##// END OF EJS Templates
Add printing of wall time to %run, particularly important for parallel timing.
Fernando Perez -
Show More
@@ -1,3507 +1,3510 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 from cStringIO import StringIO
29 29 from getopt import getopt,GetoptError
30 30 from pprint import pformat
31 31 from xmlrpclib import ServerProxy
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.profiledir import ProfileDir
50 50 from IPython.core.macro import Macro
51 51 from IPython.core import page
52 52 from IPython.core.prefilter import ESC_MAGIC
53 53 from IPython.lib.pylabtools import mpl_runner
54 54 from IPython.external.Itpl import itpl, printpl
55 55 from IPython.testing.skipdoctest import skip_doctest
56 56 from IPython.utils.io import file_read, nlprint
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89 def needs_local_scope(func):
90 90 """Decorator to mark magic functions which need to local scope to run."""
91 91 func.needs_local_scope = True
92 92 return func
93 93
94 94 # Used for exception handling in magic_edit
95 95 class MacroToEdit(ValueError): pass
96 96
97 97 #***************************************************************************
98 98 # Main class implementing Magic functionality
99 99
100 100 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
101 101 # on construction of the main InteractiveShell object. Something odd is going
102 102 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
103 103 # eventually this needs to be clarified.
104 104 # BG: This is because InteractiveShell inherits from this, but is itself a
105 105 # Configurable. This messes up the MRO in some way. The fix is that we need to
106 106 # make Magic a configurable that InteractiveShell does not subclass.
107 107
108 108 class Magic:
109 109 """Magic functions for InteractiveShell.
110 110
111 111 Shell functions which can be reached as %function_name. All magic
112 112 functions should accept a string, which they can parse for their own
113 113 needs. This can make some functions easier to type, eg `%cd ../`
114 114 vs. `%cd("../")`
115 115
116 116 ALL definitions MUST begin with the prefix magic_. The user won't need it
117 117 at the command line, but it is is needed in the definition. """
118 118
119 119 # class globals
120 120 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
121 121 'Automagic is ON, % prefix NOT needed for magic functions.']
122 122
123 123 #......................................................................
124 124 # some utility functions
125 125
126 126 def __init__(self,shell):
127 127
128 128 self.options_table = {}
129 129 if profile is None:
130 130 self.magic_prun = self.profile_missing_notice
131 131 self.shell = shell
132 132
133 133 # namespace for holding state we may need
134 134 self._magic_state = Bunch()
135 135
136 136 def profile_missing_notice(self, *args, **kwargs):
137 137 error("""\
138 138 The profile module could not be found. It has been removed from the standard
139 139 python packages because of its non-free license. To use profiling, install the
140 140 python-profiler package from non-free.""")
141 141
142 142 def default_option(self,fn,optstr):
143 143 """Make an entry in the options_table for fn, with value optstr"""
144 144
145 145 if fn not in self.lsmagic():
146 146 error("%s is not a magic function" % fn)
147 147 self.options_table[fn] = optstr
148 148
149 149 def lsmagic(self):
150 150 """Return a list of currently available magic functions.
151 151
152 152 Gives a list of the bare names after mangling (['ls','cd', ...], not
153 153 ['magic_ls','magic_cd',...]"""
154 154
155 155 # FIXME. This needs a cleanup, in the way the magics list is built.
156 156
157 157 # magics in class definition
158 158 class_magic = lambda fn: fn.startswith('magic_') and \
159 159 callable(Magic.__dict__[fn])
160 160 # in instance namespace (run-time user additions)
161 161 inst_magic = lambda fn: fn.startswith('magic_') and \
162 162 callable(self.__dict__[fn])
163 163 # and bound magics by user (so they can access self):
164 164 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
165 165 callable(self.__class__.__dict__[fn])
166 166 magics = filter(class_magic,Magic.__dict__.keys()) + \
167 167 filter(inst_magic,self.__dict__.keys()) + \
168 168 filter(inst_bound_magic,self.__class__.__dict__.keys())
169 169 out = []
170 170 for fn in set(magics):
171 171 out.append(fn.replace('magic_','',1))
172 172 out.sort()
173 173 return out
174 174
175 175 def extract_input_lines(self, range_str, raw=False):
176 176 """Return as a string a set of input history slices.
177 177
178 178 Inputs:
179 179
180 180 - range_str: the set of slices is given as a string, like
181 181 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
182 182 which get their arguments as strings. The number before the / is the
183 183 session number: ~n goes n back from the current session.
184 184
185 185 Optional inputs:
186 186
187 187 - raw(False): by default, the processed input is used. If this is
188 188 true, the raw input history is used instead.
189 189
190 190 Note that slices can be called with two notations:
191 191
192 192 N:M -> standard python form, means including items N...(M-1).
193 193
194 194 N-M -> include items N..M (closed endpoint)."""
195 195 lines = self.shell.history_manager.\
196 196 get_range_by_str(range_str, raw=raw)
197 197 return "\n".join(x for _, _, x in lines)
198 198
199 199 def arg_err(self,func):
200 200 """Print docstring if incorrect arguments were passed"""
201 201 print 'Error in arguments:'
202 202 print oinspect.getdoc(func)
203 203
204 204 def format_latex(self,strng):
205 205 """Format a string for latex inclusion."""
206 206
207 207 # Characters that need to be escaped for latex:
208 208 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
209 209 # Magic command names as headers:
210 210 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
211 211 re.MULTILINE)
212 212 # Magic commands
213 213 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
214 214 re.MULTILINE)
215 215 # Paragraph continue
216 216 par_re = re.compile(r'\\$',re.MULTILINE)
217 217
218 218 # The "\n" symbol
219 219 newline_re = re.compile(r'\\n')
220 220
221 221 # Now build the string for output:
222 222 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
223 223 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
224 224 strng)
225 225 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
226 226 strng = par_re.sub(r'\\\\',strng)
227 227 strng = escape_re.sub(r'\\\1',strng)
228 228 strng = newline_re.sub(r'\\textbackslash{}n',strng)
229 229 return strng
230 230
231 231 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
232 232 """Parse options passed to an argument string.
233 233
234 234 The interface is similar to that of getopt(), but it returns back a
235 235 Struct with the options as keys and the stripped argument string still
236 236 as a string.
237 237
238 238 arg_str is quoted as a true sys.argv vector by using shlex.split.
239 239 This allows us to easily expand variables, glob files, quote
240 240 arguments, etc.
241 241
242 242 Options:
243 243 -mode: default 'string'. If given as 'list', the argument string is
244 244 returned as a list (split on whitespace) instead of a string.
245 245
246 246 -list_all: put all option values in lists. Normally only options
247 247 appearing more than once are put in a list.
248 248
249 249 -posix (True): whether to split the input line in POSIX mode or not,
250 250 as per the conventions outlined in the shlex module from the
251 251 standard library."""
252 252
253 253 # inject default options at the beginning of the input line
254 254 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
255 255 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
256 256
257 257 mode = kw.get('mode','string')
258 258 if mode not in ['string','list']:
259 259 raise ValueError,'incorrect mode given: %s' % mode
260 260 # Get options
261 261 list_all = kw.get('list_all',0)
262 262 posix = kw.get('posix', os.name == 'posix')
263 263
264 264 # Check if we have more than one argument to warrant extra processing:
265 265 odict = {} # Dictionary with options
266 266 args = arg_str.split()
267 267 if len(args) >= 1:
268 268 # If the list of inputs only has 0 or 1 thing in it, there's no
269 269 # need to look for options
270 270 argv = arg_split(arg_str,posix)
271 271 # Do regular option processing
272 272 try:
273 273 opts,args = getopt(argv,opt_str,*long_opts)
274 274 except GetoptError,e:
275 275 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
276 276 " ".join(long_opts)))
277 277 for o,a in opts:
278 278 if o.startswith('--'):
279 279 o = o[2:]
280 280 else:
281 281 o = o[1:]
282 282 try:
283 283 odict[o].append(a)
284 284 except AttributeError:
285 285 odict[o] = [odict[o],a]
286 286 except KeyError:
287 287 if list_all:
288 288 odict[o] = [a]
289 289 else:
290 290 odict[o] = a
291 291
292 292 # Prepare opts,args for return
293 293 opts = Struct(odict)
294 294 if mode == 'string':
295 295 args = ' '.join(args)
296 296
297 297 return opts,args
298 298
299 299 #......................................................................
300 300 # And now the actual magic functions
301 301
302 302 # Functions for IPython shell work (vars,funcs, config, etc)
303 303 def magic_lsmagic(self, parameter_s = ''):
304 304 """List currently available magic functions."""
305 305 mesc = ESC_MAGIC
306 306 print 'Available magic functions:\n'+mesc+\
307 307 (' '+mesc).join(self.lsmagic())
308 308 print '\n' + Magic.auto_status[self.shell.automagic]
309 309 return None
310 310
311 311 def magic_magic(self, parameter_s = ''):
312 312 """Print information about the magic function system.
313 313
314 314 Supported formats: -latex, -brief, -rest
315 315 """
316 316
317 317 mode = ''
318 318 try:
319 319 if parameter_s.split()[0] == '-latex':
320 320 mode = 'latex'
321 321 if parameter_s.split()[0] == '-brief':
322 322 mode = 'brief'
323 323 if parameter_s.split()[0] == '-rest':
324 324 mode = 'rest'
325 325 rest_docs = []
326 326 except:
327 327 pass
328 328
329 329 magic_docs = []
330 330 for fname in self.lsmagic():
331 331 mname = 'magic_' + fname
332 332 for space in (Magic,self,self.__class__):
333 333 try:
334 334 fn = space.__dict__[mname]
335 335 except KeyError:
336 336 pass
337 337 else:
338 338 break
339 339 if mode == 'brief':
340 340 # only first line
341 341 if fn.__doc__:
342 342 fndoc = fn.__doc__.split('\n',1)[0]
343 343 else:
344 344 fndoc = 'No documentation'
345 345 else:
346 346 if fn.__doc__:
347 347 fndoc = fn.__doc__.rstrip()
348 348 else:
349 349 fndoc = 'No documentation'
350 350
351 351
352 352 if mode == 'rest':
353 353 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
354 354 fname,fndoc))
355 355
356 356 else:
357 357 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
358 358 fname,fndoc))
359 359
360 360 magic_docs = ''.join(magic_docs)
361 361
362 362 if mode == 'rest':
363 363 return "".join(rest_docs)
364 364
365 365 if mode == 'latex':
366 366 print self.format_latex(magic_docs)
367 367 return
368 368 else:
369 369 magic_docs = format_screen(magic_docs)
370 370 if mode == 'brief':
371 371 return magic_docs
372 372
373 373 outmsg = """
374 374 IPython's 'magic' functions
375 375 ===========================
376 376
377 377 The magic function system provides a series of functions which allow you to
378 378 control the behavior of IPython itself, plus a lot of system-type
379 379 features. All these functions are prefixed with a % character, but parameters
380 380 are given without parentheses or quotes.
381 381
382 382 NOTE: If you have 'automagic' enabled (via the command line option or with the
383 383 %automagic function), you don't need to type in the % explicitly. By default,
384 384 IPython ships with automagic on, so you should only rarely need the % escape.
385 385
386 386 Example: typing '%cd mydir' (without the quotes) changes you working directory
387 387 to 'mydir', if it exists.
388 388
389 389 You can define your own magic functions to extend the system. See the supplied
390 390 ipythonrc and example-magic.py files for details (in your ipython
391 391 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
392 392
393 393 You can also define your own aliased names for magic functions. In your
394 394 ipythonrc file, placing a line like:
395 395
396 396 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
397 397
398 398 will define %pf as a new name for %profile.
399 399
400 400 You can also call magics in code using the magic() function, which IPython
401 401 automatically adds to the builtin namespace. Type 'magic?' for details.
402 402
403 403 For a list of the available magic functions, use %lsmagic. For a description
404 404 of any of them, type %magic_name?, e.g. '%cd?'.
405 405
406 406 Currently the magic system has the following functions:\n"""
407 407
408 408 mesc = ESC_MAGIC
409 409 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
410 410 "\n\n%s%s\n\n%s" % (outmsg,
411 411 magic_docs,mesc,mesc,
412 412 (' '+mesc).join(self.lsmagic()),
413 413 Magic.auto_status[self.shell.automagic] ) )
414 414 page.page(outmsg)
415 415
416 416 def magic_automagic(self, parameter_s = ''):
417 417 """Make magic functions callable without having to type the initial %.
418 418
419 419 Without argumentsl toggles on/off (when off, you must call it as
420 420 %automagic, of course). With arguments it sets the value, and you can
421 421 use any of (case insensitive):
422 422
423 423 - on,1,True: to activate
424 424
425 425 - off,0,False: to deactivate.
426 426
427 427 Note that magic functions have lowest priority, so if there's a
428 428 variable whose name collides with that of a magic fn, automagic won't
429 429 work for that function (you get the variable instead). However, if you
430 430 delete the variable (del var), the previously shadowed magic function
431 431 becomes visible to automagic again."""
