411 411 page.page(outmsg)
412 412
413 413 def magic_automagic(self, parameter_s = ''):
414 414 """Make magic functions callable without having to type the initial %.
415 415
416 416 Without argumentsl toggles on/off (when off, you must call it as
417 417 %automagic, of course). With arguments it sets the value, and you can
418 418 use any of (case insensitive):
419 419
420 420 - on,1,True: to activate
421 421
422 422 - off,0,False: to deactivate.
423 423
424 424 Note that magic functions have lowest priority, so if there's a
425 425 variable whose name collides with that of a magic fn, automagic won't
426 426 work for that function (you get the variable instead). However, if you
427 427 delete the variable (del var), the previously shadowed magic function
428 428 becomes visible to automagic again."""
429 429
430 430 arg = parameter_s.lower()
431 431 if parameter_s in ('on','1','true'):
432 432 self.shell.automagic = True
433 433 elif parameter_s in ('off','0','false'):
434 434 self.shell.automagic = False
435 435 else:
436 436 self.shell.automagic = not self.shell.automagic
437 437 print '\n' + Magic.auto_status[self.shell.automagic]
438 438
439 439 @testdec.skip_doctest
440 440 def magic_autocall(self, parameter_s = ''):
441 441 """Make functions callable without having to type parentheses.
442 442
443 443 Usage:
444 444
445 445 %autocall [mode]
446 446
447 447 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
448 448 value is toggled on and off (remembering the previous state).
449 449
450 450 In more detail, these values mean:
451 451
452 452 0 -> fully disabled
453 453
454 454 1 -> active, but do not apply if there are no arguments on the line.
455 455
456 456 In this mode, you get:
457 457
458 458 In [1]: callable
459 459 Out[1]: <built-in function callable>
460 460
461 461 In [2]: callable 'hello'
462 462 ------> callable('hello')
463 463 Out[2]: False
464 464
465 465 2 -> Active always. Even if no arguments are present, the callable
466 466 object is called:
467 467
468 468 In [2]: float
469 469 ------> float()
470 470 Out[2]: 0.0
471 471
472 472 Note that even with autocall off, you can still use '/' at the start of
473 473 a line to treat the first argument on the command line as a function
474 474 and add parentheses to it:
475 475
476 476 In [8]: /str 43
477 477 ------> str(43)
478 478 Out[8]: '43'
479 479
480 480 # all-random (note for auto-testing)
481 481 """
482 482
483 483 if parameter_s:
484 484 arg = int(parameter_s)
485 485 else:
486 486 arg = 'toggle'
487 487
488 488 if not arg in (0,1,2,'toggle'):
489 489 error('Valid modes: (0->Off, 1->Smart, 2->Full')
490 490 return
491 491
492 492 if arg in (0,1,2):
493 493 self.shell.autocall = arg
494 494 else: # toggle
495 495 if self.shell.autocall:
496 496 self._magic_state.autocall_save = self.shell.autocall
497 497 self.shell.autocall = 0
498 498 else:
499 499 try:
500 500 self.shell.autocall = self._magic_state.autocall_save
501 501 except AttributeError:
502 502 self.shell.autocall = self._magic_state.autocall_save = 1
503 503
504 504 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
505 505
506 506
507 507 def magic_page(self, parameter_s=''):
508 508 """Pretty print the object and display it through a pager.
509 509
510 510 %page [options] OBJECT
511 511
512 512 If no object is given, use _ (last output).
513 513
514 514 Options:
515 515
516 516 -r: page str(object), don't pretty-print it."""
517 517
518 518 # After a function contributed by Olivier Aubert, slightly modified.
519 519
520 520 # Process options/args
521 521 opts,args = self.parse_options(parameter_s,'r')
522 522 raw = 'r' in opts
523 523
524 524 oname = args and args or '_'
525 525 info = self._ofind(oname)
526 526 if info['found']:
527 527 txt = (raw and str or pformat)( info['obj'] )
528 528 page.page(txt)
529 529 else:
530 530 print 'Object `%s` not found' % oname
531 531
532 532 def magic_profile(self, parameter_s=''):
533 533 """Print your currently active IPython profile."""
534 534 if self.shell.profile:
535 535 printpl('Current IPython profile: $self.shell.profile.')
536 536 else:
537 537 print 'No profile active.'
538 538
539 539 def magic_pinfo(self, parameter_s='', namespaces=None):
540 540 """Provide detailed information about an object.
541 541
542 542 '%pinfo object' is just a synonym for object? or ?object."""
543 543
544 544 #print 'pinfo par: <%s>' % parameter_s # dbg
545 545
546 546
547 547 # detail_level: 0 -> obj? , 1 -> obj??
548 548 detail_level = 0
549 549 # We need to detect if we got called as 'pinfo pinfo foo', which can
550 550 # happen if the user types 'pinfo foo?' at the cmd line.
551 551 pinfo,qmark1,oname,qmark2 = \
552 552 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
553 553 if pinfo or qmark1 or qmark2:
554 554 detail_level = 1
555 555 if "*" in oname:
556 556 self.magic_psearch(oname)
557 557 else:
558 558 self.shell._inspect('pinfo', oname, detail_level=detail_level,
559 559 namespaces=namespaces)
560 560
561 561 def magic_pinfo2(self, parameter_s='', namespaces=None):
562 562 """Provide extra detailed information about an object.
563 563
564 564 '%pinfo2 object' is just a synonym for object?? or ??object."""
565 565 self.shell._inspect('pinfo', parameter_s, detail_level=1,
566 566 namespaces=namespaces)
567 567
568 568 @testdec.skip_doctest
569 569 def magic_pdef(self, parameter_s='', namespaces=None):
570 570 """Print the definition header for any callable object.
571 571
572 572 If the object is a class, print the constructor information.
573 573
574 574 Examples
575 575 --------
576 576 ::
577 577
578 578 In [3]: %pdef urllib.urlopen
579 579 urllib.urlopen(url, data=None, proxies=None)
580 580 """
581 581 self._inspect('pdef',parameter_s, namespaces)
582 582
583 583 def magic_pdoc(self, parameter_s='', namespaces=None):
584 584 """Print the docstring for an object.
585 585
586 586 If the given object is a class, it will print both the class and the
587 587 constructor docstrings."""
588 588 self._inspect('pdoc',parameter_s, namespaces)
589 589
590 590 def magic_psource(self, parameter_s='', namespaces=None):
591 591 """Print (or run through pager) the source code for an object."""
592 592 self._inspect('psource',parameter_s, namespaces)
593 593
594 594 def magic_pfile(self, parameter_s=''):
595 595 """Print (or run through pager) the file where an object is defined.
596 596
597 597 The file opens at the line where the object definition begins. IPython
598 598 will honor the environment variable PAGER if set, and otherwise will
599 599 do its best to print the file in a convenient form.
600 600
601 601 If the given argument is not an object currently defined, IPython will
602 602 try to interpret it as a filename (automatically adding a .py extension
603 603 if needed). You can thus use %pfile as a syntax highlighting code
604 604 viewer."""
605 605
606 606 # first interpret argument as an object name
607 607 out = self._inspect('pfile',parameter_s)
608 608 # if not, try the input as a filename
609 609 if out == 'not found':
610 610 try:
611 611 filename = get_py_filename(parameter_s)
612 612 except IOError,msg:
613 613 print msg
614 614 return
615 615 page.page(self.shell.inspector.format(file(filename).read()))
616 616
617 617 def magic_psearch(self, parameter_s=''):
618 618 """Search for object in namespaces by wildcard.
619 619
620 620 %psearch [options] PATTERN [OBJECT TYPE]
621 621
622 622 Note: ? can be used as a synonym for %psearch, at the beginning or at
623 623 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
624 624 rest of the command line must be unchanged (options come first), so
625 625 for example the following forms are equivalent
626 626
627 627 %psearch -i a* function
628 628 -i a* function?
629 629 ?-i a* function
630 630
631 631 Arguments:
632 632
633 633 PATTERN
634 634
635 635 where PATTERN is a string containing * as a wildcard similar to its
636 636 use in a shell. The pattern is matched in all namespaces on the
637 637 search path. By default objects starting with a single _ are not
638 638 matched, many IPython generated objects have a single
639 639 underscore. The default is case insensitive matching. Matching is
640 640 also done on the attributes of objects and not only on the objects
641 641 in a module.
642 642
643 643 [OBJECT TYPE]
644 644
645 645 Is the name of a python type from the types module. The name is
646 646 given in lowercase without the ending type, ex. StringType is
647 647 written string. By adding a type here only objects matching the
648 648 given type are matched. Using all here makes the pattern match all
649 649 types (this is the default).
650 650
651 651 Options:
652 652
653 653 -a: makes the pattern match even objects whose names start with a
654 654 single underscore. These names are normally ommitted from the
655 655 search.
656 656
657 657 -i/-c: make the pattern case insensitive/sensitive. If neither of
658 658 these options is given, the default is read from your ipythonrc
659 659 file. The option name which sets this value is
660 660 'wildcards_case_sensitive'. If this option is not specified in your
661 661 ipythonrc file, IPython's internal default is to do a case sensitive
662 662 search.
663 663
664 664 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
665 665 specifiy can be searched in any of the following namespaces:
666 666 'builtin', 'user', 'user_global','internal', 'alias', where
667 667 'builtin' and 'user' are the search defaults. Note that you should
668 668 not use quotes when specifying namespaces.
669 669
670 670 'Builtin' contains the python module builtin, 'user' contains all
671 671 user data, 'alias' only contain the shell aliases and no python
672 672 objects, 'internal' contains objects used by IPython. The
673 673 'user_global' namespace is only used by embedded IPython instances,
674 674 and it contains module-level globals. You can add namespaces to the
675 675 search with -s or exclude them with -e (these options can be given
676 676 more than once).
677 677
678 678 Examples:
679 679
680 680 %psearch a* -> objects beginning with an a
681 681 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
682 682 %psearch a* function -> all functions beginning with an a
683 683 %psearch re.e* -> objects beginning with an e in module re
684 684 %psearch r*.e* -> objects that start with e in modules starting in r
685 685 %psearch r*.* string -> all strings in modules beginning with r
686 686
687 687 Case sensitve search:
688 688
689 689 %psearch -c a* list all object beginning with lower case a
690 690
691 691 Show objects beginning with a single _:
692 692
693 693 %psearch -a _* list objects beginning with a single underscore"""
694 694 try:
695 695 parameter_s = parameter_s.encode('ascii')
696 696 except UnicodeEncodeError:
697 697 print 'Python identifiers can only contain ascii characters.'
698 698 return
699 699
700 700 # default namespaces to be searched
701 701 def_search = ['user','builtin']
702 702
703 703 # Process options/args
704 704 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
705 705 opt = opts.get
706 706 shell = self.shell
707 707 psearch = shell.inspector.psearch
708 708
709 709 # select case options
710 710 if opts.has_key('i'):
711 711 ignore_case = True
712 712 elif opts.has_key('c'):
713 713 ignore_case = False
714 714 else:
715 715 ignore_case = not shell.wildcards_case_sensitive
716 716
717 717 # Build list of namespaces to search from user options
718 718 def_search.extend(opt('s',[]))
719 719 ns_exclude = ns_exclude=opt('e',[])
720 720 ns_search = [nm for nm in def_search if nm not in ns_exclude]
721 721
722 722 # Call the actual search
723 723 try:
724 724 psearch(args,shell.ns_table,ns_search,
725 725 show_all=opt('a'),ignore_case=ignore_case)
726 726 except:
727 727 shell.showtraceback()
728 728
729 729 @testdec.skip_doctest
730 730 def magic_who_ls(self, parameter_s=''):
731 731 """Return a sorted list of all interactive variables.
732 732
733 733 If arguments are given, only variables of types matching these
734 734 arguments are returned.
735 735
736 736 Examples
737 737 --------
738 738
739 739 Define two variables and list them with who_ls::
740 740
741 741 In [1]: alpha = 123
742 742
743 743 In [2]: beta = 'test'
744 744
745 745 In [3]: %who_ls
746 746 Out[3]: ['alpha', 'beta']
747 747
748 748 In [4]: %who_ls int
749 749 Out[4]: ['alpha']
750 750
751 751 In [5]: %who_ls str
752 752 Out[5]: ['beta']
753 753 """
754 754
755 755 user_ns = self.shell.user_ns
756 756 internal_ns = self.shell.internal_ns
757 757 user_ns_hidden = self.shell.user_ns_hidden
758 758 out = [ i for i in user_ns
759 759 if not i.startswith('_') \
760 760 and not (i in internal_ns or i in user_ns_hidden) ]
761 761
762 762 typelist = parameter_s.split()
763 763 if typelist:
764 764 typeset = set(typelist)
765 765 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
766 766
767 767 out.sort()
768 768 return out
769 769
770 770 @testdec.skip_doctest
771 771 def magic_who(self, parameter_s=''):
772 772 """Print all interactive variables, with some minimal formatting.
773 773
774 774 If any arguments are given, only variables whose type matches one of
775 775 these are printed. For example:
776 776
777 777 %who function str
778 778
779 779 will only list functions and strings, excluding all other types of
780 780 variables. To find the proper type names, simply use type(var) at a
781 781 command line to see how python prints type names. For example:
782 782
783 783 In [1]: type('hello')\\
784 784 Out[1]: <type 'str'>
785 785
786 786 indicates that the type name for strings is 'str'.
787 787
788 788 %who always excludes executed names loaded through your configuration
789 789 file and things which are internal to IPython.
790 790
791 791 This is deliberate, as typically you may load many modules and the
792 792 purpose of %who is to show you only what you've manually defined.
793 793
794 794 Examples
795 795 --------
796 796
797 797 Define two variables and list them with who::
798 798
799 799 In [1]: alpha = 123
800 800
801 801 In [2]: beta = 'test'
802 802
803 803 In [3]: %who
804 804 alpha beta
805 805
806 806 In [4]: %who int
807 807 alpha
808 808
809 809 In [5]: %who str
810 810 beta
811 811 """
812 812
813 813 varlist = self.magic_who_ls(parameter_s)
814 814 if not varlist:
815 815 if parameter_s:
816 816 print 'No variables match your requested type.'
817 817 else:
818 818 print 'Interactive namespace is empty.'
819 819 return
820 820
821 821 # if we have variables, move on...
822 822 count = 0
823 823 for i in varlist:
824 824 print i+'\t',
825 825 count += 1
826 826 if count > 8:
827 827 count = 0
828 828 print
829 829 print
830 830
831 831 @testdec.skip_doctest
832 832 def magic_whos(self, parameter_s=''):
833 833 """Like %who, but gives some extra information about each variable.
834 834
835 835 The same type filtering of %who can be applied here.
836 836
837 837 For all variables, the type is printed. Additionally it prints:
838 838
839 839 - For {},[],(): their length.
840 840
841 841 - For numpy arrays, a summary with shape, number of
842 842 elements, typecode and size in memory.
843 843
844 844 - Everything else: a string representation, snipping their middle if
845 845 too long.
846 846
847 847 Examples
848 848 --------
849 849
850 850 Define two variables and list them with whos::
851 851
852 852 In [1]: alpha = 123
853 853
854 854 In [2]: beta = 'test'
855 855
856 856 In [3]: %whos
857 857 Variable Type Data/Info
858 858 --------------------------------
859 859 alpha int 123
860 860 beta str test
861 861 """
862 862
863 863 varnames = self.magic_who_ls(parameter_s)
864 864 if not varnames:
865 865 if parameter_s:
866 866 print 'No variables match your requested type.'
867 867 else:
868 868 print 'Interactive namespace is empty.'
869 869 return
870 870
871 871 # if we have variables, move on...
