##// END OF EJS Templates
Fix bugs with multiline cells....
Fernando Perez -
Show More
@@ -1,2573 +1,2586 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2010 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import exceptions
26 26 import new
27 27 import os
28 28 import re
29 29 import string
30 30 import sys
31 31 import tempfile
32 32 from contextlib import nested
33 33
34 34 from IPython.config.configurable import Configurable
35 35 from IPython.core import debugger, oinspect
36 36 from IPython.core import history as ipcorehist
37 37 from IPython.core import page
38 38 from IPython.core import prefilter
39 39 from IPython.core import shadowns
40 40 from IPython.core import ultratb
41 41 from IPython.core.alias import AliasManager
42 42 from IPython.core.builtin_trap import BuiltinTrap
43 43 from IPython.core.display_trap import DisplayTrap
44 44 from IPython.core.displayhook import DisplayHook
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.inputlist import InputList
49 49 from IPython.core.inputsplitter import IPythonInputSplitter
50 50 from IPython.core.logger import Logger
51 51 from IPython.core.magic import Magic
52 52 from IPython.core.payload import PayloadManager
53 53 from IPython.core.plugin import PluginManager
54 54 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
55 55 from IPython.external.Itpl import ItplNS
56 56 from IPython.utils import PyColorize
57 57 from IPython.utils import io
58 58 from IPython.utils import pickleshare
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.process import system, getoutput
64 64 from IPython.utils.strdispatch import StrDispatch
65 65 from IPython.utils.syspathcontext import prepended_to_syspath
66 66 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
67 67 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
68 68 List, Unicode, Instance, Type)
69 69 from IPython.utils.warn import warn, error, fatal
70 70 import IPython.core.hooks
71 71
72 72 #-----------------------------------------------------------------------------
73 73 # Globals
74 74 #-----------------------------------------------------------------------------
75 75
76 76 # compiled regexps for autoindent management
77 77 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
78 78
79 79 #-----------------------------------------------------------------------------
80 80 # Utilities
81 81 #-----------------------------------------------------------------------------
82 82
83 83 # store the builtin raw_input globally, and use this always, in case user code
84 84 # overwrites it (like wx.py.PyShell does)
85 85 raw_input_original = raw_input
86 86
87 87 def softspace(file, newvalue):
88 88 """Copied from code.py, to remove the dependency"""
89 89
90 90 oldvalue = 0
91 91 try:
92 92 oldvalue = file.softspace
93 93 except AttributeError:
94 94 pass
95 95 try:
96 96 file.softspace = newvalue
97 97 except (AttributeError, TypeError):
98 98 # "attribute-less object" or "read-only attributes"
99 99 pass
100 100 return oldvalue
101 101
102 102
103 103 def no_op(*a, **kw): pass
104 104
105 105 class SpaceInInput(exceptions.Exception): pass
106 106
107 107 class Bunch: pass
108 108
109 109
110 110 def get_default_colors():
111 111 if sys.platform=='darwin':
112 112 return "LightBG"
113 113 elif os.name=='nt':
114 114 return 'Linux'
115 115 else:
116 116 return 'Linux'
117 117
118 118
119 119 class SeparateStr(Str):
120 120 """A Str subclass to validate separate_in, separate_out, etc.
121 121
122 122 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
123 123 """
124 124
125 125 def validate(self, obj, value):
126 126 if value == '0': value = ''
127 127 value = value.replace('\\n','\n')
128 128 return super(SeparateStr, self).validate(obj, value)
129 129
130 130 class MultipleInstanceError(Exception):
131 131 pass
132 132
133 133
134 134 #-----------------------------------------------------------------------------
135 135 # Main IPython class
136 136 #-----------------------------------------------------------------------------
137 137
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 displayhook_class = Type(DisplayHook)
155 155 exit_now = CBool(False)
156 156 filename = Str("<ipython console>")
157 157 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
158 158
159 159 # Input splitter, to split entire cells of input into either individual
160 160 # interactive statements or whole blocks.
161 161 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
162 162 (), {})
163 163 logstart = CBool(False, config=True)
164 164 logfile = Str('', config=True)
165 165 logappend = Str('', config=True)
166 166 object_info_string_level = Enum((0,1,2), default_value=0,
167 167 config=True)
168 168 pdb = CBool(False, config=True)
169 169
170 170 pprint = CBool(True, config=True)
171 171 profile = Str('', config=True)
172 172 prompt_in1 = Str('In [\\#]: ', config=True)
173 173 prompt_in2 = Str(' .\\D.: ', config=True)
174 174 prompt_out = Str('Out[\\#]: ', config=True)
175 175 prompts_pad_left = CBool(True, config=True)
176 176 quiet = CBool(False, config=True)
177 177
178 178 # The readline stuff will eventually be moved to the terminal subclass
179 179 # but for now, we can't do that as readline is welded in everywhere.
180 180 readline_use = CBool(True, config=True)
181 181 readline_merge_completions = CBool(True, config=True)
182 182 readline_omit__names = Enum((0,1,2), default_value=0, config=True)
183 183 readline_remove_delims = Str('-/~', config=True)
184 184 readline_parse_and_bind = List([
185 185 'tab: complete',
186 186 '"\C-l": clear-screen',
187 187 'set show-all-if-ambiguous on',
188 188 '"\C-o": tab-insert',
189 189 '"\M-i": " "',
190 190 '"\M-o": "\d\d\d\d"',
191 191 '"\M-I": "\d\d\d\d"',
192 192 '"\C-r": reverse-search-history',
193 193 '"\C-s": forward-search-history',
194 194 '"\C-p": history-search-backward',
195 195 '"\C-n": history-search-forward',
196 196 '"\e[A": history-search-backward',
197 197 '"\e[B": history-search-forward',
198 198 '"\C-k": kill-line',
199 199 '"\C-u": unix-line-discard',
200 200 ], allow_none=False, config=True)
201 201
202 202 # TODO: this part of prompt management should be moved to the frontends.
203 203 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
204 204 separate_in = SeparateStr('\n', config=True)
205 205 separate_out = SeparateStr('', config=True)
206 206 separate_out2 = SeparateStr('', config=True)
207 207 wildcards_case_sensitive = CBool(True, config=True)
208 208 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
209 209 default_value='Context', config=True)
210 210
211 211 # Subcomponents of InteractiveShell
212 212 alias_manager = Instance('IPython.core.alias.AliasManager')
213 213 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
214 214 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
215 215 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
216 216 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
217 217 plugin_manager = Instance('IPython.core.plugin.PluginManager')
218 218 payload_manager = Instance('IPython.core.payload.PayloadManager')
219 219
220 220 # Private interface
221 221 _post_execute = set()
222 222
223 223 def __init__(self, config=None, ipython_dir=None,
224 224 user_ns=None, user_global_ns=None,
225 225 custom_exceptions=((), None)):
226 226
227 227 # This is where traits with a config_key argument are updated
228 228 # from the values on config.
229 229 super(InteractiveShell, self).__init__(config=config)
230 230
231 231 # These are relatively independent and stateless
232 232 self.init_ipython_dir(ipython_dir)
233 233 self.init_instance_attrs()
234 234 self.init_environment()
235 235
236 236 # Create namespaces (user_ns, user_global_ns, etc.)
237 237 self.init_create_namespaces(user_ns, user_global_ns)
238 238 # This has to be done after init_create_namespaces because it uses
239 239 # something in self.user_ns, but before init_sys_modules, which
240 240 # is the first thing to modify sys.
241 241 # TODO: When we override sys.stdout and sys.stderr before this class
242 242 # is created, we are saving the overridden ones here. Not sure if this
243 243 # is what we want to do.
244 244 self.save_sys_module_state()
245 245 self.init_sys_modules()
246 246
247 247 self.init_history()
248 248 self.init_encoding()
249 249 self.init_prefilter()
250 250
251 251 Magic.__init__(self, self)
252 252
253 253 self.init_syntax_highlighting()
254 254 self.init_hooks()
255 255 self.init_pushd_popd_magic()
256 256 # self.init_traceback_handlers use to be here, but we moved it below
257 257 # because it and init_io have to come after init_readline.
258 258 self.init_user_ns()
259 259 self.init_logger()
260 260 self.init_alias()
261 261 self.init_builtins()
262 262
263 263 # pre_config_initialization
264 264 self.init_shadow_hist()
265 265
266 266 # The next section should contain everything that was in ipmaker.
267 267 self.init_logstart()
268 268
269 269 # The following was in post_config_initialization
270 270 self.init_inspector()
271 271 # init_readline() must come before init_io(), because init_io uses
272 272 # readline related things.
273 273 self.init_readline()
274 274 # init_completer must come after init_readline, because it needs to
275 275 # know whether readline is present or not system-wide to configure the
276 276 # completers, since the completion machinery can now operate
277 277 # independently of readline (e.g. over the network)
278 278 self.init_completer()
279 279 # TODO: init_io() needs to happen before init_traceback handlers
280 280 # because the traceback handlers hardcode the stdout/stderr streams.
281 281 # This logic in in debugger.Pdb and should eventually be changed.
282 282 self.init_io()
283 283 self.init_traceback_handlers(custom_exceptions)
284 284 self.init_prompts()
285 285 self.init_displayhook()
286 286 self.init_reload_doctest()
287 287 self.init_magics()
288 288 self.init_pdb()
289 289 self.init_extension_manager()
290 290 self.init_plugin_manager()
291 291 self.init_payload()
292 292 self.hooks.late_startup_hook()
293 293 atexit.register(self.atexit_operations)
294 294
295 295 @classmethod
296 296 def instance(cls, *args, **kwargs):
297 297 """Returns a global InteractiveShell instance."""
298 298 if cls._instance is None:
299 299 inst = cls(*args, **kwargs)
300 300 # Now make sure that the instance will also be returned by
301 301 # the subclasses instance attribute.
302 302 for subclass in cls.mro():
303 303 if issubclass(cls, subclass) and \
304 304 issubclass(subclass, InteractiveShell):
305 305 subclass._instance = inst
306 306 else:
307 307 break
308 308 if isinstance(cls._instance, cls):
309 309 return cls._instance
310 310 else:
311 311 raise MultipleInstanceError(
312 312 'Multiple incompatible subclass instances of '
313 313 'InteractiveShell are being created.'
314 314 )
315 315
316 316 @classmethod
317 317 def initialized(cls):
318 318 return hasattr(cls, "_instance")
319 319
320 320 def get_ipython(self):
321 321 """Return the currently running IPython instance."""
322 322 return self
323 323
324 324 #-------------------------------------------------------------------------
325 325 # Trait changed handlers
326 326 #-------------------------------------------------------------------------
327 327
328 328 def _ipython_dir_changed(self, name, new):
329 329 if not os.path.isdir(new):
330 330 os.makedirs(new, mode = 0777)
331 331
332 332 def set_autoindent(self,value=None):
333 333 """Set the autoindent flag, checking for readline support.
334 334
335 335 If called with no arguments, it acts as a toggle."""
336 336
337 337 if not self.has_readline:
338 338 if os.name == 'posix':
339 339 warn("The auto-indent feature requires the readline library")
340 340 self.autoindent = 0
341 341 return
342 342 if value is None:
343 343 self.autoindent = not self.autoindent
344 344 else:
345 345 self.autoindent = value
346 346
347 347 #-------------------------------------------------------------------------
348 348 # init_* methods called by __init__
349 349 #-------------------------------------------------------------------------
350 350
351 351 def init_ipython_dir(self, ipython_dir):
352 352 if ipython_dir is not None:
353 353 self.ipython_dir = ipython_dir
354 354 self.config.Global.ipython_dir = self.ipython_dir
355 355 return
356 356
357 357 if hasattr(self.config.Global, 'ipython_dir'):
358 358 self.ipython_dir = self.config.Global.ipython_dir
359 359 else:
360 360 self.ipython_dir = get_ipython_dir()
361 361
362 362 # All children can just read this
363 363 self.config.Global.ipython_dir = self.ipython_dir
364 364
365 365 def init_instance_attrs(self):
366 366 self.more = False
367 367
368 368 # command compiler
369 369 self.compile = codeop.CommandCompiler()
370 370
371 371 # User input buffer
372 372 self.buffer = []
373 373
374 374 # Make an empty namespace, which extension writers can rely on both
375 375 # existing and NEVER being used by ipython itself. This gives them a
376 376 # convenient location for storing additional information and state
377 377 # their extensions may require, without fear of collisions with other
378 378 # ipython names that may develop later.
379 379 self.meta = Struct()
380 380
381 381 # Object variable to store code object waiting execution. This is
382 382 # used mainly by the multithreaded shells, but it can come in handy in
383 383 # other situations. No need to use a Queue here, since it's a single
384 384 # item which gets cleared once run.
385 385 self.code_to_run = None
386 386
387 387 # Temporary files used for various purposes. Deleted at exit.