432 432
433 433 arg = parameter_s.lower()
434 434 if parameter_s in ('on','1','true'):
435 435 self.shell.automagic = True
436 436 elif parameter_s in ('off','0','false'):
437 437 self.shell.automagic = False
438 438 else:
439 439 self.shell.automagic = not self.shell.automagic
440 440 print '\n' + Magic.auto_status[self.shell.automagic]
441 441
442 442 @skip_doctest
443 443 def magic_autocall(self, parameter_s = ''):
444 444 """Make functions callable without having to type parentheses.
445 445
446 446 Usage:
447 447
448 448 %autocall [mode]
449 449
450 450 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
451 451 value is toggled on and off (remembering the previous state).
452 452
453 453 In more detail, these values mean:
454 454
455 455 0 -> fully disabled
456 456
457 457 1 -> active, but do not apply if there are no arguments on the line.
458 458
459 459 In this mode, you get:
460 460
461 461 In [1]: callable
462 462 Out[1]: <built-in function callable>
463 463
464 464 In [2]: callable 'hello'
465 465 ------> callable('hello')
466 466 Out[2]: False
467 467
468 468 2 -> Active always. Even if no arguments are present, the callable
469 469 object is called:
470 470
471 471 In [2]: float
472 472 ------> float()
473 473 Out[2]: 0.0
474 474
475 475 Note that even with autocall off, you can still use '/' at the start of
476 476 a line to treat the first argument on the command line as a function
477 477 and add parentheses to it:
478 478
479 479 In [8]: /str 43
480 480 ------> str(43)
481 481 Out[8]: '43'
482 482
483 483 # all-random (note for auto-testing)
484 484 """
485 485
486 486 if parameter_s:
487 487 arg = int(parameter_s)
488 488 else:
489 489 arg = 'toggle'
490 490
491 491 if not arg in (0,1,2,'toggle'):
492 492 error('Valid modes: (0->Off, 1->Smart, 2->Full')
493 493 return
494 494
495 495 if arg in (0,1,2):
496 496 self.shell.autocall = arg
497 497 else: # toggle
498 498 if self.shell.autocall:
499 499 self._magic_state.autocall_save = self.shell.autocall
500 500 self.shell.autocall = 0
501 501 else:
502 502 try:
503 503 self.shell.autocall = self._magic_state.autocall_save
504 504 except AttributeError:
505 505 self.shell.autocall = self._magic_state.autocall_save = 1
506 506
507 507 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
508 508
509 509
510 510 def magic_page(self, parameter_s=''):
511 511 """Pretty print the object and display it through a pager.
512 512
513 513 %page [options] OBJECT
514 514
515 515 If no object is given, use _ (last output).
516 516
517 517 Options:
518 518
519 519 -r: page str(object), don't pretty-print it."""
520 520
521 521 # After a function contributed by Olivier Aubert, slightly modified.
522 522
523 523 # Process options/args
524 524 opts,args = self.parse_options(parameter_s,'r')
525 525 raw = 'r' in opts
526 526
527 527 oname = args and args or '_'
528 528 info = self._ofind(oname)
529 529 if info['found']:
530 530 txt = (raw and str or pformat)( info['obj'] )
531 531 page.page(txt)
532 532 else:
533 533 print 'Object `%s` not found' % oname
534 534
535 535 def magic_profile(self, parameter_s=''):
536 536 """Print your currently active IPython profile."""
537 537 print self.shell.profile
538 538
539 539 def magic_pinfo(self, parameter_s='', namespaces=None):
540 540 """Provide detailed information about an object.
541 541
542 542 '%pinfo object' is just a synonym for object? or ?object."""
543 543
544 544 #print 'pinfo par: <%s>' % parameter_s # dbg
545 545
546 546
547 547 # detail_level: 0 -> obj? , 1 -> obj??
548 548 detail_level = 0
549 549 # We need to detect if we got called as 'pinfo pinfo foo', which can
550 550 # happen if the user types 'pinfo foo?' at the cmd line.
551 551 pinfo,qmark1,oname,qmark2 = \
552 552 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
553 553 if pinfo or qmark1 or qmark2:
554 554 detail_level = 1
555 555 if "*" in oname:
556 556 self.magic_psearch(oname)
557 557 else:
558 558 self.shell._inspect('pinfo', oname, detail_level=detail_level,
559 559 namespaces=namespaces)
560 560
561 561 def magic_pinfo2(self, parameter_s='', namespaces=None):
562 562 """Provide extra detailed information about an object.
563 563
564 564 '%pinfo2 object' is just a synonym for object?? or ??object."""
565 565 self.shell._inspect('pinfo', parameter_s, detail_level=1,
566 566 namespaces=namespaces)
567 567
568 568 @skip_doctest
569 569 def magic_pdef(self, parameter_s='', namespaces=None):
570 570 """Print the definition header for any callable object.
571 571
572 572 If the object is a class, print the constructor information.
573 573
574 574 Examples
575 575 --------
576 576 ::
577 577
578 578 In [3]: %pdef urllib.urlopen
579 579 urllib.urlopen(url, data=None, proxies=None)
580 580 """
581 581 self._inspect('pdef',parameter_s, namespaces)
582 582
583 583 def magic_pdoc(self, parameter_s='', namespaces=None):
584 584 """Print the docstring for an object.
585 585
586 586 If the given object is a class, it will print both the class and the
587 587 constructor docstrings."""
588 588 self._inspect('pdoc',parameter_s, namespaces)
589 589
590 590 def magic_psource(self, parameter_s='', namespaces=None):
591 591 """Print (or run through pager) the source code for an object."""
592 592 self._inspect('psource',parameter_s, namespaces)
593 593
594 594 def magic_pfile(self, parameter_s=''):
595 595 """Print (or run through pager) the file where an object is defined.
596 596
597 597 The file opens at the line where the object definition begins. IPython
598 598 will honor the environment variable PAGER if set, and otherwise will
599 599 do its best to print the file in a convenient form.
600 600
601 601 If the given argument is not an object currently defined, IPython will
602 602 try to interpret it as a filename (automatically adding a .py extension
603 603 if needed). You can thus use %pfile as a syntax highlighting code
604 604 viewer."""
605 605
606 606 # first interpret argument as an object name
607 607 out = self._inspect('pfile',parameter_s)
608 608 # if not, try the input as a filename
609 609 if out == 'not found':
610 610 try:
611 611 filename = get_py_filename(parameter_s)
612 612 except IOError,msg:
613 613 print msg
614 614 return
615 615 page.page(self.shell.inspector.format(file(filename).read()))
616 616
617 617 def magic_psearch(self, parameter_s=''):
618 618 """Search for object in namespaces by wildcard.
619 619
620 620 %psearch [options] PATTERN [OBJECT TYPE]
621 621
622 622 Note: ? can be used as a synonym for %psearch, at the beginning or at
623 623 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
624 624 rest of the command line must be unchanged (options come first), so
625 625 for example the following forms are equivalent
626 626
627 627 %psearch -i a* function
628 628 -i a* function?
629 629 ?-i a* function
630 630
631 631 Arguments:
632 632
633 633 PATTERN
634 634
635 635 where PATTERN is a string containing * as a wildcard similar to its
636 636 use in a shell. The pattern is matched in all namespaces on the
637 637 search path. By default objects starting with a single _ are not
638 638 matched, many IPython generated objects have a single
639 639 underscore. The default is case insensitive matching. Matching is
640 640 also done on the attributes of objects and not only on the objects
641 641 in a module.
642 642
643 643 [OBJECT TYPE]
644 644
645 645 Is the name of a python type from the types module. The name is
646 646 given in lowercase without the ending type, ex. StringType is
647 647 written string. By adding a type here only objects matching the
648 648 given type are matched. Using all here makes the pattern match all
649 649 types (this is the default).
650 650
651 651 Options:
652 652
653 653 -a: makes the pattern match even objects whose names start with a
654 654 single underscore. These names are normally ommitted from the
655 655 search.
656 656
657 657 -i/-c: make the pattern case insensitive/sensitive. If neither of
658 658 these options is given, the default is read from your ipythonrc
659 659 file. The option name which sets this value is
660 660 'wildcards_case_sensitive'. If this option is not specified in your
661 661 ipythonrc file, IPython's internal default is to do a case sensitive
662 662 search.
663 663
664 664 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
665 665 specifiy can be searched in any of the following namespaces:
666 666 'builtin', 'user', 'user_global','internal', 'alias', where
667 667 'builtin' and 'user' are the search defaults. Note that you should
668 668 not use quotes when specifying namespaces.
669 669
670 670 'Builtin' contains the python module builtin, 'user' contains all
671 671 user data, 'alias' only contain the shell aliases and no python
672 672 objects, 'internal' contains objects used by IPython. The
673 673 'user_global' namespace is only used by embedded IPython instances,
674 674 and it contains module-level globals. You can add namespaces to the
675 675 search with -s or exclude them with -e (these options can be given
676 676 more than once).
677 677
678 678 Examples:
679 679
680 680 %psearch a* -> objects beginning with an a
681 681 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
682 682 %psearch a* function -> all functions beginning with an a
683 683 %psearch re.e* -> objects beginning with an e in module re
684 684 %psearch r*.e* -> objects that start with e in modules starting in r
685 685 %psearch r*.* string -> all strings in modules beginning with r
686 686
687 687 Case sensitve search:
688 688
689 689 %psearch -c a* list all object beginning with lower case a
690 690
691 691 Show objects beginning with a single _:
692 692
693 693 %psearch -a _* list objects beginning with a single underscore"""
694 694 try:
695 695 parameter_s = parameter_s.encode('ascii')
696 696 except UnicodeEncodeError:
697 697 print 'Python identifiers can only contain ascii characters.'
698 698 return
699 699
700 700 # default namespaces to be searched
701 701 def_search = ['user','builtin']
702 702
703 703 # Process options/args
704 704 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
705 705 opt = opts.get
706 706 shell = self.shell
707 707 psearch = shell.inspector.psearch
708 708
709 709 # select case options
710 710 if opts.has_key('i'):
711 711 ignore_case = True
712 712 elif opts.has_key('c'):
713 713 ignore_case = False
714 714 else:
715 715 ignore_case = not shell.wildcards_case_sensitive
716 716
717 717 # Build list of namespaces to search from user options
718 718 def_search.extend(opt('s',[]))
719 719 ns_exclude = ns_exclude=opt('e',[])
720 720 ns_search = [nm for nm in def_search if nm not in ns_exclude]
721 721
722 722 # Call the actual search
723 723 try:
724 724 psearch(args,shell.ns_table,ns_search,
725 725 show_all=opt('a'),ignore_case=ignore_case)
726 726 except:
727 727 shell.showtraceback()
728 728
729 729 @skip_doctest
730 730 def magic_who_ls(self, parameter_s=''):
731 731 """Return a sorted list of all interactive variables.
732 732
733 733 If arguments are given, only variables of types matching these
734 734 arguments are returned.
735 735
736 736 Examples
737 737 --------
738 738
739 739 Define two variables and list them with who_ls::
740 740
741 741 In [1]: alpha = 123
742 742
743 743 In [2]: beta = 'test'
744 744
745 745 In [3]: %who_ls
746 746 Out[3]: ['alpha', 'beta']
747 747
748 748 In [4]: %who_ls int
749 749 Out[4]: ['alpha']
750 750
751 751 In [5]: %who_ls str
752 752 Out[5]: ['beta']
753 753 """
754 754
755 755 user_ns = self.shell.user_ns
756 756 internal_ns = self.shell.internal_ns
757 757 user_ns_hidden = self.shell.user_ns_hidden
758 758 out = [ i for i in user_ns
759 759 if not i.startswith('_') \
760 760 and not (i in internal_ns or i in user_ns_hidden) ]
761 761
762 762 typelist = parameter_s.split()
763 763 if typelist:
764 764 typeset = set(typelist)
765 765 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
766 766
767 767 out.sort()
768 768 return out
769 769
770 770 @skip_doctest
771 771 def magic_who(self, parameter_s=''):
772 772 """Print all interactive variables, with some minimal formatting.
773 773
774 774 If any arguments are given, only variables whose type matches one of
775 775 these are printed. For example:
776 776
777 777 %who function str
778 778
779 779 will only list functions and strings, excluding all other types of
780 780 variables. To find the proper type names, simply use type(var) at a
781 781 command line to see how python prints type names. For example:
782 782
783 783 In [1]: type('hello')\\
784 784 Out[1]: <type 'str'>
785 785
786 786 indicates that the type name for strings is 'str'.
787 787
788 788 %who always excludes executed names loaded through your configuration
789 789 file and things which are internal to IPython.
790 790
791 791 This is deliberate, as typically you may load many modules and the
792 792 purpose of %who is to show you only what you've manually defined.
