##// END OF EJS Templates
%cpaste enhancement (accept '> > > as prefix), patch + test by Stefan, close #216
Ville M. Vainio -
Show More
@@ -0,0 +1,61 b''
1 """Test cpaste magic"""
2
3 tests = {'pass': ["> > > run()",
4 ">>> > run()",
5 "+++ run()",
6 "++ run()"],
7
8 'fail': ["+ + run()",
9 " ++ run()"]}
10
11 from StringIO import StringIO
12 import sys
13
14 stdin_save = sys.stdin
15
16 # NOTE: no blank lines allowed in function definition
17 def testcase(code,should_fail=False):
18 """Execute code via 'cpaste' and ensure it was executed, unless
19 should_fail is set.
20
21 """
22 _ip.user_ns['code_ran'] = False
23 #
24 src = StringIO()
25 src.write('\n')
26 src.write(code)
27 src.write('\n--\n')
28 src.seek(0)
29 #
30 sys.stdin = src
31
32 try:
33 cpaste
34 except:
35 if not should_fail:
36 raise AssertionError("Failure not expected : '%s'" %
37 code)
38 else:
39 assert code_ran
40 if should_fail:
41 raise AssertionError("Failure expected : '%s'" % code)
42 #
43 finally:
44 sys.stdin = stdin_save
45 #
46
47 def run():
48 """Marker function: sets a flag when executed.
49
50 """
51 _ip.user_ns['code_ran'] = True
52 return 'run' # return string so '+ run()' doesn't result in success
53
54
55 ### Actual testing happens here
56
57 for code in tests['pass']:
58 testcase(code)
59
60 for code in tests['fail']:
61 testcase(code,should_fail=True)
@@ -1,3283 +1,3289 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Magic functions for InteractiveShell.
3 3
4 4 $Id: Magic.py 2996 2008-01-30 06:31:39Z fperez $"""
5 5
6 6 #*****************************************************************************
7 7 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
8 8 # Copyright (C) 2001-2006 Fernando Perez <fperez@colorado.edu>
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #*****************************************************************************
13 13
14 14 #****************************************************************************
15 15 # Modules and globals
16 16
17 17 from IPython import Release
18 18 __author__ = '%s <%s>\n%s <%s>' % \
19 19 ( Release.authors['Janko'] + Release.authors['Fernando'] )
20 20 __license__ = Release.license
21 21
22 22 # Python standard modules
23 23 import __builtin__
24 24 import bdb
25 25 import inspect
26 26 import os
27 27 import pdb
28 28 import pydoc
29 29 import sys
30 30 import re
31 31 import tempfile
32 32 import time
33 33 import cPickle as pickle
34 34 import textwrap
35 35 from cStringIO import StringIO
36 36 from getopt import getopt,GetoptError
37 37 from pprint import pprint, pformat
38 38 from sets import Set
39 39
40 40 # cProfile was added in Python2.5
41 41 try:
42 42 import cProfile as profile
43 43 import pstats
44 44 except ImportError:
45 45 # profile isn't bundled by default in Debian for license reasons
46 46 try:
47 47 import profile,pstats
48 48 except ImportError:
49 49 profile = pstats = None
50 50
51 51 # Homebrewed
52 52 import IPython
53 53 from IPython import Debugger, OInspect, wildcard
54 54 from IPython.FakeModule import FakeModule
55 55 from IPython.Itpl import Itpl, itpl, printpl,itplns
56 56 from IPython.PyColorize import Parser
57 57 from IPython.ipstruct import Struct
58 58 from IPython.macro import Macro
59 59 from IPython.genutils import *
60 60 from IPython import platutils
61 61 import IPython.generics
62 62 import IPython.ipapi
63 63 from IPython.ipapi import UsageError
64 64 #***************************************************************************
65 65 # Utility functions
66 66 def on_off(tag):
67 67 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
68 68 return ['OFF','ON'][tag]
69 69
70 70 class Bunch: pass
71 71
72 72 def compress_dhist(dh):
73 73 head, tail = dh[:-10], dh[-10:]
74 74
75 75 newhead = []
76 76 done = Set()
77 77 for h in head:
78 78 if h in done:
79 79 continue
80 80 newhead.append(h)
81 81 done.add(h)
82 82
83 83 return newhead + tail
84 84
85 85
86 86 #***************************************************************************
87 87 # Main class implementing Magic functionality
88 88 class Magic:
89 89 """Magic functions for InteractiveShell.
90 90
91 91 Shell functions which can be reached as %function_name. All magic
92 92 functions should accept a string, which they can parse for their own
93 93 needs. This can make some functions easier to type, eg `%cd ../`
94 94 vs. `%cd("../")`
95 95
96 96 ALL definitions MUST begin with the prefix magic_. The user won't need it
97 97 at the command line, but it is is needed in the definition. """
98 98
99 99 # class globals
100 100 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
101 101 'Automagic is ON, % prefix NOT needed for magic functions.']
102 102
103 103 #......................................................................
104 104 # some utility functions
105 105
106 106 def __init__(self,shell):
107 107
108 108 self.options_table = {}
109 109 if profile is None:
110 110 self.magic_prun = self.profile_missing_notice
111 111 self.shell = shell
112 112
113 113 # namespace for holding state we may need
114 114 self._magic_state = Bunch()
115 115
116 116 def profile_missing_notice(self, *args, **kwargs):
117 117 error("""\
118 118 The profile module could not be found. If you are a Debian user,
119 119 it has been removed from the standard Debian package because of its non-free
120 120 license. To use profiling, please install"python2.3-profiler" from non-free.""")
121 121
122 122 def default_option(self,fn,optstr):
123 123 """Make an entry in the options_table for fn, with value optstr"""
124 124
125 125 if fn not in self.lsmagic():
126 126 error("%s is not a magic function" % fn)
127 127 self.options_table[fn] = optstr
128 128
129 129 def lsmagic(self):
130 130 """Return a list of currently available magic functions.
131 131
132 132 Gives a list of the bare names after mangling (['ls','cd', ...], not
133 133 ['magic_ls','magic_cd',...]"""
134 134
135 135 # FIXME. This needs a cleanup, in the way the magics list is built.
136 136
137 137 # magics in class definition
138 138 class_magic = lambda fn: fn.startswith('magic_') and \
139 139 callable(Magic.__dict__[fn])
140 140 # in instance namespace (run-time user additions)
141 141 inst_magic = lambda fn: fn.startswith('magic_') and \
142 142 callable(self.__dict__[fn])
143 143 # and bound magics by user (so they can access self):
144 144 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
145 145 callable(self.__class__.__dict__[fn])
146 146 magics = filter(class_magic,Magic.__dict__.keys()) + \
147 147 filter(inst_magic,self.__dict__.keys()) + \
148 148 filter(inst_bound_magic,self.__class__.__dict__.keys())
149 149 out = []
150 150 for fn in magics:
151 151 out.append(fn.replace('magic_','',1))
152 152 out.sort()
153 153 return out
154 154
155 155 def extract_input_slices(self,slices,raw=False):
156 156 """Return as a string a set of input history slices.
157 157
158 158 Inputs:
159 159
160 160 - slices: the set of slices is given as a list of strings (like
161 161 ['1','4:8','9'], since this function is for use by magic functions
162 162 which get their arguments as strings.
163 163
164 164 Optional inputs:
165 165
166 166 - raw(False): by default, the processed input is used. If this is
167 167 true, the raw input history is used instead.
168 168
169 169 Note that slices can be called with two notations:
170 170
171 171 N:M -> standard python form, means including items N...(M-1).
172 172
173 173 N-M -> include items N..M (closed endpoint)."""
174 174
175 175 if raw:
176 176 hist = self.shell.input_hist_raw
177 177 else:
178 178 hist = self.shell.input_hist
179 179
180 180 cmds = []
181 181 for chunk in slices:
182 182 if ':' in chunk:
183 183 ini,fin = map(int,chunk.split(':'))
184 184 elif '-' in chunk:
185 185 ini,fin = map(int,chunk.split('-'))
186 186 fin += 1
187 187 else:
188 188 ini = int(chunk)
189 189 fin = ini+1
190 190 cmds.append(hist[ini:fin])
191 191 return cmds
192 192
193 193 def _ofind(self, oname, namespaces=None):
194 194 """Find an object in the available namespaces.
195 195
196 196 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
197 197
198 198 Has special code to detect magic functions.
199 199 """
200 200
201 201 oname = oname.strip()
202 202
203 203 alias_ns = None
204 204 if namespaces is None:
205 205 # Namespaces to search in:
206 206 # Put them in a list. The order is important so that we
207 207 # find things in the same order that Python finds them.
208 208 namespaces = [ ('Interactive', self.shell.user_ns),
209 209 ('IPython internal', self.shell.internal_ns),
210 210 ('Python builtin', __builtin__.__dict__),
211 211 ('Alias', self.shell.alias_table),
212 212 ]
213 213 alias_ns = self.shell.alias_table
214 214
215 215 # initialize results to 'null'
216 216 found = 0; obj = None; ospace = None; ds = None;
217 217 ismagic = 0; isalias = 0; parent = None
218 218
219 219 # Look for the given name by splitting it in parts. If the head is
220 220 # found, then we look for all the remaining parts as members, and only
221 221 # declare success if we can find them all.
222 222 oname_parts = oname.split('.')
223 223 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
224 224 for nsname,ns in namespaces:
225 225 try:
226 226 obj = ns[oname_head]
227 227 except KeyError:
228 228 continue
229 229 else:
230 230 #print 'oname_rest:', oname_rest # dbg
231 231 for part in oname_rest:
232 232 try:
233 233 parent = obj
234 234 obj = getattr(obj,part)
235 235 except:
236 236 # Blanket except b/c some badly implemented objects
237 237 # allow __getattr__ to raise exceptions other than
238 238 # AttributeError, which then crashes IPython.
239 239 break
240 240 else:
241 241 # If we finish the for loop (no break), we got all members
242 242 found = 1
243 243 ospace = nsname
244 244 if ns == alias_ns:
245 245 isalias = 1
246 246 break # namespace loop
247 247
248 248 # Try to see if it's magic
249 249 if not found:
250 250 if oname.startswith(self.shell.ESC_MAGIC):
251 251 oname = oname[1:]
252 252 obj = getattr(self,'magic_'+oname,None)
253 253 if obj is not None:
254 254 found = 1
255 255 ospace = 'IPython internal'
256 256 ismagic = 1
257 257
258 258 # Last try: special-case some literals like '', [], {}, etc:
259 259 if not found and oname_head in ["''",'""','[]','{}','()']:
260 260 obj = eval(oname_head)
261 261 found = 1
262 262 ospace = 'Interactive'
263 263
264 264 return {'found':found, 'obj':obj, 'namespace':ospace,
265 265 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
266 266
267 267 def arg_err(self,func):
268 268 """Print docstring if incorrect arguments were passed"""
269 269 print 'Error in arguments:'
270 270 print OInspect.getdoc(func)
271 271
272 272 def format_latex(self,strng):
273 273 """Format a string for latex inclusion."""
274 274
275 275 # Characters that need to be escaped for latex:
276 276 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
277 277 # Magic command names as headers:
278 278 cmd_name_re = re.compile(r'^(%s.*?):' % self.shell.ESC_MAGIC,
279 279 re.MULTILINE)
280 280 # Magic commands
281 281 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % self.shell.ESC_MAGIC,
282 282 re.MULTILINE)
283 283 # Paragraph continue
284 284 par_re = re.compile(r'\\$',re.MULTILINE)
285 285
286 286 # The "\n" symbol
287 287 newline_re = re.compile(r'\\n')
288 288
289 289 # Now build the string for output:
290 290 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
291 291 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
292 292 strng)
293 293 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
294 294 strng = par_re.sub(r'\\\\',strng)
295 295 strng = escape_re.sub(r'\\\1',strng)
296 296 strng = newline_re.sub(r'\\textbackslash{}n',strng)
297 297 return strng
298 298
299 299 def format_screen(self,strng):
300 300 """Format a string for screen printing.
301 301
302 302 This removes some latex-type format codes."""
303 303 # Paragraph continue
304 304 par_re = re.compile(r'\\$',re.MULTILINE)
305 305 strng = par_re.sub('',strng)
306 306 return strng
307 307
308 308 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
309 309 """Parse options passed to an argument string.
310 310
311 311 The interface is similar to that of getopt(), but it returns back a
312 312 Struct with the options as keys and the stripped argument string still
313 313 as a string.
314 314
315 315 arg_str is quoted as a true sys.argv vector by using shlex.split.
316 316 This allows us to easily expand variables, glob files, quote
317 317 arguments, etc.
318 318
319 319 Options:
320 320 -mode: default 'string'. If given as 'list', the argument string is
321 321 returned as a list (split on whitespace) instead of a string.
322 322
323 323 -list_all: put all option values in lists. Normally only options
324 324 appearing more than once are put in a list.
325 325
326 326 -posix (True): whether to split the input line in POSIX mode or not,
327 327 as per the conventions outlined in the shlex module from the
328 328 standard library."""
329 329
330 330 # inject default options at the beginning of the input line
331 331 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
332 332 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
333 333
334 334 mode = kw.get('mode','string')
335 335 if mode not in ['string','list']:
336 336 raise ValueError,'incorrect mode given: %s' % mode
337 337 # Get options
338 338 list_all = kw.get('list_all',0)
339 339 posix = kw.get('posix',True)
340 340
341 341 # Check if we have more than one argument to warrant extra processing:
342 342 odict = {} # Dictionary with options
343 343 args = arg_str.split()
344 344 if len(args) >= 1:
345 345 # If the list of inputs only has 0 or 1 thing in it, there's no
346 346 # need to look for options
347 347 argv = arg_split(arg_str,posix)
348 348 # Do regular option processing
349 349 try:
350 350 opts,args = getopt(argv,opt_str,*long_opts)
351 351 except GetoptError,e:
352 352 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
353 353 " ".join(long_opts)))
354 354 for o,a in opts:
355 355 if o.startswith('--'):
356 356 o = o[2:]
357 357 else:
358 358 o = o[1:]
359 359 try:
360 360 odict[o].append(a)
361 361 except AttributeError:
362 362 odict[o] = [odict[o],a]
363 363 except KeyError:
364 364 if list_all:
365 365 odict[o] = [a]
366 366 else:
367 367 odict[o] = a
368 368
369 369 # Prepare opts,args for return
370 370 opts = Struct(odict)
371 371 if mode == 'string':
372 372 args = ' '.join(args)
373 373
374 374 return opts,args
375 375
376 376 #......................................................................
377 377 # And now the actual magic functions
378 378
379 379 # Functions for IPython shell work (vars,funcs, config, etc)
380 380 def magic_lsmagic(self, parameter_s = ''):
381 381 """List currently available magic functions."""
382 382 mesc = self.shell.ESC_MAGIC
383 383 print 'Available magic functions:\n'+mesc+\
384 384 (' '+mesc).join(self.lsmagic())
385 385 print '\n' + Magic.auto_status[self.shell.rc.automagic]
386 386 return None
387 387
388 388 def magic_magic(self, parameter_s = ''):
389 389 """Print information about the magic function system."""
390 390
391 391 mode = ''
392 392 try:
393 393 if parameter_s.split()[0] == '-latex':
394 394 mode = 'latex'
395 395 if parameter_s.split()[0] == '-brief':
396 396 mode = 'brief'
397 397 except:
398 398 pass
399 399
400 400 magic_docs = []
401 401 for fname in self.lsmagic():
402 402 mname = 'magic_' + fname
403 403 for space in (Magic,self,self.__class__):
404 404 try:
405 405 fn = space.__dict__[mname]
406 406 except KeyError:
407 407 pass
408 408 else:
409 409 break
410 410 if mode == 'brief':
411 411 # only first line
412 412 fndoc = fn.__doc__.split('\n',1)[0]
413 413 else:
414 414 fndoc = fn.__doc__
415 415
416 416 magic_docs.append('%s%s:\n\t%s\n' %(self.shell.ESC_MAGIC,
417 417 fname,fndoc))
418 418 magic_docs = ''.join(magic_docs)
419 419
420 420 if mode == 'latex':
421 421 print self.format_latex(magic_docs)
422 422 return
423 423 else:
424 424 magic_docs = self.format_screen(magic_docs)
425 425 if mode == 'brief':
426 426 return magic_docs
427 427
428 428 outmsg = """
429 429 IPython's 'magic' functions
430 430 ===========================
431 431
432 432 The magic function system provides a series of functions which allow you to
433 433 control the behavior of IPython itself, plus a lot of system-type
434 434 features. All these functions are prefixed with a % character, but parameters
435 435 are given without parentheses or quotes.