388 388 self.tempfiles = []
389 389
390 390 # Keep track of readline usage (later set by init_readline)
391 391 self.has_readline = False
392 392
393 393 # keep track of where we started running (mainly for crash post-mortem)
394 394 # This is not being used anywhere currently.
395 395 self.starting_dir = os.getcwd()
396 396
397 397 # Indentation management
398 398 self.indent_current_nsp = 0
399 399
400 400 def init_environment(self):
401 401 """Any changes we need to make to the user's environment."""
402 402 pass
403 403
404 404 def init_encoding(self):
405 405 # Get system encoding at startup time. Certain terminals (like Emacs
406 406 # under Win32 have it set to None, and we need to have a known valid
407 407 # encoding to use in the raw_input() method
408 408 try:
409 409 self.stdin_encoding = sys.stdin.encoding or 'ascii'
410 410 except AttributeError:
411 411 self.stdin_encoding = 'ascii'
412 412
413 413 def init_syntax_highlighting(self):
414 414 # Python source parser/formatter for syntax highlighting
415 415 pyformat = PyColorize.Parser().format
416 416 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
417 417
418 418 def init_pushd_popd_magic(self):
419 419 # for pushd/popd management
420 420 try:
421 421 self.home_dir = get_home_dir()
422 422 except HomeDirError, msg:
423 423 fatal(msg)
424 424
425 425 self.dir_stack = []
426 426
427 427 def init_logger(self):
428 428 self.logger = Logger(self, logfname='ipython_log.py', logmode='rotate')
429 429 # local shortcut, this is used a LOT
430 430 self.log = self.logger.log
431 431
432 432 def init_logstart(self):
433 433 if self.logappend:
434 434 self.magic_logstart(self.logappend + ' append')
435 435 elif self.logfile:
436 436 self.magic_logstart(self.logfile)
437 437 elif self.logstart:
438 438 self.magic_logstart()
439 439
440 440 def init_builtins(self):
441 441 self.builtin_trap = BuiltinTrap(shell=self)
442 442
443 443 def init_inspector(self):
444 444 # Object inspector
445 445 self.inspector = oinspect.Inspector(oinspect.InspectColors,
446 446 PyColorize.ANSICodeColors,
447 447 'NoColor',
448 448 self.object_info_string_level)
449 449
450 450 def init_io(self):
451 451 # This will just use sys.stdout and sys.stderr. If you want to
452 452 # override sys.stdout and sys.stderr themselves, you need to do that
453 453 # *before* instantiating this class, because Term holds onto
454 454 # references to the underlying streams.
455 455 if sys.platform == 'win32' and self.has_readline:
456 456 Term = io.IOTerm(cout=self.readline._outputfile,
457 457 cerr=self.readline._outputfile)
458 458 else:
459 459 Term = io.IOTerm()
460 460 io.Term = Term
461 461
462 462 def init_prompts(self):
463 463 # TODO: This is a pass for now because the prompts are managed inside
464 464 # the DisplayHook. Once there is a separate prompt manager, this
465 465 # will initialize that object and all prompt related information.
466 466 pass
467 467
468 468 def init_displayhook(self):
469 469 # Initialize displayhook, set in/out prompts and printing system
470 470 self.displayhook = self.displayhook_class(
471 471 shell=self,
472 472 cache_size=self.cache_size,
473 473 input_sep = self.separate_in,
474 474 output_sep = self.separate_out,
475 475 output_sep2 = self.separate_out2,
476 476 ps1 = self.prompt_in1,
477 477 ps2 = self.prompt_in2,
478 478 ps_out = self.prompt_out,
479 479 pad_left = self.prompts_pad_left
480 480 )
481 481 # This is a context manager that installs/revmoes the displayhook at
482 482 # the appropriate time.
483 483 self.display_trap = DisplayTrap(hook=self.displayhook)
484 484
485 485 def init_reload_doctest(self):
486 486 # Do a proper resetting of doctest, including the necessary displayhook
487 487 # monkeypatching
488 488 try:
489 489 doctest_reload()
490 490 except ImportError:
491 491 warn("doctest module does not exist.")
492 492
493 493 #-------------------------------------------------------------------------
494 494 # Things related to injections into the sys module
495 495 #-------------------------------------------------------------------------
496 496
497 497 def save_sys_module_state(self):
498 498 """Save the state of hooks in the sys module.
499 499
500 500 This has to be called after self.user_ns is created.
501 501 """
502 502 self._orig_sys_module_state = {}
503 503 self._orig_sys_module_state['stdin'] = sys.stdin
504 504 self._orig_sys_module_state['stdout'] = sys.stdout
505 505 self._orig_sys_module_state['stderr'] = sys.stderr
506 506 self._orig_sys_module_state['excepthook'] = sys.excepthook
507 507 try:
508 508 self._orig_sys_modules_main_name = self.user_ns['__name__']
509 509 except KeyError:
510 510 pass
511 511
512 512 def restore_sys_module_state(self):
513 513 """Restore the state of the sys module."""
514 514 try:
515 515 for k, v in self._orig_sys_module_state.items():
516 516 setattr(sys, k, v)
517 517 except AttributeError:
518 518 pass
519 519 # Reset what what done in self.init_sys_modules
520 520 try:
521 521 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
522 522 except (AttributeError, KeyError):
523 523 pass
524 524
525 525 #-------------------------------------------------------------------------
526 526 # Things related to hooks
527 527 #-------------------------------------------------------------------------
528 528
529 529 def init_hooks(self):
530 530 # hooks holds pointers used for user-side customizations
531 531 self.hooks = Struct()
532 532
533 533 self.strdispatchers = {}
534 534
535 535 # Set all default hooks, defined in the IPython.hooks module.
536 536 hooks = IPython.core.hooks
537 537 for hook_name in hooks.__all__:
538 538 # default hooks have priority 100, i.e. low; user hooks should have
539 539 # 0-100 priority
540 540 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
541 541
542 542 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
543 543 """set_hook(name,hook) -> sets an internal IPython hook.
544 544
545 545 IPython exposes some of its internal API as user-modifiable hooks. By
546 546 adding your function to one of these hooks, you can modify IPython's
547 547 behavior to call at runtime your own routines."""
548 548
549 549 # At some point in the future, this should validate the hook before it
550 550 # accepts it. Probably at least check that the hook takes the number
551 551 # of args it's supposed to.
552 552
553 553 f = new.instancemethod(hook,self,self.__class__)
554 554
555 555 # check if the hook is for strdispatcher first
556 556 if str_key is not None:
557 557 sdp = self.strdispatchers.get(name, StrDispatch())
558 558 sdp.add_s(str_key, f, priority )
559 559 self.strdispatchers[name] = sdp
560 560 return
561 561 if re_key is not None:
562 562 sdp = self.strdispatchers.get(name, StrDispatch())
563 563 sdp.add_re(re.compile(re_key), f, priority )
564 564 self.strdispatchers[name] = sdp
565 565 return
566 566
567 567 dp = getattr(self.hooks, name, None)
568 568 if name not in IPython.core.hooks.__all__:
569 569 print "Warning! Hook '%s' is not one of %s" % \
570 570 (name, IPython.core.hooks.__all__ )
571 571 if not dp:
572 572 dp = IPython.core.hooks.CommandChainDispatcher()
573 573
574 574 try:
575 575 dp.add(f,priority)
576 576 except AttributeError:
577 577 # it was not commandchain, plain old func - replace
578 578 dp = f
579 579
580 580 setattr(self.hooks,name, dp)
581 581
582 582 def register_post_execute(self, func):
583 583 """Register a function for calling after code execution.
584 584 """
585 585 if not callable(func):
586 586 raise ValueError('argument %s must be callable' % func)
587 587 self._post_execute.add(func)
588 588
589 589 #-------------------------------------------------------------------------
590 590 # Things related to the "main" module
591 591 #-------------------------------------------------------------------------
592 592
593 593 def new_main_mod(self,ns=None):
594 594 """Return a new 'main' module object for user code execution.
595 595 """
596 596 main_mod = self._user_main_module
597 597 init_fakemod_dict(main_mod,ns)
598 598 return main_mod
599 599
600 600 def cache_main_mod(self,ns,fname):
601 601 """Cache a main module's namespace.
602 602
603 603 When scripts are executed via %run, we must keep a reference to the
604 604 namespace of their __main__ module (a FakeModule instance) around so
605 605 that Python doesn't clear it, rendering objects defined therein
606 606 useless.
607 607
608 608 This method keeps said reference in a private dict, keyed by the
609 609 absolute path of the module object (which corresponds to the script
610 610 path). This way, for multiple executions of the same script we only
611 611 keep one copy of the namespace (the last one), thus preventing memory
612 612 leaks from old references while allowing the objects from the last
613 613 execution to be accessible.
614 614
615 615 Note: we can not allow the actual FakeModule instances to be deleted,
616 616 because of how Python tears down modules (it hard-sets all their
617 617 references to None without regard for reference counts). This method
618 618 must therefore make a *copy* of the given namespace, to allow the
619 619 original module's __dict__ to be cleared and reused.
620 620
621 621
622 622 Parameters
623 623 ----------
624 624 ns : a namespace (a dict, typically)
625 625
626 626 fname : str
627 627 Filename associated with the namespace.
628 628
629 629 Examples
630 630 --------
631 631
632 632 In [10]: import IPython
633 633
634 634 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
635 635
636 636 In [12]: IPython.__file__ in _ip._main_ns_cache
637 637 Out[12]: True
638 638 """
639 639 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
640 640
641 641 def clear_main_mod_cache(self):
642 642 """Clear the cache of main modules.
643 643
644 644 Mainly for use by utilities like %reset.
645 645
646 646 Examples
647 647 --------
648 648
649 649 In [15]: import IPython
650 650
651 651 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
652 652
653 653 In [17]: len(_ip._main_ns_cache) > 0
654 654 Out[17]: True
655 655
656 656 In [18]: _ip.clear_main_mod_cache()
657 657
658 658 In [19]: len(_ip._main_ns_cache) == 0
659 659 Out[19]: True
660 660 """
661 661 self._main_ns_cache.clear()
662 662
663 663 #-------------------------------------------------------------------------
664 664 # Things related to debugging
665 665 #-------------------------------------------------------------------------
666 666
667 667 def init_pdb(self):
668 668 # Set calling of pdb on exceptions
669 669 # self.call_pdb is a property
670 670 self.call_pdb = self.pdb
671 671
672 672 def _get_call_pdb(self):
673 673 return self._call_pdb
674 674
675 675 def _set_call_pdb(self,val):
676 676
677 677 if val not in (0,1,False,True):
678 678 raise ValueError,'new call_pdb value must be boolean'
679 679
680 680 # store value in instance
681 681 self._call_pdb = val
682 682
683 683 # notify the actual exception handlers
684 684 self.InteractiveTB.call_pdb = val
685 685
686 686 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
687 687 'Control auto-activation of pdb at exceptions')
688 688
689 689 def debugger(self,force=False):
690 690 """Call the pydb/pdb debugger.
691 691
692 692 Keywords:
693 693
694 694 - force(False): by default, this routine checks the instance call_pdb
695 695 flag and does not actually invoke the debugger if the flag is false.
696 696 The 'force' option forces the debugger to activate even if the flag
697 697 is false.
698 698 """
699 699
700 700 if not (force or self.call_pdb):
701 701 return
702 702
703 703 if not hasattr(sys,'last_traceback'):
704 704 error('No traceback has been produced, nothing to debug.')
705 705 return
706 706
707 707 # use pydb if available
708 708 if debugger.has_pydb:
709 709 from pydb import pm
710 710 else:
711 711 # fallback to our internal debugger
712 712 pm = lambda : self.InteractiveTB.debugger(force=True)
713 713 self.history_saving_wrapper(pm)()
714 714
715 715 #-------------------------------------------------------------------------
716 716 # Things related to IPython's various namespaces
717 717 #-------------------------------------------------------------------------
718 718
719 719 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
720 720 # Create the namespace where the user will operate. user_ns is
721 721 # normally the only one used, and it is passed to the exec calls as
722 722 # the locals argument. But we do carry a user_global_ns namespace
723 723 # given as the exec 'globals' argument, This is useful in embedding
724 724 # situations where the ipython shell opens in a context where the
725 725 # distinction between locals and globals is meaningful. For
726 726 # non-embedded contexts, it is just the same object as the user_ns dict.
727 727
728 728 # FIXME. For some strange reason, __builtins__ is showing up at user
729 729 # level as a dict instead of a module. This is a manual fix, but I
730 730 # should really track down where the problem is coming from. Alex
731 731 # Schmolck reported this problem first.