793 793
794 794 Examples
795 795 --------
796 796
797 797 Define two variables and list them with who::
798 798
799 799 In [1]: alpha = 123
800 800
801 801 In [2]: beta = 'test'
802 802
803 803 In [3]: %who
804 804 alpha beta
805 805
806 806 In [4]: %who int
807 807 alpha
808 808
809 809 In [5]: %who str
810 810 beta
811 811 """
812 812
813 813 varlist = self.magic_who_ls(parameter_s)
814 814 if not varlist:
815 815 if parameter_s:
816 816 print 'No variables match your requested type.'
817 817 else:
818 818 print 'Interactive namespace is empty.'
819 819 return
820 820
821 821 # if we have variables, move on...
822 822 count = 0
823 823 for i in varlist:
824 824 print i+'\t',
825 825 count += 1
826 826 if count > 8:
827 827 count = 0
828 828 print
829 829 print
830 830
831 831 @skip_doctest
832 832 def magic_whos(self, parameter_s=''):
833 833 """Like %who, but gives some extra information about each variable.
834 834
835 835 The same type filtering of %who can be applied here.
836 836
837 837 For all variables, the type is printed. Additionally it prints:
838 838
839 839 - For {},[],(): their length.
840 840
841 841 - For numpy arrays, a summary with shape, number of
842 842 elements, typecode and size in memory.
843 843
844 844 - Everything else: a string representation, snipping their middle if
845 845 too long.
846 846
847 847 Examples
848 848 --------
849 849
850 850 Define two variables and list them with whos::
851 851
852 852 In [1]: alpha = 123
853 853
854 854 In [2]: beta = 'test'
855 855
856 856 In [3]: %whos
857 857 Variable Type Data/Info
858 858 --------------------------------
859 859 alpha int 123
860 860 beta str test
861 861 """
862 862
863 863 varnames = self.magic_who_ls(parameter_s)
864 864 if not varnames:
865 865 if parameter_s:
866 866 print 'No variables match your requested type.'
867 867 else:
868 868 print 'Interactive namespace is empty.'
869 869 return
870 870
871 871 # if we have variables, move on...
872 872
873 873 # for these types, show len() instead of data:
874 874 seq_types = ['dict', 'list', 'tuple']
875 875
876 876 # for numpy/Numeric arrays, display summary info
877 877 try:
878 878 import numpy
879 879 except ImportError:
880 880 ndarray_type = None
881 881 else:
882 882 ndarray_type = numpy.ndarray.__name__
883 883 try:
884 884 import Numeric
885 885 except ImportError:
886 886 array_type = None
887 887 else:
888 888 array_type = Numeric.ArrayType.__name__
889 889
890 890 # Find all variable names and types so we can figure out column sizes
891 891 def get_vars(i):
892 892 return self.shell.user_ns[i]
893 893
894 894 # some types are well known and can be shorter
895 895 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
896 896 def type_name(v):
897 897 tn = type(v).__name__
898 898 return abbrevs.get(tn,tn)
899 899
900 900 varlist = map(get_vars,varnames)
901 901
902 902 typelist = []
903 903 for vv in varlist:
904 904 tt = type_name(vv)
905 905
906 906 if tt=='instance':
907 907 typelist.append( abbrevs.get(str(vv.__class__),
908 908 str(vv.__class__)))
909 909 else:
910 910 typelist.append(tt)
911 911
912 912 # column labels and # of spaces as separator
913 913 varlabel = 'Variable'
914 914 typelabel = 'Type'
915 915 datalabel = 'Data/Info'
916 916 colsep = 3
917 917 # variable format strings
918 918 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
919 919 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
920 920 aformat = "%s: %s elems, type `%s`, %s bytes"
921 921 # find the size of the columns to format the output nicely
922 922 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
923 923 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
924 924 # table header
925 925 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
926 926 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
927 927 # and the table itself
928 928 kb = 1024
929 929 Mb = 1048576 # kb**2
930 930 for vname,var,vtype in zip(varnames,varlist,typelist):
931 931 print itpl(vformat),
932 932 if vtype in seq_types:
933 933 print "n="+str(len(var))
934 934 elif vtype in [array_type,ndarray_type]:
935 935 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
936 936 if vtype==ndarray_type:
937 937 # numpy
938 938 vsize = var.size
939 939 vbytes = vsize*var.itemsize
940 940 vdtype = var.dtype
941 941 else:
942 942 # Numeric
943 943 vsize = Numeric.size(var)
944 944 vbytes = vsize*var.itemsize()
945 945 vdtype = var.typecode()
946 946
947 947 if vbytes < 100000:
948 948 print aformat % (vshape,vsize,vdtype,vbytes)
949 949 else:
950 950 print aformat % (vshape,vsize,vdtype,vbytes),
951 951 if vbytes < Mb:
952 952 print '(%s kb)' % (vbytes/kb,)
953 953 else:
954 954 print '(%s Mb)' % (vbytes/Mb,)
955 955 else:
956 956 try:
957 957 vstr = str(var)
958 958 except UnicodeEncodeError:
959 959 vstr = unicode(var).encode(sys.getdefaultencoding(),
960 960 'backslashreplace')
961 961 vstr = vstr.replace('\n','\\n')
962 962 if len(vstr) < 50:
963 963 print vstr
964 964 else:
965 965 printpl(vfmt_short)
966 966
967 967 def magic_reset(self, parameter_s=''):
968 968 """Resets the namespace by removing all names defined by the user.
969 969
970 970 Parameters
971 971 ----------
972 972 -f : force reset without asking for confirmation.
973 973
974 974 -s : 'Soft' reset: Only clears your namespace, leaving history intact.
975 975 References to objects may be kept. By default (without this option),
976 976 we do a 'hard' reset, giving you a new session and removing all
977 977 references to objects from the current session.
978 978
979 979 Examples
980 980 --------
981 981 In [6]: a = 1
982 982
983 983 In [7]: a
984 984 Out[7]: 1
985 985
986 986 In [8]: 'a' in _ip.user_ns
987 987 Out[8]: True
988 988
989 989 In [9]: %reset -f
990 990
991 991 In [1]: 'a' in _ip.user_ns
992 992 Out[1]: False
993 993 """
994 994 opts, args = self.parse_options(parameter_s,'sf')
995 995 if 'f' in opts:
996 996 ans = True
997 997 else:
998 998 ans = self.shell.ask_yes_no(
999 999 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1000 1000 if not ans:
1001 1001 print 'Nothing done.'
1002 1002 return
1003 1003
1004 1004 if 's' in opts: # Soft reset
1005 1005 user_ns = self.shell.user_ns
1006 1006 for i in self.magic_who_ls():
1007 1007 del(user_ns[i])
1008 1008
1009 1009 else: # Hard reset
1010 1010 self.shell.reset(new_session = False)
1011 1011
1012 1012
1013 1013
1014 1014 def magic_reset_selective(self, parameter_s=''):
1015 1015 """Resets the namespace by removing names defined by the user.
1016 1016
1017 1017 Input/Output history are left around in case you need them.
1018 1018
1019 1019 %reset_selective [-f] regex
1020 1020
1021 1021 No action is taken if regex is not included
1022 1022
1023 1023 Options
1024 1024 -f : force reset without asking for confirmation.
1025 1025
1026 1026 Examples
1027 1027 --------
1028 1028
1029 1029 We first fully reset the namespace so your output looks identical to
1030 1030 this example for pedagogical reasons; in practice you do not need a
1031 1031 full reset.
1032 1032
1033 1033 In [1]: %reset -f
1034 1034
1035 1035 Now, with a clean namespace we can make a few variables and use
1036 1036 %reset_selective to only delete names that match our regexp:
1037 1037
1038 1038 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1039 1039
1040 1040 In [3]: who_ls
1041 1041 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1042 1042
1043 1043 In [4]: %reset_selective -f b[2-3]m
1044 1044
1045 1045 In [5]: who_ls
1046 1046 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1047 1047
1048 1048 In [6]: %reset_selective -f d
1049 1049
1050 1050 In [7]: who_ls
1051 1051 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1052 1052
1053 1053 In [8]: %reset_selective -f c
1054 1054
1055 1055 In [9]: who_ls
1056 1056 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1057 1057
1058 1058 In [10]: %reset_selective -f b
1059 1059
1060 1060 In [11]: who_ls
1061 1061 Out[11]: ['a']
1062 1062 """
1063 1063
1064 1064 opts, regex = self.parse_options(parameter_s,'f')
1065 1065
1066 1066 if opts.has_key('f'):
1067 1067 ans = True
1068 1068 else:
1069 1069 ans = self.shell.ask_yes_no(
1070 1070 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1071 1071 if not ans:
1072 1072 print 'Nothing done.'
1073 1073 return
1074 1074 user_ns = self.shell.user_ns
1075 1075 if not regex:
1076 1076 print 'No regex pattern specified. Nothing done.'
1077 1077 return
1078 1078 else:
1079 1079 try:
1080 1080 m = re.compile(regex)
1081 1081 except TypeError:
1082 1082 raise TypeError('regex must be a string or compiled pattern')
1083 1083 for i in self.magic_who_ls():
1084 1084 if m.search(i):
1085 1085 del(user_ns[i])
1086 1086
1087 1087 def magic_xdel(self, parameter_s=''):
1088 1088 """Delete a variable, trying to clear it from anywhere that
1089 1089 IPython's machinery has references to it. By default, this uses
1090 1090 the identity of the named object in the user namespace to remove
1091 1091 references held under other names. The object is also removed
1092 1092 from the output history.
1093 1093
1094 1094 Options
1095 1095 -n : Delete the specified name from all namespaces, without
1096 1096 checking their identity.
1097 1097 """
1098 1098 opts, varname = self.parse_options(parameter_s,'n')
1099 1099 try:
1100 1100 self.shell.del_var(varname, ('n' in opts))
1101 1101 except (NameError, ValueError) as e:
1102 1102 print type(e).__name__ +": "+ str(e)
1103 1103
1104 1104 def magic_logstart(self,parameter_s=''):
1105 1105 """Start logging anywhere in a session.
1106 1106
1107 1107 %logstart [-o|-r|-t] [log_name [log_mode]]
1108 1108
1109 1109 If no name is given, it defaults to a file named 'ipython_log.py' in your
1110 1110 current directory, in 'rotate' mode (see below).
1111 1111
1112 1112 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1113 1113 history up to that point and then continues logging.
1114 1114
1115 1115 %logstart takes a second optional parameter: logging mode. This can be one
1116 1116 of (note that the modes are given unquoted):\\
1117 1117 append: well, that says it.\\
1118 1118 backup: rename (if exists) to name~ and start name.\\
1119 1119 global: single logfile in your home dir, appended to.\\
1120 1120 over : overwrite existing log.\\
1121 1121 rotate: create rotating logs name.1~, name.2~, etc.
1122 1122
1123 1123 Options:
1124 1124
1125 1125 -o: log also IPython's output. In this mode, all commands which
1126 1126 generate an Out[NN] prompt are recorded to the logfile, right after
1127 1127 their corresponding input line. The output lines are always
1128 1128 prepended with a '#[Out]# ' marker, so that the log remains valid
1129 1129 Python code.
1130 1130
1131 1131 Since this marker is always the same, filtering only the output from
1132 1132 a log is very easy, using for example a simple awk call:
1133 1133
1134 1134 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1135 1135
1136 1136 -r: log 'raw' input. Normally, IPython's logs contain the processed
1137 1137 input, so that user lines are logged in their final form, converted
1138 1138 into valid Python. For example, %Exit is logged as
1139 1139 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1140 1140 exactly as typed, with no transformations applied.
1141 1141
1142 1142 -t: put timestamps before each input line logged (these are put in
1143 1143 comments)."""
1144 1144
1145 1145 opts,par = self.parse_options(parameter_s,'ort')
1146 1146 log_output = 'o' in opts
1147 1147 log_raw_input = 'r' in opts
1148 1148 timestamp = 't' in opts
1149 1149
1150 1150 logger = self.shell.logger
1151 1151
1152 1152 # if no args are given, the defaults set in the logger constructor by
1153 1153 # ipytohn remain valid
1154 1154 if par:
1155 1155 try:
1156 1156 logfname,logmode = par.split()
1157 1157 except:
1158 1158 logfname = par
1159 1159 logmode = 'backup'
1160 1160 else:
1161 1161 logfname = logger.logfname
1162 1162 logmode = logger.logmode
1163 1163 # put logfname into rc struct as if it had been called on the command
1164 1164 # line, so it ends up saved in the log header Save it in case we need
1165 1165 # to restore it...
1166 1166 old_logfile = self.shell.logfile
1167 1167 if logfname:
1168 1168 logfname = os.path.expanduser(logfname)
1169 1169 self.shell.logfile = logfname
1170 1170
1171 1171 loghead = '# IPython log file\n\n'
1172 1172 try:
1173 1173 started = logger.logstart(logfname,loghead,logmode,
1174 1174 log_output,timestamp,log_raw_input)
1175 1175 except:
1176 1176 self.shell.logfile = old_logfile
1177 1177 warn("Couldn't start log: %s" % sys.exc_info()[1])
1178 1178 else:
1179 1179 # log input history up to this point, optionally interleaving
1180 1180 # output if requested
1181 1181
1182 1182 if timestamp:
1183 1183 # disable timestamping for the previous history, since we've
1184 1184 # lost those already (no time machine here).