436 436
437 437 NOTE: If you have 'automagic' enabled (via the command line option or with the
438 438 %automagic function), you don't need to type in the % explicitly. By default,
439 439 IPython ships with automagic on, so you should only rarely need the % escape.
440 440
441 441 Example: typing '%cd mydir' (without the quotes) changes you working directory
442 442 to 'mydir', if it exists.
443 443
444 444 You can define your own magic functions to extend the system. See the supplied
445 445 ipythonrc and example-magic.py files for details (in your ipython
446 446 configuration directory, typically $HOME/.ipython/).
447 447
448 448 You can also define your own aliased names for magic functions. In your
449 449 ipythonrc file, placing a line like:
450 450
451 451 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
452 452
453 453 will define %pf as a new name for %profile.
454 454
455 455 You can also call magics in code using the ipmagic() function, which IPython
456 456 automatically adds to the builtin namespace. Type 'ipmagic?' for details.
457 457
458 458 For a list of the available magic functions, use %lsmagic. For a description
459 459 of any of them, type %magic_name?, e.g. '%cd?'.
460 460
461 461 Currently the magic system has the following functions:\n"""
462 462
463 463 mesc = self.shell.ESC_MAGIC
464 464 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
465 465 "\n\n%s%s\n\n%s" % (outmsg,
466 466 magic_docs,mesc,mesc,
467 467 (' '+mesc).join(self.lsmagic()),
468 468 Magic.auto_status[self.shell.rc.automagic] ) )
469 469
470 470 page(outmsg,screen_lines=self.shell.rc.screen_length)
471 471
472 472
473 473 def magic_autoindent(self, parameter_s = ''):
474 474 """Toggle autoindent on/off (if available)."""
475 475
476 476 self.shell.set_autoindent()
477 477 print "Automatic indentation is:",['OFF','ON'][self.shell.autoindent]
478 478
479 479
480 480 def magic_automagic(self, parameter_s = ''):
481 481 """Make magic functions callable without having to type the initial %.
482 482
483 483 Without argumentsl toggles on/off (when off, you must call it as
484 484 %automagic, of course). With arguments it sets the value, and you can
485 485 use any of (case insensitive):
486 486
487 487 - on,1,True: to activate
488 488
489 489 - off,0,False: to deactivate.
490 490
491 491 Note that magic functions have lowest priority, so if there's a
492 492 variable whose name collides with that of a magic fn, automagic won't
493 493 work for that function (you get the variable instead). However, if you
494 494 delete the variable (del var), the previously shadowed magic function
495 495 becomes visible to automagic again."""
496 496
497 497 rc = self.shell.rc
498 498 arg = parameter_s.lower()
499 499 if parameter_s in ('on','1','true'):
500 500 rc.automagic = True
501 501 elif parameter_s in ('off','0','false'):
502 502 rc.automagic = False
503 503 else:
504 504 rc.automagic = not rc.automagic
505 505 print '\n' + Magic.auto_status[rc.automagic]
506 506
507 507
508 508 def magic_autocall(self, parameter_s = ''):
509 509 """Make functions callable without having to type parentheses.
510 510
511 511 Usage:
512 512
513 513 %autocall [mode]
514 514
515 515 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
516 516 value is toggled on and off (remembering the previous state).
517 517
518 518 In more detail, these values mean:
519 519
520 520 0 -> fully disabled
521 521
522 522 1 -> active, but do not apply if there are no arguments on the line.
523 523
524 524 In this mode, you get:
525 525
526 526 In [1]: callable
527 527 Out[1]: <built-in function callable>
528 528
529 529 In [2]: callable 'hello'
530 530 ------> callable('hello')
531 531 Out[2]: False
532 532
533 533 2 -> Active always. Even if no arguments are present, the callable
534 534 object is called:
535 535
536 536 In [4]: callable
537 537 ------> callable()
538 538
539 539 Note that even with autocall off, you can still use '/' at the start of
540 540 a line to treat the first argument on the command line as a function
541 541 and add parentheses to it:
542 542
543 543 In [8]: /str 43
544 544 ------> str(43)
545 545 Out[8]: '43'
546 546 """
547 547
548 548 rc = self.shell.rc
549 549
550 550 if parameter_s:
551 551 arg = int(parameter_s)
552 552 else:
553 553 arg = 'toggle'
554 554
555 555 if not arg in (0,1,2,'toggle'):
556 556 error('Valid modes: (0->Off, 1->Smart, 2->Full')
557 557 return
558 558
559 559 if arg in (0,1,2):
560 560 rc.autocall = arg
561 561 else: # toggle
562 562 if rc.autocall:
563 563 self._magic_state.autocall_save = rc.autocall
564 564 rc.autocall = 0
565 565 else:
566 566 try:
567 567 rc.autocall = self._magic_state.autocall_save
568 568 except AttributeError:
569 569 rc.autocall = self._magic_state.autocall_save = 1
570 570
571 571 print "Automatic calling is:",['OFF','Smart','Full'][rc.autocall]
572 572
573 573 def magic_system_verbose(self, parameter_s = ''):
574 574 """Set verbose printing of system calls.
575 575
576 576 If called without an argument, act as a toggle"""
577 577
578 578 if parameter_s:
579 579 val = bool(eval(parameter_s))
580 580 else:
581 581 val = None
582 582
583 583 self.shell.rc_set_toggle('system_verbose',val)
584 584 print "System verbose printing is:",\
585 585 ['OFF','ON'][self.shell.rc.system_verbose]
586 586
587 587
588 588 def magic_page(self, parameter_s=''):
589 589 """Pretty print the object and display it through a pager.
590 590
591 591 %page [options] OBJECT
592 592
593 593 If no object is given, use _ (last output).
594 594
595 595 Options:
596 596
597 597 -r: page str(object), don't pretty-print it."""
598 598
599 599 # After a function contributed by Olivier Aubert, slightly modified.
600 600
601 601 # Process options/args
602 602 opts,args = self.parse_options(parameter_s,'r')
603 603 raw = 'r' in opts
604 604
605 605 oname = args and args or '_'
606 606 info = self._ofind(oname)
607 607 if info['found']:
608 608 txt = (raw and str or pformat)( info['obj'] )
609 609 page(txt)
610 610 else:
611 611 print 'Object `%s` not found' % oname
612 612
613 613 def magic_profile(self, parameter_s=''):
614 614 """Print your currently active IPyhton profile."""
615 615 if self.shell.rc.profile:
616 616 printpl('Current IPython profile: $self.shell.rc.profile.')
617 617 else:
618 618 print 'No profile active.'
619 619
620 620 def magic_pinfo(self, parameter_s='', namespaces=None):
621 621 """Provide detailed information about an object.
622 622
623 623 '%pinfo object' is just a synonym for object? or ?object."""
624 624
625 625 #print 'pinfo par: <%s>' % parameter_s # dbg
626 626
627 627
628 628 # detail_level: 0 -> obj? , 1 -> obj??
629 629 detail_level = 0
630 630 # We need to detect if we got called as 'pinfo pinfo foo', which can
631 631 # happen if the user types 'pinfo foo?' at the cmd line.
632 632 pinfo,qmark1,oname,qmark2 = \
633 633 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
634 634 if pinfo or qmark1 or qmark2:
635 635 detail_level = 1
636 636 if "*" in oname:
637 637 self.magic_psearch(oname)
638 638 else:
639 639 self._inspect('pinfo', oname, detail_level=detail_level,
640 640 namespaces=namespaces)
641 641
642 642 def magic_pdef(self, parameter_s='', namespaces=None):
643 643 """Print the definition header for any callable object.
644 644
645 645 If the object is a class, print the constructor information."""
646 646 self._inspect('pdef',parameter_s, namespaces)
647 647
648 648 def magic_pdoc(self, parameter_s='', namespaces=None):
649 649 """Print the docstring for an object.
650 650
651 651 If the given object is a class, it will print both the class and the
652 652 constructor docstrings."""
653 653 self._inspect('pdoc',parameter_s, namespaces)
654 654
655 655 def magic_psource(self, parameter_s='', namespaces=None):
656 656 """Print (or run through pager) the source code for an object."""
657 657 self._inspect('psource',parameter_s, namespaces)
658 658
659 659 def magic_pfile(self, parameter_s=''):
660 660 """Print (or run through pager) the file where an object is defined.
661 661
662 662 The file opens at the line where the object definition begins. IPython
663 663 will honor the environment variable PAGER if set, and otherwise will
664 664 do its best to print the file in a convenient form.
665 665
666 666 If the given argument is not an object currently defined, IPython will
667 667 try to interpret it as a filename (automatically adding a .py extension
668 668 if needed). You can thus use %pfile as a syntax highlighting code
669 669 viewer."""
670 670
671 671 # first interpret argument as an object name
672 672 out = self._inspect('pfile',parameter_s)
673 673 # if not, try the input as a filename
674 674 if out == 'not found':
675 675 try:
676 676 filename = get_py_filename(parameter_s)
677 677 except IOError,msg:
678 678 print msg
679 679 return
680 680 page(self.shell.inspector.format(file(filename).read()))
681 681
682 682 def _inspect(self,meth,oname,namespaces=None,**kw):
683 683 """Generic interface to the inspector system.
684 684
685 685 This function is meant to be called by pdef, pdoc & friends."""
686 686
687 687 #oname = oname.strip()
688 688 #print '1- oname: <%r>' % oname # dbg
689 689 try:
690 690 oname = oname.strip().encode('ascii')
691 691 #print '2- oname: <%r>' % oname # dbg
692 692 except UnicodeEncodeError:
693 693 print 'Python identifiers can only contain ascii characters.'
694 694 return 'not found'
695 695
696 696 info = Struct(self._ofind(oname, namespaces))
697 697
698 698 if info.found:
699 699 try:
700 700 IPython.generics.inspect_object(info.obj)
701 701 return
702 702 except IPython.ipapi.TryNext:
703 703 pass
704 704 # Get the docstring of the class property if it exists.
705 705 path = oname.split('.')
706 706 root = '.'.join(path[:-1])
707 707 if info.parent is not None:
708 708 try:
709 709 target = getattr(info.parent, '__class__')
710 710 # The object belongs to a class instance.
711 711 try:
712 712 target = getattr(target, path[-1])
713 713 # The class defines the object.
714 714 if isinstance(target, property):
715 715 oname = root + '.__class__.' + path[-1]
716 716 info = Struct(self._ofind(oname))
717 717 except AttributeError: pass
718 718 except AttributeError: pass
719 719
720 720 pmethod = getattr(self.shell.inspector,meth)
721 721 formatter = info.ismagic and self.format_screen or None
722 722 if meth == 'pdoc':
723 723 pmethod(info.obj,oname,formatter)
724 724 elif meth == 'pinfo':
725 725 pmethod(info.obj,oname,formatter,info,**kw)
726 726 else:
727 727 pmethod(info.obj,oname)
728 728 else:
729 729 print 'Object `%s` not found.' % oname
730 730 return 'not found' # so callers can take other action
731 731
732 732 def magic_psearch(self, parameter_s=''):
733 733 """Search for object in namespaces by wildcard.
734 734
735 735 %psearch [options] PATTERN [OBJECT TYPE]
736 736
737 737 Note: ? can be used as a synonym for %psearch, at the beginning or at
738 738 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
739 739 rest of the command line must be unchanged (options come first), so
740 740 for example the following forms are equivalent
741 741
742 742 %psearch -i a* function
743 743 -i a* function?
744 744 ?-i a* function
745 745
746 746 Arguments:
747 747
748 748 PATTERN
749 749
750 750 where PATTERN is a string containing * as a wildcard similar to its
751 751 use in a shell. The pattern is matched in all namespaces on the
752 752 search path. By default objects starting with a single _ are not
753 753 matched, many IPython generated objects have a single
754 754 underscore. The default is case insensitive matching. Matching is
755 755 also done on the attributes of objects and not only on the objects
756 756 in a module.
757 757
758 758 [OBJECT TYPE]
759 759
760 760 Is the name of a python type from the types module. The name is
761 761 given in lowercase without the ending type, ex. StringType is
762 762 written string. By adding a type here only objects matching the
763 763 given type are matched. Using all here makes the pattern match all
764 764 types (this is the default).
765 765
766 766 Options:
767 767
768 768 -a: makes the pattern match even objects whose names start with a
769 769 single underscore. These names are normally ommitted from the
770 770 search.
771 771
772 772 -i/-c: make the pattern case insensitive/sensitive. If neither of
773 773 these options is given, the default is read from your ipythonrc
774 774 file. The option name which sets this value is
775 775 'wildcards_case_sensitive'. If this option is not specified in your
776 776 ipythonrc file, IPython's internal default is to do a case sensitive
777 777 search.
778 778
779 779 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
780 780 specifiy can be searched in any of the following namespaces:
781 781 'builtin', 'user', 'user_global','internal', 'alias', where
782 782 'builtin' and 'user' are the search defaults. Note that you should
783 783 not use quotes when specifying namespaces.
784 784
785 785 'Builtin' contains the python module builtin, 'user' contains all
786 786 user data, 'alias' only contain the shell aliases and no python
787 787 objects, 'internal' contains objects used by IPython. The
788 788 'user_global' namespace is only used by embedded IPython instances,
789 789 and it contains module-level globals. You can add namespaces to the
790 790 search with -s or exclude them with -e (these options can be given
791 791 more than once).
792 792
793 793 Examples:
794 794
795 795 %psearch a* -> objects beginning with an a
796 796 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
797 797 %psearch a* function -> all functions beginning with an a
798 798 %psearch re.e* -> objects beginning with an e in module re
799 799 %psearch r*.e* -> objects that start with e in modules starting in r
800 800 %psearch r*.* string -> all strings in modules beginning with r
801 801
802 802 Case sensitve search:
803 803
804 804 %psearch -c a* list all object beginning with lower case a
805 805
806 806 Show objects beginning with a single _:
807 807
808 808 %psearch -a _* list objects beginning with a single underscore"""
809 809 try:
810 810 parameter_s = parameter_s.encode('ascii')
811 811 except UnicodeEncodeError:
812 812 print 'Python identifiers can only contain ascii characters.'
813 813 return
814 814
815 815 # default namespaces to be searched
816 816 def_search = ['user','builtin']
817 817
818 818 # Process options/args
819 819 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
820 820 opt = opts.get
821 821 shell = self.shell
822 822 psearch = shell.inspector.psearch
823 823
824 824 # select case options
825 825 if opts.has_key('i'):
826 826 ignore_case = True
827 827 elif opts.has_key('c'):
828 828 ignore_case = False
829 829 else:
830 830 ignore_case = not shell.rc.wildcards_case_sensitive
831 831
832 832 # Build list of namespaces to search from user options
833 833 def_search.extend(opt('s',[]))
834 834 ns_exclude = ns_exclude=opt('e',[])
835 835 ns_search = [nm for nm in def_search if nm not in ns_exclude]
836 836
837 837 # Call the actual search
838 838 try:
839 839 psearch(args,shell.ns_table,ns_search,
840 840 show_all=opt('a'),ignore_case=ignore_case)
841 841 except:
842 842 shell.showtraceback()
843 843
844 844 def magic_who_ls(self, parameter_s=''):
845 845 """Return a sorted list of all interactive variables.
846 846
847 847 If arguments are given, only variables of types matching these
848 848 arguments are returned."""
849 849
850 850 user_ns = self.shell.user_ns
851 851 internal_ns = self.shell.internal_ns
852 852 user_config_ns = self.shell.user_config_ns
853 853 out = []
854 854 typelist = parameter_s.split()
855 855
856 856 for i in user_ns:
857 857 if not (i.startswith('_') or i.startswith('_i')) \
858 858 and not (i in internal_ns or i in user_config_ns):
859 859 if typelist:
860 860 if type(user_ns[i]).__name__ in typelist:
861 861 out.append(i)
862 862 else:
863 863 out.append(i)
864 864 out.sort()
865 865 return out
866 866
867 867 def magic_who(self, parameter_s=''):
868 868 """Print all interactive variables, with some minimal formatting.
869 869
870 870 If any arguments are given, only variables whose type matches one of
871 871 these are printed. For example:
872 872
873 873 %who function str
874 874
875 875 will only list functions and strings, excluding all other types of
876 876 variables. To find the proper type names, simply use type(var) at a
877 877 command line to see how python prints type names. For example:
878 878
879 879 In [1]: type('hello')\\
880 880 Out[1]: <type 'str'>
881 881
882 882 indicates that the type name for strings is 'str'.
883 883
884 884 %who always excludes executed names loaded through your configuration
885 885 file and things which are internal to IPython.
886 886
887 887 This is deliberate, as typically you may load many modules and the
888 888 purpose of %who is to show you only what you've manually defined."""