732 732
733 733 # A useful post by Alex Martelli on this topic:
734 734 # Re: inconsistent value from __builtins__
735 735 # Von: Alex Martelli <aleaxit@yahoo.com>
736 736 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
737 737 # Gruppen: comp.lang.python
738 738
739 739 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
740 740 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
741 741 # > <type 'dict'>
742 742 # > >>> print type(__builtins__)
743 743 # > <type 'module'>
744 744 # > Is this difference in return value intentional?
745 745
746 746 # Well, it's documented that '__builtins__' can be either a dictionary
747 747 # or a module, and it's been that way for a long time. Whether it's
748 748 # intentional (or sensible), I don't know. In any case, the idea is
749 749 # that if you need to access the built-in namespace directly, you
750 750 # should start with "import __builtin__" (note, no 's') which will
751 751 # definitely give you a module. Yeah, it's somewhat confusing:-(.
752 752
753 753 # These routines return properly built dicts as needed by the rest of
754 754 # the code, and can also be used by extension writers to generate
755 755 # properly initialized namespaces.
756 756 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
757 757 user_global_ns)
758 758
759 759 # Assign namespaces
760 760 # This is the namespace where all normal user variables live
761 761 self.user_ns = user_ns
762 762 self.user_global_ns = user_global_ns
763 763
764 764 # An auxiliary namespace that checks what parts of the user_ns were
765 765 # loaded at startup, so we can list later only variables defined in
766 766 # actual interactive use. Since it is always a subset of user_ns, it
767 767 # doesn't need to be separately tracked in the ns_table.
768 768 self.user_ns_hidden = {}
769 769
770 770 # A namespace to keep track of internal data structures to prevent
771 771 # them from cluttering user-visible stuff. Will be updated later
772 772 self.internal_ns = {}
773 773
774 774 # Now that FakeModule produces a real module, we've run into a nasty
775 775 # problem: after script execution (via %run), the module where the user
776 776 # code ran is deleted. Now that this object is a true module (needed
777 777 # so docetst and other tools work correctly), the Python module
778 778 # teardown mechanism runs over it, and sets to None every variable
779 779 # present in that module. Top-level references to objects from the
780 780 # script survive, because the user_ns is updated with them. However,
781 781 # calling functions defined in the script that use other things from
782 782 # the script will fail, because the function's closure had references
783 783 # to the original objects, which are now all None. So we must protect
784 784 # these modules from deletion by keeping a cache.
785 785 #
786 786 # To avoid keeping stale modules around (we only need the one from the
787 787 # last run), we use a dict keyed with the full path to the script, so
788 788 # only the last version of the module is held in the cache. Note,
789 789 # however, that we must cache the module *namespace contents* (their
790 790 # __dict__). Because if we try to cache the actual modules, old ones
791 791 # (uncached) could be destroyed while still holding references (such as
792 792 # those held by GUI objects that tend to be long-lived)>
793 793 #
794 794 # The %reset command will flush this cache. See the cache_main_mod()
795 795 # and clear_main_mod_cache() methods for details on use.
796 796
797 797 # This is the cache used for 'main' namespaces
798 798 self._main_ns_cache = {}
799 799 # And this is the single instance of FakeModule whose __dict__ we keep
800 800 # copying and clearing for reuse on each %run
801 801 self._user_main_module = FakeModule()
802 802
803 803 # A table holding all the namespaces IPython deals with, so that
804 804 # introspection facilities can search easily.
805 805 self.ns_table = {'user':user_ns,
806 806 'user_global':user_global_ns,
807 807 'internal':self.internal_ns,
808 808 'builtin':__builtin__.__dict__
809 809 }
810 810
811 811 # Similarly, track all namespaces where references can be held and that
812 812 # we can safely clear (so it can NOT include builtin). This one can be
813 813 # a simple list.
814 814 self.ns_refs_table = [ user_ns, user_global_ns, self.user_ns_hidden,
815 815 self.internal_ns, self._main_ns_cache ]
816 816
817 817 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
818 818 """Return a valid local and global user interactive namespaces.
819 819
820 820 This builds a dict with the minimal information needed to operate as a
821 821 valid IPython user namespace, which you can pass to the various
822 822 embedding classes in ipython. The default implementation returns the
823 823 same dict for both the locals and the globals to allow functions to
824 824 refer to variables in the namespace. Customized implementations can
825 825 return different dicts. The locals dictionary can actually be anything
826 826 following the basic mapping protocol of a dict, but the globals dict
827 827 must be a true dict, not even a subclass. It is recommended that any
828 828 custom object for the locals namespace synchronize with the globals
829 829 dict somehow.
830 830
831 831 Raises TypeError if the provided globals namespace is not a true dict.
832 832
833 833 Parameters
834 834 ----------
835 835 user_ns : dict-like, optional
836 836 The current user namespace. The items in this namespace should
837 837 be included in the output. If None, an appropriate blank
838 838 namespace should be created.
839 839 user_global_ns : dict, optional
840 840 The current user global namespace. The items in this namespace
841 841 should be included in the output. If None, an appropriate
842 842 blank namespace should be created.
843 843
844 844 Returns
845 845 -------
846 846 A pair of dictionary-like object to be used as the local namespace
847 847 of the interpreter and a dict to be used as the global namespace.
848 848 """
849 849
850 850
851 851 # We must ensure that __builtin__ (without the final 's') is always
852 852 # available and pointing to the __builtin__ *module*. For more details:
853 853 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
854 854
855 855 if user_ns is None:
856 856 # Set __name__ to __main__ to better match the behavior of the
857 857 # normal interpreter.
858 858 user_ns = {'__name__' :'__main__',
859 859 '__builtin__' : __builtin__,
860 860 '__builtins__' : __builtin__,
861 861 }
862 862 else:
863 863 user_ns.setdefault('__name__','__main__')
864 864 user_ns.setdefault('__builtin__',__builtin__)
865 865 user_ns.setdefault('__builtins__',__builtin__)
866 866
867 867 if user_global_ns is None:
868 868 user_global_ns = user_ns
869 869 if type(user_global_ns) is not dict:
870 870 raise TypeError("user_global_ns must be a true dict; got %r"
871 871 % type(user_global_ns))
872 872
873 873 return user_ns, user_global_ns
874 874
875 875 def init_sys_modules(self):
876 876 # We need to insert into sys.modules something that looks like a
877 877 # module but which accesses the IPython namespace, for shelve and
878 878 # pickle to work interactively. Normally they rely on getting
879 879 # everything out of __main__, but for embedding purposes each IPython
880 880 # instance has its own private namespace, so we can't go shoving
881 881 # everything into __main__.
882 882
883 883 # note, however, that we should only do this for non-embedded
884 884 # ipythons, which really mimic the __main__.__dict__ with their own
885 885 # namespace. Embedded instances, on the other hand, should not do
886 886 # this because they need to manage the user local/global namespaces
887 887 # only, but they live within a 'normal' __main__ (meaning, they
888 888 # shouldn't overtake the execution environment of the script they're
889 889 # embedded in).
890 890
891 891 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
892 892
893 893 try:
894 894 main_name = self.user_ns['__name__']
895 895 except KeyError:
896 896 raise KeyError('user_ns dictionary MUST have a "__name__" key')
897 897 else:
898 898 sys.modules[main_name] = FakeModule(self.user_ns)
899 899
900 900 def init_user_ns(self):
901 901 """Initialize all user-visible namespaces to their minimum defaults.
902 902
903 903 Certain history lists are also initialized here, as they effectively
904 904 act as user namespaces.
905 905
906 906 Notes
907 907 -----
908 908 All data structures here are only filled in, they are NOT reset by this
909 909 method. If they were not empty before, data will simply be added to
910 910 therm.
911 911 """
912 912 # This function works in two parts: first we put a few things in
913 913 # user_ns, and we sync that contents into user_ns_hidden so that these
914 914 # initial variables aren't shown by %who. After the sync, we add the
915 915 # rest of what we *do* want the user to see with %who even on a new
916 916 # session (probably nothing, so theye really only see their own stuff)
917 917
918 918 # The user dict must *always* have a __builtin__ reference to the
919 919 # Python standard __builtin__ namespace, which must be imported.
920 920 # This is so that certain operations in prompt evaluation can be
921 921 # reliably executed with builtins. Note that we can NOT use
922 922 # __builtins__ (note the 's'), because that can either be a dict or a
923 923 # module, and can even mutate at runtime, depending on the context
924 924 # (Python makes no guarantees on it). In contrast, __builtin__ is
925 925 # always a module object, though it must be explicitly imported.
926 926
927 927 # For more details:
928 928 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
929 929 ns = dict(__builtin__ = __builtin__)
930 930
931 931 # Put 'help' in the user namespace
932 932 try:
933 933 from site import _Helper
934 934 ns['help'] = _Helper()
935 935 except ImportError:
936 936 warn('help() not available - check site.py')
937 937
938 938 # make global variables for user access to the histories
939 939 ns['_ih'] = self.input_hist
940 940 ns['_oh'] = self.output_hist
941 941 ns['_dh'] = self.dir_hist
942 942
943 943 ns['_sh'] = shadowns
944 944
945 945 # user aliases to input and output histories. These shouldn't show up
946 946 # in %who, as they can have very large reprs.
947 947 ns['In'] = self.input_hist
948 948 ns['Out'] = self.output_hist
949 949
950 950 # Store myself as the public api!!!
951 951 ns['get_ipython'] = self.get_ipython
952 952
953 953 # Sync what we've added so far to user_ns_hidden so these aren't seen
954 954 # by %who
955 955 self.user_ns_hidden.update(ns)
956 956
957 957 # Anything put into ns now would show up in %who. Think twice before
958 958 # putting anything here, as we really want %who to show the user their
959 959 # stuff, not our variables.
960 960
961 961 # Finally, update the real user's namespace
962 962 self.user_ns.update(ns)
963 963
964 964
965 965 def reset(self):
966 966 """Clear all internal namespaces.
967 967
968 968 Note that this is much more aggressive than %reset, since it clears
969 969 fully all namespaces, as well as all input/output lists.
970 970 """
971 971 for ns in self.ns_refs_table:
972 972 ns.clear()
973 973
974 974 self.alias_manager.clear_aliases()
975 975
976 976 # Clear input and output histories
977 977 self.input_hist[:] = []
978 978 self.input_hist_raw[:] = []
979 979 self.output_hist.clear()
980 980
981 981 # Restore the user namespaces to minimal usability
982 982 self.init_user_ns()
983 983
984 984 # Restore the default and user aliases
985 985 self.alias_manager.init_aliases()
986 986
987 987 def reset_selective(self, regex=None):
988 988 """Clear selective variables from internal namespaces based on a
989 989 specified regular expression.
990 990
991 991 Parameters
992 992 ----------
993 993 regex : string or compiled pattern, optional
994 994 A regular expression pattern that will be used in searching
995 995 variable names in the users namespaces.
996 996 """
997 997 if regex is not None:
998 998 try:
999 999 m = re.compile(regex)
1000 1000 except TypeError:
1001 1001 raise TypeError('regex must be a string or compiled pattern')
1002 1002 # Search for keys in each namespace that match the given regex
1003 1003 # If a match is found, delete the key/value pair.
1004 1004 for ns in self.ns_refs_table:
1005 1005 for var in ns:
1006 1006 if m.search(var):
1007 1007 del ns[var]
1008 1008
1009 1009 def push(self, variables, interactive=True):
1010 1010 """Inject a group of variables into the IPython user namespace.
1011 1011
1012 1012 Parameters
1013 1013 ----------
1014 1014 variables : dict, str or list/tuple of str
1015 1015 The variables to inject into the user's namespace. If a dict, a
1016 1016 simple update is done. If a str, the string is assumed to have
1017 1017 variable names separated by spaces. A list/tuple of str can also
1018 1018 be used to give the variable names. If just the variable names are
1019 1019 give (list/tuple/str) then the variable values looked up in the
1020 1020 callers frame.
1021 1021 interactive : bool
1022 1022 If True (default), the variables will be listed with the ``who``
1023 1023 magic.
1024 1024 """
1025 1025 vdict = None
1026 1026
1027 1027 # We need a dict of name/value pairs to do namespace updates.
1028 1028 if isinstance(variables, dict):
1029 1029 vdict = variables
1030 1030 elif isinstance(variables, (basestring, list, tuple)):
1031 1031 if isinstance(variables, basestring):
1032 1032 vlist = variables.split()
1033 1033 else:
1034 1034 vlist = variables
1035 1035 vdict = {}
1036 1036 cf = sys._getframe(1)
1037 1037 for name in vlist:
1038 1038 try:
1039 1039 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1040 1040 except:
1041 1041 print ('Could not get variable %s from %s' %
1042 1042 (name,cf.f_code.co_name))
1043 1043 else:
1044 1044 raise ValueError('variables must be a dict/str/list/tuple')
1045 1045
1046 1046 # Propagate variables to user namespace
1047 1047 self.user_ns.update(vdict)
1048 1048
1049 1049 # And configure interactive visibility
1050 1050 config_ns = self.user_ns_hidden
1051 1051 if interactive:
1052 1052 for name, val in vdict.iteritems():
1053 1053 config_ns.pop(name, None)
1054 1054 else:
1055 1055 for name,val in vdict.iteritems():
1056 1056 config_ns[name] = val
1057 1057
1058 1058 #-------------------------------------------------------------------------
1059 1059 # Things related to object introspection
1060 1060 #-------------------------------------------------------------------------
1061 1061
1062 1062 def _ofind(self, oname, namespaces=None):
1063 1063 """Find an object in the available namespaces.