1185 1185 logger.timestamp = False
1186 1186
1187 1187 if log_raw_input:
1188 1188 input_hist = self.shell.history_manager.input_hist_raw
1189 1189 else:
1190 1190 input_hist = self.shell.history_manager.input_hist_parsed
1191 1191
1192 1192 if log_output:
1193 1193 log_write = logger.log_write
1194 1194 output_hist = self.shell.history_manager.output_hist
1195 1195 for n in range(1,len(input_hist)-1):
1196 1196 log_write(input_hist[n].rstrip() + '\n')
1197 1197 if n in output_hist:
1198 1198 log_write(repr(output_hist[n]),'output')
1199 1199 else:
1200 1200 logger.log_write('\n'.join(input_hist[1:]))
1201 1201 logger.log_write('\n')
1202 1202 if timestamp:
1203 1203 # re-enable timestamping
1204 1204 logger.timestamp = True
1205 1205
1206 1206 print ('Activating auto-logging. '
1207 1207 'Current session state plus future input saved.')
1208 1208 logger.logstate()
1209 1209
1210 1210 def magic_logstop(self,parameter_s=''):
1211 1211 """Fully stop logging and close log file.
1212 1212
1213 1213 In order to start logging again, a new %logstart call needs to be made,
1214 1214 possibly (though not necessarily) with a new filename, mode and other
1215 1215 options."""
1216 1216 self.logger.logstop()
1217 1217
1218 1218 def magic_logoff(self,parameter_s=''):
1219 1219 """Temporarily stop logging.
1220 1220
1221 1221 You must have previously started logging."""
1222 1222 self.shell.logger.switch_log(0)
1223 1223
1224 1224 def magic_logon(self,parameter_s=''):
1225 1225 """Restart logging.
1226 1226
1227 1227 This function is for restarting logging which you've temporarily
1228 1228 stopped with %logoff. For starting logging for the first time, you
1229 1229 must use the %logstart function, which allows you to specify an
1230 1230 optional log filename."""
1231 1231
1232 1232 self.shell.logger.switch_log(1)
1233 1233
1234 1234 def magic_logstate(self,parameter_s=''):
1235 1235 """Print the status of the logging system."""
1236 1236
1237 1237 self.shell.logger.logstate()
1238 1238
1239 1239 def magic_pdb(self, parameter_s=''):
1240 1240 """Control the automatic calling of the pdb interactive debugger.
1241 1241
1242 1242 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1243 1243 argument it works as a toggle.
1244 1244
1245 1245 When an exception is triggered, IPython can optionally call the
1246 1246 interactive pdb debugger after the traceback printout. %pdb toggles
1247 1247 this feature on and off.
1248 1248
1249 1249 The initial state of this feature is set in your ipythonrc
1250 1250 configuration file (the variable is called 'pdb').
1251 1251
1252 1252 If you want to just activate the debugger AFTER an exception has fired,
1253 1253 without having to type '%pdb on' and rerunning your code, you can use
1254 1254 the %debug magic."""
1255 1255
1256 1256 par = parameter_s.strip().lower()
1257 1257
1258 1258 if par:
1259 1259 try:
1260 1260 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1261 1261 except KeyError:
1262 1262 print ('Incorrect argument. Use on/1, off/0, '
1263 1263 'or nothing for a toggle.')
1264 1264 return
1265 1265 else:
1266 1266 # toggle
1267 1267 new_pdb = not self.shell.call_pdb
1268 1268
1269 1269 # set on the shell
1270 1270 self.shell.call_pdb = new_pdb
1271 1271 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1272 1272
1273 1273 def magic_debug(self, parameter_s=''):
1274 1274 """Activate the interactive debugger in post-mortem mode.
1275 1275
1276 1276 If an exception has just occurred, this lets you inspect its stack
1277 1277 frames interactively. Note that this will always work only on the last
1278 1278 traceback that occurred, so you must call this quickly after an
1279 1279 exception that you wish to inspect has fired, because if another one
1280 1280 occurs, it clobbers the previous one.
1281 1281
1282 1282 If you want IPython to automatically do this on every exception, see
1283 1283 the %pdb magic for more details.
1284 1284 """
1285 1285 self.shell.debugger(force=True)
1286 1286
1287 1287 @skip_doctest
1288 1288 def magic_prun(self, parameter_s ='',user_mode=1,
1289 1289 opts=None,arg_lst=None,prog_ns=None):
1290 1290
1291 1291 """Run a statement through the python code profiler.
1292 1292
1293 1293 Usage:
1294 1294 %prun [options] statement
1295 1295
1296 1296 The given statement (which doesn't require quote marks) is run via the
1297 1297 python profiler in a manner similar to the profile.run() function.
1298 1298 Namespaces are internally managed to work correctly; profile.run
1299 1299 cannot be used in IPython because it makes certain assumptions about
1300 1300 namespaces which do not hold under IPython.
1301 1301
1302 1302 Options:
1303 1303
1304 1304 -l <limit>: you can place restrictions on what or how much of the
1305 1305 profile gets printed. The limit value can be:
1306 1306
1307 1307 * A string: only information for function names containing this string
1308 1308 is printed.
1309 1309
1310 1310 * An integer: only these many lines are printed.
1311 1311
1312 1312 * A float (between 0 and 1): this fraction of the report is printed
1313 1313 (for example, use a limit of 0.4 to see the topmost 40% only).
1314 1314
1315 1315 You can combine several limits with repeated use of the option. For
1316 1316 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1317 1317 information about class constructors.
1318 1318
1319 1319 -r: return the pstats.Stats object generated by the profiling. This
1320 1320 object has all the information about the profile in it, and you can
1321 1321 later use it for further analysis or in other functions.
1322 1322
1323 1323 -s <key>: sort profile by given key. You can provide more than one key
1324 1324 by using the option several times: '-s key1 -s key2 -s key3...'. The
1325 1325 default sorting key is 'time'.
1326 1326
1327 1327 The following is copied verbatim from the profile documentation
1328 1328 referenced below:
1329 1329
1330 1330 When more than one key is provided, additional keys are used as
1331 1331 secondary criteria when the there is equality in all keys selected
1332 1332 before them.
1333 1333
1334 1334 Abbreviations can be used for any key names, as long as the
1335 1335 abbreviation is unambiguous. The following are the keys currently
1336 1336 defined:
1337 1337
1338 1338 Valid Arg Meaning
1339 1339 "calls" call count
1340 1340 "cumulative" cumulative time
1341 1341 "file" file name
1342 1342 "module" file name
1343 1343 "pcalls" primitive call count
1344 1344 "line" line number
1345 1345 "name" function name
1346 1346 "nfl" name/file/line
1347 1347 "stdname" standard name
1348 1348 "time" internal time
1349 1349
1350 1350 Note that all sorts on statistics are in descending order (placing
1351 1351 most time consuming items first), where as name, file, and line number
1352 1352 searches are in ascending order (i.e., alphabetical). The subtle
1353 1353 distinction between "nfl" and "stdname" is that the standard name is a
1354 1354 sort of the name as printed, which means that the embedded line
1355 1355 numbers get compared in an odd way. For example, lines 3, 20, and 40
1356 1356 would (if the file names were the same) appear in the string order
1357 1357 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1358 1358 line numbers. In fact, sort_stats("nfl") is the same as
1359 1359 sort_stats("name", "file", "line").
1360 1360
1361 1361 -T <filename>: save profile results as shown on screen to a text
1362 1362 file. The profile is still shown on screen.
1363 1363
1364 1364 -D <filename>: save (via dump_stats) profile statistics to given
1365 1365 filename. This data is in a format understod by the pstats module, and
1366 1366 is generated by a call to the dump_stats() method of profile
1367 1367 objects. The profile is still shown on screen.
1368 1368
1369 1369 If you want to run complete programs under the profiler's control, use
1370 1370 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1371 1371 contains profiler specific options as described here.
1372 1372
1373 1373 You can read the complete documentation for the profile module with::
1374 1374
1375 1375 In [1]: import profile; profile.help()
1376 1376 """
1377 1377
1378 1378 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1379 1379 # protect user quote marks
1380 1380 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1381 1381
1382 1382 if user_mode: # regular user call
1383 1383 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1384 1384 list_all=1)
1385 1385 namespace = self.shell.user_ns
1386 1386 else: # called to run a program by %run -p
1387 1387 try:
1388 1388 filename = get_py_filename(arg_lst[0])
1389 1389 except IOError,msg:
1390 1390 error(msg)
1391 1391 return
1392 1392
1393 1393 arg_str = 'execfile(filename,prog_ns)'
1394 1394 namespace = locals()
1395 1395
1396 1396 opts.merge(opts_def)
1397 1397
1398 1398 prof = profile.Profile()
1399 1399 try:
1400 1400 prof = prof.runctx(arg_str,namespace,namespace)
1401 1401 sys_exit = ''
1402 1402 except SystemExit:
1403 1403 sys_exit = """*** SystemExit exception caught in code being profiled."""
1404 1404
1405 1405 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1406 1406
1407 1407 lims = opts.l
1408 1408 if lims:
1409 1409 lims = [] # rebuild lims with ints/floats/strings
1410 1410 for lim in opts.l:
1411 1411 try:
1412 1412 lims.append(int(lim))
1413 1413 except ValueError:
1414 1414 try:
1415 1415 lims.append(float(lim))
1416 1416 except ValueError:
1417 1417 lims.append(lim)
1418 1418
1419 1419 # Trap output.
1420 1420 stdout_trap = StringIO()
1421 1421
1422 1422 if hasattr(stats,'stream'):
1423 1423 # In newer versions of python, the stats object has a 'stream'
1424 1424 # attribute to write into.
1425 1425 stats.stream = stdout_trap
1426 1426 stats.print_stats(*lims)
1427 1427 else:
1428 1428 # For older versions, we manually redirect stdout during printing
1429 1429 sys_stdout = sys.stdout
1430 1430 try:
1431 1431 sys.stdout = stdout_trap
1432 1432 stats.print_stats(*lims)
1433 1433 finally:
1434 1434 sys.stdout = sys_stdout
1435 1435
1436 1436 output = stdout_trap.getvalue()
1437 1437 output = output.rstrip()
1438 1438
1439 1439 page.page(output)
1440 1440 print sys_exit,
1441 1441
1442 1442 dump_file = opts.D[0]
1443 1443 text_file = opts.T[0]
1444 1444 if dump_file:
1445 1445 prof.dump_stats(dump_file)
1446 1446 print '\n*** Profile stats marshalled to file',\
1447 1447 `dump_file`+'.',sys_exit
1448 1448 if text_file:
1449 1449 pfile = file(text_file,'w')
1450 1450 pfile.write(output)
1451 1451 pfile.close()
1452 1452 print '\n*** Profile printout saved to text file',\
1453 1453 `text_file`+'.',sys_exit
1454 1454
1455 1455 if opts.has_key('r'):
1456 1456 return stats
1457 1457 else:
1458 1458 return None
1459 1459
1460 1460 @skip_doctest
1461 1461 def magic_run(self, parameter_s ='',runner=None,
1462 1462 file_finder=get_py_filename):
1463 1463 """Run the named file inside IPython as a program.
1464 1464
1465 1465 Usage:\\
1466 1466 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1467 1467
1468 1468 Parameters after the filename are passed as command-line arguments to
1469 1469 the program (put in sys.argv). Then, control returns to IPython's
1470 1470 prompt.
1471 1471
1472 1472 This is similar to running at a system prompt:\\
1473 1473 $ python file args\\
1474 1474 but with the advantage of giving you IPython's tracebacks, and of
1475 1475 loading all variables into your interactive namespace for further use
1476 1476 (unless -p is used, see below).
1477 1477
1478 1478 The file is executed in a namespace initially consisting only of
1479 1479 __name__=='__main__' and sys.argv constructed as indicated. It thus
1480 1480 sees its environment as if it were being run as a stand-alone program
1481 1481 (except for sharing global objects such as previously imported
1482 1482 modules). But after execution, the IPython interactive namespace gets
1483 1483 updated with all variables defined in the program (except for __name__
1484 1484 and sys.argv). This allows for very convenient loading of code for
1485 1485 interactive work, while giving each program a 'clean sheet' to run in.
1486 1486
1487 1487 Options:
1488 1488
1489 1489 -n: __name__ is NOT set to '__main__', but to the running file's name
1490 1490 without extension (as python does under import). This allows running
1491 1491 scripts and reloading the definitions in them without calling code
1492 1492 protected by an ' if __name__ == "__main__" ' clause.
1493 1493
1494 1494 -i: run the file in IPython's namespace instead of an empty one. This
1495 1495 is useful if you are experimenting with code written in a text editor
1496 1496 which depends on variables defined interactively.
1497 1497
1498 1498 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1499 1499 being run. This is particularly useful if IPython is being used to
1500 1500 run unittests, which always exit with a sys.exit() call. In such
1501 1501 cases you are interested in the output of the test results, not in
1502 1502 seeing a traceback of the unittest module.