872 872
873 873 # for these types, show len() instead of data:
874 874 seq_types = ['dict', 'list', 'tuple']
875 875
876 876 # for numpy/Numeric arrays, display summary info
877 877 try:
878 878 import numpy
879 879 except ImportError:
880 880 ndarray_type = None
881 881 else:
882 882 ndarray_type = numpy.ndarray.__name__
883 883 try:
884 884 import Numeric
885 885 except ImportError:
886 886 array_type = None
887 887 else:
888 888 array_type = Numeric.ArrayType.__name__
889 889
890 890 # Find all variable names and types so we can figure out column sizes
891 891 def get_vars(i):
892 892 return self.shell.user_ns[i]
893 893
894 894 # some types are well known and can be shorter
895 895 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
896 896 def type_name(v):
897 897 tn = type(v).__name__
898 898 return abbrevs.get(tn,tn)
899 899
900 900 varlist = map(get_vars,varnames)
901 901
902 902 typelist = []
903 903 for vv in varlist:
904 904 tt = type_name(vv)
905 905
906 906 if tt=='instance':
907 907 typelist.append( abbrevs.get(str(vv.__class__),
908 908 str(vv.__class__)))
909 909 else:
910 910 typelist.append(tt)
911 911
912 912 # column labels and # of spaces as separator
913 913 varlabel = 'Variable'
914 914 typelabel = 'Type'
915 915 datalabel = 'Data/Info'
916 916 colsep = 3
917 917 # variable format strings
918 918 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
919 919 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
920 920 aformat = "%s: %s elems, type `%s`, %s bytes"
921 921 # find the size of the columns to format the output nicely
922 922 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
923 923 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
924 924 # table header
925 925 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
926 926 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
927 927 # and the table itself
928 928 kb = 1024
929 929 Mb = 1048576 # kb**2
930 930 for vname,var,vtype in zip(varnames,varlist,typelist):
931 931 print itpl(vformat),
932 932 if vtype in seq_types:
933 933 print "n="+str(len(var))
934 934 elif vtype in [array_type,ndarray_type]:
935 935 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
936 936 if vtype==ndarray_type:
937 937 # numpy
938 938 vsize = var.size
939 939 vbytes = vsize*var.itemsize
940 940 vdtype = var.dtype
941 941 else:
942 942 # Numeric
943 943 vsize = Numeric.size(var)
944 944 vbytes = vsize*var.itemsize()
945 945 vdtype = var.typecode()
946 946
947 947 if vbytes < 100000:
948 948 print aformat % (vshape,vsize,vdtype,vbytes)
949 949 else:
950 950 print aformat % (vshape,vsize,vdtype,vbytes),
951 951 if vbytes < Mb:
952 952 print '(%s kb)' % (vbytes/kb,)
953 953 else:
954 954 print '(%s Mb)' % (vbytes/Mb,)
955 955 else:
956 956 try:
957 957 vstr = str(var)
958 958 except UnicodeEncodeError:
959 959 vstr = unicode(var).encode(sys.getdefaultencoding(),
960 960 'backslashreplace')
961 961 vstr = vstr.replace('\n','\\n')
962 962 if len(vstr) < 50:
963 963 print vstr
964 964 else:
965 965 printpl(vfmt_short)
966 966
967 967 def magic_reset(self, parameter_s=''):
968 968 """Resets the namespace by removing all names defined by the user.
969 969
970 Input/Output history are left around in case you need them.
971
972 970 Parameters
973 971 ----------
974 972 -f : force reset without asking for confirmation.
975
973
974 -s : 'Soft' reset: Only clears your namespace, leaving history intact.
975 References to objects may be kept. By default (without this option),
976 we do a 'hard' reset, giving you a new session and removing all
977 references to objects from the current session.
978
976 979 Examples
977 980 --------
978 981 In [6]: a = 1
979 982
980 983 In [7]: a
981 984 Out[7]: 1
982 985
983 986 In [8]: 'a' in _ip.user_ns
984 987 Out[8]: True
985 988
986 989 In [9]: %reset -f
987 990
988 In [10]: 'a' in _ip.user_ns
989 Out[10]: False
991 In [1]: 'a' in _ip.user_ns
992 Out[1]: False
990 993 """
991
992 if parameter_s == '-f':
994 opts, args = self.parse_options(parameter_s,'sh')
995 if 'f' in opts:
993 996 ans = True
994 997 else:
995 998 ans = self.shell.ask_yes_no(
996 999 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
997 1000 if not ans:
998 1001 print 'Nothing done.'
999 1002 return
1000 user_ns = self.shell.user_ns
1001 for i in self.magic_who_ls():
1002 del(user_ns[i])
1003
1004 if 's' in opts: # Soft reset
1005 user_ns = self.shell.user_ns
1006 for i in self.magic_who_ls():
1007 del(user_ns[i])
1003 1008
1004 # Also flush the private list of module references kept for script
1005 # execution protection
1006 self.shell.clear_main_mod_cache()
1009 else: # Hard reset
1010 self.shell.reset(new_session = True)
1011
1012
1007 1013
1008 1014 def magic_reset_selective(self, parameter_s=''):
1009 1015 """Resets the namespace by removing names defined by the user.
1010 1016
1011 1017 Input/Output history are left around in case you need them.
1012 1018
1013 1019 %reset_selective [-f] regex
1014 1020
1015 1021 No action is taken if regex is not included
1016 1022
1017 1023 Options
1018 1024 -f : force reset without asking for confirmation.
1019 1025
1020 1026 Examples
1021 1027 --------
1022 1028
1023 1029 We first fully reset the namespace so your output looks identical to
1024 1030 this example for pedagogical reasons; in practice you do not need a
1025 1031 full reset.
1026 1032
1027 1033 In [1]: %reset -f
1028 1034
1029 1035 Now, with a clean namespace we can make a few variables and use
1030 1036 %reset_selective to only delete names that match our regexp:
1031 1037
1032 1038 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1033 1039
1034 1040 In [3]: who_ls
1035 1041 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1036 1042
1037 1043 In [4]: %reset_selective -f b[2-3]m
1038 1044
1039 1045 In [5]: who_ls
1040 1046 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1041 1047
1042 1048 In [6]: %reset_selective -f d
1043 1049
1044 1050 In [7]: who_ls
1045 1051 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1046 1052
1047 1053 In [8]: %reset_selective -f c
1048 1054
1049 1055 In [9]: who_ls
1050 1056 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1051 1057
1052 1058 In [10]: %reset_selective -f b
1053 1059
1054 1060 In [11]: who_ls
1055 1061 Out[11]: ['a']
1056 1062 """
1057 1063
1058 1064 opts, regex = self.parse_options(parameter_s,'f')
1059 1065
1060 1066 if opts.has_key('f'):
1061 1067 ans = True
1062 1068 else:
1063 1069 ans = self.shell.ask_yes_no(
1064 1070 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1065 1071 if not ans:
1066 1072 print 'Nothing done.'
1067 1073 return
1068 1074 user_ns = self.shell.user_ns
1069 1075 if not regex:
1070 1076 print 'No regex pattern specified. Nothing done.'
1071 1077 return
1072 1078 else:
1073 1079 try:
1074 1080 m = re.compile(regex)
1075 1081 except TypeError:
1076 1082 raise TypeError('regex must be a string or compiled pattern')
1077 1083 for i in self.magic_who_ls():
1078 1084 if m.search(i):
1079 1085 del(user_ns[i])
1080 1086
1081 1087 def magic_logstart(self,parameter_s=''):
1082 1088 """Start logging anywhere in a session.
1083 1089
1084 1090 %logstart [-o|-r|-t] [log_name [log_mode]]
1085 1091
1086 1092 If no name is given, it defaults to a file named 'ipython_log.py' in your
1087 1093 current directory, in 'rotate' mode (see below).
1088 1094
1089 1095 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1090 1096 history up to that point and then continues logging.
1091 1097
1092 1098 %logstart takes a second optional parameter: logging mode. This can be one
1093 1099 of (note that the modes are given unquoted):\\
1094 1100 append: well, that says it.\\
1095 1101 backup: rename (if exists) to name~ and start name.\\
1096 1102 global: single logfile in your home dir, appended to.\\
1097 1103 over : overwrite existing log.\\
1098 1104 rotate: create rotating logs name.1~, name.2~, etc.
1099 1105
1100 1106 Options:
1101 1107
1102 1108 -o: log also IPython's output. In this mode, all commands which
1103 1109 generate an Out[NN] prompt are recorded to the logfile, right after
1104 1110 their corresponding input line. The output lines are always
1105 1111 prepended with a '#[Out]# ' marker, so that the log remains valid
1106 1112 Python code.
1107 1113
1108 1114 Since this marker is always the same, filtering only the output from
1109 1115 a log is very easy, using for example a simple awk call:
1110 1116
1111 1117 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1112 1118
1113 1119 -r: log 'raw' input. Normally, IPython's logs contain the processed
1114 1120 input, so that user lines are logged in their final form, converted
1115 1121 into valid Python. For example, %Exit is logged as
1116 1122 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1117 1123 exactly as typed, with no transformations applied.
1118 1124
1119 1125 -t: put timestamps before each input line logged (these are put in
1120 1126 comments)."""
1121 1127
1122 1128 opts,par = self.parse_options(parameter_s,'ort')
1123 1129 log_output = 'o' in opts
1124 1130 log_raw_input = 'r' in opts
1125 1131 timestamp = 't' in opts
1126 1132
1127 1133 logger = self.shell.logger
1128 1134
1129 1135 # if no args are given, the defaults set in the logger constructor by
1130 1136 # ipytohn remain valid
1131 1137 if par:
1132 1138 try:
1133 1139 logfname,logmode = par.split()
1134 1140 except:
1135 1141 logfname = par
1136 1142 logmode = 'backup'
1137 1143 else:
1138 1144 logfname = logger.logfname
1139 1145 logmode = logger.logmode
1140 1146 # put logfname into rc struct as if it had been called on the command
1141 1147 # line, so it ends up saved in the log header Save it in case we need
1142 1148 # to restore it...
1143 1149 old_logfile = self.shell.logfile
1144 1150 if logfname:
1145 1151 logfname = os.path.expanduser(logfname)
1146 1152 self.shell.logfile = logfname
1147 1153
1148 1154 loghead = '# IPython log file\n\n'
1149 1155 try:
1150 1156 started = logger.logstart(logfname,loghead,logmode,
1151 1157 log_output,timestamp,log_raw_input)
1152 1158 except:
1153 1159 self.shell.logfile = old_logfile
1154 1160 warn("Couldn't start log: %s" % sys.exc_info()[1])
1155 1161 else:
1156 1162 # log input history up to this point, optionally interleaving
1157 1163 # output if requested
1158 1164
1159 1165 if timestamp:
1160 1166 # disable timestamping for the previous history, since we've
1161 1167 # lost those already (no time machine here).
1162 1168 logger.timestamp = False
1163 1169
1164 1170 if log_raw_input:
1165 1171 input_hist = self.shell.history_manager.input_hist_raw
1166 1172 else:
1167 1173 input_hist = self.shell.history_manager.input_hist_parsed
1168 1174
1169 1175 if log_output:
1170 1176 log_write = logger.log_write
1171 1177 output_hist = self.shell.history_manager.output_hist
1172 1178 for n in range(1,len(input_hist)-1):
1173 1179 log_write(input_hist[n].rstrip())
1174 1180 if n in output_hist:
1175 1181 log_write(repr(output_hist[n]),'output')
1176 1182 else:
1177 1183 logger.log_write(''.join(input_hist[1:]))
1178 1184 if timestamp:
1179 1185 # re-enable timestamping
1180 1186 logger.timestamp = True
1181 1187
1182 1188 print ('Activating auto-logging. '
1183 1189 'Current session state plus future input saved.')
1184 1190 logger.logstate()
1185 1191
1186 1192 def magic_logstop(self,parameter_s=''):
1187 1193 """Fully stop logging and close log file.
1188 1194
1189 1195 In order to start logging again, a new %logstart call needs to be made,
1190 1196 possibly (though not necessarily) with a new filename, mode and other
1191 1197 options."""
1192 1198 self.logger.logstop()
1193 1199
1194 1200 def magic_logoff(self,parameter_s=''):
1195 1201 """Temporarily stop logging.
1196 1202
1197 1203 You must have previously started logging."""
1198 1204 self.shell.logger.switch_log(0)
1199 1205
1200 1206 def magic_logon(self,parameter_s=''):
1201 1207 """Restart logging.
1202 1208
1203 1209 This function is for restarting logging which you've temporarily
1204 1210 stopped with %logoff. For starting logging for the first time, you
1205 1211 must use the %logstart function, which allows you to specify an
1206 1212 optional log filename."""
1207 1213
1208 1214 self.shell.logger.switch_log(1)
1209 1215
1210 1216 def magic_logstate(self,parameter_s=''):
1211 1217 """Print the status of the logging system."""
1212 1218
1213 1219 self.shell.logger.logstate()
1214 1220
1215 1221 def magic_pdb(self, parameter_s=''):
1216 1222 """Control the automatic calling of the pdb interactive debugger.
1217 1223
1218 1224 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1219 1225 argument it works as a toggle.
1220 1226
1221 1227 When an exception is triggered, IPython can optionally call the
1222 1228 interactive pdb debugger after the traceback printout. %pdb toggles
1223 1229 this feature on and off.
1224 1230
1225 1231 The initial state of this feature is set in your ipythonrc
1226 1232 configuration file (the variable is called 'pdb').
1227 1233
1228 1234 If you want to just activate the debugger AFTER an exception has fired,
1229 1235 without having to type '%pdb on' and rerunning your code, you can use
1230 1236 the %debug magic."""
1231 1237
1232 1238 par = parameter_s.strip().lower()
1233 1239
1234 1240 if par:
1235 1241 try:
1236 1242 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1237 1243 except KeyError:
1238 1244 print ('Incorrect argument. Use on/1, off/0, '
1239 1245 'or nothing for a toggle.')
1240 1246 return
1241 1247 else:
1242 1248 # toggle
1243 1249 new_pdb = not self.shell.call_pdb
1244 1250
1245 1251 # set on the shell
1246 1252 self.shell.call_pdb = new_pdb
1247 1253 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1248 1254
1249 1255 def magic_debug(self, parameter_s=''):
1250 1256 """Activate the interactive debugger in post-mortem mode.
1251 1257
1252 1258 If an exception has just occurred, this lets you inspect its stack
1253 1259 frames interactively. Note that this will always work only on the last
1254 1260 traceback that occurred, so you must call this quickly after an
1255 1261 exception that you wish to inspect has fired, because if another one
1256 1262 occurs, it clobbers the previous one.
1257 1263
1258 1264 If you want IPython to automatically do this on every exception, see
1259 1265 the %pdb magic for more details.
1260 1266 """
1261 1267 self.shell.debugger(force=True)
1262 1268
1263 1269 @testdec.skip_doctest
1264 1270 def magic_prun(self, parameter_s ='',user_mode=1,
1265 1271 opts=None,arg_lst=None,prog_ns=None):
1266 1272
1267 1273 """Run a statement through the python code profiler.
1268 1274
1269 1275 Usage:
1270 1276 %prun [options] statement
1271 1277
1272 1278 The given statement (which doesn't require quote marks) is run via the
1273 1279 python profiler in a manner similar to the profile.run() function.
1274 1280 Namespaces are internally managed to work correctly; profile.run
1275 1281 cannot be used in IPython because it makes certain assumptions about
1276 1282 namespaces which do not hold under IPython.
1277 1283
1278 1284 Options:
1279 1285
1280 1286 -l <limit>: you can place restrictions on what or how much of the
1281 1287 profile gets printed. The limit value can be:
1282 1288
1283 1289 * A string: only information for function names containing this string
1284 1290 is printed.
1285 1291
1286 1292 * An integer: only these many lines are printed.
1287 1293
1288 1294 * A float (between 0 and 1): this fraction of the report is printed
1289 1295 (for example, use a limit of 0.4 to see the topmost 40% only).
1290 1296
1291 1297 You can combine several limits with repeated use of the option. For
1292 1298 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1293 1299 information about class constructors.
1294 1300
1295 1301 -r: return the pstats.Stats object generated by the profiling. This
1296 1302 object has all the information about the profile in it, and you can
1297 1303 later use it for further analysis or in other functions.
1298 1304
1299 1305 -s <key>: sort profile by given key. You can provide more than one key
1300 1306 by using the option several times: '-s key1 -s key2 -s key3...'. The
1301 1307 default sorting key is 'time'.
1302 1308
1303 1309 The following is copied verbatim from the profile documentation
1304 1310 referenced below:
1305 1311
1306 1312 When more than one key is provided, additional keys are used as
1307 1313 secondary criteria when the there is equality in all keys selected
1308 1314 before them.
1309 1315
1310 1316 Abbreviations can be used for any key names, as long as the
1311 1317 abbreviation is unambiguous. The following are the keys currently
1312 1318 defined:
1313 1319
1314 1320 Valid Arg Meaning
1315 1321 "calls" call count
1316 1322 "cumulative" cumulative time
1317 1323 "file" file name
1318 1324 "module" file name
1319 1325 "pcalls" primitive call count
1320 1326 "line" line number
1321 1327 "name" function name
1322 1328 "nfl" name/file/line
1323 1329 "stdname" standard name
1324 1330 "time" internal time
1325 1331
1326 1332 Note that all sorts on statistics are in descending order (placing
1327 1333 most time consuming items first), where as name, file, and line number
1328 1334 searches are in ascending order (i.e., alphabetical). The subtle
1329 1335 distinction between "nfl" and "stdname" is that the standard name is a
1330 1336 sort of the name as printed, which means that the embedded line
1331 1337 numbers get compared in an odd way. For example, lines 3, 20, and 40
1332 1338 would (if the file names were the same) appear in the string order
1333 1339 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1334 1340 line numbers. In fact, sort_stats("nfl") is the same as
1335 1341 sort_stats("name", "file", "line").
1336 1342
1337 1343 -T <filename>: save profile results as shown on screen to a text
1338 1344 file. The profile is still shown on screen.
1339 1345
1340 1346 -D <filename>: save (via dump_stats) profile statistics to given
1341 1347 filename. This data is in a format understod by the pstats module, and
1342 1348 is generated by a call to the dump_stats() method of profile
1343 1349 objects. The profile is still shown on screen.