1064 1064
1065 1065 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1066 1066
1067 1067 Has special code to detect magic functions.
1068 1068 """
1069 1069 #oname = oname.strip()
1070 1070 #print '1- oname: <%r>' % oname # dbg
1071 1071 try:
1072 1072 oname = oname.strip().encode('ascii')
1073 1073 #print '2- oname: <%r>' % oname # dbg
1074 1074 except UnicodeEncodeError:
1075 1075 print 'Python identifiers can only contain ascii characters.'
1076 1076 return dict(found=False)
1077 1077
1078 1078 alias_ns = None
1079 1079 if namespaces is None:
1080 1080 # Namespaces to search in:
1081 1081 # Put them in a list. The order is important so that we
1082 1082 # find things in the same order that Python finds them.
1083 1083 namespaces = [ ('Interactive', self.user_ns),
1084 1084 ('IPython internal', self.internal_ns),
1085 1085 ('Python builtin', __builtin__.__dict__),
1086 1086 ('Alias', self.alias_manager.alias_table),
1087 1087 ]
1088 1088 alias_ns = self.alias_manager.alias_table
1089 1089
1090 1090 # initialize results to 'null'
1091 1091 found = False; obj = None; ospace = None; ds = None;
1092 1092 ismagic = False; isalias = False; parent = None
1093 1093
1094 1094 # We need to special-case 'print', which as of python2.6 registers as a
1095 1095 # function but should only be treated as one if print_function was
1096 1096 # loaded with a future import. In this case, just bail.
1097 1097 if (oname == 'print' and not (self.compile.compiler.flags &
1098 1098 __future__.CO_FUTURE_PRINT_FUNCTION)):
1099 1099 return {'found':found, 'obj':obj, 'namespace':ospace,
1100 1100 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1101 1101
1102 1102 # Look for the given name by splitting it in parts. If the head is
1103 1103 # found, then we look for all the remaining parts as members, and only
1104 1104 # declare success if we can find them all.
1105 1105 oname_parts = oname.split('.')
1106 1106 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1107 1107 for nsname,ns in namespaces:
1108 1108 try:
1109 1109 obj = ns[oname_head]
1110 1110 except KeyError:
1111 1111 continue
1112 1112 else:
1113 1113 #print 'oname_rest:', oname_rest # dbg
1114 1114 for part in oname_rest:
1115 1115 try:
1116 1116 parent = obj
1117 1117 obj = getattr(obj,part)
1118 1118 except:
1119 1119 # Blanket except b/c some badly implemented objects
1120 1120 # allow __getattr__ to raise exceptions other than
1121 1121 # AttributeError, which then crashes IPython.
1122 1122 break
1123 1123 else:
1124 1124 # If we finish the for loop (no break), we got all members
1125 1125 found = True
1126 1126 ospace = nsname
1127 1127 if ns == alias_ns:
1128 1128 isalias = True
1129 1129 break # namespace loop
1130 1130
1131 1131 # Try to see if it's magic
1132 1132 if not found:
1133 1133 if oname.startswith(ESC_MAGIC):
1134 1134 oname = oname[1:]
1135 1135 obj = getattr(self,'magic_'+oname,None)
1136 1136 if obj is not None:
1137 1137 found = True
1138 1138 ospace = 'IPython internal'
1139 1139 ismagic = True
1140 1140
1141 1141 # Last try: special-case some literals like '', [], {}, etc:
1142 1142 if not found and oname_head in ["''",'""','[]','{}','()']:
1143 1143 obj = eval(oname_head)
1144 1144 found = True
1145 1145 ospace = 'Interactive'
1146 1146
1147 1147 return {'found':found, 'obj':obj, 'namespace':ospace,
1148 1148 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1149 1149
1150 1150 def _ofind_property(self, oname, info):
1151 1151 """Second part of object finding, to look for property details."""
1152 1152 if info.found:
1153 1153 # Get the docstring of the class property if it exists.
1154 1154 path = oname.split('.')
1155 1155 root = '.'.join(path[:-1])
1156 1156 if info.parent is not None:
1157 1157 try:
1158 1158 target = getattr(info.parent, '__class__')
1159 1159 # The object belongs to a class instance.
1160 1160 try:
1161 1161 target = getattr(target, path[-1])
1162 1162 # The class defines the object.
1163 1163 if isinstance(target, property):
1164 1164 oname = root + '.__class__.' + path[-1]
1165 1165 info = Struct(self._ofind(oname))
1166 1166 except AttributeError: pass
1167 1167 except AttributeError: pass
1168 1168
1169 1169 # We return either the new info or the unmodified input if the object
1170 1170 # hadn't been found
1171 1171 return info
1172 1172
1173 1173 def _object_find(self, oname, namespaces=None):
1174 1174 """Find an object and return a struct with info about it."""
1175 1175 inf = Struct(self._ofind(oname, namespaces))
1176 1176 return Struct(self._ofind_property(oname, inf))
1177 1177
1178 1178 def _inspect(self, meth, oname, namespaces=None, **kw):
1179 1179 """Generic interface to the inspector system.
1180 1180
1181 1181 This function is meant to be called by pdef, pdoc & friends."""
1182 1182 info = self._object_find(oname)
1183 1183 if info.found:
1184 1184 pmethod = getattr(self.inspector, meth)
1185 1185 formatter = format_screen if info.ismagic else None
1186 1186 if meth == 'pdoc':
1187 1187 pmethod(info.obj, oname, formatter)
1188 1188 elif meth == 'pinfo':
1189 1189 pmethod(info.obj, oname, formatter, info, **kw)
1190 1190 else:
1191 1191 pmethod(info.obj, oname)
1192 1192 else:
1193 1193 print 'Object `%s` not found.' % oname
1194 1194 return 'not found' # so callers can take other action
1195 1195
1196 1196 def object_inspect(self, oname):
1197 1197 info = self._object_find(oname)
1198 1198 if info.found:
1199 1199 return self.inspector.info(info.obj, oname, info=info)
1200 1200 else:
1201 1201 return oinspect.object_info(name=oname, found=False)
1202 1202
1203 1203 #-------------------------------------------------------------------------
1204 1204 # Things related to history management
1205 1205 #-------------------------------------------------------------------------
1206 1206
1207 1207 def init_history(self):
1208 1208 # List of input with multi-line handling.
1209 1209 self.input_hist = InputList()
1210 1210 # This one will hold the 'raw' input history, without any
1211 1211 # pre-processing. This will allow users to retrieve the input just as
1212 1212 # it was exactly typed in by the user, with %hist -r.
1213 1213 self.input_hist_raw = InputList()
1214 1214
1215 1215 # list of visited directories
1216 1216 try:
1217 1217 self.dir_hist = [os.getcwd()]
1218 1218 except OSError:
1219 1219 self.dir_hist = []
1220 1220
1221 1221 # dict of output history
1222 1222 self.output_hist = {}
1223 1223
1224 1224 # Now the history file
1225 1225 if self.profile:
1226 1226 histfname = 'history-%s' % self.profile
1227 1227 else:
1228 1228 histfname = 'history'
1229 1229 self.histfile = os.path.join(self.ipython_dir, histfname)
1230 1230
1231 1231 # Fill the history zero entry, user counter starts at 1
1232 1232 self.input_hist.append('\n')
1233 1233 self.input_hist_raw.append('\n')
1234 1234
1235 1235 def init_shadow_hist(self):
1236 1236 try:
1237 1237 self.db = pickleshare.PickleShareDB(self.ipython_dir + "/db")
1238 1238 except exceptions.UnicodeDecodeError:
1239 1239 print "Your ipython_dir can't be decoded to unicode!"
1240 1240 print "Please set HOME environment variable to something that"
1241 1241 print r"only has ASCII characters, e.g. c:\home"
1242 1242 print "Now it is", self.ipython_dir
1243 1243 sys.exit()
1244 1244 self.shadowhist = ipcorehist.ShadowHist(self.db)
1245 1245
1246 1246 def savehist(self):
1247 1247 """Save input history to a file (via readline library)."""
1248 1248
1249 1249 try:
1250 1250 self.readline.write_history_file(self.histfile)
1251 1251 except:
1252 1252 print 'Unable to save IPython command history to file: ' + \
1253 1253 `self.histfile`
1254 1254
1255 1255 def reloadhist(self):
1256 1256 """Reload the input history from disk file."""
1257 1257
1258 1258 try:
1259 1259 self.readline.clear_history()
1260 1260 self.readline.read_history_file(self.shell.histfile)
1261 1261 except AttributeError:
1262 1262 pass
1263 1263
1264 1264 def history_saving_wrapper(self, func):
1265 1265 """ Wrap func for readline history saving
1266 1266
1267 1267 Convert func into callable that saves & restores
1268 1268 history around the call """
1269 1269
1270 1270 if self.has_readline:
1271 1271 from IPython.utils import rlineimpl as readline
1272 1272 else:
1273 1273 return func
1274 1274
1275 1275 def wrapper():
1276 1276 self.savehist()
1277 1277 try:
1278 1278 func()
1279 1279 finally:
1280 1280 readline.read_history_file(self.histfile)
1281 1281 return wrapper
1282 1282
1283 1283 def get_history(self, index=None, raw=False, output=True):
1284 1284 """Get the history list.
1285 1285
1286 1286 Get the input and output history.
1287 1287
1288 1288 Parameters
1289 1289 ----------
1290 1290 index : n or (n1, n2) or None
1291 1291 If n, then the last entries. If a tuple, then all in
1292 1292 range(n1, n2). If None, then all entries. Raises IndexError if
1293 1293 the format of index is incorrect.
1294 1294 raw : bool
1295 1295 If True, return the raw input.
1296 1296 output : bool
1297 1297 If True, then return the output as well.
1298 1298
1299 1299 Returns
1300 1300 -------
1301 1301 If output is True, then return a dict of tuples, keyed by the prompt
1302 1302 numbers and with values of (input, output). If output is False, then
1303 1303 a dict, keyed by the prompt number with the values of input. Raises
1304 1304 IndexError if no history is found.
1305 1305 """
1306 1306 if raw:
1307 1307 input_hist = self.input_hist_raw
1308 1308 else:
1309 1309 input_hist = self.input_hist
1310 1310 if output:
1311 1311 output_hist = self.user_ns['Out']
1312 1312 n = len(input_hist)
1313 1313 if index is None:
1314 1314 start=0; stop=n
1315 1315 elif isinstance(index, int):
1316 1316 start=n-index; stop=n
1317 1317 elif isinstance(index, tuple) and len(index) == 2:
1318 1318 start=index[0]; stop=index[1]
1319 1319 else:
1320 1320 raise IndexError('Not a valid index for the input history: %r'
1321 1321 % index)
1322 1322 hist = {}
1323 1323 for i in range(start, stop):
1324 1324 if output:
1325 1325 hist[i] = (input_hist[i], output_hist.get(i))
1326 1326 else:
1327 1327 hist[i] = input_hist[i]
1328 1328 if len(hist)==0:
1329 1329 raise IndexError('No history for range of indices: %r' % index)
1330 1330 return hist
1331 1331
1332 1332 #-------------------------------------------------------------------------
1333 1333 # Things related to exception handling and tracebacks (not debugging)
1334 1334 #-------------------------------------------------------------------------
1335 1335
1336 1336 def init_traceback_handlers(self, custom_exceptions):
1337 1337 # Syntax error handler.
1338 1338 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1339 1339
1340 1340 # The interactive one is initialized with an offset, meaning we always
1341 1341 # want to remove the topmost item in the traceback, which is our own
1342 1342 # internal code. Valid modes: ['Plain','Context','Verbose']
1343 1343 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1344 1344 color_scheme='NoColor',
1345 1345 tb_offset = 1)
1346 1346
1347 1347 # The instance will store a pointer to the system-wide exception hook,
1348 1348 # so that runtime code (such as magics) can access it. This is because
1349 1349 # during the read-eval loop, it may get temporarily overwritten.
1350 1350 self.sys_excepthook = sys.excepthook
1351 1351
1352 1352 # and add any custom exception handlers the user may have specified
1353 1353 self.set_custom_exc(*custom_exceptions)
1354 1354
1355 1355 # Set the exception mode
1356 1356 self.InteractiveTB.set_mode(mode=self.xmode)
1357 1357
1358 1358 def set_custom_exc(self, exc_tuple, handler):
1359 1359 """set_custom_exc(exc_tuple,handler)
1360 1360
1361 1361 Set a custom exception handler, which will be called if any of the
1362 1362 exceptions in exc_tuple occur in the mainloop (specifically, in the
1363 1363 runcode() method.