1503 1503
1504 1504 -t: print timing information at the end of the run. IPython will give
1505 1505 you an estimated CPU time consumption for your script, which under
1506 1506 Unix uses the resource module to avoid the wraparound problems of
1507 1507 time.clock(). Under Unix, an estimate of time spent on system tasks
1508 1508 is also given (for Windows platforms this is reported as 0.0).
1509 1509
1510 1510 If -t is given, an additional -N<N> option can be given, where <N>
1511 1511 must be an integer indicating how many times you want the script to
1512 1512 run. The final timing report will include total and per run results.
1513 1513
1514 1514 For example (testing the script uniq_stable.py):
1515 1515
1516 1516 In [1]: run -t uniq_stable
1517 1517
1518 1518 IPython CPU timings (estimated):\\
1519 1519 User : 0.19597 s.\\
1520 1520 System: 0.0 s.\\
1521 1521
1522 1522 In [2]: run -t -N5 uniq_stable
1523 1523
1524 1524 IPython CPU timings (estimated):\\
1525 1525 Total runs performed: 5\\
1526 1526 Times : Total Per run\\
1527 1527 User : 0.910862 s, 0.1821724 s.\\
1528 1528 System: 0.0 s, 0.0 s.
1529 1529
1530 1530 -d: run your program under the control of pdb, the Python debugger.
1531 1531 This allows you to execute your program step by step, watch variables,
1532 1532 etc. Internally, what IPython does is similar to calling:
1533 1533
1534 1534 pdb.run('execfile("YOURFILENAME")')
1535 1535
1536 1536 with a breakpoint set on line 1 of your file. You can change the line
1537 1537 number for this automatic breakpoint to be <N> by using the -bN option
1538 1538 (where N must be an integer). For example:
1539 1539
1540 1540 %run -d -b40 myscript
1541 1541
1542 1542 will set the first breakpoint at line 40 in myscript.py. Note that
1543 1543 the first breakpoint must be set on a line which actually does
1544 1544 something (not a comment or docstring) for it to stop execution.
1545 1545
1546 1546 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1547 1547 first enter 'c' (without qoutes) to start execution up to the first
1548 1548 breakpoint.
1549 1549
1550 1550 Entering 'help' gives information about the use of the debugger. You
1551 1551 can easily see pdb's full documentation with "import pdb;pdb.help()"
1552 1552 at a prompt.
1553 1553
1554 1554 -p: run program under the control of the Python profiler module (which
1555 1555 prints a detailed report of execution times, function calls, etc).
1556 1556
1557 1557 You can pass other options after -p which affect the behavior of the
1558 1558 profiler itself. See the docs for %prun for details.
1559 1559
1560 1560 In this mode, the program's variables do NOT propagate back to the
1561 1561 IPython interactive namespace (because they remain in the namespace
1562 1562 where the profiler executes them).
1563 1563
1564 1564 Internally this triggers a call to %prun, see its documentation for
1565 1565 details on the options available specifically for profiling.
1566 1566
1567 1567 There is one special usage for which the text above doesn't apply:
1568 1568 if the filename ends with .ipy, the file is run as ipython script,
1569 1569 just as if the commands were written on IPython prompt.
1570 1570 """
1571 1571
1572 1572 # get arguments and set sys.argv for program to be run.
1573 1573 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1574 1574 mode='list',list_all=1)
1575 1575
1576 1576 try:
1577 1577 filename = file_finder(arg_lst[0])
1578 1578 except IndexError:
1579 1579 warn('you must provide at least a filename.')
1580 1580 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1581 1581 return
1582 1582 except IOError,msg:
1583 1583 error(msg)
1584 1584 return
1585 1585
1586 1586 if filename.lower().endswith('.ipy'):
1587 1587 self.shell.safe_execfile_ipy(filename)
1588 1588 return
1589 1589
1590 1590 # Control the response to exit() calls made by the script being run
1591 1591 exit_ignore = opts.has_key('e')
1592 1592
1593 1593 # Make sure that the running script gets a proper sys.argv as if it
1594 1594 # were run from a system shell.
1595 1595 save_argv = sys.argv # save it for later restoring
1596 1596 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1597 1597
1598 1598 if opts.has_key('i'):
1599 1599 # Run in user's interactive namespace
1600 1600 prog_ns = self.shell.user_ns
1601 1601 __name__save = self.shell.user_ns['__name__']
1602 1602 prog_ns['__name__'] = '__main__'
1603 1603 main_mod = self.shell.new_main_mod(prog_ns)
1604 1604 else:
1605 1605 # Run in a fresh, empty namespace
1606 1606 if opts.has_key('n'):
1607 1607 name = os.path.splitext(os.path.basename(filename))[0]
1608 1608 else:
1609 1609 name = '__main__'
1610 1610
1611 1611 main_mod = self.shell.new_main_mod()
1612 1612 prog_ns = main_mod.__dict__
1613 1613 prog_ns['__name__'] = name
1614 1614
1615 1615 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1616 1616 # set the __file__ global in the script's namespace
1617 1617 prog_ns['__file__'] = filename
1618 1618
1619 1619 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1620 1620 # that, if we overwrite __main__, we replace it at the end
1621 1621 main_mod_name = prog_ns['__name__']
1622 1622
1623 1623 if main_mod_name == '__main__':
1624 1624 restore_main = sys.modules['__main__']
1625 1625 else:
1626 1626 restore_main = False
1627 1627
1628 1628 # This needs to be undone at the end to prevent holding references to
1629 1629 # every single object ever created.
1630 1630 sys.modules[main_mod_name] = main_mod
1631 1631
1632 1632 try:
1633 1633 stats = None
1634 1634 with self.readline_no_record:
1635 1635 if opts.has_key('p'):
1636 1636 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1637 1637 else:
1638 1638 if opts.has_key('d'):
1639 1639 deb = debugger.Pdb(self.shell.colors)
1640 1640 # reset Breakpoint state, which is moronically kept
1641 1641 # in a class
1642 1642 bdb.Breakpoint.next = 1
1643 1643 bdb.Breakpoint.bplist = {}
1644 1644 bdb.Breakpoint.bpbynumber = [None]
1645 1645 # Set an initial breakpoint to stop execution
1646 1646 maxtries = 10
1647 1647 bp = int(opts.get('b',[1])[0])
1648 1648 checkline = deb.checkline(filename,bp)
1649 1649 if not checkline:
1650 1650 for bp in range(bp+1,bp+maxtries+1):
1651 1651 if deb.checkline(filename,bp):
1652 1652 break
1653 1653 else:
1654 1654 msg = ("\nI failed to find a valid line to set "
1655 1655 "a breakpoint\n"
1656 1656 "after trying up to line: %s.\n"
1657 1657 "Please set a valid breakpoint manually "
1658 1658 "with the -b option." % bp)
1659 1659 error(msg)
1660 1660 return
1661 1661 # if we find a good linenumber, set the breakpoint
1662 1662 deb.do_break('%s:%s' % (filename,bp))
1663 1663 # Start file run
1664 1664 print "NOTE: Enter 'c' at the",
1665 1665 print "%s prompt to start your script." % deb.prompt
1666 1666 try:
1667 1667 deb.run('execfile("%s")' % filename,prog_ns)
1668 1668
1669 1669 except:
1670 1670 etype, value, tb = sys.exc_info()
1671 1671 # Skip three frames in the traceback: the %run one,
1672 1672 # one inside bdb.py, and the command-line typed by the
1673 1673 # user (run by exec in pdb itself).
1674 1674 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1675 1675 else:
1676 1676 if runner is None:
1677 1677 runner = self.shell.safe_execfile
1678 1678 if opts.has_key('t'):
1679 1679 # timed execution
1680 1680 try:
1681 1681 nruns = int(opts['N'][0])
1682 1682 if nruns < 1:
1683 1683 error('Number of runs must be >=1')
1684 1684 return
1685 1685 except (KeyError):
1686 1686 nruns = 1
1687 twall0 = time.time()
1687 1688 if nruns == 1:
1688 1689 t0 = clock2()
1689 1690 runner(filename,prog_ns,prog_ns,
1690 1691 exit_ignore=exit_ignore)
1691 1692 t1 = clock2()
1692 1693 t_usr = t1[0]-t0[0]
1693 1694 t_sys = t1[1]-t0[1]
1694 1695 print "\nIPython CPU timings (estimated):"
1695 print " User : %10s s." % t_usr
1696 print " System: %10s s." % t_sys
1696 print " User : %10.2f s." % t_usr
1697 print " System : %10.2f s." % t_sys
1697 1698 else:
1698 1699 runs = range(nruns)
1699 1700 t0 = clock2()
1700 1701 for nr in runs:
1701 1702 runner(filename,prog_ns,prog_ns,
1702 1703 exit_ignore=exit_ignore)
1703 1704 t1 = clock2()
1704 1705 t_usr = t1[0]-t0[0]
1705 1706 t_sys = t1[1]-t0[1]
1706 1707 print "\nIPython CPU timings (estimated):"
1707 1708 print "Total runs performed:",nruns
1708 print " Times : %10s %10s" % ('Total','Per run')
1709 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1710 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1711
1709 print " Times : %10.2f %10.2f" % ('Total','Per run')
1710 print " User : %10.2f s, %10.2f s." % (t_usr,t_usr/nruns)
1711 print " System : %10.2f s, %10.2f s." % (t_sys,t_sys/nruns)
1712 twall1 = time.time()
1713 print "Wall time: %10.2f s." % (twall1-twall0)
1714
1712 1715 else:
1713 1716 # regular execution
1714 1717 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1715 1718
1716 1719 if opts.has_key('i'):
1717 1720 self.shell.user_ns['__name__'] = __name__save
1718 1721 else:
1719 1722 # The shell MUST hold a reference to prog_ns so after %run
1720 1723 # exits, the python deletion mechanism doesn't zero it out
1721 1724 # (leaving dangling references).
1722 1725 self.shell.cache_main_mod(prog_ns,filename)
1723 1726 # update IPython interactive namespace
1724 1727
1725 1728 # Some forms of read errors on the file may mean the
1726 1729 # __name__ key was never set; using pop we don't have to
1727 1730 # worry about a possible KeyError.
1728 1731 prog_ns.pop('__name__', None)
1729 1732
1730 1733 self.shell.user_ns.update(prog_ns)
1731 1734 finally:
1732 1735 # It's a bit of a mystery why, but __builtins__ can change from
1733 1736 # being a module to becoming a dict missing some key data after
1734 1737 # %run. As best I can see, this is NOT something IPython is doing
1735 1738 # at all, and similar problems have been reported before:
1736 1739 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1737 1740 # Since this seems to be done by the interpreter itself, the best
1738 1741 # we can do is to at least restore __builtins__ for the user on
1739 1742 # exit.
1740 1743 self.shell.user_ns['__builtins__'] = __builtin__
1741 1744
1742 1745 # Ensure key global structures are restored
1743 1746 sys.argv = save_argv
1744 1747 if restore_main:
1745 1748 sys.modules['__main__'] = restore_main
1746 1749 else:
1747 1750 # Remove from sys.modules the reference to main_mod we'd
1748 1751 # added. Otherwise it will trap references to objects
1749 1752 # contained therein.
1750 1753 del sys.modules[main_mod_name]
1751 1754
1752 1755 return stats
1753 1756
1754 1757 @skip_doctest
1755 1758 def magic_timeit(self, parameter_s =''):
1756 1759 """Time execution of a Python statement or expression
1757 1760
1758 1761 Usage:\\
1759 1762 %timeit [-n<N> -r<R> [-t|-c]] statement
1760 1763
1761 1764 Time execution of a Python statement or expression using the timeit
1762 1765 module.
1763 1766
1764 1767 Options:
1765 1768 -n<N>: execute the given statement <N> times in a loop. If this value
1766 1769 is not given, a fitting value is chosen.
1767 1770
1768 1771 -r<R>: repeat the loop iteration <R> times and take the best result.
1769 1772 Default: 3
1770 1773
1771 1774 -t: use time.time to measure the time, which is the default on Unix.
1772 1775 This function measures wall time.
1773 1776
1774 1777 -c: use time.clock to measure the time, which is the default on
1775 1778 Windows and measures wall time. On Unix, resource.getrusage is used
1776 1779 instead and returns the CPU user time.
1777 1780
1778 1781 -p<P>: use a precision of <P> digits to display the timing result.