1344 1350
1345 1351 If you want to run complete programs under the profiler's control, use
1346 1352 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1347 1353 contains profiler specific options as described here.
1348 1354
1349 1355 You can read the complete documentation for the profile module with::
1350 1356
1351 1357 In [1]: import profile; profile.help()
1352 1358 """
1353 1359
1354 1360 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1355 1361 # protect user quote marks
1356 1362 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1357 1363
1358 1364 if user_mode: # regular user call
1359 1365 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1360 1366 list_all=1)
1361 1367 namespace = self.shell.user_ns
1362 1368 else: # called to run a program by %run -p
1363 1369 try:
1364 1370 filename = get_py_filename(arg_lst[0])
1365 1371 except IOError,msg:
1366 1372 error(msg)
1367 1373 return
1368 1374
1369 1375 arg_str = 'execfile(filename,prog_ns)'
1370 1376 namespace = locals()
1371 1377
1372 1378 opts.merge(opts_def)
1373 1379
1374 1380 prof = profile.Profile()
1375 1381 try:
1376 1382 prof = prof.runctx(arg_str,namespace,namespace)
1377 1383 sys_exit = ''
1378 1384 except SystemExit:
1379 1385 sys_exit = """*** SystemExit exception caught in code being profiled."""
1380 1386
1381 1387 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1382 1388
1383 1389 lims = opts.l
1384 1390 if lims:
1385 1391 lims = [] # rebuild lims with ints/floats/strings
1386 1392 for lim in opts.l:
1387 1393 try:
1388 1394 lims.append(int(lim))
1389 1395 except ValueError:
1390 1396 try:
1391 1397 lims.append(float(lim))
1392 1398 except ValueError:
1393 1399 lims.append(lim)
1394 1400
1395 1401 # Trap output.
1396 1402 stdout_trap = StringIO()
1397 1403
1398 1404 if hasattr(stats,'stream'):
1399 1405 # In newer versions of python, the stats object has a 'stream'
1400 1406 # attribute to write into.
1401 1407 stats.stream = stdout_trap
1402 1408 stats.print_stats(*lims)
1403 1409 else:
1404 1410 # For older versions, we manually redirect stdout during printing
1405 1411 sys_stdout = sys.stdout
1406 1412 try:
1407 1413 sys.stdout = stdout_trap
1408 1414 stats.print_stats(*lims)
1409 1415 finally:
1410 1416 sys.stdout = sys_stdout
1411 1417
1412 1418 output = stdout_trap.getvalue()
1413 1419 output = output.rstrip()
1414 1420
1415 1421 page.page(output)
1416 1422 print sys_exit,
1417 1423
1418 1424 dump_file = opts.D[0]
1419 1425 text_file = opts.T[0]
1420 1426 if dump_file:
1421 1427 prof.dump_stats(dump_file)
1422 1428 print '\n*** Profile stats marshalled to file',\
1423 1429 `dump_file`+'.',sys_exit
1424 1430 if text_file:
1425 1431 pfile = file(text_file,'w')
1426 1432 pfile.write(output)
1427 1433 pfile.close()
1428 1434 print '\n*** Profile printout saved to text file',\
1429 1435 `text_file`+'.',sys_exit
1430 1436
1431 1437 if opts.has_key('r'):
1432 1438 return stats
1433 1439 else:
1434 1440 return None
1435 1441
1436 1442 @testdec.skip_doctest
1437 1443 def magic_run(self, parameter_s ='',runner=None,
1438 1444 file_finder=get_py_filename):
1439 1445 """Run the named file inside IPython as a program.
1440 1446
1441 1447 Usage:\\
1442 1448 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1443 1449
1444 1450 Parameters after the filename are passed as command-line arguments to
1445 1451 the program (put in sys.argv). Then, control returns to IPython's
1446 1452 prompt.
1447 1453
1448 1454 This is similar to running at a system prompt:\\
1449 1455 $ python file args\\
1450 1456 but with the advantage of giving you IPython's tracebacks, and of
1451 1457 loading all variables into your interactive namespace for further use
1452 1458 (unless -p is used, see below).
1453 1459
1454 1460 The file is executed in a namespace initially consisting only of
1455 1461 __name__=='__main__' and sys.argv constructed as indicated. It thus
1456 1462 sees its environment as if it were being run as a stand-alone program
1457 1463 (except for sharing global objects such as previously imported
1458 1464 modules). But after execution, the IPython interactive namespace gets
1459 1465 updated with all variables defined in the program (except for __name__
1460 1466 and sys.argv). This allows for very convenient loading of code for
1461 1467 interactive work, while giving each program a 'clean sheet' to run in.
1462 1468
1463 1469 Options:
1464 1470
1465 1471 -n: __name__ is NOT set to '__main__', but to the running file's name
1466 1472 without extension (as python does under import). This allows running
1467 1473 scripts and reloading the definitions in them without calling code
1468 1474 protected by an ' if __name__ == "__main__" ' clause.
1469 1475
1470 1476 -i: run the file in IPython's namespace instead of an empty one. This
1471 1477 is useful if you are experimenting with code written in a text editor
1472 1478 which depends on variables defined interactively.
1473 1479
1474 1480 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1475 1481 being run. This is particularly useful if IPython is being used to
1476 1482 run unittests, which always exit with a sys.exit() call. In such
1477 1483 cases you are interested in the output of the test results, not in
1478 1484 seeing a traceback of the unittest module.
1479 1485
1480 1486 -t: print timing information at the end of the run. IPython will give
1481 1487 you an estimated CPU time consumption for your script, which under
1482 1488 Unix uses the resource module to avoid the wraparound problems of
1483 1489 time.clock(). Under Unix, an estimate of time spent on system tasks
1484 1490 is also given (for Windows platforms this is reported as 0.0).
1485 1491
1486 1492 If -t is given, an additional -N<N> option can be given, where <N>
1487 1493 must be an integer indicating how many times you want the script to
1488 1494 run. The final timing report will include total and per run results.
1489 1495
1490 1496 For example (testing the script uniq_stable.py):
1491 1497
1492 1498 In [1]: run -t uniq_stable
1493 1499
1494 1500 IPython CPU timings (estimated):\\
1495 1501 User : 0.19597 s.\\
1496 1502 System: 0.0 s.\\
1497 1503
1498 1504 In [2]: run -t -N5 uniq_stable
1499 1505
1500 1506 IPython CPU timings (estimated):\\
1501 1507 Total runs performed: 5\\
1502 1508 Times : Total Per run\\
1503 1509 User : 0.910862 s, 0.1821724 s.\\
1504 1510 System: 0.0 s, 0.0 s.
1505 1511
1506 1512 -d: run your program under the control of pdb, the Python debugger.
1507 1513 This allows you to execute your program step by step, watch variables,
1508 1514 etc. Internally, what IPython does is similar to calling:
1509 1515
1510 1516 pdb.run('execfile("YOURFILENAME")')
1511 1517
1512 1518 with a breakpoint set on line 1 of your file. You can change the line
1513 1519 number for this automatic breakpoint to be <N> by using the -bN option
1514 1520 (where N must be an integer). For example:
1515 1521
1516 1522 %run -d -b40 myscript
1517 1523
1518 1524 will set the first breakpoint at line 40 in myscript.py. Note that
1519 1525 the first breakpoint must be set on a line which actually does
1520 1526 something (not a comment or docstring) for it to stop execution.
1521 1527
1522 1528 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1523 1529 first enter 'c' (without qoutes) to start execution up to the first
1524 1530 breakpoint.
1525 1531
1526 1532 Entering 'help' gives information about the use of the debugger. You
1527 1533 can easily see pdb's full documentation with "import pdb;pdb.help()"
1528 1534 at a prompt.
1529 1535
1530 1536 -p: run program under the control of the Python profiler module (which
1531 1537 prints a detailed report of execution times, function calls, etc).
1532 1538
1533 1539 You can pass other options after -p which affect the behavior of the
1534 1540 profiler itself. See the docs for %prun for details.
1535 1541
1536 1542 In this mode, the program's variables do NOT propagate back to the
1537 1543 IPython interactive namespace (because they remain in the namespace
1538 1544 where the profiler executes them).
1539 1545
1540 1546 Internally this triggers a call to %prun, see its documentation for
1541 1547 details on the options available specifically for profiling.
1542 1548
1543 1549 There is one special usage for which the text above doesn't apply:
1544 1550 if the filename ends with .ipy, the file is run as ipython script,
1545 1551 just as if the commands were written on IPython prompt.
1546 1552 """
1547 1553
1548 1554 # get arguments and set sys.argv for program to be run.
1549 1555 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1550 1556 mode='list',list_all=1)
1551 1557
1552 1558 try:
1553 1559 filename = file_finder(arg_lst[0])
1554 1560 except IndexError:
1555 1561 warn('you must provide at least a filename.')
1556 1562 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1557 1563 return
1558 1564 except IOError,msg:
1559 1565 error(msg)
1560 1566 return
1561 1567
1562 1568 if filename.lower().endswith('.ipy'):
1563 1569 self.shell.safe_execfile_ipy(filename)
1564 1570 return
1565 1571
1566 1572 # Control the response to exit() calls made by the script being run
1567 1573 exit_ignore = opts.has_key('e')
1568 1574
1569 1575 # Make sure that the running script gets a proper sys.argv as if it
1570 1576 # were run from a system shell.
1571 1577 save_argv = sys.argv # save it for later restoring
1572 1578 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1573 1579
1574 1580 if opts.has_key('i'):
1575 1581 # Run in user's interactive namespace
1576 1582 prog_ns = self.shell.user_ns
1577 1583 __name__save = self.shell.user_ns['__name__']
1578 1584 prog_ns['__name__'] = '__main__'
1579 1585 main_mod = self.shell.new_main_mod(prog_ns)
1580 1586 else:
1581 1587 # Run in a fresh, empty namespace
1582 1588 if opts.has_key('n'):
1583 1589 name = os.path.splitext(os.path.basename(filename))[0]
1584 1590 else:
1585 1591 name = '__main__'
1586 1592
1587 1593 main_mod = self.shell.new_main_mod()
1588 1594 prog_ns = main_mod.__dict__
1589 1595 prog_ns['__name__'] = name
1590 1596
1591 1597 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1592 1598 # set the __file__ global in the script's namespace
1593 1599 prog_ns['__file__'] = filename
1594 1600
1595 1601 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1596 1602 # that, if we overwrite __main__, we replace it at the end
1597 1603 main_mod_name = prog_ns['__name__']
1598 1604
1599 1605 if main_mod_name == '__main__':
1600 1606 restore_main = sys.modules['__main__']
1601 1607 else:
1602 1608 restore_main = False
1603 1609
1604 1610 # This needs to be undone at the end to prevent holding references to
1605 1611 # every single object ever created.
1606 1612 sys.modules[main_mod_name] = main_mod
1607 1613
1608 1614 try:
1609 1615 stats = None
1610 1616 with self.readline_no_record:
1611 1617 if opts.has_key('p'):
1612 1618 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1613 1619 else:
1614 1620 if opts.has_key('d'):
1615 1621 deb = debugger.Pdb(self.shell.colors)
1616 1622 # reset Breakpoint state, which is moronically kept
1617 1623 # in a class
1618 1624 bdb.Breakpoint.next = 1
1619 1625 bdb.Breakpoint.bplist = {}
1620 1626 bdb.Breakpoint.bpbynumber = [None]
1621 1627 # Set an initial breakpoint to stop execution
1622 1628 maxtries = 10
1623 1629 bp = int(opts.get('b',[1])[0])
1624 1630 checkline = deb.checkline(filename,bp)
1625 1631 if not checkline:
1626 1632 for bp in range(bp+1,bp+maxtries+1):
1627 1633 if deb.checkline(filename,bp):
1628 1634 break
1629 1635 else:
1630 1636 msg = ("\nI failed to find a valid line to set "
1631 1637 "a breakpoint\n"
1632 1638 "after trying up to line: %s.\n"
1633 1639 "Please set a valid breakpoint manually "
1634 1640 "with the -b option." % bp)
1635 1641 error(msg)
1636 1642 return
1637 1643 # if we find a good linenumber, set the breakpoint
1638 1644 deb.do_break('%s:%s' % (filename,bp))
1639 1645 # Start file run
1640 1646 print "NOTE: Enter 'c' at the",
1641 1647 print "%s prompt to start your script." % deb.prompt
1642 1648 try:
1643 1649 deb.run('execfile("%s")' % filename,prog_ns)
1644 1650
1645 1651 except:
1646 1652 etype, value, tb = sys.exc_info()
1647 1653 # Skip three frames in the traceback: the %run one,
1648 1654 # one inside bdb.py, and the command-line typed by the
1649 1655 # user (run by exec in pdb itself).
1650 1656 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1651 1657 else:
1652 1658 if runner is None:
1653 1659 runner = self.shell.safe_execfile
1654 1660 if opts.has_key('t'):
1655 1661 # timed execution
1656 1662 try:
1657 1663 nruns = int(opts['N'][0])
1658 1664 if nruns < 1:
1659 1665 error('Number of runs must be >=1')
1660 1666 return
1661 1667 except (KeyError):
1662 1668 nruns = 1
1663 1669 if nruns == 1:
1664 1670 t0 = clock2()
1665 1671 runner(filename,prog_ns,prog_ns,
1666 1672 exit_ignore=exit_ignore)
1667 1673 t1 = clock2()
1668 1674 t_usr = t1[0]-t0[0]
1669 1675 t_sys = t1[1]-t0[1]
1670 1676 print "\nIPython CPU timings (estimated):"
1671 1677 print " User : %10s s." % t_usr
1672 1678 print " System: %10s s." % t_sys
1673 1679 else:
1674 1680 runs = range(nruns)
1675 1681 t0 = clock2()
1676 1682 for nr in runs:
1677 1683 runner(filename,prog_ns,prog_ns,
1678 1684 exit_ignore=exit_ignore)
1679 1685 t1 = clock2()
1680 1686 t_usr = t1[0]-t0[0]
1681 1687 t_sys = t1[1]-t0[1]
1682 1688 print "\nIPython CPU timings (estimated):"
1683 1689 print "Total runs performed:",nruns
1684 1690 print " Times : %10s %10s" % ('Total','Per run')
1685 1691 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1686 1692 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1687 1693
1688 1694 else:
1689 1695 # regular execution
1690 1696 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1691 1697
1692 1698 if opts.has_key('i'):
1693 1699 self.shell.user_ns['__name__'] = __name__save
1694 1700 else:
1695 1701 # The shell MUST hold a reference to prog_ns so after %run
1696 1702 # exits, the python deletion mechanism doesn't zero it out
1697 1703 # (leaving dangling references).
1698 1704 self.shell.cache_main_mod(prog_ns,filename)
1699 1705 # update IPython interactive namespace
1700 1706
1701 1707 # Some forms of read errors on the file may mean the
1702 1708 # __name__ key was never set; using pop we don't have to
1703 1709 # worry about a possible KeyError.
1704 1710 prog_ns.pop('__name__', None)
1705 1711
1706 1712 self.shell.user_ns.update(prog_ns)
1707 1713 finally:
1708 1714 # It's a bit of a mystery why, but __builtins__ can change from
1709 1715 # being a module to becoming a dict missing some key data after
1710 1716 # %run. As best I can see, this is NOT something IPython is doing
1711 1717 # at all, and similar problems have been reported before:
1712 1718 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1713 1719 # Since this seems to be done by the interpreter itself, the best
1714 1720 # we can do is to at least restore __builtins__ for the user on
1715 1721 # exit.
1716 1722 self.shell.user_ns['__builtins__'] = __builtin__
1717 1723
1718 1724 # Ensure key global structures are restored
1719 1725 sys.argv = save_argv
1720 1726 if restore_main:
1721 1727 sys.modules['__main__'] = restore_main
1722 1728 else:
1723 1729 # Remove from sys.modules the reference to main_mod we'd
1724 1730 # added. Otherwise it will trap references to objects
1725 1731 # contained therein.
1726 1732 del sys.modules[main_mod_name]
1727 1733
1728 1734 return stats
1729 1735
1730 1736 @testdec.skip_doctest
1731 1737 def magic_timeit(self, parameter_s =''):
1732 1738 """Time execution of a Python statement or expression
1733 1739
1734 1740 Usage:\\
1735 1741 %timeit [-n<N> -r<R> [-t|-c]] statement
1736 1742
1737 1743 Time execution of a Python statement or expression using the timeit
1738 1744 module.
1739 1745
1740 1746 Options:
1741 1747 -n<N>: execute the given statement <N> times in a loop. If this value
1742 1748 is not given, a fitting value is chosen.
1743 1749
1744 1750 -r<R>: repeat the loop iteration <R> times and take the best result.
1745 1751 Default: 3
1746 1752
1747 1753 -t: use time.time to measure the time, which is the default on Unix.
1748 1754 This function measures wall time.