1364 1364
1365 1365 Inputs:
1366 1366
1367 1367 - exc_tuple: a *tuple* of valid exceptions to call the defined
1368 1368 handler for. It is very important that you use a tuple, and NOT A
1369 1369 LIST here, because of the way Python's except statement works. If
1370 1370 you only want to trap a single exception, use a singleton tuple:
1371 1371
1372 1372 exc_tuple == (MyCustomException,)
1373 1373
1374 1374 - handler: this must be defined as a function with the following
1375 1375 basic interface::
1376 1376
1377 1377 def my_handler(self, etype, value, tb, tb_offset=None)
1378 1378 ...
1379 1379 # The return value must be
1380 1380 return structured_traceback
1381 1381
1382 1382 This will be made into an instance method (via new.instancemethod)
1383 1383 of IPython itself, and it will be called if any of the exceptions
1384 1384 listed in the exc_tuple are caught. If the handler is None, an
1385 1385 internal basic one is used, which just prints basic info.
1386 1386
1387 1387 WARNING: by putting in your own exception handler into IPython's main
1388 1388 execution loop, you run a very good chance of nasty crashes. This
1389 1389 facility should only be used if you really know what you are doing."""
1390 1390
1391 1391 assert type(exc_tuple)==type(()) , \
1392 1392 "The custom exceptions must be given AS A TUPLE."
1393 1393
1394 1394 def dummy_handler(self,etype,value,tb):
1395 1395 print '*** Simple custom exception handler ***'
1396 1396 print 'Exception type :',etype
1397 1397 print 'Exception value:',value
1398 1398 print 'Traceback :',tb
1399 1399 print 'Source code :','\n'.join(self.buffer)
1400 1400
1401 1401 if handler is None: handler = dummy_handler
1402 1402
1403 1403 self.CustomTB = new.instancemethod(handler,self,self.__class__)
1404 1404 self.custom_exceptions = exc_tuple
1405 1405
1406 1406 def excepthook(self, etype, value, tb):
1407 1407 """One more defense for GUI apps that call sys.excepthook.
1408 1408
1409 1409 GUI frameworks like wxPython trap exceptions and call
1410 1410 sys.excepthook themselves. I guess this is a feature that
1411 1411 enables them to keep running after exceptions that would
1412 1412 otherwise kill their mainloop. This is a bother for IPython
1413 1413 which excepts to catch all of the program exceptions with a try:
1414 1414 except: statement.
1415 1415
1416 1416 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1417 1417 any app directly invokes sys.excepthook, it will look to the user like
1418 1418 IPython crashed. In order to work around this, we can disable the
1419 1419 CrashHandler and replace it with this excepthook instead, which prints a
1420 1420 regular traceback using our InteractiveTB. In this fashion, apps which
1421 1421 call sys.excepthook will generate a regular-looking exception from
1422 1422 IPython, and the CrashHandler will only be triggered by real IPython
1423 1423 crashes.
1424 1424
1425 1425 This hook should be used sparingly, only in places which are not likely
1426 1426 to be true IPython errors.
1427 1427 """
1428 1428 self.showtraceback((etype,value,tb),tb_offset=0)
1429 1429
1430 1430 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1431 1431 exception_only=False):
1432 1432 """Display the exception that just occurred.
1433 1433
1434 1434 If nothing is known about the exception, this is the method which
1435 1435 should be used throughout the code for presenting user tracebacks,
1436 1436 rather than directly invoking the InteractiveTB object.
1437 1437
1438 1438 A specific showsyntaxerror() also exists, but this method can take
1439 1439 care of calling it if needed, so unless you are explicitly catching a
1440 1440 SyntaxError exception, don't try to analyze the stack manually and
1441 1441 simply call this method."""
1442 1442
1443 1443 try:
1444 1444 if exc_tuple is None:
1445 1445 etype, value, tb = sys.exc_info()
1446 1446 else:
1447 1447 etype, value, tb = exc_tuple
1448 1448
1449 1449 if etype is None:
1450 1450 if hasattr(sys, 'last_type'):
1451 1451 etype, value, tb = sys.last_type, sys.last_value, \
1452 1452 sys.last_traceback
1453 1453 else:
1454 1454 self.write_err('No traceback available to show.\n')
1455 1455 return
1456 1456
1457 1457 if etype is SyntaxError:
1458 1458 # Though this won't be called by syntax errors in the input
1459 1459 # line, there may be SyntaxError cases whith imported code.
1460 1460 self.showsyntaxerror(filename)
1461 1461 elif etype is UsageError:
1462 1462 print "UsageError:", value
1463 1463 else:
1464 1464 # WARNING: these variables are somewhat deprecated and not
1465 1465 # necessarily safe to use in a threaded environment, but tools
1466 1466 # like pdb depend on their existence, so let's set them. If we
1467 1467 # find problems in the field, we'll need to revisit their use.
1468 1468 sys.last_type = etype
1469 1469 sys.last_value = value
1470 1470 sys.last_traceback = tb
1471 1471
1472 1472 if etype in self.custom_exceptions:
1473 1473 # FIXME: Old custom traceback objects may just return a
1474 1474 # string, in that case we just put it into a list
1475 1475 stb = self.CustomTB(etype, value, tb, tb_offset)
1476 1476 if isinstance(ctb, basestring):
1477 1477 stb = [stb]
1478 1478 else:
1479 1479 if exception_only:
1480 1480 stb = ['An exception has occurred, use %tb to see '
1481 1481 'the full traceback.\n']
1482 1482 stb.extend(self.InteractiveTB.get_exception_only(etype,
1483 1483 value))
1484 1484 else:
1485 1485 stb = self.InteractiveTB.structured_traceback(etype,
1486 1486 value, tb, tb_offset=tb_offset)
1487 1487 # FIXME: the pdb calling should be done by us, not by
1488 1488 # the code computing the traceback.
1489 1489 if self.InteractiveTB.call_pdb:
1490 1490 # pdb mucks up readline, fix it back
1491 1491 self.set_readline_completer()
1492 1492
1493 1493 # Actually show the traceback
1494 1494 self._showtraceback(etype, value, stb)
1495 1495
1496 1496 except KeyboardInterrupt:
1497 1497 self.write_err("\nKeyboardInterrupt\n")
1498 1498
1499 1499 def _showtraceback(self, etype, evalue, stb):
1500 1500 """Actually show a traceback.
1501 1501
1502 1502 Subclasses may override this method to put the traceback on a different
1503 1503 place, like a side channel.
1504 1504 """
1505 1505 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1506 1506
1507 1507 def showsyntaxerror(self, filename=None):
1508 1508 """Display the syntax error that just occurred.
1509 1509
1510 1510 This doesn't display a stack trace because there isn't one.
1511 1511
1512 1512 If a filename is given, it is stuffed in the exception instead
1513 1513 of what was there before (because Python's parser always uses
1514 1514 "<string>" when reading from a string).
1515 1515 """
1516 1516 etype, value, last_traceback = sys.exc_info()
1517 1517
1518 1518 # See note about these variables in showtraceback() above
1519 1519 sys.last_type = etype
1520 1520 sys.last_value = value
1521 1521 sys.last_traceback = last_traceback
1522 1522
1523 1523 if filename and etype is SyntaxError:
1524 1524 # Work hard to stuff the correct filename in the exception
1525 1525 try:
1526 1526 msg, (dummy_filename, lineno, offset, line) = value
1527 1527 except:
1528 1528 # Not the format we expect; leave it alone
1529 1529 pass
1530 1530 else:
1531 1531 # Stuff in the right filename
1532 1532 try:
1533 1533 # Assume SyntaxError is a class exception
1534 1534 value = SyntaxError(msg, (filename, lineno, offset, line))
1535 1535 except:
1536 1536 # If that failed, assume SyntaxError is a string
1537 1537 value = msg, (filename, lineno, offset, line)
1538 1538 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1539 1539 self._showtraceback(etype, value, stb)
1540 1540
1541 1541 #-------------------------------------------------------------------------
1542 1542 # Things related to readline
1543 1543 #-------------------------------------------------------------------------
1544 1544
1545 1545 def init_readline(self):
1546 1546 """Command history completion/saving/reloading."""
1547 1547
1548 1548 if self.readline_use:
1549 1549 import IPython.utils.rlineimpl as readline
1550 1550
1551 1551 self.rl_next_input = None
1552 1552 self.rl_do_indent = False
1553 1553
1554 1554 if not self.readline_use or not readline.have_readline:
1555 1555 self.has_readline = False
1556 1556 self.readline = None
1557 1557 # Set a number of methods that depend on readline to be no-op
1558 1558 self.savehist = no_op
1559 1559 self.reloadhist = no_op
1560 1560 self.set_readline_completer = no_op
1561 1561 self.set_custom_completer = no_op
1562 1562 self.set_completer_frame = no_op
1563 1563 warn('Readline services not available or not loaded.')
1564 1564 else:
1565 1565 self.has_readline = True
1566 1566 self.readline = readline
1567 1567 sys.modules['readline'] = readline
1568 1568
1569 1569 # Platform-specific configuration
1570 1570 if os.name == 'nt':
1571 1571 # FIXME - check with Frederick to see if we can harmonize
1572 1572 # naming conventions with pyreadline to avoid this
1573 1573 # platform-dependent check
1574 1574 self.readline_startup_hook = readline.set_pre_input_hook
1575 1575 else:
1576 1576 self.readline_startup_hook = readline.set_startup_hook
1577 1577
1578 1578 # Load user's initrc file (readline config)
1579 1579 # Or if libedit is used, load editrc.
1580 1580 inputrc_name = os.environ.get('INPUTRC')
1581 1581 if inputrc_name is None:
1582 1582 home_dir = get_home_dir()
1583 1583 if home_dir is not None:
1584 1584 inputrc_name = '.inputrc'
1585 1585 if readline.uses_libedit:
1586 1586 inputrc_name = '.editrc'
1587 1587 inputrc_name = os.path.join(home_dir, inputrc_name)
1588 1588 if os.path.isfile(inputrc_name):
1589 1589 try:
1590 1590 readline.read_init_file(inputrc_name)
1591 1591 except:
1592 1592 warn('Problems reading readline initialization file <%s>'
1593 1593 % inputrc_name)
1594 1594
1595 1595 # Configure readline according to user's prefs
1596 1596 # This is only done if GNU readline is being used. If libedit
1597 1597 # is being used (as on Leopard) the readline config is
1598 1598 # not run as the syntax for libedit is different.
1599 1599 if not readline.uses_libedit:
1600 1600 for rlcommand in self.readline_parse_and_bind:
1601 1601 #print "loading rl:",rlcommand # dbg
1602 1602 readline.parse_and_bind(rlcommand)
1603 1603
1604 1604 # Remove some chars from the delimiters list. If we encounter
1605 1605 # unicode chars, discard them.
1606 1606 delims = readline.get_completer_delims().encode("ascii", "ignore")
1607 1607 delims = delims.translate(string._idmap,
1608 1608 self.readline_remove_delims)
1609 1609 delims = delims.replace(ESC_MAGIC, '')
1610 1610 readline.set_completer_delims(delims)
1611 1611 # otherwise we end up with a monster history after a while:
1612 1612 readline.set_history_length(1000)
1613 1613 try:
1614 1614 #print '*** Reading readline history' # dbg
1615 1615 readline.read_history_file(self.histfile)
1616 1616 except IOError:
1617 1617 pass # It doesn't exist yet.
1618 1618
1619 1619 # If we have readline, we want our history saved upon ipython
1620 1620 # exiting.
1621 1621 atexit.register(self.savehist)
1622 1622
1623 1623 # Configure auto-indent for all platforms
1624 1624 self.set_autoindent(self.autoindent)
1625 1625
1626 1626 def set_next_input(self, s):
1627 1627 """ Sets the 'default' input string for the next command line.
1628 1628
1629 1629 Requires readline.
1630 1630
1631 1631 Example:
1632 1632
1633 1633 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1634 1634 [D:\ipython]|2> Hello Word_ # cursor is here
1635 1635 """
1636 1636
1637 1637 self.rl_next_input = s
1638 1638
1639 1639 # Maybe move this to the terminal subclass?
1640 1640 def pre_readline(self):
1641 1641 """readline hook to be used at the start of each line.
1642 1642
1643 1643 Currently it handles auto-indent only."""