1779 1782 Default: 3
1780 1783
1781 1784
1782 1785 Examples:
1783 1786
1784 1787 In [1]: %timeit pass
1785 1788 10000000 loops, best of 3: 53.3 ns per loop
1786 1789
1787 1790 In [2]: u = None
1788 1791
1789 1792 In [3]: %timeit u is None
1790 1793 10000000 loops, best of 3: 184 ns per loop
1791 1794
1792 1795 In [4]: %timeit -r 4 u == None
1793 1796 1000000 loops, best of 4: 242 ns per loop
1794 1797
1795 1798 In [5]: import time
1796 1799
1797 1800 In [6]: %timeit -n1 time.sleep(2)
1798 1801 1 loops, best of 3: 2 s per loop
1799 1802
1800 1803
1801 1804 The times reported by %timeit will be slightly higher than those
1802 1805 reported by the timeit.py script when variables are accessed. This is
1803 1806 due to the fact that %timeit executes the statement in the namespace
1804 1807 of the shell, compared with timeit.py, which uses a single setup
1805 1808 statement to import function or create variables. Generally, the bias
1806 1809 does not matter as long as results from timeit.py are not mixed with
1807 1810 those from %timeit."""
1808 1811
1809 1812 import timeit
1810 1813 import math
1811 1814
1812 1815 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1813 1816 # certain terminals. Until we figure out a robust way of
1814 1817 # auto-detecting if the terminal can deal with it, use plain 'us' for
1815 1818 # microseconds. I am really NOT happy about disabling the proper
1816 1819 # 'micro' prefix, but crashing is worse... If anyone knows what the
1817 1820 # right solution for this is, I'm all ears...
1818 1821 #
1819 1822 # Note: using
1820 1823 #
1821 1824 # s = u'\xb5'
1822 1825 # s.encode(sys.getdefaultencoding())
1823 1826 #
1824 1827 # is not sufficient, as I've seen terminals where that fails but
1825 1828 # print s
1826 1829 #
1827 1830 # succeeds
1828 1831 #
1829 1832 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1830 1833
1831 1834 #units = [u"s", u"ms",u'\xb5',"ns"]
1832 1835 units = [u"s", u"ms",u'us',"ns"]
1833 1836
1834 1837 scaling = [1, 1e3, 1e6, 1e9]
1835 1838
1836 1839 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1837 1840 posix=False)
1838 1841 if stmt == "":
1839 1842 return
1840 1843 timefunc = timeit.default_timer
1841 1844 number = int(getattr(opts, "n", 0))
1842 1845 repeat = int(getattr(opts, "r", timeit.default_repeat))
1843 1846 precision = int(getattr(opts, "p", 3))
1844 1847 if hasattr(opts, "t"):
1845 1848 timefunc = time.time
1846 1849 if hasattr(opts, "c"):
1847 1850 timefunc = clock
1848 1851
1849 1852 timer = timeit.Timer(timer=timefunc)
1850 1853 # this code has tight coupling to the inner workings of timeit.Timer,
1851 1854 # but is there a better way to achieve that the code stmt has access
1852 1855 # to the shell namespace?
1853 1856
1854 1857 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1855 1858 'setup': "pass"}
1856 1859 # Track compilation time so it can be reported if too long
1857 1860 # Minimum time above which compilation time will be reported
1858 1861 tc_min = 0.1
1859 1862
1860 1863 t0 = clock()
1861 1864 code = compile(src, "<magic-timeit>", "exec")
1862 1865 tc = clock()-t0
1863 1866
1864 1867 ns = {}
1865 1868 exec code in self.shell.user_ns, ns
1866 1869 timer.inner = ns["inner"]
1867 1870
1868 1871 if number == 0:
1869 1872 # determine number so that 0.2 <= total time < 2.0
1870 1873 number = 1
1871 1874 for i in range(1, 10):
1872 1875 if timer.timeit(number) >= 0.2:
1873 1876 break
1874 1877 number *= 10
1875 1878
1876 1879 best = min(timer.repeat(repeat, number)) / number
1877 1880
1878 1881 if best > 0.0 and best < 1000.0:
1879 1882 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1880 1883 elif best >= 1000.0:
1881 1884 order = 0
1882 1885 else:
1883 1886 order = 3
1884 1887 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1885 1888 precision,
1886 1889 best * scaling[order],
1887 1890 units[order])
1888 1891 if tc > tc_min:
1889 1892 print "Compiler time: %.2f s" % tc
1890 1893
1891 1894 @skip_doctest
1892 1895 @needs_local_scope
1893 1896 def magic_time(self,parameter_s = ''):
1894 1897 """Time execution of a Python statement or expression.
1895 1898
1896 1899 The CPU and wall clock times are printed, and the value of the
1897 1900 expression (if any) is returned. Note that under Win32, system time
1898 1901 is always reported as 0, since it can not be measured.
1899 1902
1900 1903 This function provides very basic timing functionality. In Python
1901 1904 2.3, the timeit module offers more control and sophistication, so this
1902 1905 could be rewritten to use it (patches welcome).
1903 1906
1904 1907 Some examples:
1905 1908
1906 1909 In [1]: time 2**128
1907 1910 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1908 1911 Wall time: 0.00
1909 1912 Out[1]: 340282366920938463463374607431768211456L
1910 1913
1911 1914 In [2]: n = 1000000
1912 1915
1913 1916 In [3]: time sum(range(n))
1914 1917 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1915 1918 Wall time: 1.37
1916 1919 Out[3]: 499999500000L
1917 1920
1918 1921 In [4]: time print 'hello world'
1919 1922 hello world
1920 1923 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1921 1924 Wall time: 0.00
1922 1925
1923 1926 Note that the time needed by Python to compile the given expression
1924 1927 will be reported if it is more than 0.1s. In this example, the
1925 1928 actual exponentiation is done by Python at compilation time, so while
1926 1929 the expression can take a noticeable amount of time to compute, that
1927 1930 time is purely due to the compilation:
1928 1931
1929 1932 In [5]: time 3**9999;
1930 1933 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1931 1934 Wall time: 0.00 s
1932 1935
1933 1936 In [6]: time 3**999999;
1934 1937 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1935 1938 Wall time: 0.00 s
1936 1939 Compiler : 0.78 s
1937 1940 """
1938 1941
1939 1942 # fail immediately if the given expression can't be compiled
1940 1943
1941 1944 expr = self.shell.prefilter(parameter_s,False)
1942 1945
1943 1946 # Minimum time above which compilation time will be reported
1944 1947 tc_min = 0.1
1945 1948
1946 1949 try:
1947 1950 mode = 'eval'
1948 1951 t0 = clock()
1949 1952 code = compile(expr,'<timed eval>',mode)
1950 1953 tc = clock()-t0
1951 1954 except SyntaxError:
1952 1955 mode = 'exec'
1953 1956 t0 = clock()
1954 1957 code = compile(expr,'<timed exec>',mode)
1955 1958 tc = clock()-t0
1956 1959 # skew measurement as little as possible
1957 1960 glob = self.shell.user_ns
1958 1961 locs = self._magic_locals
1959 1962 clk = clock2
1960 1963 wtime = time.time
1961 1964 # time execution
1962 1965 wall_st = wtime()
1963 1966 if mode=='eval':
1964 1967 st = clk()
1965 1968 out = eval(code, glob, locs)
1966 1969 end = clk()
1967 1970 else:
1968 1971 st = clk()
1969 1972 exec code in glob, locs
1970 1973 end = clk()
1971 1974 out = None
1972 1975 wall_end = wtime()
1973 1976 # Compute actual times and report
1974 1977 wall_time = wall_end-wall_st
1975 1978 cpu_user = end[0]-st[0]
1976 1979 cpu_sys = end[1]-st[1]
1977 1980 cpu_tot = cpu_user+cpu_sys
1978 1981 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1979 1982 (cpu_user,cpu_sys,cpu_tot)
1980 1983 print "Wall time: %.2f s" % wall_time
1981 1984 if tc > tc_min:
1982 1985 print "Compiler : %.2f s" % tc
1983 1986 return out
1984 1987
1985 1988 @skip_doctest
1986 1989 def magic_macro(self,parameter_s = ''):
1987 1990 """Define a macro for future re-execution. It accepts ranges of history,
1988 1991 filenames or string objects.
1989 1992
1990 1993 Usage:\\
1991 1994 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1992 1995
1993 1996 Options:
1994 1997
1995 1998 -r: use 'raw' input. By default, the 'processed' history is used,
1996 1999 so that magics are loaded in their transformed version to valid
1997 2000 Python. If this option is given, the raw input as typed as the
1998 2001 command line is used instead.
1999 2002
2000 2003 This will define a global variable called `name` which is a string
2001 2004 made of joining the slices and lines you specify (n1,n2,... numbers
2002 2005 above) from your input history into a single string. This variable
2003 2006 acts like an automatic function which re-executes those lines as if
2004 2007 you had typed them. You just type 'name' at the prompt and the code
2005 2008 executes.
2006 2009
2007 2010 The syntax for indicating input ranges is described in %history.
2008 2011
2009 2012 Note: as a 'hidden' feature, you can also use traditional python slice
2010 2013 notation, where N:M means numbers N through M-1.
2011 2014
2012 2015 For example, if your history contains (%hist prints it):
2013 2016
2014 2017 44: x=1
2015 2018 45: y=3
2016 2019 46: z=x+y
2017 2020 47: print x
2018 2021 48: a=5
2019 2022 49: print 'x',x,'y',y
2020 2023
2021 2024 you can create a macro with lines 44 through 47 (included) and line 49
2022 2025 called my_macro with:
2023 2026
2024 2027 In [55]: %macro my_macro 44-47 49
2025 2028
2026 2029 Now, typing `my_macro` (without quotes) will re-execute all this code
2027 2030 in one pass.
2028 2031
2029 2032 You don't need to give the line-numbers in order, and any given line
2030 2033 number can appear multiple times. You can assemble macros with any
2031 2034 lines from your input history in any order.
2032 2035
2033 2036 The macro is a simple object which holds its value in an attribute,
2034 2037 but IPython's display system checks for macros and executes them as
2035 2038 code instead of printing them when you type their name.
2036 2039
2037 2040 You can view a macro's contents by explicitly printing it with:
2038 2041
2039 2042 'print macro_name'.
2040 2043
2041 2044 """
2042 2045 opts,args = self.parse_options(parameter_s,'r',mode='list')
2043 2046 if not args: # List existing macros
2044 2047 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2045 2048 isinstance(v, Macro))
2046 2049 if len(args) == 1:
2047 2050 raise UsageError(
2048 2051 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2049 2052 name, codefrom = args[0], " ".join(args[1:])
2050 2053
2051 2054 #print 'rng',ranges # dbg
2052 2055 try:
2053 2056 lines = self.shell.find_user_code(codefrom, 'r' in opts)
2054 2057 except (ValueError, TypeError) as e:
2055 2058 print e.args[0]
2056 2059 return
2057 2060 macro = Macro(lines)
2058 2061 self.shell.define_macro(name, macro)
2059 2062 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2060 2063 print '=== Macro contents: ==='
2061 2064 print macro,
2062 2065
2063 2066 def magic_save(self,parameter_s = ''):
2064 2067 """Save a set of lines or a macro to a given filename.
2065 2068
2066 2069 Usage:\\
2067 2070 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2068 2071
2069 2072 Options:
2070 2073
2071 2074 -r: use 'raw' input. By default, the 'processed' history is used,
2072 2075 so that magics are loaded in their transformed version to valid
2073 2076 Python. If this option is given, the raw input as typed as the
2074 2077 command line is used instead.
2075 2078
2076 2079 This function uses the same syntax as %history for input ranges,
2077 2080 then saves the lines to the filename you specify.
2078 2081
2079 2082 It adds a '.py' extension to the file if you don't do so yourself, and
2080 2083 it asks for confirmation before overwriting existing files."""
2081 2084
2082 2085 opts,args = self.parse_options(parameter_s,'r',mode='list')
2083 2086 fname, codefrom = args[0], " ".join(args[1:])
2084 2087 if not fname.endswith('.py'):
2085 2088 fname += '.py'
2086 2089 if os.path.isfile(fname):
2087 2090 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2088 2091 if ans.lower() not in ['y','yes']:
2089 2092 print 'Operation cancelled.'
2090 2093 return
2091 2094 try:
2092 2095 cmds = self.shell.find_user_code(codefrom, 'r' in opts)
2093 2096 except (TypeError, ValueError) as e:
2094 2097 print e.args[0]
2095 2098 return
2096 2099 if isinstance(cmds, unicode):
2097 2100 cmds = cmds.encode("utf-8")
2098 2101 with open(fname,'w') as f:
2099 2102 f.write("# coding: utf-8\n")
2100 2103 f.write(cmds)
2101 2104 print 'The following commands were written to file `%s`:' % fname
2102 2105 print cmds
2103 2106
2104 2107 def magic_pastebin(self, parameter_s = ''):
2105 2108 """Upload code to the 'Lodge it' paste bin, returning the URL."""
2106 2109 try:
2107 2110 code = self.shell.find_user_code(parameter_s)
2108 2111 except (ValueError, TypeError) as e:
2109 2112 print e.args[0]
2110 2113 return
2111 2114 pbserver = ServerProxy('http://paste.pocoo.org/xmlrpc/')
2112 2115 id = pbserver.pastes.newPaste("python", code)
2113 2116 return "http://paste.pocoo.org/show/" + id
2114 2117
2115 2118 def magic_loadpy(self, arg_s):
2116 2119 """Load a .py python script into the GUI console.