889 889
890 890 varlist = self.magic_who_ls(parameter_s)
891 891 if not varlist:
892 892 if parameter_s:
893 893 print 'No variables match your requested type.'
894 894 else:
895 895 print 'Interactive namespace is empty.'
896 896 return
897 897
898 898 # if we have variables, move on...
899 899 count = 0
900 900 for i in varlist:
901 901 print i+'\t',
902 902 count += 1
903 903 if count > 8:
904 904 count = 0
905 905 print
906 906 print
907 907
908 908 def magic_whos(self, parameter_s=''):
909 909 """Like %who, but gives some extra information about each variable.
910 910
911 911 The same type filtering of %who can be applied here.
912 912
913 913 For all variables, the type is printed. Additionally it prints:
914 914
915 915 - For {},[],(): their length.
916 916
917 917 - For numpy and Numeric arrays, a summary with shape, number of
918 918 elements, typecode and size in memory.
919 919
920 920 - Everything else: a string representation, snipping their middle if
921 921 too long."""
922 922
923 923 varnames = self.magic_who_ls(parameter_s)
924 924 if not varnames:
925 925 if parameter_s:
926 926 print 'No variables match your requested type.'
927 927 else:
928 928 print 'Interactive namespace is empty.'
929 929 return
930 930
931 931 # if we have variables, move on...
932 932
933 933 # for these types, show len() instead of data:
934 934 seq_types = [types.DictType,types.ListType,types.TupleType]
935 935
936 936 # for numpy/Numeric arrays, display summary info
937 937 try:
938 938 import numpy
939 939 except ImportError:
940 940 ndarray_type = None
941 941 else:
942 942 ndarray_type = numpy.ndarray.__name__
943 943 try:
944 944 import Numeric
945 945 except ImportError:
946 946 array_type = None
947 947 else:
948 948 array_type = Numeric.ArrayType.__name__
949 949
950 950 # Find all variable names and types so we can figure out column sizes
951 951 def get_vars(i):
952 952 return self.shell.user_ns[i]
953 953
954 954 # some types are well known and can be shorter
955 955 abbrevs = {'IPython.macro.Macro' : 'Macro'}
956 956 def type_name(v):
957 957 tn = type(v).__name__
958 958 return abbrevs.get(tn,tn)
959 959
960 960 varlist = map(get_vars,varnames)
961 961
962 962 typelist = []
963 963 for vv in varlist:
964 964 tt = type_name(vv)
965 965
966 966 if tt=='instance':
967 967 typelist.append( abbrevs.get(str(vv.__class__),
968 968 str(vv.__class__)))
969 969 else:
970 970 typelist.append(tt)
971 971
972 972 # column labels and # of spaces as separator
973 973 varlabel = 'Variable'
974 974 typelabel = 'Type'
975 975 datalabel = 'Data/Info'
976 976 colsep = 3
977 977 # variable format strings
978 978 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
979 979 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
980 980 aformat = "%s: %s elems, type `%s`, %s bytes"
981 981 # find the size of the columns to format the output nicely
982 982 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
983 983 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
984 984 # table header
985 985 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
986 986 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
987 987 # and the table itself
988 988 kb = 1024
989 989 Mb = 1048576 # kb**2
990 990 for vname,var,vtype in zip(varnames,varlist,typelist):
991 991 print itpl(vformat),
992 992 if vtype in seq_types:
993 993 print len(var)
994 994 elif vtype in [array_type,ndarray_type]:
995 995 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
996 996 if vtype==ndarray_type:
997 997 # numpy
998 998 vsize = var.size
999 999 vbytes = vsize*var.itemsize
1000 1000 vdtype = var.dtype
1001 1001 else:
1002 1002 # Numeric
1003 1003 vsize = Numeric.size(var)
1004 1004 vbytes = vsize*var.itemsize()
1005 1005 vdtype = var.typecode()
1006 1006
1007 1007 if vbytes < 100000:
1008 1008 print aformat % (vshape,vsize,vdtype,vbytes)
1009 1009 else:
1010 1010 print aformat % (vshape,vsize,vdtype,vbytes),
1011 1011 if vbytes < Mb:
1012 1012 print '(%s kb)' % (vbytes/kb,)
1013 1013 else:
1014 1014 print '(%s Mb)' % (vbytes/Mb,)
1015 1015 else:
1016 1016 try:
1017 1017 vstr = str(var)
1018 1018 except UnicodeEncodeError:
1019 1019 vstr = unicode(var).encode(sys.getdefaultencoding(),
1020 1020 'backslashreplace')
1021 1021 vstr = vstr.replace('\n','\\n')
1022 1022 if len(vstr) < 50:
1023 1023 print vstr
1024 1024 else:
1025 1025 printpl(vfmt_short)
1026 1026
1027 1027 def magic_reset(self, parameter_s=''):
1028 1028 """Resets the namespace by removing all names defined by the user.
1029 1029
1030 1030 Input/Output history are left around in case you need them."""
1031 1031
1032 1032 ans = self.shell.ask_yes_no(
1033 1033 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1034 1034 if not ans:
1035 1035 print 'Nothing done.'
1036 1036 return
1037 1037 user_ns = self.shell.user_ns
1038 1038 for i in self.magic_who_ls():
1039 1039 del(user_ns[i])
1040 1040
1041 1041 # Also flush the private list of module references kept for script
1042 1042 # execution protection
1043 1043 self.shell._user_main_modules[:] = []
1044 1044
1045 1045 def magic_logstart(self,parameter_s=''):
1046 1046 """Start logging anywhere in a session.
1047 1047
1048 1048 %logstart [-o|-r|-t] [log_name [log_mode]]
1049 1049
1050 1050 If no name is given, it defaults to a file named 'ipython_log.py' in your
1051 1051 current directory, in 'rotate' mode (see below).
1052 1052
1053 1053 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1054 1054 history up to that point and then continues logging.
1055 1055
1056 1056 %logstart takes a second optional parameter: logging mode. This can be one
1057 1057 of (note that the modes are given unquoted):\\
1058 1058 append: well, that says it.\\
1059 1059 backup: rename (if exists) to name~ and start name.\\
1060 1060 global: single logfile in your home dir, appended to.\\
1061 1061 over : overwrite existing log.\\
1062 1062 rotate: create rotating logs name.1~, name.2~, etc.
1063 1063
1064 1064 Options:
1065 1065
1066 1066 -o: log also IPython's output. In this mode, all commands which
1067 1067 generate an Out[NN] prompt are recorded to the logfile, right after
1068 1068 their corresponding input line. The output lines are always
1069 1069 prepended with a '#[Out]# ' marker, so that the log remains valid
1070 1070 Python code.
1071 1071
1072 1072 Since this marker is always the same, filtering only the output from
1073 1073 a log is very easy, using for example a simple awk call:
1074 1074
1075 1075 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1076 1076
1077 1077 -r: log 'raw' input. Normally, IPython's logs contain the processed
1078 1078 input, so that user lines are logged in their final form, converted
1079 1079 into valid Python. For example, %Exit is logged as
1080 1080 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1081 1081 exactly as typed, with no transformations applied.
1082 1082
1083 1083 -t: put timestamps before each input line logged (these are put in
1084 1084 comments)."""
1085 1085
1086 1086 opts,par = self.parse_options(parameter_s,'ort')
1087 1087 log_output = 'o' in opts
1088 1088 log_raw_input = 'r' in opts
1089 1089 timestamp = 't' in opts
1090 1090
1091 1091 rc = self.shell.rc
1092 1092 logger = self.shell.logger
1093 1093
1094 1094 # if no args are given, the defaults set in the logger constructor by
1095 1095 # ipytohn remain valid
1096 1096 if par:
1097 1097 try:
1098 1098 logfname,logmode = par.split()
1099 1099 except:
1100 1100 logfname = par
1101 1101 logmode = 'backup'
1102 1102 else:
1103 1103 logfname = logger.logfname
1104 1104 logmode = logger.logmode
1105 1105 # put logfname into rc struct as if it had been called on the command
1106 1106 # line, so it ends up saved in the log header Save it in case we need
1107 1107 # to restore it...
1108 1108 old_logfile = rc.opts.get('logfile','')
1109 1109 if logfname:
1110 1110 logfname = os.path.expanduser(logfname)
1111 1111 rc.opts.logfile = logfname
1112 1112 loghead = self.shell.loghead_tpl % (rc.opts,rc.args)
1113 1113 try:
1114 1114 started = logger.logstart(logfname,loghead,logmode,
1115 1115 log_output,timestamp,log_raw_input)
1116 1116 except:
1117 1117 rc.opts.logfile = old_logfile
1118 1118 warn("Couldn't start log: %s" % sys.exc_info()[1])
1119 1119 else:
1120 1120 # log input history up to this point, optionally interleaving
1121 1121 # output if requested
1122 1122
1123 1123 if timestamp:
1124 1124 # disable timestamping for the previous history, since we've
1125 1125 # lost those already (no time machine here).
1126 1126 logger.timestamp = False
1127 1127
1128 1128 if log_raw_input:
1129 1129 input_hist = self.shell.input_hist_raw
1130 1130 else:
1131 1131 input_hist = self.shell.input_hist
1132 1132
1133 1133 if log_output:
1134 1134 log_write = logger.log_write
1135 1135 output_hist = self.shell.output_hist
1136 1136 for n in range(1,len(input_hist)-1):
1137 1137 log_write(input_hist[n].rstrip())
1138 1138 if n in output_hist:
1139 1139 log_write(repr(output_hist[n]),'output')
1140 1140 else:
1141 1141 logger.log_write(input_hist[1:])
1142 1142 if timestamp:
1143 1143 # re-enable timestamping
1144 1144 logger.timestamp = True
1145 1145
1146 1146 print ('Activating auto-logging. '
1147 1147 'Current session state plus future input saved.')
1148 1148 logger.logstate()
1149 1149
1150 1150 def magic_logstop(self,parameter_s=''):
1151 1151 """Fully stop logging and close log file.
1152 1152
1153 1153 In order to start logging again, a new %logstart call needs to be made,
1154 1154 possibly (though not necessarily) with a new filename, mode and other
1155 1155 options."""
1156 1156 self.logger.logstop()
1157 1157
1158 1158 def magic_logoff(self,parameter_s=''):
1159 1159 """Temporarily stop logging.
1160 1160
1161 1161 You must have previously started logging."""
1162 1162 self.shell.logger.switch_log(0)
1163 1163
1164 1164 def magic_logon(self,parameter_s=''):
1165 1165 """Restart logging.
1166 1166
1167 1167 This function is for restarting logging which you've temporarily
1168 1168 stopped with %logoff. For starting logging for the first time, you
1169 1169 must use the %logstart function, which allows you to specify an
1170 1170 optional log filename."""
1171 1171
1172 1172 self.shell.logger.switch_log(1)
1173 1173
1174 1174 def magic_logstate(self,parameter_s=''):
1175 1175 """Print the status of the logging system."""
1176 1176
1177 1177 self.shell.logger.logstate()
1178 1178
1179 1179 def magic_pdb(self, parameter_s=''):
1180 1180 """Control the automatic calling of the pdb interactive debugger.
1181 1181
1182 1182 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1183 1183 argument it works as a toggle.
1184 1184
1185 1185 When an exception is triggered, IPython can optionally call the
1186 1186 interactive pdb debugger after the traceback printout. %pdb toggles
1187 1187 this feature on and off.
1188 1188
1189 1189 The initial state of this feature is set in your ipythonrc
1190 1190 configuration file (the variable is called 'pdb').
1191 1191
1192 1192 If you want to just activate the debugger AFTER an exception has fired,
1193 1193 without having to type '%pdb on' and rerunning your code, you can use
1194 1194 the %debug magic."""
1195 1195
1196 1196 par = parameter_s.strip().lower()
1197 1197
1198 1198 if par:
1199 1199 try:
1200 1200 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1201 1201 except KeyError:
1202 1202 print ('Incorrect argument. Use on/1, off/0, '
1203 1203 'or nothing for a toggle.')
1204 1204 return
1205 1205 else:
1206 1206 # toggle
1207 1207 new_pdb = not self.shell.call_pdb
1208 1208
1209 1209 # set on the shell
1210 1210 self.shell.call_pdb = new_pdb
1211 1211 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1212 1212
1213 1213 def magic_debug(self, parameter_s=''):
1214 1214 """Activate the interactive debugger in post-mortem mode.
1215 1215
1216 1216 If an exception has just occurred, this lets you inspect its stack
1217 1217 frames interactively. Note that this will always work only on the last
1218 1218 traceback that occurred, so you must call this quickly after an
1219 1219 exception that you wish to inspect has fired, because if another one
1220 1220 occurs, it clobbers the previous one.
1221 1221
1222 1222 If you want IPython to automatically do this on every exception, see
1223 1223 the %pdb magic for more details.
1224 1224 """
1225 1225
1226 1226 self.shell.debugger(force=True)
1227 1227
1228 1228 def magic_prun(self, parameter_s ='',user_mode=1,
1229 1229 opts=None,arg_lst=None,prog_ns=None):
1230 1230
1231 1231 """Run a statement through the python code profiler.
1232 1232
1233 1233 Usage:\\
1234 1234 %prun [options] statement
1235 1235
1236 1236 The given statement (which doesn't require quote marks) is run via the
1237 1237 python profiler in a manner similar to the profile.run() function.
1238 1238 Namespaces are internally managed to work correctly; profile.run
1239 1239 cannot be used in IPython because it makes certain assumptions about
1240 1240 namespaces which do not hold under IPython.
1241 1241
1242 1242 Options:
1243 1243
1244 1244 -l <limit>: you can place restrictions on what or how much of the
1245 1245 profile gets printed. The limit value can be:
1246 1246
1247 1247 * A string: only information for function names containing this string
1248 1248 is printed.
1249 1249
1250 1250 * An integer: only these many lines are printed.
1251 1251
1252 1252 * A float (between 0 and 1): this fraction of the report is printed
1253 1253 (for example, use a limit of 0.4 to see the topmost 40% only).
1254 1254
1255 1255 You can combine several limits with repeated use of the option. For
1256 1256 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1257 1257 information about class constructors.
1258 1258
1259 1259 -r: return the pstats.Stats object generated by the profiling. This
1260 1260 object has all the information about the profile in it, and you can
1261 1261 later use it for further analysis or in other functions.
1262 1262
1263 1263 -s <key>: sort profile by given key. You can provide more than one key
1264 1264 by using the option several times: '-s key1 -s key2 -s key3...'. The
1265 1265 default sorting key is 'time'.
1266 1266
1267 1267 The following is copied verbatim from the profile documentation
1268 1268 referenced below:
1269 1269
1270 1270 When more than one key is provided, additional keys are used as
1271 1271 secondary criteria when the there is equality in all keys selected
1272 1272 before them.
1273 1273
1274 1274 Abbreviations can be used for any key names, as long as the
1275 1275 abbreviation is unambiguous. The following are the keys currently
1276 1276 defined:
1277 1277
1278 1278 Valid Arg Meaning\\
1279 1279 "calls" call count\\
1280 1280 "cumulative" cumulative time\\
1281 1281 "file" file name\\
1282 1282 "module" file name\\
1283 1283 "pcalls" primitive call count\\
1284 1284 "line" line number\\
1285 1285 "name" function name\\
1286 1286 "nfl" name/file/line\\
1287 1287 "stdname" standard name\\
1288 1288 "time" internal time
1289 1289
1290 1290 Note that all sorts on statistics are in descending order (placing
1291 1291 most time consuming items first), where as name, file, and line number
1292 1292 searches are in ascending order (i.e., alphabetical). The subtle
1293 1293 distinction between "nfl" and "stdname" is that the standard name is a
1294 1294 sort of the name as printed, which means that the embedded line
1295 1295 numbers get compared in an odd way. For example, lines 3, 20, and 40
1296 1296 would (if the file names were the same) appear in the string order
1297 1297 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1298 1298 line numbers. In fact, sort_stats("nfl") is the same as
1299 1299 sort_stats("name", "file", "line").
1300 1300
1301 1301 -T <filename>: save profile results as shown on screen to a text
1302 1302 file. The profile is still shown on screen.
1303 1303
1304 1304 -D <filename>: save (via dump_stats) profile statistics to given
1305 1305 filename. This data is in a format understod by the pstats module, and
1306 1306 is generated by a call to the dump_stats() method of profile
1307 1307 objects. The profile is still shown on screen.
1308 1308
1309 1309 If you want to run complete programs under the profiler's control, use
1310 1310 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1311 1311 contains profiler specific options as described here.