1644 1644
1645 1645 if self.rl_do_indent:
1646 1646 self.readline.insert_text(self._indent_current_str())
1647 1647 if self.rl_next_input is not None:
1648 1648 self.readline.insert_text(self.rl_next_input)
1649 1649 self.rl_next_input = None
1650 1650
1651 1651 def _indent_current_str(self):
1652 1652 """return the current level of indentation as a string"""
1653 1653 return self.indent_current_nsp * ' '
1654 1654
1655 1655 #-------------------------------------------------------------------------
1656 1656 # Things related to text completion
1657 1657 #-------------------------------------------------------------------------
1658 1658
1659 1659 def init_completer(self):
1660 1660 """Initialize the completion machinery.
1661 1661
1662 1662 This creates completion machinery that can be used by client code,
1663 1663 either interactively in-process (typically triggered by the readline
1664 1664 library), programatically (such as in test suites) or out-of-prcess
1665 1665 (typically over the network by remote frontends).
1666 1666 """
1667 1667 from IPython.core.completer import IPCompleter
1668 1668 from IPython.core.completerlib import (module_completer,
1669 1669 magic_run_completer, cd_completer)
1670 1670
1671 1671 self.Completer = IPCompleter(self,
1672 1672 self.user_ns,
1673 1673 self.user_global_ns,
1674 1674 self.readline_omit__names,
1675 1675 self.alias_manager.alias_table,
1676 1676 self.has_readline)
1677 1677
1678 1678 # Add custom completers to the basic ones built into IPCompleter
1679 1679 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1680 1680 self.strdispatchers['complete_command'] = sdisp
1681 1681 self.Completer.custom_completers = sdisp
1682 1682
1683 1683 self.set_hook('complete_command', module_completer, str_key = 'import')
1684 1684 self.set_hook('complete_command', module_completer, str_key = 'from')
1685 1685 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1686 1686 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1687 1687
1688 1688 # Only configure readline if we truly are using readline. IPython can
1689 1689 # do tab-completion over the network, in GUIs, etc, where readline
1690 1690 # itself may be absent
1691 1691 if self.has_readline:
1692 1692 self.set_readline_completer()
1693 1693
1694 1694 def complete(self, text, line=None, cursor_pos=None):
1695 1695 """Return the completed text and a list of completions.
1696 1696
1697 1697 Parameters
1698 1698 ----------
1699 1699
1700 1700 text : string
1701 1701 A string of text to be completed on. It can be given as empty and
1702 1702 instead a line/position pair are given. In this case, the
1703 1703 completer itself will split the line like readline does.
1704 1704
1705 1705 line : string, optional
1706 1706 The complete line that text is part of.
1707 1707
1708 1708 cursor_pos : int, optional
1709 1709 The position of the cursor on the input line.
1710 1710
1711 1711 Returns
1712 1712 -------
1713 1713 text : string
1714 1714 The actual text that was completed.
1715 1715
1716 1716 matches : list
1717 1717 A sorted list with all possible completions.
1718 1718
1719 1719 The optional arguments allow the completion to take more context into
1720 1720 account, and are part of the low-level completion API.
1721 1721
1722 1722 This is a wrapper around the completion mechanism, similar to what
1723 1723 readline does at the command line when the TAB key is hit. By
1724 1724 exposing it as a method, it can be used by other non-readline
1725 1725 environments (such as GUIs) for text completion.
1726 1726
1727 1727 Simple usage example:
1728 1728
1729 1729 In [1]: x = 'hello'
1730 1730
1731 1731 In [2]: _ip.complete('x.l')
1732 1732 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1733 1733 """
1734 1734
1735 1735 # Inject names into __builtin__ so we can complete on the added names.
1736 1736 with self.builtin_trap:
1737 1737 return self.Completer.complete(text, line, cursor_pos)
1738 1738
1739 1739 def set_custom_completer(self, completer, pos=0):
1740 1740 """Adds a new custom completer function.
1741 1741
1742 1742 The position argument (defaults to 0) is the index in the completers
1743 1743 list where you want the completer to be inserted."""
1744 1744
1745 1745 newcomp = new.instancemethod(completer,self.Completer,
1746 1746 self.Completer.__class__)
1747 1747 self.Completer.matchers.insert(pos,newcomp)
1748 1748
1749 1749 def set_readline_completer(self):
1750 1750 """Reset readline's completer to be our own."""
1751 1751 self.readline.set_completer(self.Completer.rlcomplete)
1752 1752
1753 1753 def set_completer_frame(self, frame=None):
1754 1754 """Set the frame of the completer."""
1755 1755 if frame:
1756 1756 self.Completer.namespace = frame.f_locals
1757 1757 self.Completer.global_namespace = frame.f_globals
1758 1758 else:
1759 1759 self.Completer.namespace = self.user_ns
1760 1760 self.Completer.global_namespace = self.user_global_ns
1761 1761
1762 1762 #-------------------------------------------------------------------------
1763 1763 # Things related to magics
1764 1764 #-------------------------------------------------------------------------
1765 1765
1766 1766 def init_magics(self):
1767 1767 # FIXME: Move the color initialization to the DisplayHook, which
1768 1768 # should be split into a prompt manager and displayhook. We probably
1769 1769 # even need a centralize colors management object.
1770 1770 self.magic_colors(self.colors)
1771 1771 # History was moved to a separate module
1772 1772 from . import history
1773 1773 history.init_ipython(self)
1774 1774
1775 1775 def magic(self,arg_s):
1776 1776 """Call a magic function by name.
1777 1777
1778 1778 Input: a string containing the name of the magic function to call and
1779 1779 any additional arguments to be passed to the magic.
1780 1780
1781 1781 magic('name -opt foo bar') is equivalent to typing at the ipython
1782 1782 prompt:
1783 1783
1784 1784 In[1]: %name -opt foo bar
1785 1785
1786 1786 To call a magic without arguments, simply use magic('name').
1787 1787
1788 1788 This provides a proper Python function to call IPython's magics in any
1789 1789 valid Python code you can type at the interpreter, including loops and
1790 1790 compound statements.
1791 1791 """
1792 1792 args = arg_s.split(' ',1)
1793 1793 magic_name = args[0]
1794 1794 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1795 1795
1796 1796 try:
1797 1797 magic_args = args[1]
1798 1798 except IndexError:
1799 1799 magic_args = ''
1800 1800 fn = getattr(self,'magic_'+magic_name,None)
1801 1801 if fn is None:
1802 1802 error("Magic function `%s` not found." % magic_name)
1803 1803 else:
1804 1804 magic_args = self.var_expand(magic_args,1)
1805 1805 with nested(self.builtin_trap,):
1806 1806 result = fn(magic_args)
1807 1807 return result
1808 1808
1809 1809 def define_magic(self, magicname, func):
1810 1810 """Expose own function as magic function for ipython
1811 1811
1812 1812 def foo_impl(self,parameter_s=''):
1813 1813 'My very own magic!. (Use docstrings, IPython reads them).'
1814 1814 print 'Magic function. Passed parameter is between < >:'
1815 1815 print '<%s>' % parameter_s
1816 1816 print 'The self object is:',self
1817 1817
1818 1818 self.define_magic('foo',foo_impl)
1819 1819 """
1820 1820
1821 1821 import new
1822 1822 im = new.instancemethod(func,self, self.__class__)
1823 1823 old = getattr(self, "magic_" + magicname, None)
1824 1824 setattr(self, "magic_" + magicname, im)
1825 1825 return old
1826 1826
1827 1827 #-------------------------------------------------------------------------
1828 1828 # Things related to macros
1829 1829 #-------------------------------------------------------------------------
1830 1830
1831 1831 def define_macro(self, name, themacro):
1832 1832 """Define a new macro
1833 1833
1834 1834 Parameters
1835 1835 ----------
1836 1836 name : str
1837 1837 The name of the macro.
1838 1838 themacro : str or Macro
1839 1839 The action to do upon invoking the macro. If a string, a new
1840 1840 Macro object is created by passing the string to it.
1841 1841 """
1842 1842
1843 1843 from IPython.core import macro
1844 1844
1845 1845 if isinstance(themacro, basestring):
1846 1846 themacro = macro.Macro(themacro)
1847 1847 if not isinstance(themacro, macro.Macro):
1848 1848 raise ValueError('A macro must be a string or a Macro instance.')
1849 1849 self.user_ns[name] = themacro
1850 1850
1851 1851 #-------------------------------------------------------------------------
1852 1852 # Things related to the running of system commands
1853 1853 #-------------------------------------------------------------------------
1854 1854
1855 1855 def system(self, cmd):
1856 1856 """Call the given cmd in a subprocess.
1857 1857
1858 1858 Parameters
1859 1859 ----------
1860 1860 cmd : str
1861 1861 Command to execute (can not end in '&', as bacground processes are
1862 1862 not supported.
1863 1863 """
1864 1864 # We do not support backgrounding processes because we either use
1865 1865 # pexpect or pipes to read from. Users can always just call
1866 1866 # os.system() if they really want a background process.
1867 1867 if cmd.endswith('&'):
1868 1868 raise OSError("Background processes not supported.")
1869 1869
1870 1870 return system(self.var_expand(cmd, depth=2))
1871 1871
1872 1872 def getoutput(self, cmd, split=True):
1873 1873 """Get output (possibly including stderr) from a subprocess.
1874 1874
1875 1875 Parameters
1876 1876 ----------
1877 1877 cmd : str
1878 1878 Command to execute (can not end in '&', as background processes are
1879 1879 not supported.
1880 1880 split : bool, optional
1881 1881
1882 1882 If True, split the output into an IPython SList. Otherwise, an
1883 1883 IPython LSString is returned. These are objects similar to normal
1884 1884 lists and strings, with a few convenience attributes for easier
1885 1885 manipulation of line-based output. You can use '?' on them for
1886 1886 details.
1887 1887 """
1888 1888 if cmd.endswith('&'):
1889 1889 raise OSError("Background processes not supported.")
1890 1890 out = getoutput(self.var_expand(cmd, depth=2))
1891 1891 if split:
1892 1892 out = SList(out.splitlines())
1893 1893 else:
1894 1894 out = LSString(out)
1895 1895 return out
1896 1896
1897 1897 #-------------------------------------------------------------------------
1898 1898 # Things related to aliases
1899 1899 #-------------------------------------------------------------------------
1900 1900
1901 1901 def init_alias(self):
1902 1902 self.alias_manager = AliasManager(shell=self, config=self.config)
1903 1903 self.ns_table['alias'] = self.alias_manager.alias_table,
1904 1904
1905 1905 #-------------------------------------------------------------------------
1906 1906 # Things related to extensions and plugins
1907 1907 #-------------------------------------------------------------------------
1908 1908
1909 1909 def init_extension_manager(self):
1910 1910 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1911 1911
1912 1912 def init_plugin_manager(self):
1913 1913 self.plugin_manager = PluginManager(config=self.config)
1914 1914
1915 1915 #-------------------------------------------------------------------------
1916 1916 # Things related to payloads
1917 1917 #-------------------------------------------------------------------------
1918 1918
1919 1919 def init_payload(self):
1920 1920 self.payload_manager = PayloadManager(config=self.config)
1921 1921
1922 1922 #-------------------------------------------------------------------------
1923 1923 # Things related to the prefilter
1924 1924 #-------------------------------------------------------------------------
1925 1925
1926 1926 def init_prefilter(self):
1927 1927 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1928 1928 # Ultimately this will be refactored in the new interpreter code, but
1929 1929 # for now, we should expose the main prefilter method (there's legacy
1930 1930 # code out there that may rely on this).
1931 1931 self.prefilter = self.prefilter_manager.prefilter_lines
1932 1932
1933 1933
1934 1934 def auto_rewrite_input(self, cmd):
1935 1935 """Print to the screen the rewritten form of the user's command.
1936 1936
1937 1937 This shows visual feedback by rewriting input lines that cause
1938 1938 automatic calling to kick in, like::
1939 1939
1940 1940 /f x
1941 1941
1942 1942 into::
1943 1943
1944 1944 ------> f(x)
1945 1945
1946 1946 after the user's input prompt. This helps the user understand that the
1947 1947 input line was transformed automatically by IPython.
1948 1948 """
1949 1949 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1950 1950
1951 1951 try:
1952 1952 # plain ascii works better w/ pyreadline, on some machines, so
1953 1953 # we use it and only print uncolored rewrite if we have unicode
1954 1954 rw = str(rw)
1955 1955 print >> IPython.utils.io.Term.cout, rw
1956 1956 except UnicodeEncodeError:
1957 1957 print "------> " + cmd
1958 1958
1959 1959 #-------------------------------------------------------------------------
1960 1960 # Things related to extracting values/expressions from kernel and user_ns
1961 1961 #-------------------------------------------------------------------------
1962 1962
1963 1963 def _simple_error(self):
1964 1964 etype, value = sys.exc_info()[:2]
1965 1965 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1966 1966
1967 1967 def user_variables(self, names):
1968 1968 """Get a list of variable names from the user's namespace.
1969 1969
1970 1970 Parameters
1971 1971 ----------
1972 1972 names : list of strings
1973 1973 A list of names of variables to be read from the user namespace.