1749 1755
1750 1756 -c: use time.clock to measure the time, which is the default on
1751 1757 Windows and measures wall time. On Unix, resource.getrusage is used
1752 1758 instead and returns the CPU user time.
1753 1759
1754 1760 -p<P>: use a precision of <P> digits to display the timing result.
1755 1761 Default: 3
1756 1762
1757 1763
1758 1764 Examples:
1759 1765
1760 1766 In [1]: %timeit pass
1761 1767 10000000 loops, best of 3: 53.3 ns per loop
1762 1768
1763 1769 In [2]: u = None
1764 1770
1765 1771 In [3]: %timeit u is None
1766 1772 10000000 loops, best of 3: 184 ns per loop
1767 1773
1768 1774 In [4]: %timeit -r 4 u == None
1769 1775 1000000 loops, best of 4: 242 ns per loop
1770 1776
1771 1777 In [5]: import time
1772 1778
1773 1779 In [6]: %timeit -n1 time.sleep(2)
1774 1780 1 loops, best of 3: 2 s per loop
1775 1781
1776 1782
1777 1783 The times reported by %timeit will be slightly higher than those
1778 1784 reported by the timeit.py script when variables are accessed. This is
1779 1785 due to the fact that %timeit executes the statement in the namespace
1780 1786 of the shell, compared with timeit.py, which uses a single setup
1781 1787 statement to import function or create variables. Generally, the bias
1782 1788 does not matter as long as results from timeit.py are not mixed with
1783 1789 those from %timeit."""
1784 1790
1785 1791 import timeit
1786 1792 import math
1787 1793
1788 1794 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1789 1795 # certain terminals. Until we figure out a robust way of
1790 1796 # auto-detecting if the terminal can deal with it, use plain 'us' for
1791 1797 # microseconds. I am really NOT happy about disabling the proper
1792 1798 # 'micro' prefix, but crashing is worse... If anyone knows what the
1793 1799 # right solution for this is, I'm all ears...
1794 1800 #
1795 1801 # Note: using
1796 1802 #
1797 1803 # s = u'\xb5'
1798 1804 # s.encode(sys.getdefaultencoding())
1799 1805 #
1800 1806 # is not sufficient, as I've seen terminals where that fails but
1801 1807 # print s
1802 1808 #
1803 1809 # succeeds
1804 1810 #
1805 1811 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1806 1812
1807 1813 #units = [u"s", u"ms",u'\xb5',"ns"]
1808 1814 units = [u"s", u"ms",u'us',"ns"]
1809 1815
1810 1816 scaling = [1, 1e3, 1e6, 1e9]
1811 1817
1812 1818 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1813 1819 posix=False)
1814 1820 if stmt == "":
1815 1821 return
1816 1822 timefunc = timeit.default_timer
1817 1823 number = int(getattr(opts, "n", 0))
1818 1824 repeat = int(getattr(opts, "r", timeit.default_repeat))
1819 1825 precision = int(getattr(opts, "p", 3))
1820 1826 if hasattr(opts, "t"):
1821 1827 timefunc = time.time
1822 1828 if hasattr(opts, "c"):
1823 1829 timefunc = clock
1824 1830
1825 1831 timer = timeit.Timer(timer=timefunc)
1826 1832 # this code has tight coupling to the inner workings of timeit.Timer,
1827 1833 # but is there a better way to achieve that the code stmt has access
1828 1834 # to the shell namespace?
1829 1835
1830 1836 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1831 1837 'setup': "pass"}
1832 1838 # Track compilation time so it can be reported if too long
1833 1839 # Minimum time above which compilation time will be reported
1834 1840 tc_min = 0.1
1835 1841
1836 1842 t0 = clock()
1837 1843 code = compile(src, "<magic-timeit>", "exec")
1838 1844 tc = clock()-t0
1839 1845
1840 1846 ns = {}
1841 1847 exec code in self.shell.user_ns, ns
1842 1848 timer.inner = ns["inner"]
1843 1849
1844 1850 if number == 0:
1845 1851 # determine number so that 0.2 <= total time < 2.0
1846 1852 number = 1
1847 1853 for i in range(1, 10):
1848 1854 if timer.timeit(number) >= 0.2:
1849 1855 break
1850 1856 number *= 10
1851 1857
1852 1858 best = min(timer.repeat(repeat, number)) / number
1853 1859
1854 1860 if best > 0.0 and best < 1000.0:
1855 1861 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1856 1862 elif best >= 1000.0:
1857 1863 order = 0
1858 1864 else:
1859 1865 order = 3
1860 1866 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1861 1867 precision,
1862 1868 best * scaling[order],
1863 1869 units[order])
1864 1870 if tc > tc_min:
1865 1871 print "Compiler time: %.2f s" % tc
1866 1872
1867 1873 @testdec.skip_doctest
1868 1874 @needs_local_scope
1869 1875 def magic_time(self,parameter_s = ''):
1870 1876 """Time execution of a Python statement or expression.
1871 1877
1872 1878 The CPU and wall clock times are printed, and the value of the
1873 1879 expression (if any) is returned. Note that under Win32, system time
1874 1880 is always reported as 0, since it can not be measured.
1875 1881
1876 1882 This function provides very basic timing functionality. In Python
1877 1883 2.3, the timeit module offers more control and sophistication, so this
1878 1884 could be rewritten to use it (patches welcome).
1879 1885
1880 1886 Some examples:
1881 1887
1882 1888 In [1]: time 2**128
1883 1889 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1884 1890 Wall time: 0.00
1885 1891 Out[1]: 340282366920938463463374607431768211456L
1886 1892
1887 1893 In [2]: n = 1000000
1888 1894
1889 1895 In [3]: time sum(range(n))
1890 1896 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1891 1897 Wall time: 1.37
1892 1898 Out[3]: 499999500000L
1893 1899
1894 1900 In [4]: time print 'hello world'
1895 1901 hello world
1896 1902 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1897 1903 Wall time: 0.00
1898 1904
1899 1905 Note that the time needed by Python to compile the given expression
1900 1906 will be reported if it is more than 0.1s. In this example, the
1901 1907 actual exponentiation is done by Python at compilation time, so while
1902 1908 the expression can take a noticeable amount of time to compute, that
1903 1909 time is purely due to the compilation:
1904 1910
1905 1911 In [5]: time 3**9999;
1906 1912 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1907 1913 Wall time: 0.00 s
1908 1914
1909 1915 In [6]: time 3**999999;
1910 1916 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1911 1917 Wall time: 0.00 s
1912 1918 Compiler : 0.78 s
1913 1919 """
1914 1920
1915 1921 # fail immediately if the given expression can't be compiled
1916 1922
1917 1923 expr = self.shell.prefilter(parameter_s,False)
1918 1924
1919 1925 # Minimum time above which compilation time will be reported
1920 1926 tc_min = 0.1
1921 1927
1922 1928 try:
1923 1929 mode = 'eval'
1924 1930 t0 = clock()
1925 1931 code = compile(expr,'<timed eval>',mode)
1926 1932 tc = clock()-t0
1927 1933 except SyntaxError:
1928 1934 mode = 'exec'
1929 1935 t0 = clock()
1930 1936 code = compile(expr,'<timed exec>',mode)
1931 1937 tc = clock()-t0
1932 1938 # skew measurement as little as possible
1933 1939 glob = self.shell.user_ns
1934 1940 locs = self._magic_locals
1935 1941 clk = clock2
1936 1942 wtime = time.time
1937 1943 # time execution
1938 1944 wall_st = wtime()
1939 1945 if mode=='eval':
1940 1946 st = clk()
1941 1947 out = eval(code, glob, locs)
1942 1948 end = clk()
1943 1949 else:
1944 1950 st = clk()
1945 1951 exec code in glob, locs
1946 1952 end = clk()
1947 1953 out = None
1948 1954 wall_end = wtime()
1949 1955 # Compute actual times and report
1950 1956 wall_time = wall_end-wall_st
1951 1957 cpu_user = end[0]-st[0]
1952 1958 cpu_sys = end[1]-st[1]
1953 1959 cpu_tot = cpu_user+cpu_sys
1954 1960 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1955 1961 (cpu_user,cpu_sys,cpu_tot)
1956 1962 print "Wall time: %.2f s" % wall_time
1957 1963 if tc > tc_min:
1958 1964 print "Compiler : %.2f s" % tc
1959 1965 return out
1960 1966
1961 1967 @testdec.skip_doctest
1962 1968 def magic_macro(self,parameter_s = ''):
1963 1969 """Define a macro for future re-execution. It accepts ranges of history,
1964 1970 filenames or string objects.
1965 1971
1966 1972 Usage:\\
1967 1973 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1968 1974
1969 1975 Options:
1970 1976
1971 1977 -r: use 'raw' input. By default, the 'processed' history is used,
1972 1978 so that magics are loaded in their transformed version to valid
1973 1979 Python. If this option is given, the raw input as typed as the
1974 1980 command line is used instead.
1975 1981
1976 1982 This will define a global variable called `name` which is a string
1977 1983 made of joining the slices and lines you specify (n1,n2,... numbers
1978 1984 above) from your input history into a single string. This variable
1979 1985 acts like an automatic function which re-executes those lines as if
1980 1986 you had typed them. You just type 'name' at the prompt and the code
1981 1987 executes.
1982 1988
1983 1989 The syntax for indicating input ranges is described in %history.
1984 1990
1985 1991 Note: as a 'hidden' feature, you can also use traditional python slice
1986 1992 notation, where N:M means numbers N through M-1.
1987 1993
1988 1994 For example, if your history contains (%hist prints it):
1989 1995
1990 1996 44: x=1
1991 1997 45: y=3
1992 1998 46: z=x+y
1993 1999 47: print x
1994 2000 48: a=5
1995 2001 49: print 'x',x,'y',y
1996 2002
1997 2003 you can create a macro with lines 44 through 47 (included) and line 49
1998 2004 called my_macro with:
1999 2005
2000 2006 In [55]: %macro my_macro 44-47 49
2001 2007
2002 2008 Now, typing `my_macro` (without quotes) will re-execute all this code
2003 2009 in one pass.
2004 2010
2005 2011 You don't need to give the line-numbers in order, and any given line
2006 2012 number can appear multiple times. You can assemble macros with any
2007 2013 lines from your input history in any order.
2008 2014
2009 2015 The macro is a simple object which holds its value in an attribute,
2010 2016 but IPython's display system checks for macros and executes them as
2011 2017 code instead of printing them when you type their name.
2012 2018
2013 2019 You can view a macro's contents by explicitly printing it with:
2014 2020
2015 2021 'print macro_name'.
2016 2022
2017 2023 """
2018 2024
2019 2025 opts,args = self.parse_options(parameter_s,'r',mode='list')
2020 2026 if not args: # List existing macros
2021 2027 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2022 2028 isinstance(v, Macro))
2023 2029 if len(args) == 1:
2024 2030 raise UsageError(
2025 2031 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2026 2032 name, codefrom = args[0], " ".join(args[1:])
2027 2033
2028 2034 #print 'rng',ranges # dbg
2029 2035 try:
2030 2036 lines = self.shell.find_user_code(codefrom, 'r' in opts)
2031 2037 except (ValueError, TypeError) as e:
2032 2038 print e.args[0]
2033 2039 return
2034 2040 macro = Macro(lines)
2035 2041 self.shell.define_macro(name, macro)
2036 2042 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2037 2043 print '=== Macro contents: ==='
2038 2044 print macro,
2039 2045
2040 2046 def magic_save(self,parameter_s = ''):
2041 2047 """Save a set of lines or a macro to a given filename.
2042 2048
2043 2049 Usage:\\
2044 2050 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2045 2051
2046 2052 Options:
2047 2053
2048 2054 -r: use 'raw' input. By default, the 'processed' history is used,
2049 2055 so that magics are loaded in their transformed version to valid
2050 2056 Python. If this option is given, the raw input as typed as the
2051 2057 command line is used instead.
2052 2058
2053 2059 This function uses the same syntax as %history for input ranges,
2054 2060 then saves the lines to the filename you specify.
2055 2061
2056 2062 It adds a '.py' extension to the file if you don't do so yourself, and
2057 2063 it asks for confirmation before overwriting existing files."""
2058 2064
2059 2065 opts,args = self.parse_options(parameter_s,'r',mode='list')
2060 2066 fname, codefrom = args[0], " ".join(args[1:])
2061 2067 if not fname.endswith('.py'):
2062 2068 fname += '.py'
2063 2069 if os.path.isfile(fname):
2064 2070 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2065 2071 if ans.lower() not in ['y','yes']:
2066 2072 print 'Operation cancelled.'
2067 2073 return
2068 2074 try:
2069 2075 cmds = self.shell.find_user_code(codefrom, 'r' in opts)
2070 2076 except (TypeError, ValueError) as e:
2071 2077 print e.args[0]
2072 2078 return
2073 2079 if isinstance(cmds, unicode):
2074 2080 cmds = cmds.encode("utf-8")
2075 2081 with open(fname,'w') as f:
2076 2082 f.write("# coding: utf-8\n")
2077 2083 f.write(cmds)
2078 2084 print 'The following commands were written to file `%s`:' % fname
2079 2085 print cmds
2080 2086
2081 2087 def magic_pastebin(self, parameter_s = ''):
2082 2088 """Upload code to the 'Lodge it' paste bin, returning the URL."""
2083 2089 try:
2084 2090 code = self.shell.find_user_code(parameter_s)
2085 2091 except (ValueError, TypeError) as e:
2086 2092 print e.args[0]
2087 2093 return
2088 2094 pbserver = ServerProxy('http://paste.pocoo.org/xmlrpc/')
2089 2095 id = pbserver.pastes.newPaste("python", code)
2090 2096 return "http://paste.pocoo.org/show/" + id
2091 2097
2092 2098 def _edit_macro(self,mname,macro):
2093 2099 """open an editor with the macro data in a file"""
2094 2100 filename = self.shell.mktempfile(macro.value)
2095 2101 self.shell.hooks.editor(filename)
2096 2102
2097 2103 # and make a new macro object, to replace the old one
2098 2104 mfile = open(filename)
2099 2105 mvalue = mfile.read()
2100 2106 mfile.close()
2101 2107 self.shell.user_ns[mname] = Macro(mvalue)
2102 2108
2103 2109 def magic_ed(self,parameter_s=''):
2104 2110 """Alias to %edit."""
2105 2111 return self.magic_edit(parameter_s)
2106 2112
2107 2113 @testdec.skip_doctest
2108 2114 def magic_edit(self,parameter_s='',last_call=['','']):
2109 2115 """Bring up an editor and execute the resulting code.
2110 2116
2111 2117 Usage:
2112 2118 %edit [options] [args]
2113 2119
2114 2120 %edit runs IPython's editor hook. The default version of this hook is
2115 2121 set to call the __IPYTHON__.rc.editor command. This is read from your
2116 2122 environment variable $EDITOR. If this isn't found, it will default to
2117 2123 vi under Linux/Unix and to notepad under Windows. See the end of this
2118 2124 docstring for how to change the editor hook.
2119 2125
2120 2126 You can also set the value of this editor via the command line option
2121 2127 '-editor' or in your ipythonrc file. This is useful if you wish to use
2122 2128 specifically for IPython an editor different from your typical default
2123 2129 (and for Windows users who typically don't set environment variables).
2124 2130
2125 2131 This command allows you to conveniently edit multi-line code right in
2126 2132 your IPython session.
2127 2133
2128 2134 If called without arguments, %edit opens up an empty editor with a
2129 2135 temporary file and will execute the contents of this file when you
2130 2136 close it (don't forget to save it!).
2131 2137
2132 2138
2133 2139 Options:
2134 2140
2135 2141 -n <number>: open the editor at a specified line number. By default,
2136 2142 the IPython editor hook uses the unix syntax 'editor +N filename', but
2137 2143 you can configure this by providing your own modified hook if your
2138 2144 favorite editor supports line-number specifications with a different
2139 2145 syntax.
2140 2146
2141 2147 -p: this will call the editor with the same data as the previous time
2142 2148 it was used, regardless of how long ago (in your current session) it
2143 2149 was.
2144 2150
2145 2151 -r: use 'raw' input. This option only applies to input taken from the
2146 2152 user's history. By default, the 'processed' history is used, so that
2147 2153 magics are loaded in their transformed version to valid Python. If
2148 2154 this option is given, the raw input as typed as the command line is
2149 2155 used instead. When you exit the editor, it will be executed by
2150 2156 IPython's own processor.
2151 2157
2152 2158 -x: do not execute the edited code immediately upon exit. This is
2153 2159 mainly useful if you are editing programs which need to be called with
2154 2160 command line arguments, which you can then do using %run.
2155 2161
2156 2162
2157 2163 Arguments:
2158 2164
2159 2165 If arguments are given, the following possibilites exist:
2160 2166
2161 2167 - If the argument is a filename, IPython will load that into the
2162 2168 editor. It will execute its contents with execfile() when you exit,
2163 2169 loading any code in the file into your interactive namespace.