2117 2120
2118 2121 This magic command can either take a local filename or a url::
2119 2122
2120 2123 %loadpy myscript.py
2121 2124 %loadpy http://www.example.com/myscript.py
2122 2125 """
2123 2126 if not arg_s.endswith('.py'):
2124 2127 raise ValueError('%%load only works with .py files: %s' % arg_s)
2125 2128 if arg_s.startswith('http'):
2126 2129 import urllib2
2127 2130 response = urllib2.urlopen(arg_s)
2128 2131 content = response.read()
2129 2132 else:
2130 2133 content = open(arg_s).read()
2131 2134 self.set_next_input(content)
2132 2135
2133 2136 def _find_edit_target(self, args, opts, last_call):
2134 2137 """Utility method used by magic_edit to find what to edit."""
2135 2138
2136 2139 def make_filename(arg):
2137 2140 "Make a filename from the given args"
2138 2141 try:
2139 2142 filename = get_py_filename(arg)
2140 2143 except IOError:
2141 2144 # If it ends with .py but doesn't already exist, assume we want
2142 2145 # a new file.
2143 2146 if args.endswith('.py'):
2144 2147 filename = arg
2145 2148 else:
2146 2149 filename = None
2147 2150 return filename
2148 2151
2149 2152 # Set a few locals from the options for convenience:
2150 2153 opts_prev = 'p' in opts
2151 2154 opts_raw = 'r' in opts
2152 2155
2153 2156 # custom exceptions
2154 2157 class DataIsObject(Exception): pass
2155 2158
2156 2159 # Default line number value
2157 2160 lineno = opts.get('n',None)
2158 2161
2159 2162 if opts_prev:
2160 2163 args = '_%s' % last_call[0]
2161 2164 if not self.shell.user_ns.has_key(args):
2162 2165 args = last_call[1]
2163 2166
2164 2167 # use last_call to remember the state of the previous call, but don't
2165 2168 # let it be clobbered by successive '-p' calls.
2166 2169 try:
2167 2170 last_call[0] = self.shell.displayhook.prompt_count
2168 2171 if not opts_prev:
2169 2172 last_call[1] = parameter_s
2170 2173 except:
2171 2174 pass
2172 2175
2173 2176 # by default this is done with temp files, except when the given
2174 2177 # arg is a filename
2175 2178 use_temp = True
2176 2179
2177 2180 data = ''
2178 2181
2179 2182 # First, see if the arguments should be a filename.
2180 2183 filename = make_filename(args)
2181 2184 if filename:
2182 2185 use_temp = False
2183 2186 elif args:
2184 2187 # Mode where user specifies ranges of lines, like in %macro.
2185 2188 data = self.extract_input_lines(args, opts_raw)
2186 2189 if not data:
2187 2190 try:
2188 2191 # Load the parameter given as a variable. If not a string,
2189 2192 # process it as an object instead (below)
2190 2193
2191 2194 #print '*** args',args,'type',type(args) # dbg
2192 2195 data = eval(args, self.shell.user_ns)
2193 2196 if not isinstance(data, basestring):
2194 2197 raise DataIsObject
2195 2198
2196 2199 except (NameError,SyntaxError):
2197 2200 # given argument is not a variable, try as a filename
2198 2201 filename = make_filename(args)
2199 2202 if filename is None:
2200 2203 warn("Argument given (%s) can't be found as a variable "
2201 2204 "or as a filename." % args)
2202 2205 return
2203 2206 use_temp = False
2204 2207
2205 2208 except DataIsObject:
2206 2209 # macros have a special edit function
2207 2210 if isinstance(data, Macro):
2208 2211 raise MacroToEdit(data)
2209 2212
2210 2213 # For objects, try to edit the file where they are defined
2211 2214 try:
2212 2215 filename = inspect.getabsfile(data)
2213 2216 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2214 2217 # class created by %edit? Try to find source
2215 2218 # by looking for method definitions instead, the
2216 2219 # __module__ in those classes is FakeModule.
2217 2220 attrs = [getattr(data, aname) for aname in dir(data)]
2218 2221 for attr in attrs:
2219 2222 if not inspect.ismethod(attr):
2220 2223 continue
2221 2224 filename = inspect.getabsfile(attr)
2222 2225 if filename and 'fakemodule' not in filename.lower():
2223 2226 # change the attribute to be the edit target instead
2224 2227 data = attr
2225 2228 break
2226 2229
2227 2230 datafile = 1
2228 2231 except TypeError:
2229 2232 filename = make_filename(args)
2230 2233 datafile = 1
2231 2234 warn('Could not find file where `%s` is defined.\n'
2232 2235 'Opening a file named `%s`' % (args,filename))
2233 2236 # Now, make sure we can actually read the source (if it was in
2234 2237 # a temp file it's gone by now).
2235 2238 if datafile:
2236 2239 try:
2237 2240 if lineno is None:
2238 2241 lineno = inspect.getsourcelines(data)[1]
2239 2242 except IOError:
2240 2243 filename = make_filename(args)
2241 2244 if filename is None:
2242 2245 warn('The file `%s` where `%s` was defined cannot '
2243 2246 'be read.' % (filename,data))
2244 2247 return
2245 2248 use_temp = False
2246 2249
2247 2250 if use_temp:
2248 2251 filename = self.shell.mktempfile(data)
2249 2252 print 'IPython will make a temporary file named:',filename
2250 2253
2251 2254 return filename, lineno, use_temp
2252 2255
2253 2256 def _edit_macro(self,mname,macro):
2254 2257 """open an editor with the macro data in a file"""
2255 2258 filename = self.shell.mktempfile(macro.value)
2256 2259 self.shell.hooks.editor(filename)
2257 2260
2258 2261 # and make a new macro object, to replace the old one
2259 2262 mfile = open(filename)
2260 2263 mvalue = mfile.read()
2261 2264 mfile.close()
2262 2265 self.shell.user_ns[mname] = Macro(mvalue)
2263 2266
2264 2267 def magic_ed(self,parameter_s=''):
2265 2268 """Alias to %edit."""
2266 2269 return self.magic_edit(parameter_s)
2267 2270
2268 2271 @skip_doctest
2269 2272 def magic_edit(self,parameter_s='',last_call=['','']):
2270 2273 """Bring up an editor and execute the resulting code.
2271 2274
2272 2275 Usage:
2273 2276 %edit [options] [args]
2274 2277
2275 2278 %edit runs IPython's editor hook. The default version of this hook is
2276 2279 set to call the __IPYTHON__.rc.editor command. This is read from your
2277 2280 environment variable $EDITOR. If this isn't found, it will default to
2278 2281 vi under Linux/Unix and to notepad under Windows. See the end of this
2279 2282 docstring for how to change the editor hook.
2280 2283
2281 2284 You can also set the value of this editor via the command line option
2282 2285 '-editor' or in your ipythonrc file. This is useful if you wish to use
2283 2286 specifically for IPython an editor different from your typical default
2284 2287 (and for Windows users who typically don't set environment variables).
2285 2288
2286 2289 This command allows you to conveniently edit multi-line code right in
2287 2290 your IPython session.
2288 2291
2289 2292 If called without arguments, %edit opens up an empty editor with a
2290 2293 temporary file and will execute the contents of this file when you
2291 2294 close it (don't forget to save it!).
2292 2295
2293 2296
2294 2297 Options:
2295 2298
2296 2299 -n <number>: open the editor at a specified line number. By default,
2297 2300 the IPython editor hook uses the unix syntax 'editor +N filename', but
2298 2301 you can configure this by providing your own modified hook if your
2299 2302 favorite editor supports line-number specifications with a different
2300 2303 syntax.
2301 2304
2302 2305 -p: this will call the editor with the same data as the previous time
2303 2306 it was used, regardless of how long ago (in your current session) it
2304 2307 was.
2305 2308
2306 2309 -r: use 'raw' input. This option only applies to input taken from the
2307 2310 user's history. By default, the 'processed' history is used, so that
2308 2311 magics are loaded in their transformed version to valid Python. If
2309 2312 this option is given, the raw input as typed as the command line is
2310 2313 used instead. When you exit the editor, it will be executed by
2311 2314 IPython's own processor.
2312 2315
2313 2316 -x: do not execute the edited code immediately upon exit. This is
2314 2317 mainly useful if you are editing programs which need to be called with
2315 2318 command line arguments, which you can then do using %run.
2316 2319
2317 2320
2318 2321 Arguments:
2319 2322
2320 2323 If arguments are given, the following possibilites exist:
2321 2324
2322 2325 - If the argument is a filename, IPython will load that into the
2323 2326 editor. It will execute its contents with execfile() when you exit,
2324 2327 loading any code in the file into your interactive namespace.
2325 2328
2326 2329 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2327 2330 The syntax is the same as in the %history magic.
2328 2331
2329 2332 - If the argument is a string variable, its contents are loaded
2330 2333 into the editor. You can thus edit any string which contains
2331 2334 python code (including the result of previous edits).
2332 2335
2333 2336 - If the argument is the name of an object (other than a string),
2334 2337 IPython will try to locate the file where it was defined and open the
2335 2338 editor at the point where it is defined. You can use `%edit function`
2336 2339 to load an editor exactly at the point where 'function' is defined,
2337 2340 edit it and have the file be executed automatically.
2338 2341
2339 2342 If the object is a macro (see %macro for details), this opens up your
2340 2343 specified editor with a temporary file containing the macro's data.
2341 2344 Upon exit, the macro is reloaded with the contents of the file.
2342 2345
2343 2346 Note: opening at an exact line is only supported under Unix, and some
2344 2347 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2345 2348 '+NUMBER' parameter necessary for this feature. Good editors like
2346 2349 (X)Emacs, vi, jed, pico and joe all do.
2347 2350
2348 2351 After executing your code, %edit will return as output the code you
2349 2352 typed in the editor (except when it was an existing file). This way
2350 2353 you can reload the code in further invocations of %edit as a variable,
2351 2354 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2352 2355 the output.
2353 2356
2354 2357 Note that %edit is also available through the alias %ed.
2355 2358
2356 2359 This is an example of creating a simple function inside the editor and
2357 2360 then modifying it. First, start up the editor:
2358 2361
2359 2362 In [1]: ed
2360 2363 Editing... done. Executing edited code...
2361 2364 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2362 2365
2363 2366 We can then call the function foo():
2364 2367
2365 2368 In [2]: foo()
2366 2369 foo() was defined in an editing session
2367 2370
2368 2371 Now we edit foo. IPython automatically loads the editor with the
2369 2372 (temporary) file where foo() was previously defined:
2370 2373
2371 2374 In [3]: ed foo
2372 2375 Editing... done. Executing edited code...
2373 2376
2374 2377 And if we call foo() again we get the modified version:
2375 2378
2376 2379 In [4]: foo()
2377 2380 foo() has now been changed!
2378 2381
2379 2382 Here is an example of how to edit a code snippet successive
2380 2383 times. First we call the editor:
2381 2384
2382 2385 In [5]: ed
2383 2386 Editing... done. Executing edited code...
2384 2387 hello
2385 2388 Out[5]: "print 'hello'n"
2386 2389
2387 2390 Now we call it again with the previous output (stored in _):
2388 2391
2389 2392 In [6]: ed _
2390 2393 Editing... done. Executing edited code...
2391 2394 hello world
2392 2395 Out[6]: "print 'hello world'n"
2393 2396
2394 2397 Now we call it with the output #8 (stored in _8, also as Out[8]):
2395 2398
2396 2399 In [7]: ed _8
2397 2400 Editing... done. Executing edited code...
2398 2401 hello again
2399 2402 Out[7]: "print 'hello again'n"
2400 2403
2401 2404
2402 2405 Changing the default editor hook:
2403 2406
2404 2407 If you wish to write your own editor hook, you can put it in a
2405 2408 configuration file which you load at startup time. The default hook
2406 2409 is defined in the IPython.core.hooks module, and you can use that as a
2407 2410 starting example for further modifications. That file also has
2408 2411 general instructions on how to set a new hook for use once you've
2409 2412 defined it."""
2410 2413 opts,args = self.parse_options(parameter_s,'prxn:')
2411 2414
2412 2415 try:
2413 2416 filename, lineno, is_temp = self._find_edit_target(args, opts, last_call)
2414 2417 except MacroToEdit as e:
2415 2418 self._edit_macro(args, e.args[0])
2416 2419 return
2417 2420
2418 2421 # do actual editing here
2419 2422 print 'Editing...',
2420 2423 sys.stdout.flush()
2421 2424 try:
2422 2425 # Quote filenames that may have spaces in them
2423 2426 if ' ' in filename:
2424 2427 filename = "'%s'" % filename
2425 2428 self.shell.hooks.editor(filename,lineno)
2426 2429 except TryNext:
2427 2430 warn('Could not open editor')
2428 2431 return
2429 2432
2430 2433 # XXX TODO: should this be generalized for all string vars?