1312 1312
1313 1313 You can read the complete documentation for the profile module with:\\
1314 1314 In [1]: import profile; profile.help() """
1315 1315
1316 1316 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1317 1317 # protect user quote marks
1318 1318 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1319 1319
1320 1320 if user_mode: # regular user call
1321 1321 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1322 1322 list_all=1)
1323 1323 namespace = self.shell.user_ns
1324 1324 else: # called to run a program by %run -p
1325 1325 try:
1326 1326 filename = get_py_filename(arg_lst[0])
1327 1327 except IOError,msg:
1328 1328 error(msg)
1329 1329 return
1330 1330
1331 1331 arg_str = 'execfile(filename,prog_ns)'
1332 1332 namespace = locals()
1333 1333
1334 1334 opts.merge(opts_def)
1335 1335
1336 1336 prof = profile.Profile()
1337 1337 try:
1338 1338 prof = prof.runctx(arg_str,namespace,namespace)
1339 1339 sys_exit = ''
1340 1340 except SystemExit:
1341 1341 sys_exit = """*** SystemExit exception caught in code being profiled."""
1342 1342
1343 1343 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1344 1344
1345 1345 lims = opts.l
1346 1346 if lims:
1347 1347 lims = [] # rebuild lims with ints/floats/strings
1348 1348 for lim in opts.l:
1349 1349 try:
1350 1350 lims.append(int(lim))
1351 1351 except ValueError:
1352 1352 try:
1353 1353 lims.append(float(lim))
1354 1354 except ValueError:
1355 1355 lims.append(lim)
1356 1356
1357 1357 # Trap output.
1358 1358 stdout_trap = StringIO()
1359 1359
1360 1360 if hasattr(stats,'stream'):
1361 1361 # In newer versions of python, the stats object has a 'stream'
1362 1362 # attribute to write into.
1363 1363 stats.stream = stdout_trap
1364 1364 stats.print_stats(*lims)
1365 1365 else:
1366 1366 # For older versions, we manually redirect stdout during printing
1367 1367 sys_stdout = sys.stdout
1368 1368 try:
1369 1369 sys.stdout = stdout_trap
1370 1370 stats.print_stats(*lims)
1371 1371 finally:
1372 1372 sys.stdout = sys_stdout
1373 1373
1374 1374 output = stdout_trap.getvalue()
1375 1375 output = output.rstrip()
1376 1376
1377 1377 page(output,screen_lines=self.shell.rc.screen_length)
1378 1378 print sys_exit,
1379 1379
1380 1380 dump_file = opts.D[0]
1381 1381 text_file = opts.T[0]
1382 1382 if dump_file:
1383 1383 prof.dump_stats(dump_file)
1384 1384 print '\n*** Profile stats marshalled to file',\
1385 1385 `dump_file`+'.',sys_exit
1386 1386 if text_file:
1387 1387 pfile = file(text_file,'w')
1388 1388 pfile.write(output)
1389 1389 pfile.close()
1390 1390 print '\n*** Profile printout saved to text file',\
1391 1391 `text_file`+'.',sys_exit
1392 1392
1393 1393 if opts.has_key('r'):
1394 1394 return stats
1395 1395 else:
1396 1396 return None
1397 1397
1398 1398 def magic_run(self, parameter_s ='',runner=None):
1399 1399 """Run the named file inside IPython as a program.
1400 1400
1401 1401 Usage:\\
1402 1402 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1403 1403
1404 1404 Parameters after the filename are passed as command-line arguments to
1405 1405 the program (put in sys.argv). Then, control returns to IPython's
1406 1406 prompt.
1407 1407
1408 1408 This is similar to running at a system prompt:\\
1409 1409 $ python file args\\
1410 1410 but with the advantage of giving you IPython's tracebacks, and of
1411 1411 loading all variables into your interactive namespace for further use
1412 1412 (unless -p is used, see below).
1413 1413
1414 1414 The file is executed in a namespace initially consisting only of
1415 1415 __name__=='__main__' and sys.argv constructed as indicated. It thus
1416 1416 sees its environment as if it were being run as a stand-alone program
1417 1417 (except for sharing global objects such as previously imported
1418 1418 modules). But after execution, the IPython interactive namespace gets
1419 1419 updated with all variables defined in the program (except for __name__
1420 1420 and sys.argv). This allows for very convenient loading of code for
1421 1421 interactive work, while giving each program a 'clean sheet' to run in.
1422 1422
1423 1423 Options:
1424 1424
1425 1425 -n: __name__ is NOT set to '__main__', but to the running file's name
1426 1426 without extension (as python does under import). This allows running
1427 1427 scripts and reloading the definitions in them without calling code
1428 1428 protected by an ' if __name__ == "__main__" ' clause.
1429 1429
1430 1430 -i: run the file in IPython's namespace instead of an empty one. This
1431 1431 is useful if you are experimenting with code written in a text editor
1432 1432 which depends on variables defined interactively.
1433 1433
1434 1434 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1435 1435 being run. This is particularly useful if IPython is being used to
1436 1436 run unittests, which always exit with a sys.exit() call. In such
1437 1437 cases you are interested in the output of the test results, not in
1438 1438 seeing a traceback of the unittest module.
1439 1439
1440 1440 -t: print timing information at the end of the run. IPython will give
1441 1441 you an estimated CPU time consumption for your script, which under
1442 1442 Unix uses the resource module to avoid the wraparound problems of
1443 1443 time.clock(). Under Unix, an estimate of time spent on system tasks
1444 1444 is also given (for Windows platforms this is reported as 0.0).
1445 1445
1446 1446 If -t is given, an additional -N<N> option can be given, where <N>
1447 1447 must be an integer indicating how many times you want the script to
1448 1448 run. The final timing report will include total and per run results.
1449 1449
1450 1450 For example (testing the script uniq_stable.py):
1451 1451
1452 1452 In [1]: run -t uniq_stable
1453 1453
1454 1454 IPython CPU timings (estimated):\\
1455 1455 User : 0.19597 s.\\
1456 1456 System: 0.0 s.\\
1457 1457
1458 1458 In [2]: run -t -N5 uniq_stable
1459 1459
1460 1460 IPython CPU timings (estimated):\\
1461 1461 Total runs performed: 5\\
1462 1462 Times : Total Per run\\
1463 1463 User : 0.910862 s, 0.1821724 s.\\
1464 1464 System: 0.0 s, 0.0 s.
1465 1465
1466 1466 -d: run your program under the control of pdb, the Python debugger.
1467 1467 This allows you to execute your program step by step, watch variables,
1468 1468 etc. Internally, what IPython does is similar to calling:
1469 1469
1470 1470 pdb.run('execfile("YOURFILENAME")')
1471 1471
1472 1472 with a breakpoint set on line 1 of your file. You can change the line
1473 1473 number for this automatic breakpoint to be <N> by using the -bN option
1474 1474 (where N must be an integer). For example:
1475 1475
1476 1476 %run -d -b40 myscript
1477 1477
1478 1478 will set the first breakpoint at line 40 in myscript.py. Note that
1479 1479 the first breakpoint must be set on a line which actually does
1480 1480 something (not a comment or docstring) for it to stop execution.
1481 1481
1482 1482 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1483 1483 first enter 'c' (without qoutes) to start execution up to the first
1484 1484 breakpoint.
1485 1485
1486 1486 Entering 'help' gives information about the use of the debugger. You
1487 1487 can easily see pdb's full documentation with "import pdb;pdb.help()"
1488 1488 at a prompt.
1489 1489
1490 1490 -p: run program under the control of the Python profiler module (which
1491 1491 prints a detailed report of execution times, function calls, etc).
1492 1492
1493 1493 You can pass other options after -p which affect the behavior of the
1494 1494 profiler itself. See the docs for %prun for details.
1495 1495
1496 1496 In this mode, the program's variables do NOT propagate back to the
1497 1497 IPython interactive namespace (because they remain in the namespace
1498 1498 where the profiler executes them).
1499 1499
1500 1500 Internally this triggers a call to %prun, see its documentation for
1501 1501 details on the options available specifically for profiling.
1502 1502
1503 1503 There is one special usage for which the text above doesn't apply:
1504 1504 if the filename ends with .ipy, the file is run as ipython script,
1505 1505 just as if the commands were written on IPython prompt.
1506 1506 """
1507 1507
1508 1508 # get arguments and set sys.argv for program to be run.
1509 1509 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1510 1510 mode='list',list_all=1)
1511 1511
1512 1512 try:
1513 1513 filename = get_py_filename(arg_lst[0])
1514 1514 except IndexError:
1515 1515 warn('you must provide at least a filename.')
1516 1516 print '\n%run:\n',OInspect.getdoc(self.magic_run)
1517 1517 return
1518 1518 except IOError,msg:
1519 1519 error(msg)
1520 1520 return
1521 1521
1522 1522 if filename.lower().endswith('.ipy'):
1523 1523 self.api.runlines(open(filename).read())
1524 1524 return
1525 1525
1526 1526 # Control the response to exit() calls made by the script being run
1527 1527 exit_ignore = opts.has_key('e')
1528 1528
1529 1529 # Make sure that the running script gets a proper sys.argv as if it
1530 1530 # were run from a system shell.
1531 1531 save_argv = sys.argv # save it for later restoring
1532 1532 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1533 1533
1534 1534 if opts.has_key('i'):
1535 1535 # Run in user's interactive namespace
1536 1536 prog_ns = self.shell.user_ns
1537 1537 __name__save = self.shell.user_ns['__name__']
1538 1538 prog_ns['__name__'] = '__main__'
1539 1539 main_mod = FakeModule(prog_ns)
1540 1540 else:
1541 1541 # Run in a fresh, empty namespace
1542 1542 if opts.has_key('n'):
1543 1543 name = os.path.splitext(os.path.basename(filename))[0]
1544 1544 else:
1545 1545 name = '__main__'
1546 1546 main_mod = FakeModule()
1547 1547 prog_ns = main_mod.__dict__
1548 1548 prog_ns['__name__'] = name
1549 1549 # The shell MUST hold a reference to main_mod so after %run exits,
1550 1550 # the python deletion mechanism doesn't zero it out (leaving
1551 1551 # dangling references)
1552 1552 self.shell._user_main_modules.append(main_mod)
1553 1553
1554 1554 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1555 1555 # set the __file__ global in the script's namespace
1556 1556 prog_ns['__file__'] = filename
1557 1557
1558 1558 # pickle fix. See iplib for an explanation. But we need to make sure
1559 1559 # that, if we overwrite __main__, we replace it at the end
1560 1560 if prog_ns['__name__'] == '__main__':
1561 1561 restore_main = sys.modules['__main__']
1562 1562 else:
1563 1563 restore_main = False
1564 1564
1565 1565 sys.modules[prog_ns['__name__']] = main_mod
1566 1566
1567 1567 stats = None
1568 1568 try:
1569 1569 self.shell.savehist()
1570 1570
1571 1571 if opts.has_key('p'):
1572 1572 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1573 1573 else:
1574 1574 if opts.has_key('d'):
1575 1575 deb = Debugger.Pdb(self.shell.rc.colors)
1576 1576 # reset Breakpoint state, which is moronically kept
1577 1577 # in a class
1578 1578 bdb.Breakpoint.next = 1
1579 1579 bdb.Breakpoint.bplist = {}
1580 1580 bdb.Breakpoint.bpbynumber = [None]
1581 1581 # Set an initial breakpoint to stop execution
1582 1582 maxtries = 10
1583 1583 bp = int(opts.get('b',[1])[0])
1584 1584 checkline = deb.checkline(filename,bp)
1585 1585 if not checkline:
1586 1586 for bp in range(bp+1,bp+maxtries+1):
1587 1587 if deb.checkline(filename,bp):
1588 1588 break
1589 1589 else:
1590 1590 msg = ("\nI failed to find a valid line to set "
1591 1591 "a breakpoint\n"
1592 1592 "after trying up to line: %s.\n"
1593 1593 "Please set a valid breakpoint manually "
1594 1594 "with the -b option." % bp)
1595 1595 error(msg)
1596 1596 return
1597 1597 # if we find a good linenumber, set the breakpoint
1598 1598 deb.do_break('%s:%s' % (filename,bp))
1599 1599 # Start file run
1600 1600 print "NOTE: Enter 'c' at the",
1601 1601 print "%s prompt to start your script." % deb.prompt
1602 1602 try:
1603 1603 deb.run('execfile("%s")' % filename,prog_ns)
1604 1604
1605 1605 except:
1606 1606 etype, value, tb = sys.exc_info()
1607 1607 # Skip three frames in the traceback: the %run one,
1608 1608 # one inside bdb.py, and the command-line typed by the
1609 1609 # user (run by exec in pdb itself).
1610 1610 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1611 1611 else:
1612 1612 if runner is None:
1613 1613 runner = self.shell.safe_execfile
1614 1614 if opts.has_key('t'):
1615 1615 # timed execution
1616 1616 try:
1617 1617 nruns = int(opts['N'][0])
1618 1618 if nruns < 1:
1619 1619 error('Number of runs must be >=1')
1620 1620 return
1621 1621 except (KeyError):
1622 1622 nruns = 1
1623 1623 if nruns == 1:
1624 1624 t0 = clock2()
1625 1625 runner(filename,prog_ns,prog_ns,
1626 1626 exit_ignore=exit_ignore)
1627 1627 t1 = clock2()
1628 1628 t_usr = t1[0]-t0[0]
1629 1629 t_sys = t1[1]-t1[1]
1630 1630 print "\nIPython CPU timings (estimated):"
1631 1631 print " User : %10s s." % t_usr
1632 1632 print " System: %10s s." % t_sys
1633 1633 else:
1634 1634 runs = range(nruns)
1635 1635 t0 = clock2()
1636 1636 for nr in runs:
1637 1637 runner(filename,prog_ns,prog_ns,
1638 1638 exit_ignore=exit_ignore)
1639 1639 t1 = clock2()
1640 1640 t_usr = t1[0]-t0[0]
1641 1641 t_sys = t1[1]-t1[1]
1642 1642 print "\nIPython CPU timings (estimated):"
1643 1643 print "Total runs performed:",nruns
1644 1644 print " Times : %10s %10s" % ('Total','Per run')
1645 1645 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1646 1646 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1647 1647
1648 1648 else:
1649 1649 # regular execution
1650 1650 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1651 1651 if opts.has_key('i'):
1652 1652 self.shell.user_ns['__name__'] = __name__save
1653 1653 else:
1654 1654 # update IPython interactive namespace
1655 1655 del prog_ns['__name__']
1656 1656 self.shell.user_ns.update(prog_ns)
1657 1657 finally:
1658 1658 sys.argv = save_argv
1659 1659 if restore_main:
1660 1660 sys.modules['__main__'] = restore_main
1661 1661 self.shell.reloadhist()
1662 1662
1663 1663 return stats
1664 1664
1665 1665 def magic_runlog(self, parameter_s =''):
1666 1666 """Run files as logs.
1667 1667
1668 1668 Usage:\\
1669 1669 %runlog file1 file2 ...
1670 1670
1671 1671 Run the named files (treating them as log files) in sequence inside
1672 1672 the interpreter, and return to the prompt. This is much slower than
1673 1673 %run because each line is executed in a try/except block, but it
1674 1674 allows running files with syntax errors in them.
1675 1675
1676 1676 Normally IPython will guess when a file is one of its own logfiles, so
1677 1677 you can typically use %run even for logs. This shorthand allows you to
1678 1678 force any file to be treated as a log file."""
1679 1679
1680 1680 for f in parameter_s.split():
1681 1681 self.shell.safe_execfile(f,self.shell.user_ns,
1682 1682 self.shell.user_ns,islog=1)
1683 1683
1684 1684 def magic_timeit(self, parameter_s =''):
1685 1685 """Time execution of a Python statement or expression
1686 1686
1687 1687 Usage:\\
1688 1688 %timeit [-n<N> -r<R> [-t|-c]] statement
1689 1689
1690 1690 Time execution of a Python statement or expression using the timeit
1691 1691 module.
1692 1692
1693 1693 Options:
1694 1694 -n<N>: execute the given statement <N> times in a loop. If this value
1695 1695 is not given, a fitting value is chosen.
1696 1696
1697 1697 -r<R>: repeat the loop iteration <R> times and take the best result.
1698 1698 Default: 3
1699 1699
1700 1700 -t: use time.time to measure the time, which is the default on Unix.
1701 1701 This function measures wall time.
1702 1702
1703 1703 -c: use time.clock to measure the time, which is the default on
1704 1704 Windows and measures wall time. On Unix, resource.getrusage is used
1705 1705 instead and returns the CPU user time.
1706 1706
1707 1707 -p<P>: use a precision of <P> digits to display the timing result.