2164 2170
2165 2171 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2166 2172 The syntax is the same as in the %history magic.
2167 2173
2168 2174 - If the argument is a string variable, its contents are loaded
2169 2175 into the editor. You can thus edit any string which contains
2170 2176 python code (including the result of previous edits).
2171 2177
2172 2178 - If the argument is the name of an object (other than a string),
2173 2179 IPython will try to locate the file where it was defined and open the
2174 2180 editor at the point where it is defined. You can use `%edit function`
2175 2181 to load an editor exactly at the point where 'function' is defined,
2176 2182 edit it and have the file be executed automatically.
2177 2183
2178 2184 If the object is a macro (see %macro for details), this opens up your
2179 2185 specified editor with a temporary file containing the macro's data.
2180 2186 Upon exit, the macro is reloaded with the contents of the file.
2181 2187
2182 2188 Note: opening at an exact line is only supported under Unix, and some
2183 2189 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2184 2190 '+NUMBER' parameter necessary for this feature. Good editors like
2185 2191 (X)Emacs, vi, jed, pico and joe all do.
2186 2192
2187 2193 After executing your code, %edit will return as output the code you
2188 2194 typed in the editor (except when it was an existing file). This way
2189 2195 you can reload the code in further invocations of %edit as a variable,
2190 2196 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2191 2197 the output.
2192 2198
2193 2199 Note that %edit is also available through the alias %ed.
2194 2200
2195 2201 This is an example of creating a simple function inside the editor and
2196 2202 then modifying it. First, start up the editor:
2197 2203
2198 2204 In [1]: ed
2199 2205 Editing... done. Executing edited code...
2200 2206 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2201 2207
2202 2208 We can then call the function foo():
2203 2209
2204 2210 In [2]: foo()
2205 2211 foo() was defined in an editing session
2206 2212
2207 2213 Now we edit foo. IPython automatically loads the editor with the
2208 2214 (temporary) file where foo() was previously defined:
2209 2215
2210 2216 In [3]: ed foo
2211 2217 Editing... done. Executing edited code...
2212 2218
2213 2219 And if we call foo() again we get the modified version:
2214 2220
2215 2221 In [4]: foo()
2216 2222 foo() has now been changed!
2217 2223
2218 2224 Here is an example of how to edit a code snippet successive
2219 2225 times. First we call the editor:
2220 2226
2221 2227 In [5]: ed
2222 2228 Editing... done. Executing edited code...
2223 2229 hello
2224 2230 Out[5]: "print 'hello'n"
2225 2231
2226 2232 Now we call it again with the previous output (stored in _):
2227 2233
2228 2234 In [6]: ed _
2229 2235 Editing... done. Executing edited code...
2230 2236 hello world
2231 2237 Out[6]: "print 'hello world'n"
2232 2238
2233 2239 Now we call it with the output #8 (stored in _8, also as Out[8]):
2234 2240
2235 2241 In [7]: ed _8
2236 2242 Editing... done. Executing edited code...
2237 2243 hello again
2238 2244 Out[7]: "print 'hello again'n"
2239 2245
2240 2246
2241 2247 Changing the default editor hook:
2242 2248
2243 2249 If you wish to write your own editor hook, you can put it in a
2244 2250 configuration file which you load at startup time. The default hook
2245 2251 is defined in the IPython.core.hooks module, and you can use that as a
2246 2252 starting example for further modifications. That file also has
2247 2253 general instructions on how to set a new hook for use once you've
2248 2254 defined it."""
2249 2255
2250 2256 # FIXME: This function has become a convoluted mess. It needs a
2251 2257 # ground-up rewrite with clean, simple logic.
2252 2258
2253 2259 def make_filename(arg):
2254 2260 "Make a filename from the given args"
2255 2261 try:
2256 2262 filename = get_py_filename(arg)
2257 2263 except IOError:
2258 2264 if args.endswith('.py'):
2259 2265 filename = arg
2260 2266 else:
2261 2267 filename = None
2262 2268 return filename
2263 2269
2264 2270 # custom exceptions
2265 2271 class DataIsObject(Exception): pass
2266 2272
2267 2273 opts,args = self.parse_options(parameter_s,'prxn:')
2268 2274 # Set a few locals from the options for convenience:
2269 2275 opts_prev = 'p' in opts
2270 2276 opts_raw = 'r' in opts
2271 2277
2272 2278 # Default line number value
2273 2279 lineno = opts.get('n',None)
2274 2280
2275 2281 if opts_prev:
2276 2282 args = '_%s' % last_call[0]
2277 2283 if not self.shell.user_ns.has_key(args):
2278 2284 args = last_call[1]
2279 2285
2280 2286 # use last_call to remember the state of the previous call, but don't
2281 2287 # let it be clobbered by successive '-p' calls.
2282 2288 try:
2283 2289 last_call[0] = self.shell.displayhook.prompt_count
2284 2290 if not opts_prev:
2285 2291 last_call[1] = parameter_s
2286 2292 except:
2287 2293 pass
2288 2294
2289 2295 # by default this is done with temp files, except when the given
2290 2296 # arg is a filename
2291 2297 use_temp = True
2292 2298
2293 2299 data = ''
2294 2300 if args.endswith('.py'):
2295 2301 filename = make_filename(args)
2296 2302 use_temp = False
2297 2303 elif args:
2298 2304 # Mode where user specifies ranges of lines, like in %macro.
2299 2305 data = self.extract_input_lines(args, opts_raw)
2300 2306 if not data:
2301 2307 try:
2302 2308 # Load the parameter given as a variable. If not a string,
2303 2309 # process it as an object instead (below)
2304 2310
2305 2311 #print '*** args',args,'type',type(args) # dbg
2306 2312 data = eval(args, self.shell.user_ns)
2307 2313 if not isinstance(data, basestring):
2308 2314 raise DataIsObject
2309 2315
2310 2316 except (NameError,SyntaxError):
2311 2317 # given argument is not a variable, try as a filename
2312 2318 filename = make_filename(args)
2313 2319 if filename is None:
2314 2320 warn("Argument given (%s) can't be found as a variable "
2315 2321 "or as a filename." % args)
2316 2322 return
2317 2323 use_temp = False
2318 2324
2319 2325 except DataIsObject:
2320 2326 # macros have a special edit function
2321 2327 if isinstance(data, Macro):
2322 2328 self._edit_macro(args,data)
2323 2329 return
2324 2330
2325 2331 # For objects, try to edit the file where they are defined
2326 2332 try:
2327 2333 filename = inspect.getabsfile(data)
2328 2334 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2329 2335 # class created by %edit? Try to find source
2330 2336 # by looking for method definitions instead, the
2331 2337 # __module__ in those classes is FakeModule.
2332 2338 attrs = [getattr(data, aname) for aname in dir(data)]
2333 2339 for attr in attrs:
2334 2340 if not inspect.ismethod(attr):
2335 2341 continue
2336 2342 filename = inspect.getabsfile(attr)
2337 2343 if filename and 'fakemodule' not in filename.lower():
2338 2344 # change the attribute to be the edit target instead
2339 2345 data = attr
2340 2346 break
2341 2347
2342 2348 datafile = 1
2343 2349 except TypeError:
2344 2350 filename = make_filename(args)
2345 2351 datafile = 1
2346 2352 warn('Could not find file where `%s` is defined.\n'
2347 2353 'Opening a file named `%s`' % (args,filename))
2348 2354 # Now, make sure we can actually read the source (if it was in
2349 2355 # a temp file it's gone by now).
2350 2356 if datafile:
2351 2357 try:
2352 2358 if lineno is None:
2353 2359 lineno = inspect.getsourcelines(data)[1]
2354 2360 except IOError:
2355 2361 filename = make_filename(args)
2356 2362 if filename is None:
2357 2363 warn('The file `%s` where `%s` was defined cannot '
2358 2364 'be read.' % (filename,data))
2359 2365 return
2360 2366 use_temp = False
2361 2367
2362 2368 if use_temp:
2363 2369 filename = self.shell.mktempfile(data)
2364 2370 print 'IPython will make a temporary file named:',filename
2365 2371
2366 2372 # do actual editing here
2367 2373 print 'Editing...',
2368 2374 sys.stdout.flush()
2369 2375 try:
2370 2376 # Quote filenames that may have spaces in them
2371 2377 if ' ' in filename:
2372 2378 filename = "%s" % filename
2373 2379 self.shell.hooks.editor(filename,lineno)
2374 2380 except TryNext:
2375 2381 warn('Could not open editor')
2376 2382 return
2377 2383
2378 2384 # XXX TODO: should this be generalized for all string vars?
2379 2385 # For now, this is special-cased to blocks created by cpaste
2380 2386 if args.strip() == 'pasted_block':
2381 2387 self.shell.user_ns['pasted_block'] = file_read(filename)
2382 2388
2383 2389 if 'x' in opts: # -x prevents actual execution
2384 2390 print
2385 2391 else:
2386 2392 print 'done. Executing edited code...'
2387 2393 if opts_raw:
2388 2394 self.shell.run_cell(file_read(filename),
2389 2395 store_history=False)
2390 2396 else:
2391 2397 self.shell.safe_execfile(filename,self.shell.user_ns,
2392 2398 self.shell.user_ns)
2393 2399
2394 2400
2395 2401 if use_temp:
2396 2402 try:
2397 2403 return open(filename).read()
2398 2404 except IOError,msg:
2399 2405 if msg.filename == filename:
2400 2406 warn('File not found. Did you forget to save?')
2401 2407 return
2402 2408 else:
2403 2409 self.shell.showtraceback()
2404 2410
2405 2411 def magic_xmode(self,parameter_s = ''):
2406 2412 """Switch modes for the exception handlers.
2407 2413
2408 2414 Valid modes: Plain, Context and Verbose.
2409 2415
2410 2416 If called without arguments, acts as a toggle."""
2411 2417
2412 2418 def xmode_switch_err(name):
2413 2419 warn('Error changing %s exception modes.\n%s' %
2414 2420 (name,sys.exc_info()[1]))
2415 2421
2416 2422 shell = self.shell
2417 2423 new_mode = parameter_s.strip().capitalize()
2418 2424 try:
2419 2425 shell.InteractiveTB.set_mode(mode=new_mode)
2420 2426 print 'Exception reporting mode:',shell.InteractiveTB.mode
2421 2427 except:
2422 2428 xmode_switch_err('user')
2423 2429
2424 2430 def magic_colors(self,parameter_s = ''):
2425 2431 """Switch color scheme for prompts, info system and exception handlers.
2426 2432
2427 2433 Currently implemented schemes: NoColor, Linux, LightBG.
2428 2434
2429 2435 Color scheme names are not case-sensitive.
2430 2436
2431 2437 Examples
2432 2438 --------
2433 2439 To get a plain black and white terminal::
2434 2440
2435 2441 %colors nocolor
2436 2442 """
2437 2443
2438 2444 def color_switch_err(name):
2439 2445 warn('Error changing %s color schemes.\n%s' %
2440 2446 (name,sys.exc_info()[1]))
2441 2447
2442 2448
2443 2449 new_scheme = parameter_s.strip()
2444 2450 if not new_scheme:
2445 2451 raise UsageError(
2446 2452 "%colors: you must specify a color scheme. See '%colors?'")
2447 2453 return
2448 2454 # local shortcut
2449 2455 shell = self.shell
2450 2456
2451 2457 import IPython.utils.rlineimpl as readline
2452 2458
2453 2459 if not readline.have_readline and sys.platform == "win32":
2454 2460 msg = """\
2455 2461 Proper color support under MS Windows requires the pyreadline library.
2456 2462 You can find it at:
2457 2463 http://ipython.scipy.org/moin/PyReadline/Intro
2458 2464 Gary's readline needs the ctypes module, from:
2459 2465 http://starship.python.net/crew/theller/ctypes
2460 2466 (Note that ctypes is already part of Python versions 2.5 and newer).
2461 2467
2462 2468 Defaulting color scheme to 'NoColor'"""
2463 2469 new_scheme = 'NoColor'
2464 2470 warn(msg)
2465 2471
2466 2472 # readline option is 0
2467 2473 if not shell.has_readline:
2468 2474 new_scheme = 'NoColor'
2469 2475
2470 2476 # Set prompt colors
2471 2477 try:
2472 2478 shell.displayhook.set_colors(new_scheme)
2473 2479 except:
2474 2480 color_switch_err('prompt')
2475 2481 else:
2476 2482 shell.colors = \
2477 2483 shell.displayhook.color_table.active_scheme_name
2478 2484 # Set exception colors
2479 2485 try:
2480 2486 shell.InteractiveTB.set_colors(scheme = new_scheme)
2481 2487 shell.SyntaxTB.set_colors(scheme = new_scheme)
2482 2488 except:
2483 2489 color_switch_err('exception')
2484 2490
2485 2491 # Set info (for 'object?') colors
2486 2492 if shell.color_info:
2487 2493 try:
2488 2494 shell.inspector.set_active_scheme(new_scheme)
2489 2495 except:
2490 2496 color_switch_err('object inspector')
2491 2497 else:
2492 2498 shell.inspector.set_active_scheme('NoColor')
2493 2499
2494 2500 def magic_pprint(self, parameter_s=''):
2495 2501 """Toggle pretty printing on/off."""
2496 2502 ptformatter = self.shell.display_formatter.formatters['text/plain']
2497 2503 ptformatter.pprint = bool(1 - ptformatter.pprint)
2498 2504 print 'Pretty printing has been turned', \
2499 2505 ['OFF','ON'][ptformatter.pprint]
2500 2506
2501 2507 def magic_Exit(self, parameter_s=''):
2502 2508 """Exit IPython."""
2503 2509
2504 2510 self.shell.ask_exit()
2505 2511
2506 2512 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2507 2513 magic_exit = magic_quit = magic_Quit = magic_Exit
2508 2514
2509 2515 #......................................................................
2510 2516 # Functions to implement unix shell-type things
2511 2517
2512 2518 @testdec.skip_doctest
2513 2519 def magic_alias(self, parameter_s = ''):
2514 2520 """Define an alias for a system command.
2515 2521
2516 2522 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2517 2523
2518 2524 Then, typing 'alias_name params' will execute the system command 'cmd
2519 2525 params' (from your underlying operating system).
2520 2526
2521 2527 Aliases have lower precedence than magic functions and Python normal
2522 2528 variables, so if 'foo' is both a Python variable and an alias, the
2523 2529 alias can not be executed until 'del foo' removes the Python variable.
2524 2530
2525 2531 You can use the %l specifier in an alias definition to represent the
2526 2532 whole line when the alias is called. For example:
2527 2533
2528 2534 In [2]: alias bracket echo "Input in brackets: <%l>"
2529 2535 In [3]: bracket hello world
2530 2536 Input in brackets: <hello world>
2531 2537
2532 2538 You can also define aliases with parameters using %s specifiers (one
2533 2539 per parameter):
2534 2540
2535 2541 In [1]: alias parts echo first %s second %s
2536 2542 In [2]: %parts A B
2537 2543 first A second B
2538 2544 In [3]: %parts A
2539 2545 Incorrect number of arguments: 2 expected.
2540 2546 parts is an alias to: 'echo first %s second %s'
2541 2547
2542 2548 Note that %l and %s are mutually exclusive. You can only use one or
2543 2549 the other in your aliases.
2544 2550
2545 2551 Aliases expand Python variables just like system calls using ! or !!
2546 2552 do: all expressions prefixed with '$' get expanded. For details of
2547 2553 the semantic rules, see PEP-215:
2548 2554 http://www.python.org/peps/pep-0215.html. This is the library used by
2549 2555 IPython for variable expansion. If you want to access a true shell
2550 2556 variable, an extra $ is necessary to prevent its expansion by IPython:
2551 2557
2552 2558 In [6]: alias show echo
2553 2559 In [7]: PATH='A Python string'
2554 2560 In [8]: show $PATH
2555 2561 A Python string
2556 2562 In [9]: show $$PATH
2557 2563 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2558 2564
2559 2565 You can use the alias facility to acess all of $PATH. See the %rehash
2560 2566 and %rehashx functions, which automatically create aliases for the
2561 2567 contents of your $PATH.
2562 2568
2563 2569 If called with no parameters, %alias prints the current alias table."""
2564 2570
2565 2571 par = parameter_s.strip()
2566 2572 if not par:
2567 2573 stored = self.db.get('stored_aliases', {} )
2568 2574 aliases = sorted(self.shell.alias_manager.aliases)
2569 2575 # for k, v in stored:
2570 2576 # atab.append(k, v[0])
2571 2577
2572 2578 print "Total number of aliases:", len(aliases)
2573 2579 sys.stdout.flush()
2574 2580 return aliases
2575 2581
2576 2582 # Now try to define a new one
2577 2583 try:
2578 2584 alias,cmd = par.split(None, 1)
2579 2585 except:
2580 2586 print oinspect.getdoc(self.magic_alias)
2581 2587 else:
2582 2588 self.shell.alias_manager.soft_define_alias(alias, cmd)
2583 2589 # end magic_alias
2584 2590
2585 2591 def magic_unalias(self, parameter_s = ''):
2586 2592 """Remove an alias"""
2587 2593
2588 2594 aname = parameter_s.strip()
2589 2595 self.shell.alias_manager.undefine_alias(aname)
2590 2596 stored = self.db.get('stored_aliases', {} )
2591 2597 if aname in stored:
2592 2598 print "Removing %stored alias",aname
2593 2599 del stored[aname]
2594 2600 self.db['stored_aliases'] = stored
2595 2601
2596 2602 def magic_rehashx(self, parameter_s = ''):
2597 2603 """Update the alias table with all executable files in $PATH.