1974 1974
1975 1975 Returns
1976 1976 -------
1977 1977 A dict, keyed by the input names and with the repr() of each value.
1978 1978 """
1979 1979 out = {}
1980 1980 user_ns = self.user_ns
1981 1981 for varname in names:
1982 1982 try:
1983 1983 value = repr(user_ns[varname])
1984 1984 except:
1985 1985 value = self._simple_error()
1986 1986 out[varname] = value
1987 1987 return out
1988 1988
1989 1989 def user_expressions(self, expressions):
1990 1990 """Evaluate a dict of expressions in the user's namespace.
1991 1991
1992 1992 Parameters
1993 1993 ----------
1994 1994 expressions : dict
1995 1995 A dict with string keys and string values. The expression values
1996 1996 should be valid Python expressions, each of which will be evaluated
1997 1997 in the user namespace.
1998 1998
1999 1999 Returns
2000 2000 -------
2001 2001 A dict, keyed like the input expressions dict, with the repr() of each
2002 2002 value.
2003 2003 """
2004 2004 out = {}
2005 2005 user_ns = self.user_ns
2006 2006 global_ns = self.user_global_ns
2007 2007 for key, expr in expressions.iteritems():
2008 2008 try:
2009 2009 value = repr(eval(expr, global_ns, user_ns))
2010 2010 except:
2011 2011 value = self._simple_error()
2012 2012 out[key] = value
2013 2013 return out
2014 2014
2015 2015 #-------------------------------------------------------------------------
2016 2016 # Things related to the running of code
2017 2017 #-------------------------------------------------------------------------
2018 2018
2019 2019 def ex(self, cmd):
2020 2020 """Execute a normal python statement in user namespace."""
2021 2021 with nested(self.builtin_trap,):
2022 2022 exec cmd in self.user_global_ns, self.user_ns
2023 2023
2024 2024 def ev(self, expr):
2025 2025 """Evaluate python expression expr in user namespace.
2026 2026
2027 2027 Returns the result of evaluation
2028 2028 """
2029 2029 with nested(self.builtin_trap,):
2030 2030 return eval(expr, self.user_global_ns, self.user_ns)
2031 2031
2032 2032 def safe_execfile(self, fname, *where, **kw):
2033 2033 """A safe version of the builtin execfile().
2034 2034
2035 2035 This version will never throw an exception, but instead print
2036 2036 helpful error messages to the screen. This only works on pure
2037 2037 Python files with the .py extension.
2038 2038
2039 2039 Parameters
2040 2040 ----------
2041 2041 fname : string
2042 2042 The name of the file to be executed.
2043 2043 where : tuple
2044 2044 One or two namespaces, passed to execfile() as (globals,locals).
2045 2045 If only one is given, it is passed as both.
2046 2046 exit_ignore : bool (False)
2047 2047 If True, then silence SystemExit for non-zero status (it is always
2048 2048 silenced for zero status, as it is so common).
2049 2049 """
2050 2050 kw.setdefault('exit_ignore', False)
2051 2051
2052 2052 fname = os.path.abspath(os.path.expanduser(fname))
2053 2053
2054 2054 # Make sure we have a .py file
2055 2055 if not fname.endswith('.py'):
2056 2056 warn('File must end with .py to be run using execfile: <%s>' % fname)
2057 2057
2058 2058 # Make sure we can open the file
2059 2059 try:
2060 2060 with open(fname) as thefile:
2061 2061 pass
2062 2062 except:
2063 2063 warn('Could not open file <%s> for safe execution.' % fname)
2064 2064 return
2065 2065
2066 2066 # Find things also in current directory. This is needed to mimic the
2067 2067 # behavior of running a script from the system command line, where
2068 2068 # Python inserts the script's directory into sys.path
2069 2069 dname = os.path.dirname(fname)
2070 2070
2071 2071 with prepended_to_syspath(dname):
2072 2072 try:
2073 2073 execfile(fname,*where)
2074 2074 except SystemExit, status:
2075 2075 # If the call was made with 0 or None exit status (sys.exit(0)
2076 2076 # or sys.exit() ), don't bother showing a traceback, as both of
2077 2077 # these are considered normal by the OS:
2078 2078 # > python -c'import sys;sys.exit(0)'; echo $?
2079 2079 # 0
2080 2080 # > python -c'import sys;sys.exit()'; echo $?
2081 2081 # 0
2082 2082 # For other exit status, we show the exception unless
2083 2083 # explicitly silenced, but only in short form.
2084 2084 if status.code not in (0, None) and not kw['exit_ignore']:
2085 2085 self.showtraceback(exception_only=True)
2086 2086 except:
2087 2087 self.showtraceback()
2088 2088
2089 2089 def safe_execfile_ipy(self, fname):
2090 2090 """Like safe_execfile, but for .ipy files with IPython syntax.
2091 2091
2092 2092 Parameters
2093 2093 ----------
2094 2094 fname : str
2095 2095 The name of the file to execute. The filename must have a
2096 2096 .ipy extension.
2097 2097 """
2098 2098 fname = os.path.abspath(os.path.expanduser(fname))
2099 2099
2100 2100 # Make sure we have a .py file
2101 2101 if not fname.endswith('.ipy'):
2102 2102 warn('File must end with .py to be run using execfile: <%s>' % fname)
2103 2103
2104 2104 # Make sure we can open the file
2105 2105 try:
2106 2106 with open(fname) as thefile:
2107 2107 pass
2108 2108 except:
2109 2109 warn('Could not open file <%s> for safe execution.' % fname)
2110 2110 return
2111 2111
2112 2112 # Find things also in current directory. This is needed to mimic the
2113 2113 # behavior of running a script from the system command line, where
2114 2114 # Python inserts the script's directory into sys.path
2115 2115 dname = os.path.dirname(fname)
2116 2116
2117 2117 with prepended_to_syspath(dname):
2118 2118 try:
2119 2119 with open(fname) as thefile:
2120 2120 script = thefile.read()
2121 2121 # self.runlines currently captures all exceptions
2122 2122 # raise in user code. It would be nice if there were
2123 2123 # versions of runlines, execfile that did raise, so
2124 2124 # we could catch the errors.
2125 2125 self.runlines(script, clean=True)
2126 2126 except:
2127 2127 self.showtraceback()
2128 2128 warn('Unknown failure executing file: <%s>' % fname)
2129 2129
2130 2130 def run_cell(self, cell):
2131 2131 """Run the contents of an entire multiline 'cell' of code.
2132 2132
2133 2133 The cell is split into separate blocks which can be executed
2134 2134 individually. Then, based on how many blocks there are, they are
2135 2135 executed as follows:
2136 2136
2137 2137 - A single block: 'single' mode.
2138 2138
2139 2139 If there's more than one block, it depends:
2140 2140
2141 2141 - if the last one is no more than two lines long, run all but the last
2142 2142 in 'exec' mode and the very last one in 'single' mode. This makes it
2143 2143 easy to type simple expressions at the end to see computed values. -
2144 2144 otherwise (last one is also multiline), run all in 'exec' mode
2145 2145
2146 2146 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2147 2147 results are displayed and output prompts are computed. In 'exec' mode,
2148 2148 no results are displayed unless :func:`print` is called explicitly;
2149 2149 this mode is more akin to running a script.
2150 2150
2151 2151 Parameters
2152 2152 ----------
2153 2153 cell : str
2154 2154 A single or multiline string.
2155 2155 """
2156 2156 #################################################################
2157 2157 # FIXME
2158 2158 # =====
2159 2159 # This execution logic should stop calling runlines altogether, and
2160 2160 # instead we should do what runlines does, in a controlled manner, here
2161 2161 # (runlines mutates lots of state as it goes calling sub-methods that
2162 2162 # also mutate state). Basically we should:
2163 2163 # - apply dynamic transforms for single-line input (the ones that
2164 2164 # split_blocks won't apply since they need context).
2165 2165 # - increment the global execution counter (we need to pull that out
2166 2166 # from outputcache's control; outputcache should instead read it from
2167 2167 # the main object).
2168 2168 # - do any logging of input
2169 2169 # - update histories (raw/translated)
2170 2170 # - then, call plain runsource (for single blocks, so displayhook is
2171 2171 # triggered) or runcode (for multiline blocks in exec mode).
2172 2172 #
2173 2173 # Once this is done, we'll be able to stop using runlines and we'll
2174 2174 # also have a much cleaner separation of logging, input history and
2175 2175 # output cache management.
2176 2176 #################################################################
2177 2177
2178 2178 # We need to break up the input into executable blocks that can be run
2179 2179 # in 'single' mode, to provide comfortable user behavior.
2180 2180 blocks = self.input_splitter.split_blocks(cell)
2181 2181
2182 2182 if not blocks:
2183 2183 return
2184
2185 # Store the 'ipython' version of the cell as well, since that's what
2186 # needs to go into the translated history and get executed (the
2187 # original cell may contain non-python syntax).
2188 ipy_cell = ''.join(blocks)
2184 2189
2185 2190 # Single-block input should behave like an interactive prompt
2186 2191 if len(blocks) == 1:
2187 2192 self.runlines(blocks[0])
2188 2193 return
2189 2194
2190 2195 # In multi-block input, if the last block is a simple (one-two lines)
2191 2196 # expression, run it in single mode so it produces output. Otherwise
2192 2197 # just feed the whole thing to runcode.
2193 2198 # This seems like a reasonable usability design.
2194 2199 last = blocks[-1]
2200 last_nlines = len(last.splitlines())
2195 2201
2196 2202 # Note: below, whenever we call runcode, we must sync history
2197 2203 # ourselves, because runcode is NOT meant to manage history at all.
2198 if len(last.splitlines()) < 2:
2204 if last_nlines < 2:
2205 # Here we consider the cell split between 'body' and 'last', store
2206 # all history and execute 'body', and if successful, then proceed
2207 # to execute 'last'.
2208
2209 # Raw history must contain the unmodified cell
2210 raw_body = '\n'.join(cell.splitlines()[:-last_nlines])+'\n'
2211 self.input_hist_raw.append(raw_body)
2199 2212 # Get the main body to run as a cell
2200 body = ''.join(blocks[:-1])
2201 self.input_hist.append(body)
2202 self.input_hist_raw.append(body)
2203 retcode = self.runcode(body, post_execute=False)
2213 ipy_body = ''.join(blocks[:-1])
2214 self.input_hist.append(ipy_body)
2215 retcode = self.runcode(ipy_body, post_execute=False)
2204 2216 if retcode==0:
2205 2217 # And the last expression via runlines so it produces output
2206 2218 self.runlines(last)
2207 2219 else:
2208 # Run the whole cell as one entity
2209 self.input_hist.append(cell)
2220 # Run the whole cell as one entity, storing both raw and processed
2221 # input in history
2210 2222 self.input_hist_raw.append(cell)
2211 self.runcode(cell)
2223 self.input_hist.append(ipy_cell)
2224 self.runcode(ipy_cell)
2212 2225
2213 2226 def runlines(self, lines, clean=False):
2214 2227 """Run a string of one or more lines of source.
2215 2228
2216 2229 This method is capable of running a string containing multiple source
2217 2230 lines, as if they had been entered at the IPython prompt. Since it
2218 2231 exposes IPython's processing machinery, the given strings can contain
2219 2232 magic calls (%magic), special shell access (!cmd), etc.
2220 2233 """
2221 2234
2222 2235 if isinstance(lines, (list, tuple)):
2223 2236 lines = '\n'.join(lines)
2224 2237
2225 2238 if clean:
2226 2239 lines = self._cleanup_ipy_script(lines)
2227 2240
2228 2241 # We must start with a clean buffer, in case this is run from an
2229 2242 # interactive IPython session (via a magic, for example).
2230 2243 self.resetbuffer()
2231 2244 lines = lines.splitlines()
2232 2245 more = 0
2233 2246 with nested(self.builtin_trap, self.display_trap):
2234 2247 for line in lines:
2235 2248 # skip blank lines so we don't mess up the prompt counter, but
2236 2249 # do NOT skip even a blank line if we are in a code block (more
2237 2250 # is true)
2238 2251
2239 2252 if line or more:
2240 2253 # push to raw history, so hist line numbers stay in sync
2241 2254 self.input_hist_raw.append(line + '\n')
2242 2255 prefiltered = self.prefilter_manager.prefilter_lines(line,
2243 2256 more)
2244 2257 more = self.push_line(prefiltered)
2245 2258 # IPython's runsource returns None if there was an error
2246 2259 # compiling the code. This allows us to stop processing
2247 2260 # right away, so the user gets the error message at the
2248 2261 # right place.