1708 1708 Default: 3
1709 1709
1710 1710
1711 1711 Examples:\\
1712 1712 In [1]: %timeit pass
1713 1713 10000000 loops, best of 3: 53.3 ns per loop
1714 1714
1715 1715 In [2]: u = None
1716 1716
1717 1717 In [3]: %timeit u is None
1718 1718 10000000 loops, best of 3: 184 ns per loop
1719 1719
1720 1720 In [4]: %timeit -r 4 u == None
1721 1721 1000000 loops, best of 4: 242 ns per loop
1722 1722
1723 1723 In [5]: import time
1724 1724
1725 1725 In [6]: %timeit -n1 time.sleep(2)
1726 1726 1 loops, best of 3: 2 s per loop
1727 1727
1728 1728
1729 1729 The times reported by %timeit will be slightly higher than those
1730 1730 reported by the timeit.py script when variables are accessed. This is
1731 1731 due to the fact that %timeit executes the statement in the namespace
1732 1732 of the shell, compared with timeit.py, which uses a single setup
1733 1733 statement to import function or create variables. Generally, the bias
1734 1734 does not matter as long as results from timeit.py are not mixed with
1735 1735 those from %timeit."""
1736 1736
1737 1737 import timeit
1738 1738 import math
1739 1739
1740 1740 units = ["s", "ms", "\xc2\xb5s", "ns"]
1741 1741 scaling = [1, 1e3, 1e6, 1e9]
1742 1742
1743 1743 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1744 1744 posix=False)
1745 1745 if stmt == "":
1746 1746 return
1747 1747 timefunc = timeit.default_timer
1748 1748 number = int(getattr(opts, "n", 0))
1749 1749 repeat = int(getattr(opts, "r", timeit.default_repeat))
1750 1750 precision = int(getattr(opts, "p", 3))
1751 1751 if hasattr(opts, "t"):
1752 1752 timefunc = time.time
1753 1753 if hasattr(opts, "c"):
1754 1754 timefunc = clock
1755 1755
1756 1756 timer = timeit.Timer(timer=timefunc)
1757 1757 # this code has tight coupling to the inner workings of timeit.Timer,
1758 1758 # but is there a better way to achieve that the code stmt has access
1759 1759 # to the shell namespace?
1760 1760
1761 1761 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1762 1762 'setup': "pass"}
1763 1763 # Track compilation time so it can be reported if too long
1764 1764 # Minimum time above which compilation time will be reported
1765 1765 tc_min = 0.1
1766 1766
1767 1767 t0 = clock()
1768 1768 code = compile(src, "<magic-timeit>", "exec")
1769 1769 tc = clock()-t0
1770 1770
1771 1771 ns = {}
1772 1772 exec code in self.shell.user_ns, ns
1773 1773 timer.inner = ns["inner"]
1774 1774
1775 1775 if number == 0:
1776 1776 # determine number so that 0.2 <= total time < 2.0
1777 1777 number = 1
1778 1778 for i in range(1, 10):
1779 1779 number *= 10
1780 1780 if timer.timeit(number) >= 0.2:
1781 1781 break
1782 1782
1783 1783 best = min(timer.repeat(repeat, number)) / number
1784 1784
1785 1785 if best > 0.0:
1786 1786 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1787 1787 else:
1788 1788 order = 3
1789 1789 print "%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1790 1790 precision,
1791 1791 best * scaling[order],
1792 1792 units[order])
1793 1793 if tc > tc_min:
1794 1794 print "Compiler time: %.2f s" % tc
1795 1795
1796 1796 def magic_time(self,parameter_s = ''):
1797 1797 """Time execution of a Python statement or expression.
1798 1798
1799 1799 The CPU and wall clock times are printed, and the value of the
1800 1800 expression (if any) is returned. Note that under Win32, system time
1801 1801 is always reported as 0, since it can not be measured.
1802 1802
1803 1803 This function provides very basic timing functionality. In Python
1804 1804 2.3, the timeit module offers more control and sophistication, so this
1805 1805 could be rewritten to use it (patches welcome).
1806 1806
1807 1807 Some examples:
1808 1808
1809 1809 In [1]: time 2**128
1810 1810 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1811 1811 Wall time: 0.00
1812 1812 Out[1]: 340282366920938463463374607431768211456L
1813 1813
1814 1814 In [2]: n = 1000000
1815 1815
1816 1816 In [3]: time sum(range(n))
1817 1817 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1818 1818 Wall time: 1.37
1819 1819 Out[3]: 499999500000L
1820 1820
1821 1821 In [4]: time print 'hello world'
1822 1822 hello world
1823 1823 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1824 1824 Wall time: 0.00
1825 1825
1826 1826 Note that the time needed by Python to compile the given expression
1827 1827 will be reported if it is more than 0.1s. In this example, the
1828 1828 actual exponentiation is done by Python at compilation time, so while
1829 1829 the expression can take a noticeable amount of time to compute, that
1830 1830 time is purely due to the compilation:
1831 1831
1832 1832 In [5]: time 3**9999;
1833 1833 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1834 1834 Wall time: 0.00 s
1835 1835
1836 1836 In [6]: time 3**999999;
1837 1837 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1838 1838 Wall time: 0.00 s
1839 1839 Compiler : 0.78 s
1840 1840 """
1841 1841
1842 1842 # fail immediately if the given expression can't be compiled
1843 1843
1844 1844 expr = self.shell.prefilter(parameter_s,False)
1845 1845
1846 1846 # Minimum time above which compilation time will be reported
1847 1847 tc_min = 0.1
1848 1848
1849 1849 try:
1850 1850 mode = 'eval'
1851 1851 t0 = clock()
1852 1852 code = compile(expr,'<timed eval>',mode)
1853 1853 tc = clock()-t0
1854 1854 except SyntaxError:
1855 1855 mode = 'exec'
1856 1856 t0 = clock()
1857 1857 code = compile(expr,'<timed exec>',mode)
1858 1858 tc = clock()-t0
1859 1859 # skew measurement as little as possible
1860 1860 glob = self.shell.user_ns
1861 1861 clk = clock2
1862 1862 wtime = time.time
1863 1863 # time execution
1864 1864 wall_st = wtime()
1865 1865 if mode=='eval':
1866 1866 st = clk()
1867 1867 out = eval(code,glob)
1868 1868 end = clk()
1869 1869 else:
1870 1870 st = clk()
1871 1871 exec code in glob
1872 1872 end = clk()
1873 1873 out = None
1874 1874 wall_end = wtime()
1875 1875 # Compute actual times and report
1876 1876 wall_time = wall_end-wall_st
1877 1877 cpu_user = end[0]-st[0]
1878 1878 cpu_sys = end[1]-st[1]
1879 1879 cpu_tot = cpu_user+cpu_sys
1880 1880 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1881 1881 (cpu_user,cpu_sys,cpu_tot)
1882 1882 print "Wall time: %.2f s" % wall_time
1883 1883 if tc > tc_min:
1884 1884 print "Compiler : %.2f s" % tc
1885 1885 return out
1886 1886
1887 1887 def magic_macro(self,parameter_s = ''):
1888 1888 """Define a set of input lines as a macro for future re-execution.
1889 1889
1890 1890 Usage:\\
1891 1891 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1892 1892
1893 1893 Options:
1894 1894
1895 1895 -r: use 'raw' input. By default, the 'processed' history is used,
1896 1896 so that magics are loaded in their transformed version to valid
1897 1897 Python. If this option is given, the raw input as typed as the
1898 1898 command line is used instead.
1899 1899
1900 1900 This will define a global variable called `name` which is a string
1901 1901 made of joining the slices and lines you specify (n1,n2,... numbers
1902 1902 above) from your input history into a single string. This variable
1903 1903 acts like an automatic function which re-executes those lines as if
1904 1904 you had typed them. You just type 'name' at the prompt and the code
1905 1905 executes.
1906 1906
1907 1907 The notation for indicating number ranges is: n1-n2 means 'use line
1908 1908 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1909 1909 using the lines numbered 5,6 and 7.
1910 1910
1911 1911 Note: as a 'hidden' feature, you can also use traditional python slice
1912 1912 notation, where N:M means numbers N through M-1.
1913 1913
1914 1914 For example, if your history contains (%hist prints it):
1915 1915
1916 1916 44: x=1\\
1917 1917 45: y=3\\
1918 1918 46: z=x+y\\
1919 1919 47: print x\\
1920 1920 48: a=5\\
1921 1921 49: print 'x',x,'y',y\\
1922 1922
1923 1923 you can create a macro with lines 44 through 47 (included) and line 49
1924 1924 called my_macro with:
1925 1925
1926 1926 In [51]: %macro my_macro 44-47 49
1927 1927
1928 1928 Now, typing `my_macro` (without quotes) will re-execute all this code
1929 1929 in one pass.
1930 1930
1931 1931 You don't need to give the line-numbers in order, and any given line
1932 1932 number can appear multiple times. You can assemble macros with any
1933 1933 lines from your input history in any order.
1934 1934
1935 1935 The macro is a simple object which holds its value in an attribute,
1936 1936 but IPython's display system checks for macros and executes them as
1937 1937 code instead of printing them when you type their name.
1938 1938
1939 1939 You can view a macro's contents by explicitly printing it with:
1940 1940
1941 1941 'print macro_name'.
1942 1942
1943 1943 For one-off cases which DON'T contain magic function calls in them you
1944 1944 can obtain similar results by explicitly executing slices from your
1945 1945 input history with:
1946 1946
1947 1947 In [60]: exec In[44:48]+In[49]"""
1948 1948
1949 1949 opts,args = self.parse_options(parameter_s,'r',mode='list')
1950 1950 if not args:
1951 1951 macs = [k for k,v in self.shell.user_ns.items() if isinstance(v, Macro)]
1952 1952 macs.sort()
1953 1953 return macs
1954 1954 if len(args) == 1:
1955 1955 raise UsageError(
1956 1956 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1957 1957 name,ranges = args[0], args[1:]
1958 1958
1959 1959 #print 'rng',ranges # dbg
1960 1960 lines = self.extract_input_slices(ranges,opts.has_key('r'))
1961 1961 macro = Macro(lines)
1962 1962 self.shell.user_ns.update({name:macro})
1963 1963 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
1964 1964 print 'Macro contents:'
1965 1965 print macro,
1966 1966
1967 1967 def magic_save(self,parameter_s = ''):
1968 1968 """Save a set of lines to a given filename.
1969 1969
1970 1970 Usage:\\
1971 1971 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
1972 1972
1973 1973 Options:
1974 1974
1975 1975 -r: use 'raw' input. By default, the 'processed' history is used,
1976 1976 so that magics are loaded in their transformed version to valid
1977 1977 Python. If this option is given, the raw input as typed as the
1978 1978 command line is used instead.
1979 1979
1980 1980 This function uses the same syntax as %macro for line extraction, but
1981 1981 instead of creating a macro it saves the resulting string to the
1982 1982 filename you specify.
1983 1983
1984 1984 It adds a '.py' extension to the file if you don't do so yourself, and
1985 1985 it asks for confirmation before overwriting existing files."""
1986 1986
1987 1987 opts,args = self.parse_options(parameter_s,'r',mode='list')
1988 1988 fname,ranges = args[0], args[1:]
1989 1989 if not fname.endswith('.py'):
1990 1990 fname += '.py'
1991 1991 if os.path.isfile(fname):
1992 1992 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
1993 1993 if ans.lower() not in ['y','yes']:
1994 1994 print 'Operation cancelled.'
1995 1995 return
1996 1996 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
1997 1997 f = file(fname,'w')
1998 1998 f.write(cmds)
1999 1999 f.close()
2000 2000 print 'The following commands were written to file `%s`:' % fname
2001 2001 print cmds
2002 2002
2003 2003 def _edit_macro(self,mname,macro):
2004 2004 """open an editor with the macro data in a file"""
2005 2005 filename = self.shell.mktempfile(macro.value)
2006 2006 self.shell.hooks.editor(filename)
2007 2007
2008 2008 # and make a new macro object, to replace the old one
2009 2009 mfile = open(filename)
2010 2010 mvalue = mfile.read()
2011 2011 mfile.close()
2012 2012 self.shell.user_ns[mname] = Macro(mvalue)
2013 2013
2014 2014 def magic_ed(self,parameter_s=''):
2015 2015 """Alias to %edit."""
2016 2016 return self.magic_edit(parameter_s)
2017 2017
2018 2018 def magic_edit(self,parameter_s='',last_call=['','']):
2019 2019 """Bring up an editor and execute the resulting code.
2020 2020
2021 2021 Usage:
2022 2022 %edit [options] [args]
2023 2023
2024 2024 %edit runs IPython's editor hook. The default version of this hook is
2025 2025 set to call the __IPYTHON__.rc.editor command. This is read from your
2026 2026 environment variable $EDITOR. If this isn't found, it will default to
2027 2027 vi under Linux/Unix and to notepad under Windows. See the end of this
2028 2028 docstring for how to change the editor hook.
2029 2029
2030 2030 You can also set the value of this editor via the command line option
2031 2031 '-editor' or in your ipythonrc file. This is useful if you wish to use
2032 2032 specifically for IPython an editor different from your typical default
2033 2033 (and for Windows users who typically don't set environment variables).
2034 2034
2035 2035 This command allows you to conveniently edit multi-line code right in
2036 2036 your IPython session.
2037 2037
2038 2038 If called without arguments, %edit opens up an empty editor with a
2039 2039 temporary file and will execute the contents of this file when you
2040 2040 close it (don't forget to save it!).
2041 2041
2042 2042
2043 2043 Options:
2044 2044
2045 2045 -n <number>: open the editor at a specified line number. By default,
2046 2046 the IPython editor hook uses the unix syntax 'editor +N filename', but
2047 2047 you can configure this by providing your own modified hook if your
2048 2048 favorite editor supports line-number specifications with a different
2049 2049 syntax.
2050 2050
2051 2051 -p: this will call the editor with the same data as the previous time
2052 2052 it was used, regardless of how long ago (in your current session) it
2053 2053 was.
2054 2054
2055 2055 -r: use 'raw' input. This option only applies to input taken from the
2056 2056 user's history. By default, the 'processed' history is used, so that
2057 2057 magics are loaded in their transformed version to valid Python. If
2058 2058 this option is given, the raw input as typed as the command line is
2059 2059 used instead. When you exit the editor, it will be executed by
2060 2060 IPython's own processor.
2061 2061
2062 2062 -x: do not execute the edited code immediately upon exit. This is
2063 2063 mainly useful if you are editing programs which need to be called with
2064 2064 command line arguments, which you can then do using %run.
2065 2065
2066 2066
2067 2067 Arguments:
2068 2068
2069 2069 If arguments are given, the following possibilites exist:
2070 2070
2071 2071 - The arguments are numbers or pairs of colon-separated numbers (like
2072 2072 1 4:8 9). These are interpreted as lines of previous input to be
2073 2073 loaded into the editor. The syntax is the same of the %macro command.
2074 2074
2075 2075 - If the argument doesn't start with a number, it is evaluated as a
2076 2076 variable and its contents loaded into the editor. You can thus edit
2077 2077 any string which contains python code (including the result of
2078 2078 previous edits).
2079 2079
2080 2080 - If the argument is the name of an object (other than a string),
2081 2081 IPython will try to locate the file where it was defined and open the
2082 2082 editor at the point where it is defined. You can use `%edit function`
2083 2083 to load an editor exactly at the point where 'function' is defined,
2084 2084 edit it and have the file be executed automatically.
2085 2085
2086 2086 If the object is a macro (see %macro for details), this opens up your
2087 2087 specified editor with a temporary file containing the macro's data.
2088 2088 Upon exit, the macro is reloaded with the contents of the file.
2089 2089
2090 2090 Note: opening at an exact line is only supported under Unix, and some
2091 2091 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2092 2092 '+NUMBER' parameter necessary for this feature. Good editors like
2093 2093 (X)Emacs, vi, jed, pico and joe all do.
2094 2094
2095 2095 - If the argument is not found as a variable, IPython will look for a
2096 2096 file with that name (adding .py if necessary) and load it into the
2097 2097 editor. It will execute its contents with execfile() when you exit,
2098 2098 loading any code in the file into your interactive namespace.
2099 2099
2100 2100 After executing your code, %edit will return as output the code you
2101 2101 typed in the editor (except when it was an existing file). This way
2102 2102 you can reload the code in further invocations of %edit as a variable,
2103 2103 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2104 2104 the output.
2105 2105
2106 2106 Note that %edit is also available through the alias %ed.