2598 2604
2599 2605 This version explicitly checks that every entry in $PATH is a file
2600 2606 with execute access (os.X_OK), so it is much slower than %rehash.
2601 2607
2602 2608 Under Windows, it checks executability as a match agains a
2603 2609 '|'-separated string of extensions, stored in the IPython config
2604 2610 variable win_exec_ext. This defaults to 'exe|com|bat'.
2605 2611
2606 2612 This function also resets the root module cache of module completer,
2607 2613 used on slow filesystems.
2608 2614 """
2609 2615 from IPython.core.alias import InvalidAliasError
2610 2616
2611 2617 # for the benefit of module completer in ipy_completers.py
2612 2618 del self.db['rootmodules']
2613 2619
2614 2620 path = [os.path.abspath(os.path.expanduser(p)) for p in
2615 2621 os.environ.get('PATH','').split(os.pathsep)]
2616 2622 path = filter(os.path.isdir,path)
2617 2623
2618 2624 syscmdlist = []
2619 2625 # Now define isexec in a cross platform manner.
2620 2626 if os.name == 'posix':
2621 2627 isexec = lambda fname:os.path.isfile(fname) and \
2622 2628 os.access(fname,os.X_OK)
2623 2629 else:
2624 2630 try:
2625 2631 winext = os.environ['pathext'].replace(';','|').replace('.','')
2626 2632 except KeyError:
2627 2633 winext = 'exe|com|bat|py'
2628 2634 if 'py' not in winext:
2629 2635 winext += '|py'
2630 2636 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2631 2637 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2632 2638 savedir = os.getcwd()
2633 2639
2634 2640 # Now walk the paths looking for executables to alias.
2635 2641 try:
2636 2642 # write the whole loop for posix/Windows so we don't have an if in
2637 2643 # the innermost part
2638 2644 if os.name == 'posix':
2639 2645 for pdir in path:
2640 2646 os.chdir(pdir)
2641 2647 for ff in os.listdir(pdir):
2642 2648 if isexec(ff):
2643 2649 try:
2644 2650 # Removes dots from the name since ipython
2645 2651 # will assume names with dots to be python.
2646 2652 self.shell.alias_manager.define_alias(
2647 2653 ff.replace('.',''), ff)
2648 2654 except InvalidAliasError:
2649 2655 pass
2650 2656 else:
2651 2657 syscmdlist.append(ff)
2652 2658 else:
2653 2659 no_alias = self.shell.alias_manager.no_alias
2654 2660 for pdir in path:
2655 2661 os.chdir(pdir)
2656 2662 for ff in os.listdir(pdir):
2657 2663 base, ext = os.path.splitext(ff)
2658 2664 if isexec(ff) and base.lower() not in no_alias:
2659 2665 if ext.lower() == '.exe':
2660 2666 ff = base
2661 2667 try:
2662 2668 # Removes dots from the name since ipython
2663 2669 # will assume names with dots to be python.
2664 2670 self.shell.alias_manager.define_alias(
2665 2671 base.lower().replace('.',''), ff)
2666 2672 except InvalidAliasError:
2667 2673 pass
2668 2674 syscmdlist.append(ff)
2669 2675 db = self.db
2670 2676 db['syscmdlist'] = syscmdlist
2671 2677 finally:
2672 2678 os.chdir(savedir)
2673 2679
2674 2680 @testdec.skip_doctest
2675 2681 def magic_pwd(self, parameter_s = ''):
2676 2682 """Return the current working directory path.
2677 2683
2678 2684 Examples
2679 2685 --------
2680 2686 ::
2681 2687
2682 2688 In [9]: pwd
2683 2689 Out[9]: '/home/tsuser/sprint/ipython'
2684 2690 """
2685 2691 return os.getcwd()
2686 2692
2687 2693 @testdec.skip_doctest
2688 2694 def magic_cd(self, parameter_s=''):
2689 2695 """Change the current working directory.
2690 2696
2691 2697 This command automatically maintains an internal list of directories
2692 2698 you visit during your IPython session, in the variable _dh. The
2693 2699 command %dhist shows this history nicely formatted. You can also
2694 2700 do 'cd -<tab>' to see directory history conveniently.
2695 2701
2696 2702 Usage:
2697 2703
2698 2704 cd 'dir': changes to directory 'dir'.
2699 2705
2700 2706 cd -: changes to the last visited directory.
2701 2707
2702 2708 cd -<n>: changes to the n-th directory in the directory history.
2703 2709
2704 2710 cd --foo: change to directory that matches 'foo' in history
2705 2711
2706 2712 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2707 2713 (note: cd <bookmark_name> is enough if there is no
2708 2714 directory <bookmark_name>, but a bookmark with the name exists.)
2709 2715 'cd -b <tab>' allows you to tab-complete bookmark names.
2710 2716
2711 2717 Options:
2712 2718
2713 2719 -q: quiet. Do not print the working directory after the cd command is
2714 2720 executed. By default IPython's cd command does print this directory,
2715 2721 since the default prompts do not display path information.
2716 2722
2717 2723 Note that !cd doesn't work for this purpose because the shell where
2718 2724 !command runs is immediately discarded after executing 'command'.
2719 2725
2720 2726 Examples
2721 2727 --------
2722 2728 ::
2723 2729
2724 2730 In [10]: cd parent/child
2725 2731 /home/tsuser/parent/child
2726 2732 """
2727 2733
2728 2734 parameter_s = parameter_s.strip()
2729 2735 #bkms = self.shell.persist.get("bookmarks",{})
2730 2736
2731 2737 oldcwd = os.getcwd()
2732 2738 numcd = re.match(r'(-)(\d+)$',parameter_s)
2733 2739 # jump in directory history by number
2734 2740 if numcd:
2735 2741 nn = int(numcd.group(2))
2736 2742 try:
2737 2743 ps = self.shell.user_ns['_dh'][nn]
2738 2744 except IndexError:
2739 2745 print 'The requested directory does not exist in history.'
2740 2746 return
2741 2747 else:
2742 2748 opts = {}
2743 2749 elif parameter_s.startswith('--'):
2744 2750 ps = None
2745 2751 fallback = None
2746 2752 pat = parameter_s[2:]
2747 2753 dh = self.shell.user_ns['_dh']
2748 2754 # first search only by basename (last component)
2749 2755 for ent in reversed(dh):
2750 2756 if pat in os.path.basename(ent) and os.path.isdir(ent):
2751 2757 ps = ent
2752 2758 break
2753 2759
2754 2760 if fallback is None and pat in ent and os.path.isdir(ent):
2755 2761 fallback = ent
2756 2762
2757 2763 # if we have no last part match, pick the first full path match
2758 2764 if ps is None:
2759 2765 ps = fallback
2760 2766
2761 2767 if ps is None:
2762 2768 print "No matching entry in directory history"
2763 2769 return
2764 2770 else:
2765 2771 opts = {}
2766 2772
2767 2773
2768 2774 else:
2769 2775 #turn all non-space-escaping backslashes to slashes,
2770 2776 # for c:\windows\directory\names\
2771 2777 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2772 2778 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2773 2779 # jump to previous
2774 2780 if ps == '-':
2775 2781 try:
2776 2782 ps = self.shell.user_ns['_dh'][-2]
2777 2783 except IndexError:
2778 2784 raise UsageError('%cd -: No previous directory to change to.')
2779 2785 # jump to bookmark if needed
2780 2786 else:
2781 2787 if not os.path.isdir(ps) or opts.has_key('b'):
2782 2788 bkms = self.db.get('bookmarks', {})
2783 2789
2784 2790 if bkms.has_key(ps):
2785 2791 target = bkms[ps]
2786 2792 print '(bookmark:%s) -> %s' % (ps,target)
2787 2793 ps = target
2788 2794 else:
2789 2795 if opts.has_key('b'):
2790 2796 raise UsageError("Bookmark '%s' not found. "
2791 2797 "Use '%%bookmark -l' to see your bookmarks." % ps)
2792 2798
2793 2799 # at this point ps should point to the target dir
2794 2800 if ps:
2795 2801 try:
2796 2802 os.chdir(os.path.expanduser(ps))
2797 2803 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2798 2804 set_term_title('IPython: ' + abbrev_cwd())
2799 2805 except OSError:
2800 2806 print sys.exc_info()[1]
2801 2807 else:
2802 2808 cwd = os.getcwd()
2803 2809 dhist = self.shell.user_ns['_dh']
2804 2810 if oldcwd != cwd:
2805 2811 dhist.append(cwd)
2806 2812 self.db['dhist'] = compress_dhist(dhist)[-100:]
2807 2813
2808 2814 else:
2809 2815 os.chdir(self.shell.home_dir)
2810 2816 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2811 2817 set_term_title('IPython: ' + '~')
2812 2818 cwd = os.getcwd()
2813 2819 dhist = self.shell.user_ns['_dh']
2814 2820
2815 2821 if oldcwd != cwd:
2816 2822 dhist.append(cwd)
2817 2823 self.db['dhist'] = compress_dhist(dhist)[-100:]
2818 2824 if not 'q' in opts and self.shell.user_ns['_dh']:
2819 2825 print self.shell.user_ns['_dh'][-1]
2820 2826
2821 2827
2822 2828 def magic_env(self, parameter_s=''):
2823 2829 """List environment variables."""
2824 2830
2825 2831 return os.environ.data
2826 2832
2827 2833 def magic_pushd(self, parameter_s=''):
2828 2834 """Place the current dir on stack and change directory.
2829 2835
2830 2836 Usage:\\
2831 2837 %pushd ['dirname']
2832 2838 """
2833 2839
2834 2840 dir_s = self.shell.dir_stack
2835 2841 tgt = os.path.expanduser(parameter_s)
2836 2842 cwd = os.getcwd().replace(self.home_dir,'~')
2837 2843 if tgt:
2838 2844 self.magic_cd(parameter_s)
2839 2845 dir_s.insert(0,cwd)
2840 2846 return self.magic_dirs()
2841 2847
2842 2848 def magic_popd(self, parameter_s=''):
2843 2849 """Change to directory popped off the top of the stack.
2844 2850 """
2845 2851 if not self.shell.dir_stack:
2846 2852 raise UsageError("%popd on empty stack")
2847 2853 top = self.shell.dir_stack.pop(0)
2848 2854 self.magic_cd(top)
2849 2855 print "popd ->",top
2850 2856
2851 2857 def magic_dirs(self, parameter_s=''):
2852 2858 """Return the current directory stack."""
2853 2859
2854 2860 return self.shell.dir_stack
2855 2861
2856 2862 def magic_dhist(self, parameter_s=''):
2857 2863 """Print your history of visited directories.
2858 2864
2859 2865 %dhist -> print full history\\
2860 2866 %dhist n -> print last n entries only\\
2861 2867 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2862 2868
2863 2869 This history is automatically maintained by the %cd command, and
2864 2870 always available as the global list variable _dh. You can use %cd -<n>
2865 2871 to go to directory number <n>.
2866 2872
2867 2873 Note that most of time, you should view directory history by entering
2868 2874 cd -<TAB>.
2869 2875
2870 2876 """
2871 2877
2872 2878 dh = self.shell.user_ns['_dh']
2873 2879 if parameter_s:
2874 2880 try:
2875 2881 args = map(int,parameter_s.split())
2876 2882 except:
2877 2883 self.arg_err(Magic.magic_dhist)
2878 2884 return
2879 2885 if len(args) == 1:
2880 2886 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2881 2887 elif len(args) == 2:
2882 2888 ini,fin = args
2883 2889 else:
2884 2890 self.arg_err(Magic.magic_dhist)
2885 2891 return
2886 2892 else:
2887 2893 ini,fin = 0,len(dh)
2888 2894 nlprint(dh,
2889 2895 header = 'Directory history (kept in _dh)',
2890 2896 start=ini,stop=fin)
2891 2897
2892 2898 @testdec.skip_doctest
2893 2899 def magic_sc(self, parameter_s=''):
2894 2900 """Shell capture - execute a shell command and capture its output.
2895 2901
2896 2902 DEPRECATED. Suboptimal, retained for backwards compatibility.
2897 2903
2898 2904 You should use the form 'var = !command' instead. Example:
2899 2905
2900 2906 "%sc -l myfiles = ls ~" should now be written as
2901 2907
2902 2908 "myfiles = !ls ~"
2903 2909
2904 2910 myfiles.s, myfiles.l and myfiles.n still apply as documented
2905 2911 below.
2906 2912
2907 2913 --
2908 2914 %sc [options] varname=command
2909 2915
2910 2916 IPython will run the given command using commands.getoutput(), and
2911 2917 will then update the user's interactive namespace with a variable
2912 2918 called varname, containing the value of the call. Your command can
2913 2919 contain shell wildcards, pipes, etc.
2914 2920
2915 2921 The '=' sign in the syntax is mandatory, and the variable name you
2916 2922 supply must follow Python's standard conventions for valid names.
2917 2923
2918 2924 (A special format without variable name exists for internal use)
2919 2925
2920 2926 Options:
2921 2927
2922 2928 -l: list output. Split the output on newlines into a list before
2923 2929 assigning it to the given variable. By default the output is stored
2924 2930 as a single string.
2925 2931
2926 2932 -v: verbose. Print the contents of the variable.
2927 2933
2928 2934 In most cases you should not need to split as a list, because the
2929 2935 returned value is a special type of string which can automatically
2930 2936 provide its contents either as a list (split on newlines) or as a
2931 2937 space-separated string. These are convenient, respectively, either
2932 2938 for sequential processing or to be passed to a shell command.
2933 2939
2934 2940 For example:
2935 2941
2936 2942 # all-random
2937 2943
2938 2944 # Capture into variable a
2939 2945 In [1]: sc a=ls *py
2940 2946
2941 2947 # a is a string with embedded newlines
2942 2948 In [2]: a
2943 2949 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2944 2950
2945 2951 # which can be seen as a list:
2946 2952 In [3]: a.l
2947 2953 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2948 2954
2949 2955 # or as a whitespace-separated string:
2950 2956 In [4]: a.s
2951 2957 Out[4]: 'setup.py win32_manual_post_install.py'
2952 2958
2953 2959 # a.s is useful to pass as a single command line:
2954 2960 In [5]: !wc -l $a.s
2955 2961 146 setup.py
2956 2962 130 win32_manual_post_install.py
2957 2963 276 total
2958 2964
2959 2965 # while the list form is useful to loop over:
2960 2966 In [6]: for f in a.l:
2961 2967 ...: !wc -l $f
2962 2968 ...:
2963 2969 146 setup.py
2964 2970 130 win32_manual_post_install.py
2965 2971
2966 2972 Similiarly, the lists returned by the -l option are also special, in
2967 2973 the sense that you can equally invoke the .s attribute on them to
2968 2974 automatically get a whitespace-separated string from their contents:
2969 2975
2970 2976 In [7]: sc -l b=ls *py
2971 2977
2972 2978 In [8]: b
2973 2979 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2974 2980
2975 2981 In [9]: b.s
2976 2982 Out[9]: 'setup.py win32_manual_post_install.py'
2977 2983
2978 2984 In summary, both the lists and strings used for ouptut capture have
2979 2985 the following special attributes:
2980 2986
2981 2987 .l (or .list) : value as list.
2982 2988 .n (or .nlstr): value as newline-separated string.
2983 2989 .s (or .spstr): value as space-separated string.
2984 2990 """
2985 2991
2986 2992 opts,args = self.parse_options(parameter_s,'lv')
2987 2993 # Try to get a variable name and command to run
2988 2994 try:
2989 2995 # the variable name must be obtained from the parse_options
2990 2996 # output, which uses shlex.split to strip options out.
2991 2997 var,_ = args.split('=',1)
2992 2998 var = var.strip()
2993 2999 # But the the command has to be extracted from the original input
2994 3000 # parameter_s, not on what parse_options returns, to avoid the
2995 3001 # quote stripping which shlex.split performs on it.
2996 3002 _,cmd = parameter_s.split('=',1)
2997 3003 except ValueError:
2998 3004 var,cmd = '',''
2999 3005 # If all looks ok, proceed
3000 3006 split = 'l' in opts
3001 3007 out = self.shell.getoutput(cmd, split=split)
3002 3008 if opts.has_key('v'):
3003 3009 print '%s ==\n%s' % (var,pformat(out))
3004 3010 if var:
3005 3011 self.shell.user_ns.update({var:out})
3006 3012 else:
3007 3013 return out
3008 3014
3009 3015 def magic_sx(self, parameter_s=''):
3010 3016 """Shell execute - run a shell command and capture its output.