2249 2262 if more is None:
2250 2263 break
2251 2264 else:
2252 2265 self.input_hist_raw.append("\n")
2253 2266 # final newline in case the input didn't have it, so that the code
2254 2267 # actually does get executed
2255 2268 if more:
2256 2269 self.push_line('\n')
2257 2270
2258 2271 def runsource(self, source, filename='<input>', symbol='single'):
2259 2272 """Compile and run some source in the interpreter.
2260 2273
2261 2274 Arguments are as for compile_command().
2262 2275
2263 2276 One several things can happen:
2264 2277
2265 2278 1) The input is incorrect; compile_command() raised an
2266 2279 exception (SyntaxError or OverflowError). A syntax traceback
2267 2280 will be printed by calling the showsyntaxerror() method.
2268 2281
2269 2282 2) The input is incomplete, and more input is required;
2270 2283 compile_command() returned None. Nothing happens.
2271 2284
2272 2285 3) The input is complete; compile_command() returned a code
2273 2286 object. The code is executed by calling self.runcode() (which
2274 2287 also handles run-time exceptions, except for SystemExit).
2275 2288
2276 2289 The return value is:
2277 2290
2278 2291 - True in case 2
2279 2292
2280 2293 - False in the other cases, unless an exception is raised, where
2281 2294 None is returned instead. This can be used by external callers to
2282 2295 know whether to continue feeding input or not.
2283 2296
2284 2297 The return value can be used to decide whether to use sys.ps1 or
2285 2298 sys.ps2 to prompt the next line."""
2286 2299
2287 2300 # We need to ensure that the source is unicode from here on.
2288 2301 if type(source)==str:
2289 2302 source = source.decode(self.stdin_encoding)
2290 2303
2291 2304 # if the source code has leading blanks, add 'if 1:\n' to it
2292 2305 # this allows execution of indented pasted code. It is tempting
2293 2306 # to add '\n' at the end of source to run commands like ' a=1'
2294 2307 # directly, but this fails for more complicated scenarios
2295 2308
2296 2309 if source[:1] in [' ', '\t']:
2297 2310 source = u'if 1:\n%s' % source
2298 2311
2299 2312 try:
2300 2313 code = self.compile(source,filename,symbol)
2301 2314 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2302 2315 # Case 1
2303 2316 self.showsyntaxerror(filename)
2304 2317 return None
2305 2318
2306 2319 if code is None:
2307 2320 # Case 2
2308 2321 return True
2309 2322
2310 2323 # Case 3
2311 2324 # We store the code object so that threaded shells and
2312 2325 # custom exception handlers can access all this info if needed.
2313 2326 # The source corresponding to this can be obtained from the
2314 2327 # buffer attribute as '\n'.join(self.buffer).
2315 2328 self.code_to_run = code
2316 2329 # now actually execute the code object
2317 2330 if self.runcode(code) == 0:
2318 2331 return False
2319 2332 else:
2320 2333 return None
2321 2334
2322 2335 def runcode(self, code_obj, post_execute=True):
2323 2336 """Execute a code object.
2324 2337
2325 2338 When an exception occurs, self.showtraceback() is called to display a
2326 2339 traceback.
2327 2340
2328 2341 Return value: a flag indicating whether the code to be run completed
2329 2342 successfully:
2330 2343
2331 2344 - 0: successful execution.
2332 2345 - 1: an error occurred.
2333 2346 """
2334 2347
2335 2348 # Set our own excepthook in case the user code tries to call it
2336 2349 # directly, so that the IPython crash handler doesn't get triggered
2337 2350 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2338 2351
2339 2352 # we save the original sys.excepthook in the instance, in case config
2340 2353 # code (such as magics) needs access to it.
2341 2354 self.sys_excepthook = old_excepthook
2342 2355 outflag = 1 # happens in more places, so it's easier as default
2343 2356 try:
2344 2357 try:
2345 2358 self.hooks.pre_runcode_hook()
2346 2359 #rprint('Running code') # dbg
2347 2360 exec code_obj in self.user_global_ns, self.user_ns
2348 2361 finally:
2349 2362 # Reset our crash handler in place
2350 2363 sys.excepthook = old_excepthook
2351 2364 except SystemExit:
2352 2365 self.resetbuffer()
2353 2366 self.showtraceback(exception_only=True)
2354 2367 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2355 2368 except self.custom_exceptions:
2356 2369 etype,value,tb = sys.exc_info()
2357 2370 self.CustomTB(etype,value,tb)
2358 2371 except:
2359 2372 self.showtraceback()
2360 2373 else:
2361 2374 outflag = 0
2362 2375 if softspace(sys.stdout, 0):
2363 2376 print
2364 2377
2365 2378 # Execute any registered post-execution functions. Here, any errors
2366 2379 # are reported only minimally and just on the terminal, because the
2367 2380 # main exception channel may be occupied with a user traceback.
2368 2381 # FIXME: we need to think this mechanism a little more carefully.
2369 2382 if post_execute:
2370 2383 for func in self._post_execute:
2371 2384 try:
2372 2385 func()
2373 2386 except:
2374 2387 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2375 2388 func
2376 2389 print >> io.Term.cout, head
2377 2390 print >> io.Term.cout, self._simple_error()
2378 2391 print >> io.Term.cout, 'Removing from post_execute'
2379 2392 self._post_execute.remove(func)
2380 2393
2381 2394 # Flush out code object which has been run (and source)
2382 2395 self.code_to_run = None
2383 2396 return outflag
2384 2397
2385 2398 def push_line(self, line):
2386 2399 """Push a line to the interpreter.
2387 2400
2388 2401 The line should not have a trailing newline; it may have
2389 2402 internal newlines. The line is appended to a buffer and the
2390 2403 interpreter's runsource() method is called with the
2391 2404 concatenated contents of the buffer as source. If this
2392 2405 indicates that the command was executed or invalid, the buffer
2393 2406 is reset; otherwise, the command is incomplete, and the buffer
2394 2407 is left as it was after the line was appended. The return
2395 2408 value is 1 if more input is required, 0 if the line was dealt
2396 2409 with in some way (this is the same as runsource()).
2397 2410 """
2398 2411
2399 2412 # autoindent management should be done here, and not in the
2400 2413 # interactive loop, since that one is only seen by keyboard input. We
2401 2414 # need this done correctly even for code run via runlines (which uses
2402 2415 # push).
2403 2416
2404 2417 #print 'push line: <%s>' % line # dbg
2405 2418 for subline in line.splitlines():
2406 2419 self._autoindent_update(subline)
2407 2420 self.buffer.append(line)
2408 2421 more = self.runsource('\n'.join(self.buffer), self.filename)
2409 2422 if not more:
2410 2423 self.resetbuffer()
2411 2424 return more
2412 2425
2413 2426 def resetbuffer(self):
2414 2427 """Reset the input buffer."""
2415 2428 self.buffer[:] = []
2416 2429
2417 2430 def _is_secondary_block_start(self, s):
2418 2431 if not s.endswith(':'):
2419 2432 return False
2420 2433 if (s.startswith('elif') or
2421 2434 s.startswith('else') or
2422 2435 s.startswith('except') or
2423 2436 s.startswith('finally')):
2424 2437 return True
2425 2438
2426 2439 def _cleanup_ipy_script(self, script):
2427 2440 """Make a script safe for self.runlines()
2428 2441
2429 2442 Currently, IPython is lines based, with blocks being detected by
2430 2443 empty lines. This is a problem for block based scripts that may
2431 2444 not have empty lines after blocks. This script adds those empty
2432 2445 lines to make scripts safe for running in the current line based
2433 2446 IPython.
2434 2447 """
2435 2448 res = []
2436 2449 lines = script.splitlines()
2437 2450 level = 0
2438 2451
2439 2452 for l in lines:
2440 2453 lstripped = l.lstrip()
2441 2454 stripped = l.strip()
2442 2455 if not stripped:
2443 2456 continue
2444 2457 newlevel = len(l) - len(lstripped)
2445 2458 if level > 0 and newlevel == 0 and \
2446 2459 not self._is_secondary_block_start(stripped):
2447 2460 # add empty line
2448 2461 res.append('')
2449 2462 res.append(l)
2450 2463 level = newlevel
2451 2464
2452 2465 return '\n'.join(res) + '\n'
2453 2466
2454 2467 def _autoindent_update(self,line):
2455 2468 """Keep track of the indent level."""
2456 2469
2457 2470 #debugx('line')
2458 2471 #debugx('self.indent_current_nsp')
2459 2472 if self.autoindent:
2460 2473 if line:
2461 2474 inisp = num_ini_spaces(line)
2462 2475 if inisp < self.indent_current_nsp:
2463 2476 self.indent_current_nsp = inisp
2464 2477
2465 2478 if line[-1] == ':':
2466 2479 self.indent_current_nsp += 4
2467 2480 elif dedent_re.match(line):
2468 2481 self.indent_current_nsp -= 4
2469 2482 else:
2470 2483 self.indent_current_nsp = 0
2471 2484
2472 2485 #-------------------------------------------------------------------------
2473 2486 # Things related to GUI support and pylab
2474 2487 #-------------------------------------------------------------------------
2475 2488
2476 2489 def enable_pylab(self, gui=None):
2477 2490 raise NotImplementedError('Implement enable_pylab in a subclass')
2478 2491
2479 2492 #-------------------------------------------------------------------------
2480 2493 # Utilities
2481 2494 #-------------------------------------------------------------------------
2482 2495
2483 2496 def var_expand(self,cmd,depth=0):
2484 2497 """Expand python variables in a string.
2485 2498
2486 2499 The depth argument indicates how many frames above the caller should
2487 2500 be walked to look for the local namespace where to expand variables.
2488 2501
2489 2502 The global namespace for expansion is always the user's interactive
2490 2503 namespace.
2491 2504 """
2492 2505
2493 2506 return str(ItplNS(cmd,
2494 2507 self.user_ns, # globals
2495 2508 # Skip our own frame in searching for locals:
2496 2509 sys._getframe(depth+1).f_locals # locals
2497 2510 ))
2498 2511
2499 2512 def mktempfile(self,data=None):
2500 2513 """Make a new tempfile and return its filename.
2501 2514
2502 2515 This makes a call to tempfile.mktemp, but it registers the created
2503 2516 filename internally so ipython cleans it up at exit time.
2504 2517
2505 2518 Optional inputs:
2506 2519
2507 2520 - data(None): if data is given, it gets written out to the temp file
2508 2521 immediately, and the file is closed again."""
2509 2522
2510 2523 filename = tempfile.mktemp('.py','ipython_edit_')
2511 2524 self.tempfiles.append(filename)
2512 2525
2513 2526 if data:
2514 2527 tmp_file = open(filename,'w')
2515 2528 tmp_file.write(data)
2516 2529 tmp_file.close()
2517 2530 return filename
2518 2531
2519 2532 # TODO: This should be removed when Term is refactored.
2520 2533 def write(self,data):
2521 2534 """Write a string to the default output"""
2522 2535 io.Term.cout.write(data)
2523 2536
2524 2537 # TODO: This should be removed when Term is refactored.
2525 2538 def write_err(self,data):
2526 2539 """Write a string to the default error output"""
2527 2540 io.Term.cerr.write(data)
2528 2541
2529 2542 def ask_yes_no(self,prompt,default=True):
2530 2543 if self.quiet:
2531 2544 return True
2532 2545 return ask_yes_no(prompt,default)
2533 2546
2534 2547 def show_usage(self):
2535 2548 """Show a usage message"""
2536 2549 page.page(IPython.core.usage.interactive_usage)
2537 2550
2538 2551 #-------------------------------------------------------------------------
2539 2552 # Things related to IPython exiting
2540 2553 #-------------------------------------------------------------------------
2541 2554 def atexit_operations(self):
2542 2555 """This will be executed at the time of exit.
2543 2556
2544 2557 Cleanup operations and saving of persistent data that is done
2545 2558 unconditionally by IPython should be performed here.
2546 2559
2547 2560 For things that may depend on startup flags or platform specifics (such
2548 2561 as having readline or not), register a separate atexit function in the
2549 2562 code that has the appropriate information, rather than trying to
2550 2563 clutter
2551 2564 """
2552 2565 # Cleanup all tempfiles left around
2553 2566 for tfile in self.tempfiles:
2554 2567 try:
2555 2568 os.unlink(tfile)
2556 2569 except OSError:
2557 2570 pass
2558 2571
2559 2572 # Clear all user namespaces to release all references cleanly.
2560 2573 self.reset()
2561 2574
2562 2575 # Run user hooks
2563 2576 self.hooks.shutdown_hook()
2564 2577
2565 2578 def cleanup(self):
2566 2579 self.restore_sys_module_state()
2567 2580
2568 2581
2569 2582 class InteractiveShellABC(object):
2570 2583 """An abstract base class for InteractiveShell."""
2571 2584 __metaclass__ = abc.ABCMeta
2572 2585
2573 2586 InteractiveShellABC.register(InteractiveShell)
General Comments 0
You need to be logged in to leave comments. Login now