2107 2107
2108 2108 This is an example of creating a simple function inside the editor and
2109 2109 then modifying it. First, start up the editor:
2110 2110
2111 2111 In [1]: ed\\
2112 2112 Editing... done. Executing edited code...\\
2113 2113 Out[1]: 'def foo():\\n print "foo() was defined in an editing session"\\n'
2114 2114
2115 2115 We can then call the function foo():
2116 2116
2117 2117 In [2]: foo()\\
2118 2118 foo() was defined in an editing session
2119 2119
2120 2120 Now we edit foo. IPython automatically loads the editor with the
2121 2121 (temporary) file where foo() was previously defined:
2122 2122
2123 2123 In [3]: ed foo\\
2124 2124 Editing... done. Executing edited code...
2125 2125
2126 2126 And if we call foo() again we get the modified version:
2127 2127
2128 2128 In [4]: foo()\\
2129 2129 foo() has now been changed!
2130 2130
2131 2131 Here is an example of how to edit a code snippet successive
2132 2132 times. First we call the editor:
2133 2133
2134 2134 In [8]: ed\\
2135 2135 Editing... done. Executing edited code...\\
2136 2136 hello\\
2137 2137 Out[8]: "print 'hello'\\n"
2138 2138
2139 2139 Now we call it again with the previous output (stored in _):
2140 2140
2141 2141 In [9]: ed _\\
2142 2142 Editing... done. Executing edited code...\\
2143 2143 hello world\\
2144 2144 Out[9]: "print 'hello world'\\n"
2145 2145
2146 2146 Now we call it with the output #8 (stored in _8, also as Out[8]):
2147 2147
2148 2148 In [10]: ed _8\\
2149 2149 Editing... done. Executing edited code...\\
2150 2150 hello again\\
2151 2151 Out[10]: "print 'hello again'\\n"
2152 2152
2153 2153
2154 2154 Changing the default editor hook:
2155 2155
2156 2156 If you wish to write your own editor hook, you can put it in a
2157 2157 configuration file which you load at startup time. The default hook
2158 2158 is defined in the IPython.hooks module, and you can use that as a
2159 2159 starting example for further modifications. That file also has
2160 2160 general instructions on how to set a new hook for use once you've
2161 2161 defined it."""
2162 2162
2163 2163 # FIXME: This function has become a convoluted mess. It needs a
2164 2164 # ground-up rewrite with clean, simple logic.
2165 2165
2166 2166 def make_filename(arg):
2167 2167 "Make a filename from the given args"
2168 2168 try:
2169 2169 filename = get_py_filename(arg)
2170 2170 except IOError:
2171 2171 if args.endswith('.py'):
2172 2172 filename = arg
2173 2173 else:
2174 2174 filename = None
2175 2175 return filename
2176 2176
2177 2177 # custom exceptions
2178 2178 class DataIsObject(Exception): pass
2179 2179
2180 2180 opts,args = self.parse_options(parameter_s,'prxn:')
2181 2181 # Set a few locals from the options for convenience:
2182 2182 opts_p = opts.has_key('p')
2183 2183 opts_r = opts.has_key('r')
2184 2184
2185 2185 # Default line number value
2186 2186 lineno = opts.get('n',None)
2187 2187
2188 2188 if opts_p:
2189 2189 args = '_%s' % last_call[0]
2190 2190 if not self.shell.user_ns.has_key(args):
2191 2191 args = last_call[1]
2192 2192
2193 2193 # use last_call to remember the state of the previous call, but don't
2194 2194 # let it be clobbered by successive '-p' calls.
2195 2195 try:
2196 2196 last_call[0] = self.shell.outputcache.prompt_count
2197 2197 if not opts_p:
2198 2198 last_call[1] = parameter_s
2199 2199 except:
2200 2200 pass
2201 2201
2202 2202 # by default this is done with temp files, except when the given
2203 2203 # arg is a filename
2204 2204 use_temp = 1
2205 2205
2206 2206 if re.match(r'\d',args):
2207 2207 # Mode where user specifies ranges of lines, like in %macro.
2208 2208 # This means that you can't edit files whose names begin with
2209 2209 # numbers this way. Tough.
2210 2210 ranges = args.split()
2211 2211 data = ''.join(self.extract_input_slices(ranges,opts_r))
2212 2212 elif args.endswith('.py'):
2213 2213 filename = make_filename(args)
2214 2214 data = ''
2215 2215 use_temp = 0
2216 2216 elif args:
2217 2217 try:
2218 2218 # Load the parameter given as a variable. If not a string,
2219 2219 # process it as an object instead (below)
2220 2220
2221 2221 #print '*** args',args,'type',type(args) # dbg
2222 2222 data = eval(args,self.shell.user_ns)
2223 2223 if not type(data) in StringTypes:
2224 2224 raise DataIsObject
2225 2225
2226 2226 except (NameError,SyntaxError):
2227 2227 # given argument is not a variable, try as a filename
2228 2228 filename = make_filename(args)
2229 2229 if filename is None:
2230 2230 warn("Argument given (%s) can't be found as a variable "
2231 2231 "or as a filename." % args)
2232 2232 return
2233 2233
2234 2234 data = ''
2235 2235 use_temp = 0
2236 2236 except DataIsObject:
2237 2237
2238 2238 # macros have a special edit function
2239 2239 if isinstance(data,Macro):
2240 2240 self._edit_macro(args,data)
2241 2241 return
2242 2242
2243 2243 # For objects, try to edit the file where they are defined
2244 2244 try:
2245 2245 filename = inspect.getabsfile(data)
2246 2246 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2247 2247 # class created by %edit? Try to find source
2248 2248 # by looking for method definitions instead, the
2249 2249 # __module__ in those classes is FakeModule.
2250 2250 attrs = [getattr(data, aname) for aname in dir(data)]
2251 2251 for attr in attrs:
2252 2252 if not inspect.ismethod(attr):
2253 2253 continue
2254 2254 filename = inspect.getabsfile(attr)
2255 2255 if filename and 'fakemodule' not in filename.lower():
2256 2256 # change the attribute to be the edit target instead
2257 2257 data = attr
2258 2258 break
2259 2259
2260 2260 datafile = 1
2261 2261 except TypeError:
2262 2262 filename = make_filename(args)
2263 2263 datafile = 1
2264 2264 warn('Could not find file where `%s` is defined.\n'
2265 2265 'Opening a file named `%s`' % (args,filename))
2266 2266 # Now, make sure we can actually read the source (if it was in
2267 2267 # a temp file it's gone by now).
2268 2268 if datafile:
2269 2269 try:
2270 2270 if lineno is None:
2271 2271 lineno = inspect.getsourcelines(data)[1]
2272 2272 except IOError:
2273 2273 filename = make_filename(args)
2274 2274 if filename is None:
2275 2275 warn('The file `%s` where `%s` was defined cannot '
2276 2276 'be read.' % (filename,data))
2277 2277 return
2278 2278 use_temp = 0
2279 2279 else:
2280 2280 data = ''
2281 2281
2282 2282 if use_temp:
2283 2283 filename = self.shell.mktempfile(data)
2284 2284 print 'IPython will make a temporary file named:',filename
2285 2285
2286 2286 # do actual editing here
2287 2287 print 'Editing...',
2288 2288 sys.stdout.flush()
2289 2289 self.shell.hooks.editor(filename,lineno)
2290 2290 if opts.has_key('x'): # -x prevents actual execution
2291 2291 print
2292 2292 else:
2293 2293 print 'done. Executing edited code...'
2294 2294 if opts_r:
2295 2295 self.shell.runlines(file_read(filename))
2296 2296 else:
2297 2297 self.shell.safe_execfile(filename,self.shell.user_ns,
2298 2298 self.shell.user_ns)
2299 2299 if use_temp:
2300 2300 try:
2301 2301 return open(filename).read()
2302 2302 except IOError,msg:
2303 2303 if msg.filename == filename:
2304 2304 warn('File not found. Did you forget to save?')
2305 2305 return
2306 2306 else:
2307 2307 self.shell.showtraceback()
2308 2308
2309 2309 def magic_xmode(self,parameter_s = ''):
2310 2310 """Switch modes for the exception handlers.
2311 2311
2312 2312 Valid modes: Plain, Context and Verbose.
2313 2313
2314 2314 If called without arguments, acts as a toggle."""
2315 2315
2316 2316 def xmode_switch_err(name):
2317 2317 warn('Error changing %s exception modes.\n%s' %
2318 2318 (name,sys.exc_info()[1]))
2319 2319
2320 2320 shell = self.shell
2321 2321 new_mode = parameter_s.strip().capitalize()
2322 2322 try:
2323 2323 shell.InteractiveTB.set_mode(mode=new_mode)
2324 2324 print 'Exception reporting mode:',shell.InteractiveTB.mode
2325 2325 except:
2326 2326 xmode_switch_err('user')
2327 2327
2328 2328 # threaded shells use a special handler in sys.excepthook
2329 2329 if shell.isthreaded:
2330 2330 try:
2331 2331 shell.sys_excepthook.set_mode(mode=new_mode)
2332 2332 except:
2333 2333 xmode_switch_err('threaded')
2334 2334
2335 2335 def magic_colors(self,parameter_s = ''):
2336 2336 """Switch color scheme for prompts, info system and exception handlers.
2337 2337
2338 2338 Currently implemented schemes: NoColor, Linux, LightBG.
2339 2339
2340 2340 Color scheme names are not case-sensitive."""
2341 2341
2342 2342 def color_switch_err(name):
2343 2343 warn('Error changing %s color schemes.\n%s' %
2344 2344 (name,sys.exc_info()[1]))
2345 2345
2346 2346
2347 2347 new_scheme = parameter_s.strip()
2348 2348 if not new_scheme:
2349 2349 raise UsageError(
2350 2350 "%colors: you must specify a color scheme. See '%colors?'")
2351 2351 return
2352 2352 # local shortcut
2353 2353 shell = self.shell
2354 2354
2355 2355 import IPython.rlineimpl as readline
2356 2356
2357 2357 if not readline.have_readline and sys.platform == "win32":
2358 2358 msg = """\
2359 2359 Proper color support under MS Windows requires the pyreadline library.
2360 2360 You can find it at:
2361 2361 http://ipython.scipy.org/moin/PyReadline/Intro
2362 2362 Gary's readline needs the ctypes module, from:
2363 2363 http://starship.python.net/crew/theller/ctypes
2364 2364 (Note that ctypes is already part of Python versions 2.5 and newer).
2365 2365
2366 2366 Defaulting color scheme to 'NoColor'"""
2367 2367 new_scheme = 'NoColor'
2368 2368 warn(msg)
2369 2369
2370 2370 # readline option is 0
2371 2371 if not shell.has_readline:
2372 2372 new_scheme = 'NoColor'
2373 2373
2374 2374 # Set prompt colors
2375 2375 try:
2376 2376 shell.outputcache.set_colors(new_scheme)
2377 2377 except:
2378 2378 color_switch_err('prompt')
2379 2379 else:
2380 2380 shell.rc.colors = \
2381 2381 shell.outputcache.color_table.active_scheme_name
2382 2382 # Set exception colors
2383 2383 try:
2384 2384 shell.InteractiveTB.set_colors(scheme = new_scheme)
2385 2385 shell.SyntaxTB.set_colors(scheme = new_scheme)
2386 2386 except:
2387 2387 color_switch_err('exception')
2388 2388
2389 2389 # threaded shells use a verbose traceback in sys.excepthook
2390 2390 if shell.isthreaded:
2391 2391 try:
2392 2392 shell.sys_excepthook.set_colors(scheme=new_scheme)
2393 2393 except:
2394 2394 color_switch_err('system exception handler')
2395 2395
2396 2396 # Set info (for 'object?') colors
2397 2397 if shell.rc.color_info:
2398 2398 try:
2399 2399 shell.inspector.set_active_scheme(new_scheme)
2400 2400 except:
2401 2401 color_switch_err('object inspector')
2402 2402 else:
2403 2403 shell.inspector.set_active_scheme('NoColor')
2404 2404
2405 2405 def magic_color_info(self,parameter_s = ''):
2406 2406 """Toggle color_info.
2407 2407
2408 2408 The color_info configuration parameter controls whether colors are
2409 2409 used for displaying object details (by things like %psource, %pfile or
2410 2410 the '?' system). This function toggles this value with each call.
2411 2411
2412 2412 Note that unless you have a fairly recent pager (less works better
2413 2413 than more) in your system, using colored object information displays
2414 2414 will not work properly. Test it and see."""
2415 2415
2416 2416 self.shell.rc.color_info = 1 - self.shell.rc.color_info
2417 2417 self.magic_colors(self.shell.rc.colors)
2418 2418 print 'Object introspection functions have now coloring:',
2419 2419 print ['OFF','ON'][self.shell.rc.color_info]
2420 2420
2421 2421 def magic_Pprint(self, parameter_s=''):
2422 2422 """Toggle pretty printing on/off."""
2423 2423
2424 2424 self.shell.rc.pprint = 1 - self.shell.rc.pprint
2425 2425 print 'Pretty printing has been turned', \
2426 2426 ['OFF','ON'][self.shell.rc.pprint]
2427 2427
2428 2428 def magic_exit(self, parameter_s=''):
2429 2429 """Exit IPython, confirming if configured to do so.
2430 2430
2431 2431 You can configure whether IPython asks for confirmation upon exit by
2432 2432 setting the confirm_exit flag in the ipythonrc file."""
2433 2433
2434 2434 self.shell.exit()
2435 2435
2436 2436 def magic_quit(self, parameter_s=''):
2437 2437 """Exit IPython, confirming if configured to do so (like %exit)"""
2438 2438
2439 2439 self.shell.exit()
2440 2440
2441 2441 def magic_Exit(self, parameter_s=''):
2442 2442 """Exit IPython without confirmation."""
2443 2443
2444 2444 self.shell.exit_now = True
2445 2445
2446 2446 #......................................................................
2447 2447 # Functions to implement unix shell-type things
2448 2448
2449 2449 def magic_alias(self, parameter_s = ''):
2450 2450 """Define an alias for a system command.
2451 2451
2452 2452 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2453 2453
2454 2454 Then, typing 'alias_name params' will execute the system command 'cmd
2455 2455 params' (from your underlying operating system).
2456 2456
2457 2457 Aliases have lower precedence than magic functions and Python normal
2458 2458 variables, so if 'foo' is both a Python variable and an alias, the
2459 2459 alias can not be executed until 'del foo' removes the Python variable.
2460 2460
2461 2461 You can use the %l specifier in an alias definition to represent the
2462 2462 whole line when the alias is called. For example:
2463 2463
2464 2464 In [2]: alias all echo "Input in brackets: <%l>"\\
2465 2465 In [3]: all hello world\\
2466 2466 Input in brackets: <hello world>
2467 2467
2468 2468 You can also define aliases with parameters using %s specifiers (one
2469 2469 per parameter):
2470 2470
2471 2471 In [1]: alias parts echo first %s second %s\\
2472 2472 In [2]: %parts A B\\
2473 2473 first A second B\\
2474 2474 In [3]: %parts A\\
2475 2475 Incorrect number of arguments: 2 expected.\\
2476 2476 parts is an alias to: 'echo first %s second %s'
2477 2477
2478 2478 Note that %l and %s are mutually exclusive. You can only use one or
2479 2479 the other in your aliases.
2480 2480
2481 2481 Aliases expand Python variables just like system calls using ! or !!
2482 2482 do: all expressions prefixed with '$' get expanded. For details of
2483 2483 the semantic rules, see PEP-215:
2484 2484 http://www.python.org/peps/pep-0215.html. This is the library used by
2485 2485 IPython for variable expansion. If you want to access a true shell
2486 2486 variable, an extra $ is necessary to prevent its expansion by IPython:
2487 2487
2488 2488 In [6]: alias show echo\\
2489 2489 In [7]: PATH='A Python string'\\
2490 2490 In [8]: show $PATH\\
2491 2491 A Python string\\
2492 2492 In [9]: show $$PATH\\
2493 2493 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2494 2494
2495 2495 You can use the alias facility to acess all of $PATH. See the %rehash
2496 2496 and %rehashx functions, which automatically create aliases for the
2497 2497 contents of your $PATH.
2498 2498
2499 2499 If called with no parameters, %alias prints the current alias table."""