3011 3017
3012 3018 %sx command
3013 3019
3014 3020 IPython will run the given command using commands.getoutput(), and
3015 3021 return the result formatted as a list (split on '\\n'). Since the
3016 3022 output is _returned_, it will be stored in ipython's regular output
3017 3023 cache Out[N] and in the '_N' automatic variables.
3018 3024
3019 3025 Notes:
3020 3026
3021 3027 1) If an input line begins with '!!', then %sx is automatically
3022 3028 invoked. That is, while:
3023 3029 !ls
3024 3030 causes ipython to simply issue system('ls'), typing
3025 3031 !!ls
3026 3032 is a shorthand equivalent to:
3027 3033 %sx ls
3028 3034
3029 3035 2) %sx differs from %sc in that %sx automatically splits into a list,
3030 3036 like '%sc -l'. The reason for this is to make it as easy as possible
3031 3037 to process line-oriented shell output via further python commands.
3032 3038 %sc is meant to provide much finer control, but requires more
3033 3039 typing.
3034 3040
3035 3041 3) Just like %sc -l, this is a list with special attributes:
3036 3042
3037 3043 .l (or .list) : value as list.
3038 3044 .n (or .nlstr): value as newline-separated string.
3039 3045 .s (or .spstr): value as whitespace-separated string.
3040 3046
3041 3047 This is very useful when trying to use such lists as arguments to
3042 3048 system commands."""
3043 3049
3044 3050 if parameter_s:
3045 3051 return self.shell.getoutput(parameter_s)
3046 3052
3047 3053
3048 3054 def magic_bookmark(self, parameter_s=''):
3049 3055 """Manage IPython's bookmark system.
3050 3056
3051 3057 %bookmark <name> - set bookmark to current dir
3052 3058 %bookmark <name> <dir> - set bookmark to <dir>
3053 3059 %bookmark -l - list all bookmarks
3054 3060 %bookmark -d <name> - remove bookmark
3055 3061 %bookmark -r - remove all bookmarks
3056 3062
3057 3063 You can later on access a bookmarked folder with:
3058 3064 %cd -b <name>
3059 3065 or simply '%cd <name>' if there is no directory called <name> AND
3060 3066 there is such a bookmark defined.
3061 3067
3062 3068 Your bookmarks persist through IPython sessions, but they are
3063 3069 associated with each profile."""
3064 3070
3065 3071 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3066 3072 if len(args) > 2:
3067 3073 raise UsageError("%bookmark: too many arguments")
3068 3074
3069 3075 bkms = self.db.get('bookmarks',{})
3070 3076
3071 3077 if opts.has_key('d'):
3072 3078 try:
3073 3079 todel = args[0]
3074 3080 except IndexError:
3075 3081 raise UsageError(
3076 3082 "%bookmark -d: must provide a bookmark to delete")
3077 3083 else:
3078 3084 try:
3079 3085 del bkms[todel]
3080 3086 except KeyError:
3081 3087 raise UsageError(
3082 3088 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3083 3089
3084 3090 elif opts.has_key('r'):
3085 3091 bkms = {}
3086 3092 elif opts.has_key('l'):
3087 3093 bks = bkms.keys()
3088 3094 bks.sort()
3089 3095 if bks:
3090 3096 size = max(map(len,bks))
3091 3097 else:
3092 3098 size = 0
3093 3099 fmt = '%-'+str(size)+'s -> %s'
3094 3100 print 'Current bookmarks:'
3095 3101 for bk in bks:
3096 3102 print fmt % (bk,bkms[bk])
3097 3103 else:
3098 3104 if not args:
3099 3105 raise UsageError("%bookmark: You must specify the bookmark name")
3100 3106 elif len(args)==1:
3101 3107 bkms[args[0]] = os.getcwd()
3102 3108 elif len(args)==2:
3103 3109 bkms[args[0]] = args[1]
3104 3110 self.db['bookmarks'] = bkms
3105 3111
3106 3112 def magic_pycat(self, parameter_s=''):
3107 3113 """Show a syntax-highlighted file through a pager.
3108 3114
3109 3115 This magic is similar to the cat utility, but it will assume the file
3110 3116 to be Python source and will show it with syntax highlighting. """
3111 3117
3112 3118 try:
3113 3119 filename = get_py_filename(parameter_s)
3114 3120 cont = file_read(filename)
3115 3121 except IOError:
3116 3122 try:
3117 3123 cont = eval(parameter_s,self.user_ns)
3118 3124 except NameError:
3119 3125 cont = None
3120 3126 if cont is None:
3121 3127 print "Error: no such file or variable"
3122 3128 return
3123 3129
3124 3130 page.page(self.shell.pycolorize(cont))
3125 3131
3126 3132 def _rerun_pasted(self):
3127 3133 """ Rerun a previously pasted command.
3128 3134 """
3129 3135 b = self.user_ns.get('pasted_block', None)
3130 3136 if b is None:
3131 3137 raise UsageError('No previous pasted block available')
3132 3138 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3133 3139 exec b in self.user_ns
3134 3140
3135 3141 def _get_pasted_lines(self, sentinel):
3136 3142 """ Yield pasted lines until the user enters the given sentinel value.
3137 3143 """
3138 3144 from IPython.core import interactiveshell
3139 3145 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3140 3146 while True:
3141 3147 l = interactiveshell.raw_input_original(':')
3142 3148 if l == sentinel:
3143 3149 return
3144 3150 else:
3145 3151 yield l
3146 3152
3147 3153 def _strip_pasted_lines_for_code(self, raw_lines):
3148 3154 """ Strip non-code parts of a sequence of lines to return a block of
3149 3155 code.
3150 3156 """
3151 3157 # Regular expressions that declare text we strip from the input:
3152 3158 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3153 3159 r'^\s*(\s?>)+', # Python input prompt
3154 3160 r'^\s*\.{3,}', # Continuation prompts
3155 3161 r'^\++',
3156 3162 ]
3157 3163
3158 3164 strip_from_start = map(re.compile,strip_re)
3159 3165
3160 3166 lines = []
3161 3167 for l in raw_lines:
3162 3168 for pat in strip_from_start:
3163 3169 l = pat.sub('',l)
3164 3170 lines.append(l)
3165 3171
3166 3172 block = "\n".join(lines) + '\n'
3167 3173 #print "block:\n",block
3168 3174 return block
3169 3175
3170 3176 def _execute_block(self, block, par):
3171 3177 """ Execute a block, or store it in a variable, per the user's request.
3172 3178 """
3173 3179 if not par:
3174 3180 b = textwrap.dedent(block)
3175 3181 self.user_ns['pasted_block'] = b
3176 3182 exec b in self.user_ns
3177 3183 else:
3178 3184 self.user_ns[par] = SList(block.splitlines())
3179 3185 print "Block assigned to '%s'" % par
3180 3186
3181 3187 def magic_quickref(self,arg):
3182 3188 """ Show a quick reference sheet """
3183 3189 import IPython.core.usage
3184 3190 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3185 3191
3186 3192 page.page(qr)
3187 3193
3188 3194 def magic_doctest_mode(self,parameter_s=''):
3189 3195 """Toggle doctest mode on and off.
3190 3196
3191 3197 This mode is intended to make IPython behave as much as possible like a
3192 3198 plain Python shell, from the perspective of how its prompts, exceptions
3193 3199 and output look. This makes it easy to copy and paste parts of a
3194 3200 session into doctests. It does so by:
3195 3201
3196 3202 - Changing the prompts to the classic ``>>>`` ones.
3197 3203 - Changing the exception reporting mode to 'Plain'.
3198 3204 - Disabling pretty-printing of output.
3199 3205
3200 3206 Note that IPython also supports the pasting of code snippets that have
3201 3207 leading '>>>' and '...' prompts in them. This means that you can paste
3202 3208 doctests from files or docstrings (even if they have leading
3203 3209 whitespace), and the code will execute correctly. You can then use
3204 3210 '%history -t' to see the translated history; this will give you the
3205 3211 input after removal of all the leading prompts and whitespace, which
3206 3212 can be pasted back into an editor.
3207 3213
3208 3214 With these features, you can switch into this mode easily whenever you
3209 3215 need to do testing and changes to doctests, without having to leave
3210 3216 your existing IPython session.
3211 3217 """
3212 3218
3213 3219 from IPython.utils.ipstruct import Struct
3214 3220
3215 3221 # Shorthands
3216 3222 shell = self.shell
3217 3223 oc = shell.displayhook
3218 3224 meta = shell.meta
3219 3225 disp_formatter = self.shell.display_formatter
3220 3226 ptformatter = disp_formatter.formatters['text/plain']
3221 3227 # dstore is a data store kept in the instance metadata bag to track any
3222 3228 # changes we make, so we can undo them later.
3223 3229 dstore = meta.setdefault('doctest_mode',Struct())
3224 3230 save_dstore = dstore.setdefault
3225 3231
3226 3232 # save a few values we'll need to recover later
3227 3233 mode = save_dstore('mode',False)
3228 3234 save_dstore('rc_pprint',ptformatter.pprint)
3229 3235 save_dstore('xmode',shell.InteractiveTB.mode)
3230 3236 save_dstore('rc_separate_out',shell.separate_out)
3231 3237 save_dstore('rc_separate_out2',shell.separate_out2)
3232 3238 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3233 3239 save_dstore('rc_separate_in',shell.separate_in)
3234 3240 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3235 3241
3236 3242 if mode == False:
3237 3243 # turn on
3238 3244 oc.prompt1.p_template = '>>> '
3239 3245 oc.prompt2.p_template = '... '
3240 3246 oc.prompt_out.p_template = ''
3241 3247
3242 3248 # Prompt separators like plain python
3243 3249 oc.input_sep = oc.prompt1.sep = ''
3244 3250 oc.output_sep = ''
3245 3251 oc.output_sep2 = ''
3246 3252
3247 3253 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3248 3254 oc.prompt_out.pad_left = False
3249 3255
3250 3256 ptformatter.pprint = False
3251 3257 disp_formatter.plain_text_only = True
3252 3258
3253 3259 shell.magic_xmode('Plain')
3254 3260 else:
3255 3261 # turn off
3256 3262 oc.prompt1.p_template = shell.prompt_in1
3257 3263 oc.prompt2.p_template = shell.prompt_in2
3258 3264 oc.prompt_out.p_template = shell.prompt_out
3259 3265
3260 3266 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3261 3267
3262 3268 oc.output_sep = dstore.rc_separate_out
3263 3269 oc.output_sep2 = dstore.rc_separate_out2
3264 3270
3265 3271 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3266 3272 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3267 3273
3268 3274 ptformatter.pprint = dstore.rc_pprint
3269 3275 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3270 3276
3271 3277 shell.magic_xmode(dstore.xmode)
3272 3278
3273 3279 # Store new mode and inform
3274 3280 dstore.mode = bool(1-int(mode))
3275 3281 mode_label = ['OFF','ON'][dstore.mode]
3276 3282 print 'Doctest mode is:', mode_label
3277 3283
3278 3284 def magic_gui(self, parameter_s=''):
3279 3285 """Enable or disable IPython GUI event loop integration.
3280 3286
3281 3287 %gui [GUINAME]
3282 3288
3283 3289 This magic replaces IPython's threaded shells that were activated
3284 3290 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3285 3291 can now be enabled, disabled and swtiched at runtime and keyboard
3286 3292 interrupts should work without any problems. The following toolkits
3287 3293 are supported: wxPython, PyQt4, PyGTK, and Tk::
3288 3294
3289 3295 %gui wx # enable wxPython event loop integration
3290 3296 %gui qt4|qt # enable PyQt4 event loop integration
3291 3297 %gui gtk # enable PyGTK event loop integration
3292 3298 %gui tk # enable Tk event loop integration
3293 3299 %gui # disable all event loop integration
3294 3300
3295 3301 WARNING: after any of these has been called you can simply create
3296 3302 an application object, but DO NOT start the event loop yourself, as
3297 3303 we have already handled that.
3298 3304 """
3299 3305 from IPython.lib.inputhook import enable_gui
3300 3306 opts, arg = self.parse_options(parameter_s, '')
3301 3307 if arg=='': arg = None
3302 3308 return enable_gui(arg)
3303 3309
3304 3310 def magic_load_ext(self, module_str):
3305 3311 """Load an IPython extension by its module name."""
3306 3312 return self.extension_manager.load_extension(module_str)
3307 3313
3308 3314 def magic_unload_ext(self, module_str):
3309 3315 """Unload an IPython extension by its module name."""
3310 3316 self.extension_manager.unload_extension(module_str)
3311 3317
3312 3318 def magic_reload_ext(self, module_str):
3313 3319 """Reload an IPython extension by its module name."""
3314 3320 self.extension_manager.reload_extension(module_str)
3315 3321
3316 3322 @testdec.skip_doctest
3317 3323 def magic_install_profiles(self, s):
3318 3324 """Install the default IPython profiles into the .ipython dir.
3319 3325
3320 3326 If the default profiles have already been installed, they will not
3321 3327 be overwritten. You can force overwriting them by using the ``-o``
3322 3328 option::
3323 3329
3324 3330 In [1]: %install_profiles -o
3325 3331 """
3326 3332 if '-o' in s:
3327 3333 overwrite = True
3328 3334 else:
3329 3335 overwrite = False
3330 3336 from IPython.config import profile
3331 3337 profile_dir = os.path.split(profile.__file__)[0]
3332 3338 ipython_dir = self.ipython_dir
3333 3339 files = os.listdir(profile_dir)
3334 3340
3335 3341 to_install = []
3336 3342 for f in files:
3337 3343 if f.startswith('ipython_config'):
3338 3344 src = os.path.join(profile_dir, f)
3339 3345 dst = os.path.join(ipython_dir, f)
3340 3346 if (not os.path.isfile(dst)) or overwrite:
3341 3347 to_install.append((f, src, dst))
3342 3348 if len(to_install)>0:
3343 3349 print "Installing profiles to: ", ipython_dir
3344 3350 for (f, src, dst) in to_install:
3345 3351 shutil.copy(src, dst)
3346 3352 print " %s" % f
3347 3353
3348 3354 def magic_install_default_config(self, s):
3349 3355 """Install IPython's default config file into the .ipython dir.
3350 3356
3351 3357 If the default config file (:file:`ipython_config.py`) is already
3352 3358 installed, it will not be overwritten. You can force overwriting
3353 3359 by using the ``-o`` option::
3354 3360
3355 3361 In [1]: %install_default_config
3356 3362 """
3357 3363 if '-o' in s:
3358 3364 overwrite = True
3359 3365 else:
3360 3366 overwrite = False
3361 3367 from IPython.config import default
3362 3368 config_dir = os.path.split(default.__file__)[0]
3363 3369 ipython_dir = self.ipython_dir
3364 3370 default_config_file_name = 'ipython_config.py'
3365 3371 src = os.path.join(config_dir, default_config_file_name)
3366 3372 dst = os.path.join(ipython_dir, default_config_file_name)
3367 3373 if (not os.path.isfile(dst)) or overwrite:
3368 3374 shutil.copy(src, dst)
3369 3375 print "Installing default config file: %s" % dst
3370 3376
3371 3377 # Pylab support: simple wrappers that activate pylab, load gui input
3372 3378 # handling and modify slightly %run
3373 3379
3374 3380 @testdec.skip_doctest
3375 3381 def _pylab_magic_run(self, parameter_s=''):
3376 3382 Magic.magic_run(self, parameter_s,
3377 3383 runner=mpl_runner(self.shell.safe_execfile))
3378 3384
3379 3385 _pylab_magic_run.__doc__ = magic_run.__doc__
3380 3386
3381 3387 @testdec.skip_doctest
3382 3388 def magic_pylab(self, s):
3383 3389 """Load numpy and matplotlib to work interactively.
3384 3390
3385 3391 %pylab [GUINAME]
3386 3392
3387 3393 This function lets you activate pylab (matplotlib, numpy and
3388 3394 interactive support) at any point during an IPython session.
3389 3395
3390 3396 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3391 3397 pylab and mlab, as well as all names from numpy and pylab.
3392 3398
3393 3399 Parameters
3394 3400 ----------
3395 3401 guiname : optional
3396 3402 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3397 3403 'tk'). If given, the corresponding Matplotlib backend is used,
3398 3404 otherwise matplotlib's default (which you can override in your
3399 3405 matplotlib config file) is used.
3400 3406
3401 3407 Examples
3402 3408 --------
3403 3409 In this case, where the MPL default is TkAgg:
3404 3410 In [2]: %pylab
3405 3411
3406 3412 Welcome to pylab, a matplotlib-based Python environment.
3407 3413 Backend in use: TkAgg
3408 3414 For more information, type 'help(pylab)'.
3409 3415
3410 3416 But you can explicitly request a different backend:
3411 3417 In [3]: %pylab qt
3412 3418
3413 3419 Welcome to pylab, a matplotlib-based Python environment.
3414 3420 Backend in use: Qt4Agg
3415 3421 For more information, type 'help(pylab)'.
3416 3422 """
3417 3423 self.shell.enable_pylab(s)
3418 3424
3419 3425 def magic_tb(self, s):
3420 3426 """Print the last traceback with the currently active exception mode.
3421 3427
3422 3428 See %xmode for changing exception reporting modes."""
3423 3429 self.shell.showtraceback()
3424 3430
3425 3431 @testdec.skip_doctest
3426 3432 def magic_precision(self, s=''):
3427 3433 """Set floating point precision for pretty printing.
3428 3434
3429 3435 Can set either integer precision or a format string.
3430 3436
3431 3437 If numpy has been imported and precision is an int,
3432 3438 numpy display precision will also be set, via ``numpy.set_printoptions``.
3433 3439
3434 3440 If no argument is given, defaults will be restored.
3435 3441
3436 3442 Examples
3437 3443 --------
3438 3444 ::
3439 3445
3440 3446 In [1]: from math import pi
3441 3447
3442 3448 In [2]: %precision 3
3443 3449 Out[2]: '%.3f'
3444 3450
3445 3451 In [3]: pi
3446 3452 Out[3]: 3.142
3447 3453
3448 3454 In [4]: %precision %i
3449 3455 Out[4]: '%i'
3450 3456
3451 3457 In [5]: pi
3452 3458 Out[5]: 3
3453 3459
3454 3460 In [6]: %precision %e
3455 3461 Out[6]: '%e'
3456 3462
3457 3463 In [7]: pi**10
3458 3464 Out[7]: 9.364805e+04
3459 3465
3460 3466 In [8]: %precision
3461 3467 Out[8]: '%r'
3462 3468
3463 3469 In [9]: pi**10
3464 3470 Out[9]: 93648.047476082982
3465 3471
3466 3472 """
3467 3473
3468 3474 ptformatter = self.shell.display_formatter.formatters['text/plain']
3469 3475 ptformatter.float_precision = s
3470 3476 return ptformatter.float_format
3471 3477
3472 3478 # end Magic
@@ -1,425 +1,440 b''
1 1 """Tests for various magic functions.
2 2
3 3 Needs to be run by nose (to make ipython session available).
4 4 """
5 5 from __future__ import absolute_import
6 6
7 7 #-----------------------------------------------------------------------------
8 8 # Imports
9 9 #-----------------------------------------------------------------------------
10 10
11 11 import os
12 12 import sys
13 13 import tempfile
14 14 import types
15 15 from cStringIO import StringIO
16 16
17 17 import nose.tools as nt
18 18
19 19 from IPython.utils.path import get_long_path_name
20 20 from IPython.testing import decorators as dec
21 21 from IPython.testing import tools as tt
22 22
23 23 #-----------------------------------------------------------------------------
24 24 # Test functions begin
25 25 #-----------------------------------------------------------------------------
26 26 def test_rehashx():
27 27 # clear up everything
28 28 _ip = get_ipython()
29 29 _ip.alias_manager.alias_table.clear()
30 30 del _ip.db['syscmdlist']
31 31
32 32 _ip.magic('rehashx')
33 33 # Practically ALL ipython development systems will have more than 10 aliases
34 34
35 35 yield (nt.assert_true, len(_ip.alias_manager.alias_table) > 10)
36 36 for key, val in _ip.alias_manager.alias_table.iteritems():
37 37 # we must strip dots from alias names
38 38 nt.assert_true('.' not in key)
39 39
40 40 # rehashx must fill up syscmdlist
41 41 scoms = _ip.db['syscmdlist']
42 42 yield (nt.assert_true, len(scoms) > 10)
43 43
44 44
45 45 def test_magic_parse_options():
46 46 """Test that we don't mangle paths when parsing magic options."""
47 47 ip = get_ipython()
48 48 path = 'c:\\x'
49 49 opts = ip.parse_options('-f %s' % path,'f:')[0]
50 50 # argv splitting is os-dependent
51 51 if os.name == 'posix':
52 52 expected = 'c:x'
53 53 else:
54 54 expected = path
55 55 nt.assert_equals(opts['f'], expected)
56 56
57 57
58 58 def doctest_hist_f():
59 59 """Test %hist -f with temporary filename.
60 60
61 61 In [9]: import tempfile
62 62
63 63 In [10]: tfile = tempfile.mktemp('.py','tmp-ipython-')
64 64
65 65 In [11]: %hist -nl -f $tfile 3
66 66
67 67 In [13]: import os; os.unlink(tfile)
68 68 """
69 69
70 70
71 71 def doctest_hist_r():
72 72 """Test %hist -r
73 73
74 74 XXX - This test is not recording the output correctly. For some reason, in
75 75 testing mode the raw history isn't getting populated. No idea why.
76 76 Disabling the output checking for now, though at least we do run it.
77 77
78 78 In [1]: 'hist' in _ip.lsmagic()
79 79 Out[1]: True
80 80
81 81 In [2]: x=1
82 82
83 83 In [3]: %hist -rl 2
84 84 x=1 # random
85 85 %hist -r 2
86 86 """
87 87
88 88 def doctest_hist_op():
89 89 """Test %hist -op
90 90
91 91 In [1]: class b:
92 92 ...: pass
93 93 ...:
94 94
95 95 In [2]: class s(b):
96 96 ...: def __str__(self):
97 97 ...: return 's'
98 98 ...:
99 99
100 100 In [3]:
101 101
102 102 In [4]: class r(b):
103 103 ...: def __repr__(self):
104 104 ...: return 'r'
105 105 ...:
106 106
107 107 In [5]: class sr(s,r): pass
108 108 ...:
109 109
110 110 In [6]:
111 111
112 112 In [7]: bb=b()
113 113
114 114 In [8]: ss=s()
115 115
116 116 In [9]: rr=r()
117 117
118 118 In [10]: ssrr=sr()
119 119
120 120 In [11]: bb
121 121 Out[11]: <...b instance at ...>
122 122
123 123 In [12]: ss
124 124 Out[12]: <...s instance at ...>
125 125
126 126 In [13]:
127 127
128 128 In [14]: %hist -op
129 129 >>> class b:
130 130 ... pass
131 131 ...
132 132 >>> class s(b):
133 133 ... def __str__(self):
134 134 ... return 's'
135 135 ...
136 136 >>>
137 137 >>> class r(b):
138 138 ... def __repr__(self):
139 139 ... return 'r'
140 140 ...
141 141 >>> class sr(s,r): pass
142 142 >>>
143 143 >>> bb=b()
144 144 >>> ss=s()
145 145 >>> rr=r()
146 146 >>> ssrr=sr()
147 147 >>> bb
148 148 <...b instance at ...>
149 149 >>> ss
150 150 <...s instance at ...>
151 151 >>>
152 152 """
153 153
154 154 def test_macro():
155 155 ip = get_ipython()
156 156 ip.history_manager.reset() # Clear any existing history.
157 157 cmds = ["a=1", "def b():\n return a**2", "print(a,b())"]
158 158 for i, cmd in enumerate(cmds, start=1):
159 159 ip.history_manager.store_inputs(i, cmd)
160 160 ip.magic("macro test 1-3")
161 161 nt.assert_equal(ip.user_ns["test"].value, "\n".join(cmds)+"\n")
162 162
163 163 # List macros.
164 164 assert "test" in ip.magic("macro")
165 165
166 166 def test_macro_run():
167 167 """Test that we can run a multi-line macro successfully."""
168 168 ip = get_ipython()
169 169 ip.history_manager.reset()
170 170 cmds = ["a=10", "a+=1", "print a", "%macro test 2-3"]
171 171 for cmd in cmds:
172 172 ip.run_cell(cmd)
173 173 nt.assert_equal(ip.user_ns["test"].value, "a+=1\nprint a\n")
174 174 original_stdout = sys.stdout
175 175 new_stdout = StringIO()
176 176 sys.stdout = new_stdout
177 177 try:
178 178 ip.run_cell("test")
179 179 nt.assert_true("12" in new_stdout.getvalue())
180 180 ip.run_cell("test")
181 181 nt.assert_true("13" in new_stdout.getvalue())
182 182 finally:
183 183 sys.stdout = original_stdout
184 184 new_stdout.close()
185 185
186 186
187 187 # XXX failing for now, until we get clearcmd out of quarantine. But we should
188 188 # fix this and revert the skip to happen only if numpy is not around.
189 189 #@dec.skipif_not_numpy
190 190 @dec.skip_known_failure
191 191 def test_numpy_clear_array_undec():
192 192 from IPython.extensions import clearcmd
193 193
194 194 _ip.ex('import numpy as np')
195 195 _ip.ex('a = np.empty(2)')
196 196 yield (nt.assert_true, 'a' in _ip.user_ns)
197 197 _ip.magic('clear array')
198 198 yield (nt.assert_false, 'a' in _ip.user_ns)
199 199
200 200
201 201 # Multiple tests for clipboard pasting
202 202 @dec.parametric
203 203 def test_paste():
204 204 _ip = get_ipython()
205 205 def paste(txt, flags='-q'):
206 206 """Paste input text, by default in quiet mode"""
207 207 hooks.clipboard_get = lambda : txt
208 208 _ip.magic('paste '+flags)
209 209
210 210 # Inject fake clipboard hook but save original so we can restore it later
211 211 hooks = _ip.hooks
212 212 user_ns = _ip.user_ns
213 213 original_clip = hooks.clipboard_get
214 214
215 215 try:
216 216 # This try/except with an emtpy except clause is here only because
217 217 # try/yield/finally is invalid syntax in Python 2.4. This will be
218 218 # removed when we drop 2.4-compatibility, and the emtpy except below
219 219 # will be changed to a finally.
220 220
221 221 # Run tests with fake clipboard function
222 222 user_ns.pop('x', None)
223 223 paste('x=1')
224 224 yield nt.assert_equal(user_ns['x'], 1)
225 225
226 226 user_ns.pop('x', None)
227 227 paste('>>> x=2')
228 228 yield nt.assert_equal(user_ns['x'], 2)
229 229
230 230 paste("""
231 231 >>> x = [1,2,3]
232 232 >>> y = []
233 233 >>> for i in x:
234 234 ... y.append(i**2)
235 235 ...
236 236 """)
237 237 yield nt.assert_equal(user_ns['x'], [1,2,3])
238 238 yield nt.assert_equal(user_ns['y'], [1,4,9])
239 239
240 240 # Now, test that paste -r works
241 241 user_ns.pop('x', None)
242 242 yield nt.assert_false('x' in user_ns)
243 243 _ip.magic('paste -r')
244 244 yield nt.assert_equal(user_ns['x'], [1,2,3])
245 245
246 246 # Also test paste echoing, by temporarily faking the writer
247 247 w = StringIO()
248 248 writer = _ip.write
249 249 _ip.write = w.write
250 250 code = """
251 251 a = 100
252 252 b = 200"""
253 253 try:
254 254 paste(code,'')
255 255 out = w.getvalue()
256 256 finally:
257 257 _ip.write = writer
258 258 yield nt.assert_equal(user_ns['a'], 100)
259 259 yield nt.assert_equal(user_ns['b'], 200)
260 260 yield nt.assert_equal(out, code+"\n## -- End pasted text --\n")
261 261
262 262 finally:
263 263 # This should be in a finally clause, instead of the bare except above.
264 264 # Restore original hook
265 265 hooks.clipboard_get = original_clip
266 266
267 267
268 268 def test_time():
269 269 _ip.magic('time None')
270 270
271 271
272 272 def doctest_time():
273 273 """
274 274 In [10]: %time None
275 275 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
276 276 Wall time: 0.00 s
277 277
278 278 In [11]: def f(kmjy):
279 279 ....: %time print 2*kmjy
280 280
281 281 In [12]: f(3)
282 282 6
283 283 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
284 284 Wall time: 0.00 s
285 285 """
286 286
287 287
288 288 def test_doctest_mode():
289 289 "Toggle doctest_mode twice, it should be a no-op and run without error"
290 290 _ip.magic('doctest_mode')
291 291 _ip.magic('doctest_mode')
292 292
293 293
294 294 def test_parse_options():
295 295 """Tests for basic options parsing in magics."""
296 296 # These are only the most minimal of tests, more should be added later. At
297 297 # the very least we check that basic text/unicode calls work OK.
298 298 nt.assert_equal(_ip.parse_options('foo', '')[1], 'foo')
299 299 nt.assert_equal(_ip.parse_options(u'foo', '')[1], u'foo')
300 300
301 301
302 302 def test_dirops():
303 303 """Test various directory handling operations."""
304 304 curpath = lambda :os.path.splitdrive(os.getcwdu())[1].replace('\\','/')
305 305
306 306 startdir = os.getcwdu()
307 307 ipdir = _ip.ipython_dir
308 308 try:
309 309 _ip.magic('cd "%s"' % ipdir)
310 310 nt.assert_equal(curpath(), ipdir)
311 311 _ip.magic('cd -')
312 312 nt.assert_equal(curpath(), startdir)
313 313 _ip.magic('pushd "%s"' % ipdir)
314 314 nt.assert_equal(curpath(), ipdir)
315 315 _ip.magic('popd')
316 316 nt.assert_equal(curpath(), startdir)
317 317 finally:
318 318 os.chdir(startdir)
319 319
320 320
321 321 def check_cpaste(code, should_fail=False):
322 322 """Execute code via 'cpaste' and ensure it was executed, unless
323 323 should_fail is set.
324 324 """
325 325 _ip.user_ns['code_ran'] = False
326 326
327 327 src = StringIO()
328 328 src.write('\n')
329 329 src.write(code)
330 330 src.write('\n--\n')
331 331 src.seek(0)
332 332
333 333 stdin_save = sys.stdin
334 334 sys.stdin = src
335 335
336 336 try:
337 337 _ip.magic('cpaste')
338 338 except:
339 339 if not should_fail:
340 340 raise AssertionError("Failure not expected : '%s'" %
341 341 code)
342 342 else:
343 343 assert _ip.user_ns['code_ran']
344 344 if should_fail:
345 345 raise AssertionError("Failure expected : '%s'" % code)
346 346 finally:
347 347 sys.stdin = stdin_save
348 348
349 349
350 350 def test_cpaste():
351 351 """Test cpaste magic"""
352 352
353 353 def run():
354 354 """Marker function: sets a flag when executed.
355 355 """
356 356 _ip.user_ns['code_ran'] = True
357 357 return 'run' # return string so '+ run()' doesn't result in success
358 358
359 359 tests = {'pass': ["> > > run()",
360 360 ">>> > run()",
361 361 "+++ run()",
362 362 "++ run()",
363 363 " >>> run()"],
364 364
365 365 'fail': ["+ + run()",
366 366 " ++ run()"]}
367 367
368 368 _ip.user_ns['run'] = run
369 369
370 370 for code in tests['pass']:
371 371 check_cpaste(code)
372 372
373 373 for code in tests['fail']:
374 374 check_cpaste(code, should_fail=True)
375 375
376 376 def test_xmode():
377 377 # Calling xmode three times should be a no-op
378 378 xmode = _ip.InteractiveTB.mode
379 379 for i in range(3):
380 380 _ip.magic("xmode")
381 381 nt.assert_equal(_ip.InteractiveTB.mode, xmode)
382
383 def test_reset_hard():
384 monitor = []
385 class A(object):
386 def __del__(self):
387 monitor.append(1)
388 def __repr__(self):
389 return "<A instance>"
390
391 _ip.user_ns["a"] = A()
392 _ip.run_cell("a")
393
394 nt.assert_equal(monitor, [])
395 _ip.magic_reset("-f")
396 nt.assert_equal(monitor, [1])
382 397
383 398 def doctest_who():
384 399 """doctest for %who
385 400
386 401 In [1]: %reset -f
387 402
388 403 In [2]: alpha = 123
389 404
390 405 In [3]: beta = 'beta'
391 406
392 407 In [4]: %who int
393 408 alpha
394 409
395 410 In [5]: %who str
396 411 beta
397 412
398 413 In [6]: %whos
399 414 Variable Type Data/Info
400 415 ----------------------------
401 416 alpha int 123
402 417 beta str beta
403 418
404 419 In [7]: %who_ls
405 420 Out[7]: ['alpha', 'beta']
406 421 """
407 422
408 423 def doctest_precision():
409 424 """doctest for %precision
410 425
411 426 In [1]: f = get_ipython().shell.display_formatter.formatters['text/plain']
412 427
413 428 In [2]: %precision 5
414 429 Out[2]: '%.5f'
415 430
416 431 In [3]: f.float_format
417 432 Out[3]: '%.5f'
418 433
419 434 In [4]: %precision %e
420 435 Out[4]: '%e'
421 436
422 437 In [5]: f(3.1415927)
423 438 Out[5]: '3.141593e+00'
424 439 """
425 440
General Comments 0
You need to be logged in to leave comments. Login now