2500 2500
2501 2501 par = parameter_s.strip()
2502 2502 if not par:
2503 2503 stored = self.db.get('stored_aliases', {} )
2504 2504 atab = self.shell.alias_table
2505 2505 aliases = atab.keys()
2506 2506 aliases.sort()
2507 2507 res = []
2508 2508 showlast = []
2509 2509 for alias in aliases:
2510 2510 special = False
2511 2511 try:
2512 2512 tgt = atab[alias][1]
2513 2513 except (TypeError, AttributeError):
2514 2514 # unsubscriptable? probably a callable
2515 2515 tgt = atab[alias]
2516 2516 special = True
2517 2517 # 'interesting' aliases
2518 2518 if (alias in stored or
2519 2519 special or
2520 2520 alias.lower() != os.path.splitext(tgt)[0].lower() or
2521 2521 ' ' in tgt):
2522 2522 showlast.append((alias, tgt))
2523 2523 else:
2524 2524 res.append((alias, tgt ))
2525 2525
2526 2526 # show most interesting aliases last
2527 2527 res.extend(showlast)
2528 2528 print "Total number of aliases:",len(aliases)
2529 2529 return res
2530 2530 try:
2531 2531 alias,cmd = par.split(None,1)
2532 2532 except:
2533 2533 print OInspect.getdoc(self.magic_alias)
2534 2534 else:
2535 2535 nargs = cmd.count('%s')
2536 2536 if nargs>0 and cmd.find('%l')>=0:
2537 2537 error('The %s and %l specifiers are mutually exclusive '
2538 2538 'in alias definitions.')
2539 2539 else: # all looks OK
2540 2540 self.shell.alias_table[alias] = (nargs,cmd)
2541 2541 self.shell.alias_table_validate(verbose=0)
2542 2542 # end magic_alias
2543 2543
2544 2544 def magic_unalias(self, parameter_s = ''):
2545 2545 """Remove an alias"""
2546 2546
2547 2547 aname = parameter_s.strip()
2548 2548 if aname in self.shell.alias_table:
2549 2549 del self.shell.alias_table[aname]
2550 2550 stored = self.db.get('stored_aliases', {} )
2551 2551 if aname in stored:
2552 2552 print "Removing %stored alias",aname
2553 2553 del stored[aname]
2554 2554 self.db['stored_aliases'] = stored
2555 2555
2556 2556
2557 2557 def magic_rehashx(self, parameter_s = ''):
2558 2558 """Update the alias table with all executable files in $PATH.
2559 2559
2560 2560 This version explicitly checks that every entry in $PATH is a file
2561 2561 with execute access (os.X_OK), so it is much slower than %rehash.
2562 2562
2563 2563 Under Windows, it checks executability as a match agains a
2564 2564 '|'-separated string of extensions, stored in the IPython config
2565 2565 variable win_exec_ext. This defaults to 'exe|com|bat'.
2566 2566
2567 2567 This function also resets the root module cache of module completer,
2568 2568 used on slow filesystems.
2569 2569 """
2570 2570
2571 2571
2572 2572 ip = self.api
2573 2573
2574 2574 # for the benefit of module completer in ipy_completers.py
2575 2575 del ip.db['rootmodules']
2576 2576
2577 2577 path = [os.path.abspath(os.path.expanduser(p)) for p in
2578 2578 os.environ.get('PATH','').split(os.pathsep)]
2579 2579 path = filter(os.path.isdir,path)
2580 2580
2581 2581 alias_table = self.shell.alias_table
2582 2582 syscmdlist = []
2583 2583 if os.name == 'posix':
2584 2584 isexec = lambda fname:os.path.isfile(fname) and \
2585 2585 os.access(fname,os.X_OK)
2586 2586 else:
2587 2587
2588 2588 try:
2589 2589 winext = os.environ['pathext'].replace(';','|').replace('.','')
2590 2590 except KeyError:
2591 2591 winext = 'exe|com|bat|py'
2592 2592 if 'py' not in winext:
2593 2593 winext += '|py'
2594 2594 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2595 2595 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2596 2596 savedir = os.getcwd()
2597 2597 try:
2598 2598 # write the whole loop for posix/Windows so we don't have an if in
2599 2599 # the innermost part
2600 2600 if os.name == 'posix':
2601 2601 for pdir in path:
2602 2602 os.chdir(pdir)
2603 2603 for ff in os.listdir(pdir):
2604 2604 if isexec(ff) and ff not in self.shell.no_alias:
2605 2605 # each entry in the alias table must be (N,name),
2606 2606 # where N is the number of positional arguments of the
2607 2607 # alias.
2608 2608 alias_table[ff] = (0,ff)
2609 2609 syscmdlist.append(ff)
2610 2610 else:
2611 2611 for pdir in path:
2612 2612 os.chdir(pdir)
2613 2613 for ff in os.listdir(pdir):
2614 2614 base, ext = os.path.splitext(ff)
2615 2615 if isexec(ff) and base not in self.shell.no_alias:
2616 2616 if ext.lower() == '.exe':
2617 2617 ff = base
2618 2618 alias_table[base.lower()] = (0,ff)
2619 2619 syscmdlist.append(ff)
2620 2620 # Make sure the alias table doesn't contain keywords or builtins
2621 2621 self.shell.alias_table_validate()
2622 2622 # Call again init_auto_alias() so we get 'rm -i' and other
2623 2623 # modified aliases since %rehashx will probably clobber them
2624 2624
2625 2625 # no, we don't want them. if %rehashx clobbers them, good,
2626 2626 # we'll probably get better versions
2627 2627 # self.shell.init_auto_alias()
2628 2628 db = ip.db
2629 2629 db['syscmdlist'] = syscmdlist
2630 2630 finally:
2631 2631 os.chdir(savedir)
2632 2632
2633 2633 def magic_pwd(self, parameter_s = ''):
2634 2634 """Return the current working directory path."""
2635 2635 return os.getcwd()
2636 2636
2637 2637 def magic_cd(self, parameter_s=''):
2638 2638 """Change the current working directory.
2639 2639
2640 2640 This command automatically maintains an internal list of directories
2641 2641 you visit during your IPython session, in the variable _dh. The
2642 2642 command %dhist shows this history nicely formatted. You can also
2643 2643 do 'cd -<tab>' to see directory history conveniently.
2644 2644
2645 2645 Usage:
2646 2646
2647 2647 cd 'dir': changes to directory 'dir'.
2648 2648
2649 2649 cd -: changes to the last visited directory.
2650 2650
2651 2651 cd -<n>: changes to the n-th directory in the directory history.
2652 2652
2653 2653 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2654 2654 (note: cd <bookmark_name> is enough if there is no
2655 2655 directory <bookmark_name>, but a bookmark with the name exists.)
2656 2656 'cd -b <tab>' allows you to tab-complete bookmark names.
2657 2657
2658 2658 Options:
2659 2659
2660 2660 -q: quiet. Do not print the working directory after the cd command is
2661 2661 executed. By default IPython's cd command does print this directory,
2662 2662 since the default prompts do not display path information.
2663 2663
2664 2664 Note that !cd doesn't work for this purpose because the shell where
2665 2665 !command runs is immediately discarded after executing 'command'."""
2666 2666
2667 2667 parameter_s = parameter_s.strip()
2668 2668 #bkms = self.shell.persist.get("bookmarks",{})
2669 2669
2670 2670 numcd = re.match(r'(-)(\d+)$',parameter_s)
2671 2671 # jump in directory history by number
2672 2672 if numcd:
2673 2673 nn = int(numcd.group(2))
2674 2674 try:
2675 2675 ps = self.shell.user_ns['_dh'][nn]
2676 2676 except IndexError:
2677 2677 print 'The requested directory does not exist in history.'
2678 2678 return
2679 2679 else:
2680 2680 opts = {}
2681 2681 else:
2682 2682 #turn all non-space-escaping backslashes to slashes,
2683 2683 # for c:\windows\directory\names\
2684 2684 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2685 2685 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2686 2686 # jump to previous
2687 2687 if ps == '-':
2688 2688 try:
2689 2689 ps = self.shell.user_ns['_dh'][-2]
2690 2690 except IndexError:
2691 2691 raise UsageError('%cd -: No previous directory to change to.')
2692 2692 # jump to bookmark if needed
2693 2693 else:
2694 2694 if not os.path.isdir(ps) or opts.has_key('b'):
2695 2695 bkms = self.db.get('bookmarks', {})
2696 2696
2697 2697 if bkms.has_key(ps):
2698 2698 target = bkms[ps]
2699 2699 print '(bookmark:%s) -> %s' % (ps,target)
2700 2700 ps = target
2701 2701 else:
2702 2702 if opts.has_key('b'):
2703 2703 raise UsageError("Bookmark '%s' not found. "
2704 2704 "Use '%%bookmark -l' to see your bookmarks." % ps)
2705 2705
2706 2706 # at this point ps should point to the target dir
2707 2707 if ps:
2708 2708 try:
2709 2709 os.chdir(os.path.expanduser(ps))
2710 2710 if self.shell.rc.term_title:
2711 2711 #print 'set term title:',self.shell.rc.term_title # dbg
2712 2712 ttitle = 'IPy ' + abbrev_cwd()
2713 2713 platutils.set_term_title(ttitle)
2714 2714 except OSError:
2715 2715 print sys.exc_info()[1]
2716 2716 else:
2717 2717 cwd = os.getcwd()
2718 2718 dhist = self.shell.user_ns['_dh']
2719 2719 dhist.append(cwd)
2720 2720 self.db['dhist'] = compress_dhist(dhist)[-100:]
2721 2721
2722 2722 else:
2723 2723 os.chdir(self.shell.home_dir)
2724 2724 if self.shell.rc.term_title:
2725 2725 platutils.set_term_title("IPy ~")
2726 2726 cwd = os.getcwd()
2727 2727 dhist = self.shell.user_ns['_dh']
2728 2728 dhist.append(cwd)
2729 2729 self.db['dhist'] = compress_dhist(dhist)[-100:]
2730 2730 if not 'q' in opts and self.shell.user_ns['_dh']:
2731 2731 print self.shell.user_ns['_dh'][-1]
2732 2732
2733 2733
2734 2734 def magic_env(self, parameter_s=''):
2735 2735 """List environment variables."""
2736 2736
2737 2737 return os.environ.data
2738 2738
2739 2739 def magic_pushd(self, parameter_s=''):
2740 2740 """Place the current dir on stack and change directory.
2741 2741
2742 2742 Usage:\\
2743 2743 %pushd ['dirname']
2744 2744 """
2745 2745
2746 2746 dir_s = self.shell.dir_stack
2747 2747 tgt = os.path.expanduser(parameter_s)
2748 2748 cwd = os.getcwd().replace(self.home_dir,'~')
2749 2749 if tgt:
2750 2750 self.magic_cd(parameter_s)
2751 2751 dir_s.insert(0,cwd)
2752 2752 return self.magic_dirs()
2753 2753
2754 2754 def magic_popd(self, parameter_s=''):
2755 2755 """Change to directory popped off the top of the stack.
2756 2756 """
2757 2757 if not self.shell.dir_stack:
2758 2758 raise UsageError("%popd on empty stack")
2759 2759 top = self.shell.dir_stack.pop(0)
2760 2760 self.magic_cd(top)
2761 2761 print "popd ->",top
2762 2762
2763 2763 def magic_dirs(self, parameter_s=''):
2764 2764 """Return the current directory stack."""
2765 2765
2766 2766 return self.shell.dir_stack
2767 2767
2768 2768 def magic_dhist(self, parameter_s=''):
2769 2769 """Print your history of visited directories.
2770 2770
2771 2771 %dhist -> print full history\\
2772 2772 %dhist n -> print last n entries only\\
2773 2773 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2774 2774
2775 2775 This history is automatically maintained by the %cd command, and
2776 2776 always available as the global list variable _dh. You can use %cd -<n>
2777 2777 to go to directory number <n>.
2778 2778
2779 2779 Note that most of time, you should view directory history by entering
2780 2780 cd -<TAB>.
2781 2781
2782 2782 """
2783 2783
2784 2784 dh = self.shell.user_ns['_dh']
2785 2785 if parameter_s:
2786 2786 try:
2787 2787 args = map(int,parameter_s.split())
2788 2788 except:
2789 2789 self.arg_err(Magic.magic_dhist)
2790 2790 return
2791 2791 if len(args) == 1:
2792 2792 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2793 2793 elif len(args) == 2:
2794 2794 ini,fin = args
2795 2795 else:
2796 2796 self.arg_err(Magic.magic_dhist)
2797 2797 return
2798 2798 else:
2799 2799 ini,fin = 0,len(dh)
2800 2800 nlprint(dh,
2801 2801 header = 'Directory history (kept in _dh)',
2802 2802 start=ini,stop=fin)
2803 2803
2804 2804
2805 2805 def magic_sc(self, parameter_s=''):
2806 2806 """Shell capture - execute a shell command and capture its output.
2807 2807
2808 2808 DEPRECATED. Suboptimal, retained for backwards compatibility.
2809 2809
2810 2810 You should use the form 'var = !command' instead. Example:
2811 2811
2812 2812 "%sc -l myfiles = ls ~" should now be written as
2813 2813
2814 2814 "myfiles = !ls ~"
2815 2815
2816 2816 myfiles.s, myfiles.l and myfiles.n still apply as documented
2817 2817 below.
2818 2818
2819 2819 --
2820 2820 %sc [options] varname=command
2821 2821
2822 2822 IPython will run the given command using commands.getoutput(), and
2823 2823 will then update the user's interactive namespace with a variable
2824 2824 called varname, containing the value of the call. Your command can
2825 2825 contain shell wildcards, pipes, etc.
2826 2826
2827 2827 The '=' sign in the syntax is mandatory, and the variable name you
2828 2828 supply must follow Python's standard conventions for valid names.
2829 2829
2830 2830 (A special format without variable name exists for internal use)
2831 2831
2832 2832 Options:
2833 2833
2834 2834 -l: list output. Split the output on newlines into a list before
2835 2835 assigning it to the given variable. By default the output is stored
2836 2836 as a single string.
2837 2837
2838 2838 -v: verbose. Print the contents of the variable.
2839 2839
2840 2840 In most cases you should not need to split as a list, because the
2841 2841 returned value is a special type of string which can automatically
2842 2842 provide its contents either as a list (split on newlines) or as a
2843 2843 space-separated string. These are convenient, respectively, either
2844 2844 for sequential processing or to be passed to a shell command.
2845 2845
2846 2846 For example:
2847 2847
2848 2848 # Capture into variable a
2849 2849 In [9]: sc a=ls *py
2850 2850
2851 2851 # a is a string with embedded newlines
2852 2852 In [10]: a
2853 2853 Out[10]: 'setup.py\nwin32_manual_post_install.py'
2854 2854
2855 2855 # which can be seen as a list:
2856 2856 In [11]: a.l
2857 2857 Out[11]: ['setup.py', 'win32_manual_post_install.py']
2858 2858
2859 2859 # or as a whitespace-separated string:
2860 2860 In [12]: a.s
2861 2861 Out[12]: 'setup.py win32_manual_post_install.py'
2862 2862
2863 2863 # a.s is useful to pass as a single command line:
2864 2864 In [13]: !wc -l $a.s
2865 2865 146 setup.py
2866 2866 130 win32_manual_post_install.py
2867 2867 276 total
2868 2868
2869 2869 # while the list form is useful to loop over:
2870 2870 In [14]: for f in a.l:
2871 2871 ....: !wc -l $f
2872 2872 ....:
2873 2873 146 setup.py
2874 2874 130 win32_manual_post_install.py
2875 2875
2876 2876 Similiarly, the lists returned by the -l option are also special, in
2877 2877 the sense that you can equally invoke the .s attribute on them to
2878 2878 automatically get a whitespace-separated string from their contents:
2879 2879
2880 2880 In [1]: sc -l b=ls *py
2881 2881
2882 2882 In [2]: b
2883 2883 Out[2]: ['setup.py', 'win32_manual_post_install.py']
2884 2884
2885 2885 In [3]: b.s
2886 2886 Out[3]: 'setup.py win32_manual_post_install.py'
2887 2887
2888 2888 In summary, both the lists and strings used for ouptut capture have
2889 2889 the following special attributes:
2890 2890
2891 2891 .l (or .list) : value as list.
2892 2892 .n (or .nlstr): value as newline-separated string.
2893 2893 .s (or .spstr): value as space-separated string.
2894 2894 """
2895 2895
2896 2896 opts,args = self.parse_options(parameter_s,'lv')
2897 2897 # Try to get a variable name and command to run
2898 2898 try:
2899 2899 # the variable name must be obtained from the parse_options
2900 2900 # output, which uses shlex.split to strip options out.
2901 2901 var,_ = args.split('=',1)
2902 2902 var = var.strip()
2903 2903 # But the the command has to be extracted from the original input
2904 2904 # parameter_s, not on what parse_options returns, to avoid the
2905 2905 # quote stripping which shlex.split performs on it.
2906 2906 _,cmd = parameter_s.split('=',1)
2907 2907 except ValueError:
2908 2908 var,cmd = '',''
2909 2909 # If all looks ok, proceed
2910 2910 out,err = self.shell.getoutputerror(cmd)
2911 2911 if err:
2912 2912 print >> Term.cerr,err
2913 2913 if opts.has_key('l'):
2914 2914 out = SList(out.split('\n'))
2915 2915 else:
2916 2916 out = LSString(out)
2917 2917 if opts.has_key('v'):
2918 2918 print '%s ==\n%s' % (var,pformat(out))
2919 2919 if var:
2920 2920 self.shell.user_ns.update({var:out})
2921 2921 else:
2922 2922 return out
2923 2923
2924 2924 def magic_sx(self, parameter_s=''):
2925 2925 """Shell execute - run a shell command and capture its output.
2926 2926
2927 2927 %sx command
2928 2928
2929 2929 IPython will run the given command using commands.getoutput(), and
2930 2930 return the result formatted as a list (split on '\\n'). Since the
2931 2931 output is _returned_, it will be stored in ipython's regular output
2932 2932 cache Out[N] and in the '_N' automatic variables.
2933 2933
2934 2934 Notes:
2935 2935
2936 2936 1) If an input line begins with '!!', then %sx is automatically
2937 2937 invoked. That is, while:
2938 2938 !ls
2939 2939 causes ipython to simply issue system('ls'), typing
2940 2940 !!ls
2941 2941 is a shorthand equivalent to:
2942 2942 %sx ls
2943 2943
2944 2944 2) %sx differs from %sc in that %sx automatically splits into a list,
2945 2945 like '%sc -l'. The reason for this is to make it as easy as possible
2946 2946 to process line-oriented shell output via further python commands.
2947 2947 %sc is meant to provide much finer control, but requires more
2948 2948 typing.
2949 2949
2950 2950 3) Just like %sc -l, this is a list with special attributes:
2951 2951
2952 2952 .l (or .list) : value as list.
2953 2953 .n (or .nlstr): value as newline-separated string.
2954 2954 .s (or .spstr): value as whitespace-separated string.
2955 2955
2956 2956 This is very useful when trying to use such lists as arguments to
2957 2957 system commands."""
2958 2958
2959 2959 if parameter_s:
2960 2960 out,err = self.shell.getoutputerror(parameter_s)
2961 2961 if err:
2962 2962 print >> Term.cerr,err
2963 2963 return SList(out.split('\n'))
2964 2964
2965 2965 def magic_bg(self, parameter_s=''):
2966 2966 """Run a job in the background, in a separate thread.
2967 2967
2968 2968 For example,
2969 2969
2970 2970 %bg myfunc(x,y,z=1)
2971 2971
2972 2972 will execute 'myfunc(x,y,z=1)' in a background thread. As soon as the
2973 2973 execution starts, a message will be printed indicating the job
2974 2974 number. If your job number is 5, you can use
2975 2975
2976 2976 myvar = jobs.result(5) or myvar = jobs[5].result
2977 2977
2978 2978 to assign this result to variable 'myvar'.
2979 2979
2980 2980 IPython has a job manager, accessible via the 'jobs' object. You can
2981 2981 type jobs? to get more information about it, and use jobs.<TAB> to see
2982 2982 its attributes. All attributes not starting with an underscore are
2983 2983 meant for public use.
2984 2984
2985 2985 In particular, look at the jobs.new() method, which is used to create
2986 2986 new jobs. This magic %bg function is just a convenience wrapper
2987 2987 around jobs.new(), for expression-based jobs. If you want to create a
2988 2988 new job with an explicit function object and arguments, you must call
2989 2989 jobs.new() directly.
2990 2990
2991 2991 The jobs.new docstring also describes in detail several important
2992 2992 caveats associated with a thread-based model for background job
2993 2993 execution. Type jobs.new? for details.
2994 2994
2995 2995 You can check the status of all jobs with jobs.status().
2996 2996
2997 2997 The jobs variable is set by IPython into the Python builtin namespace.
2998 2998 If you ever declare a variable named 'jobs', you will shadow this
2999 2999 name. You can either delete your global jobs variable to regain
3000 3000 access to the job manager, or make a new name and assign it manually
3001 3001 to the manager (stored in IPython's namespace). For example, to
3002 3002 assign the job manager to the Jobs name, use:
3003 3003
3004 3004 Jobs = __builtins__.jobs"""
3005 3005
3006 3006 self.shell.jobs.new(parameter_s,self.shell.user_ns)
3007 3007
3008 3008 def magic_r(self, parameter_s=''):
3009 3009 """Repeat previous input.
3010 3010
3011 3011 Note: Consider using the more powerfull %rep instead!
3012 3012
3013 3013 If given an argument, repeats the previous command which starts with
3014 3014 the same string, otherwise it just repeats the previous input.
3015 3015
3016 3016 Shell escaped commands (with ! as first character) are not recognized
3017 3017 by this system, only pure python code and magic commands.
3018 3018 """
3019 3019
3020 3020 start = parameter_s.strip()
3021 3021 esc_magic = self.shell.ESC_MAGIC
3022 3022 # Identify magic commands even if automagic is on (which means
3023 3023 # the in-memory version is different from that typed by the user).
3024 3024 if self.shell.rc.automagic:
3025 3025 start_magic = esc_magic+start
3026 3026 else:
3027 3027 start_magic = start
3028 3028 # Look through the input history in reverse
3029 3029 for n in range(len(self.shell.input_hist)-2,0,-1):
3030 3030 input = self.shell.input_hist[n]
3031 3031 # skip plain 'r' lines so we don't recurse to infinity
3032 3032 if input != '_ip.magic("r")\n' and \
3033 3033 (input.startswith(start) or input.startswith(start_magic)):
3034 3034 #print 'match',`input` # dbg
3035 3035 print 'Executing:',input,
3036 3036 self.shell.runlines(input)
3037 3037 return
3038 3038 print 'No previous input matching `%s` found.' % start
3039 3039
3040 3040
3041 3041 def magic_bookmark(self, parameter_s=''):
3042 3042 """Manage IPython's bookmark system.
3043 3043
3044 3044 %bookmark <name> - set bookmark to current dir
3045 3045 %bookmark <name> <dir> - set bookmark to <dir>
3046 3046 %bookmark -l - list all bookmarks
3047 3047 %bookmark -d <name> - remove bookmark
3048 3048 %bookmark -r - remove all bookmarks
3049 3049
3050 3050 You can later on access a bookmarked folder with:
3051 3051 %cd -b <name>
3052 3052 or simply '%cd <name>' if there is no directory called <name> AND
3053 3053 there is such a bookmark defined.
3054 3054
3055 3055 Your bookmarks persist through IPython sessions, but they are
3056 3056 associated with each profile."""
3057 3057
3058 3058 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3059 3059 if len(args) > 2:
3060 3060 raise UsageError("%bookmark: too many arguments")
3061 3061
3062 3062 bkms = self.db.get('bookmarks',{})
3063 3063
3064 3064 if opts.has_key('d'):
3065 3065 try:
3066 3066 todel = args[0]
3067 3067 except IndexError:
3068 3068 raise UsageError(
3069 3069 "%bookmark -d: must provide a bookmark to delete")
3070 3070 else:
3071 3071 try:
3072 3072 del bkms[todel]
3073 3073 except KeyError:
3074 3074 raise UsageError(
3075 3075 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3076 3076
3077 3077 elif opts.has_key('r'):
3078 3078 bkms = {}
3079 3079 elif opts.has_key('l'):
3080 3080 bks = bkms.keys()
3081 3081 bks.sort()
3082 3082 if bks:
3083 3083 size = max(map(len,bks))
3084 3084 else:
3085 3085 size = 0
3086 3086 fmt = '%-'+str(size)+'s -> %s'
3087 3087 print 'Current bookmarks:'
3088 3088 for bk in bks:
3089 3089 print fmt % (bk,bkms[bk])
3090 3090 else:
3091 3091 if not args:
3092 3092 raise UsageError("%bookmark: You must specify the bookmark name")
3093 3093 elif len(args)==1:
3094 3094 bkms[args[0]] = os.getcwd()
3095 3095 elif len(args)==2:
3096 3096 bkms[args[0]] = args[1]
3097 3097 self.db['bookmarks'] = bkms
3098 3098
3099 3099 def magic_pycat(self, parameter_s=''):
3100 3100 """Show a syntax-highlighted file through a pager.
3101 3101
3102 3102 This magic is similar to the cat utility, but it will assume the file
3103 3103 to be Python source and will show it with syntax highlighting. """
3104 3104
3105 3105 try:
3106 3106 filename = get_py_filename(parameter_s)
3107 3107 cont = file_read(filename)
3108 3108 except IOError:
3109 3109 try:
3110 3110 cont = eval(parameter_s,self.user_ns)
3111 3111 except NameError:
3112 3112 cont = None
3113 3113 if cont is None:
3114 3114 print "Error: no such file or variable"
3115 3115 return
3116 3116
3117 3117 page(self.shell.pycolorize(cont),
3118 3118 screen_lines=self.shell.rc.screen_length)
3119 3119
3120 3120 def magic_cpaste(self, parameter_s=''):
3121 3121 """Allows you to paste & execute a pre-formatted code block from clipboard
3122 3122
3123 3123 You must terminate the block with '--' (two minus-signs) alone on the
3124 3124 line. You can also provide your own sentinel with '%paste -s %%' ('%%'
3125 3125 is the new sentinel for this operation)
3126 3126
3127 3127 The block is dedented prior to execution to enable execution of method
3128 3128 definitions. '>' and '+' characters at the beginning of a line are
3129 3129 ignored, to allow pasting directly from e-mails or diff files. The
3130 3130 executed block is also assigned to variable named 'pasted_block' for
3131 3131 later editing with '%edit pasted_block'.
3132 3132
3133 3133 You can also pass a variable name as an argument, e.g. '%cpaste foo'.
3134 3134 This assigns the pasted block to variable 'foo' as string, without
3135 3135 dedenting or executing it.
3136 3136
3137 3137 Do not be alarmed by garbled output on Windows (it's a readline bug).
3138 3138 Just press enter and type -- (and press enter again) and the block
3139 3139 will be what was just pasted.
3140 3140
3141 3141 IPython statements (magics, shell escapes) are not supported (yet).
3142 3142 """
3143 3143 opts,args = self.parse_options(parameter_s,'s:',mode='string')
3144 3144 par = args.strip()
3145 3145 sentinel = opts.get('s','--')
3146
3146
3147 strip_from_start = [re.compile(e) for e in
3148 ['^(.?>)+','^In \[\d+\]:','^\++']]
3147 3149 from IPython import iplib
3148 3150 lines = []
3149 3151 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3150 3152 while 1:
3151 3153 l = iplib.raw_input_original(':')
3152 3154 if l ==sentinel:
3153 3155 break
3154 lines.append(l.lstrip('>').lstrip('+'))
3156
3157 for pat in strip_from_start:
3158 l = pat.sub('',l)
3159 lines.append(l)
3160
3155 3161 block = "\n".join(lines) + '\n'
3156 3162 #print "block:\n",block
3157 3163 if not par:
3158 3164 b = textwrap.dedent(block)
3159 3165 exec b in self.user_ns
3160 3166 self.user_ns['pasted_block'] = b
3161 3167 else:
3162 3168 self.user_ns[par] = block
3163 3169 print "Block assigned to '%s'" % par
3164 3170
3165 3171 def magic_quickref(self,arg):
3166 3172 """ Show a quick reference sheet """
3167 3173 import IPython.usage
3168 3174 qr = IPython.usage.quick_reference + self.magic_magic('-brief')
3169 3175
3170 3176 page(qr)
3171 3177
3172 3178 def magic_upgrade(self,arg):
3173 3179 """ Upgrade your IPython installation
3174 3180
3175 3181 This will copy the config files that don't yet exist in your
3176 3182 ipython dir from the system config dir. Use this after upgrading
3177 3183 IPython if you don't wish to delete your .ipython dir.
3178 3184
3179 3185 Call with -nolegacy to get rid of ipythonrc* files (recommended for
3180 3186 new users)
3181 3187
3182 3188 """
3183 3189 ip = self.getapi()
3184 3190 ipinstallation = path(IPython.__file__).dirname()
3185 3191 upgrade_script = '%s "%s"' % (sys.executable,ipinstallation / 'upgrade_dir.py')
3186 3192 src_config = ipinstallation / 'UserConfig'
3187 3193 userdir = path(ip.options.ipythondir)
3188 3194 cmd = '%s "%s" "%s"' % (upgrade_script, src_config, userdir)
3189 3195 print ">",cmd
3190 3196 shell(cmd)
3191 3197 if arg == '-nolegacy':
3192 3198 legacy = userdir.files('ipythonrc*')
3193 3199 print "Nuking legacy files:",legacy
3194 3200
3195 3201 [p.remove() for p in legacy]
3196 3202 suffix = (sys.platform == 'win32' and '.ini' or '')
3197 3203 (userdir / ('ipythonrc' + suffix)).write_text('# Empty, see ipy_user_conf.py\n')
3198 3204
3199 3205
3200 3206 def magic_doctest_mode(self,parameter_s=''):
3201 3207 """Toggle doctest mode on and off.
3202 3208
3203 3209 This mode allows you to toggle the prompt behavior between normal
3204 3210 IPython prompts and ones that are as similar to the default IPython
3205 3211 interpreter as possible.
3206 3212
3207 3213 It also supports the pasting of code snippets that have leading '>>>'
3208 3214 and '...' prompts in them. This means that you can paste doctests from
3209 3215 files or docstrings (even if they have leading whitespace), and the
3210 3216 code will execute correctly. You can then use '%history -tn' to see
3211 3217 the translated history without line numbers; this will give you the
3212 3218 input after removal of all the leading prompts and whitespace, which
3213 3219 can be pasted back into an editor.
3214 3220
3215 3221 With these features, you can switch into this mode easily whenever you
3216 3222 need to do testing and changes to doctests, without having to leave
3217 3223 your existing IPython session.
3218 3224 """
3219 3225
3220 3226 # XXX - Fix this to have cleaner activate/deactivate calls.
3221 3227 from IPython.Extensions import InterpreterPasteInput as ipaste
3222 3228 from IPython.ipstruct import Struct
3223 3229
3224 3230 # Shorthands
3225 3231 shell = self.shell
3226 3232 oc = shell.outputcache
3227 3233 rc = shell.rc
3228 3234 meta = shell.meta
3229 3235 # dstore is a data store kept in the instance metadata bag to track any
3230 3236 # changes we make, so we can undo them later.
3231 3237 dstore = meta.setdefault('doctest_mode',Struct())
3232 3238 save_dstore = dstore.setdefault
3233 3239
3234 3240 # save a few values we'll need to recover later
3235 3241 mode = save_dstore('mode',False)
3236 3242 save_dstore('rc_pprint',rc.pprint)
3237 3243 save_dstore('xmode',shell.InteractiveTB.mode)
3238 3244 save_dstore('rc_separate_out',rc.separate_out)
3239 3245 save_dstore('rc_separate_out2',rc.separate_out2)
3240 3246 save_dstore('rc_prompts_pad_left',rc.prompts_pad_left)
3241 3247
3242 3248 if mode == False:
3243 3249 # turn on
3244 3250 ipaste.activate_prefilter()
3245 3251
3246 3252 oc.prompt1.p_template = '>>> '
3247 3253 oc.prompt2.p_template = '... '
3248 3254 oc.prompt_out.p_template = ''
3249 3255
3250 3256 oc.output_sep = ''
3251 3257 oc.output_sep2 = ''
3252 3258
3253 3259 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3254 3260 oc.prompt_out.pad_left = False
3255 3261
3256 3262 rc.pprint = False
3257 3263
3258 3264 shell.magic_xmode('Plain')
3259 3265
3260 3266 else:
3261 3267 # turn off
3262 3268 ipaste.deactivate_prefilter()
3263 3269
3264 3270 oc.prompt1.p_template = rc.prompt_in1
3265 3271 oc.prompt2.p_template = rc.prompt_in2
3266 3272 oc.prompt_out.p_template = rc.prompt_out
3267 3273
3268 3274 oc.output_sep = dstore.rc_separate_out
3269 3275 oc.output_sep2 = dstore.rc_separate_out2
3270 3276
3271 3277 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3272 3278 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3273 3279
3274 3280 rc.pprint = dstore.rc_pprint
3275 3281
3276 3282 shell.magic_xmode(dstore.xmode)
3277 3283
3278 3284 # Store new mode and inform
3279 3285 dstore.mode = bool(1-int(mode))
3280 3286 print 'Doctest mode is:',
3281 3287 print ['OFF','ON'][dstore.mode]
3282 3288
3283 3289 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now