2431 2434 # For now, this is special-cased to blocks created by cpaste
2432 2435 if args.strip() == 'pasted_block':
2433 2436 self.shell.user_ns['pasted_block'] = file_read(filename)
2434 2437
2435 2438 if 'x' in opts: # -x prevents actual execution
2436 2439 print
2437 2440 else:
2438 2441 print 'done. Executing edited code...'
2439 2442 if 'r' in opts: # Untranslated IPython code
2440 2443 self.shell.run_cell(file_read(filename),
2441 2444 store_history=False)
2442 2445 else:
2443 2446 self.shell.safe_execfile(filename,self.shell.user_ns,
2444 2447 self.shell.user_ns)
2445 2448
2446 2449 if is_temp:
2447 2450 try:
2448 2451 return open(filename).read()
2449 2452 except IOError,msg:
2450 2453 if msg.filename == filename:
2451 2454 warn('File not found. Did you forget to save?')
2452 2455 return
2453 2456 else:
2454 2457 self.shell.showtraceback()
2455 2458
2456 2459 def magic_xmode(self,parameter_s = ''):
2457 2460 """Switch modes for the exception handlers.
2458 2461
2459 2462 Valid modes: Plain, Context and Verbose.
2460 2463
2461 2464 If called without arguments, acts as a toggle."""
2462 2465
2463 2466 def xmode_switch_err(name):
2464 2467 warn('Error changing %s exception modes.\n%s' %
2465 2468 (name,sys.exc_info()[1]))
2466 2469
2467 2470 shell = self.shell
2468 2471 new_mode = parameter_s.strip().capitalize()
2469 2472 try:
2470 2473 shell.InteractiveTB.set_mode(mode=new_mode)
2471 2474 print 'Exception reporting mode:',shell.InteractiveTB.mode
2472 2475 except:
2473 2476 xmode_switch_err('user')
2474 2477
2475 2478 def magic_colors(self,parameter_s = ''):
2476 2479 """Switch color scheme for prompts, info system and exception handlers.
2477 2480
2478 2481 Currently implemented schemes: NoColor, Linux, LightBG.
2479 2482
2480 2483 Color scheme names are not case-sensitive.
2481 2484
2482 2485 Examples
2483 2486 --------
2484 2487 To get a plain black and white terminal::
2485 2488
2486 2489 %colors nocolor
2487 2490 """
2488 2491
2489 2492 def color_switch_err(name):
2490 2493 warn('Error changing %s color schemes.\n%s' %
2491 2494 (name,sys.exc_info()[1]))
2492 2495
2493 2496
2494 2497 new_scheme = parameter_s.strip()
2495 2498 if not new_scheme:
2496 2499 raise UsageError(
2497 2500 "%colors: you must specify a color scheme. See '%colors?'")
2498 2501 return
2499 2502 # local shortcut
2500 2503 shell = self.shell
2501 2504
2502 2505 import IPython.utils.rlineimpl as readline
2503 2506
2504 2507 if not readline.have_readline and sys.platform == "win32":
2505 2508 msg = """\
2506 2509 Proper color support under MS Windows requires the pyreadline library.
2507 2510 You can find it at:
2508 2511 http://ipython.scipy.org/moin/PyReadline/Intro
2509 2512 Gary's readline needs the ctypes module, from:
2510 2513 http://starship.python.net/crew/theller/ctypes
2511 2514 (Note that ctypes is already part of Python versions 2.5 and newer).
2512 2515
2513 2516 Defaulting color scheme to 'NoColor'"""
2514 2517 new_scheme = 'NoColor'
2515 2518 warn(msg)
2516 2519
2517 2520 # readline option is 0
2518 2521 if not shell.has_readline:
2519 2522 new_scheme = 'NoColor'
2520 2523
2521 2524 # Set prompt colors
2522 2525 try:
2523 2526 shell.displayhook.set_colors(new_scheme)
2524 2527 except:
2525 2528 color_switch_err('prompt')
2526 2529 else:
2527 2530 shell.colors = \
2528 2531 shell.displayhook.color_table.active_scheme_name
2529 2532 # Set exception colors
2530 2533 try:
2531 2534 shell.InteractiveTB.set_colors(scheme = new_scheme)
2532 2535 shell.SyntaxTB.set_colors(scheme = new_scheme)
2533 2536 except:
2534 2537 color_switch_err('exception')
2535 2538
2536 2539 # Set info (for 'object?') colors
2537 2540 if shell.color_info:
2538 2541 try:
2539 2542 shell.inspector.set_active_scheme(new_scheme)
2540 2543 except:
2541 2544 color_switch_err('object inspector')
2542 2545 else:
2543 2546 shell.inspector.set_active_scheme('NoColor')
2544 2547
2545 2548 def magic_pprint(self, parameter_s=''):
2546 2549 """Toggle pretty printing on/off."""
2547 2550 ptformatter = self.shell.display_formatter.formatters['text/plain']
2548 2551 ptformatter.pprint = bool(1 - ptformatter.pprint)
2549 2552 print 'Pretty printing has been turned', \
2550 2553 ['OFF','ON'][ptformatter.pprint]
2551 2554
2552 2555 #......................................................................
2553 2556 # Functions to implement unix shell-type things
2554 2557
2555 2558 @skip_doctest
2556 2559 def magic_alias(self, parameter_s = ''):
2557 2560 """Define an alias for a system command.
2558 2561
2559 2562 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2560 2563
2561 2564 Then, typing 'alias_name params' will execute the system command 'cmd
2562 2565 params' (from your underlying operating system).
2563 2566
2564 2567 Aliases have lower precedence than magic functions and Python normal
2565 2568 variables, so if 'foo' is both a Python variable and an alias, the
2566 2569 alias can not be executed until 'del foo' removes the Python variable.
2567 2570
2568 2571 You can use the %l specifier in an alias definition to represent the
2569 2572 whole line when the alias is called. For example:
2570 2573
2571 2574 In [2]: alias bracket echo "Input in brackets: <%l>"
2572 2575 In [3]: bracket hello world
2573 2576 Input in brackets: <hello world>
2574 2577
2575 2578 You can also define aliases with parameters using %s specifiers (one
2576 2579 per parameter):
2577 2580
2578 2581 In [1]: alias parts echo first %s second %s
2579 2582 In [2]: %parts A B
2580 2583 first A second B
2581 2584 In [3]: %parts A
2582 2585 Incorrect number of arguments: 2 expected.
2583 2586 parts is an alias to: 'echo first %s second %s'
2584 2587
2585 2588 Note that %l and %s are mutually exclusive. You can only use one or
2586 2589 the other in your aliases.
2587 2590
2588 2591 Aliases expand Python variables just like system calls using ! or !!
2589 2592 do: all expressions prefixed with '$' get expanded. For details of
2590 2593 the semantic rules, see PEP-215:
2591 2594 http://www.python.org/peps/pep-0215.html. This is the library used by
2592 2595 IPython for variable expansion. If you want to access a true shell
2593 2596 variable, an extra $ is necessary to prevent its expansion by IPython:
2594 2597
2595 2598 In [6]: alias show echo
2596 2599 In [7]: PATH='A Python string'
2597 2600 In [8]: show $PATH
2598 2601 A Python string
2599 2602 In [9]: show $$PATH
2600 2603 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2601 2604
2602 2605 You can use the alias facility to acess all of $PATH. See the %rehash
2603 2606 and %rehashx functions, which automatically create aliases for the
2604 2607 contents of your $PATH.
2605 2608
2606 2609 If called with no parameters, %alias prints the current alias table."""
2607 2610
2608 2611 par = parameter_s.strip()
2609 2612 if not par:
2610 2613 stored = self.db.get('stored_aliases', {} )
2611 2614 aliases = sorted(self.shell.alias_manager.aliases)
2612 2615 # for k, v in stored:
2613 2616 # atab.append(k, v[0])
2614 2617
2615 2618 print "Total number of aliases:", len(aliases)
2616 2619 sys.stdout.flush()
2617 2620 return aliases
2618 2621
2619 2622 # Now try to define a new one
2620 2623 try:
2621 2624 alias,cmd = par.split(None, 1)
2622 2625 except:
2623 2626 print oinspect.getdoc(self.magic_alias)
2624 2627 else:
2625 2628 self.shell.alias_manager.soft_define_alias(alias, cmd)
2626 2629 # end magic_alias
2627 2630
2628 2631 def magic_unalias(self, parameter_s = ''):
2629 2632 """Remove an alias"""
2630 2633
2631 2634 aname = parameter_s.strip()
2632 2635 self.shell.alias_manager.undefine_alias(aname)
2633 2636 stored = self.db.get('stored_aliases', {} )
2634 2637 if aname in stored:
2635 2638 print "Removing %stored alias",aname
2636 2639 del stored[aname]
2637 2640 self.db['stored_aliases'] = stored
2638 2641
2639 2642 def magic_rehashx(self, parameter_s = ''):
2640 2643 """Update the alias table with all executable files in $PATH.
2641 2644
2642 2645 This version explicitly checks that every entry in $PATH is a file
2643 2646 with execute access (os.X_OK), so it is much slower than %rehash.
2644 2647
2645 2648 Under Windows, it checks executability as a match agains a
2646 2649 '|'-separated string of extensions, stored in the IPython config
2647 2650 variable win_exec_ext. This defaults to 'exe|com|bat'.
2648 2651
2649 2652 This function also resets the root module cache of module completer,
2650 2653 used on slow filesystems.
2651 2654 """
2652 2655 from IPython.core.alias import InvalidAliasError
2653 2656
2654 2657 # for the benefit of module completer in ipy_completers.py
2655 2658 del self.db['rootmodules']
2656 2659
2657 2660 path = [os.path.abspath(os.path.expanduser(p)) for p in
2658 2661 os.environ.get('PATH','').split(os.pathsep)]
2659 2662 path = filter(os.path.isdir,path)
2660 2663
2661 2664 syscmdlist = []
2662 2665 # Now define isexec in a cross platform manner.
2663 2666 if os.name == 'posix':
2664 2667 isexec = lambda fname:os.path.isfile(fname) and \
2665 2668 os.access(fname,os.X_OK)
2666 2669 else:
2667 2670 try:
2668 2671 winext = os.environ['pathext'].replace(';','|').replace('.','')
2669 2672 except KeyError:
2670 2673 winext = 'exe|com|bat|py'
2671 2674 if 'py' not in winext:
2672 2675 winext += '|py'
2673 2676 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2674 2677 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2675 2678 savedir = os.getcwd()
2676 2679
2677 2680 # Now walk the paths looking for executables to alias.
2678 2681 try:
2679 2682 # write the whole loop for posix/Windows so we don't have an if in
2680 2683 # the innermost part
2681 2684 if os.name == 'posix':
2682 2685 for pdir in path:
2683 2686 os.chdir(pdir)
2684 2687 for ff in os.listdir(pdir):
2685 2688 if isexec(ff):
2686 2689 try:
2687 2690 # Removes dots from the name since ipython
2688 2691 # will assume names with dots to be python.
2689 2692 self.shell.alias_manager.define_alias(
2690 2693 ff.replace('.',''), ff)
2691 2694 except InvalidAliasError:
2692 2695 pass
2693 2696 else:
2694 2697 syscmdlist.append(ff)
2695 2698 else:
2696 2699 no_alias = self.shell.alias_manager.no_alias
2697 2700 for pdir in path:
2698 2701 os.chdir(pdir)
2699 2702 for ff in os.listdir(pdir):
2700 2703 base, ext = os.path.splitext(ff)
2701 2704 if isexec(ff) and base.lower() not in no_alias:
2702 2705 if ext.lower() == '.exe':
2703 2706 ff = base
2704 2707 try:
2705 2708 # Removes dots from the name since ipython
2706 2709 # will assume names with dots to be python.
2707 2710 self.shell.alias_manager.define_alias(
2708 2711 base.lower().replace('.',''), ff)
2709 2712 except InvalidAliasError:
2710 2713 pass
2711 2714 syscmdlist.append(ff)
2712 2715 db = self.db
2713 2716 db['syscmdlist'] = syscmdlist
2714 2717 finally:
2715 2718 os.chdir(savedir)
2716 2719
2717 2720 @skip_doctest
2718 2721 def magic_pwd(self, parameter_s = ''):
2719 2722 """Return the current working directory path.
2720 2723
2721 2724 Examples
2722 2725 --------
2723 2726 ::
2724 2727
2725 2728 In [9]: pwd
2726 2729 Out[9]: '/home/tsuser/sprint/ipython'
2727 2730 """
2728 2731 return os.getcwd()
2729 2732
2730 2733 @skip_doctest
2731 2734 def magic_cd(self, parameter_s=''):
2732 2735 """Change the current working directory.
2733 2736
2734 2737 This command automatically maintains an internal list of directories
2735 2738 you visit during your IPython session, in the variable _dh. The
2736 2739 command %dhist shows this history nicely formatted. You can also
2737 2740 do 'cd -<tab>' to see directory history conveniently.
2738 2741
2739 2742 Usage:
2740 2743
2741 2744 cd 'dir': changes to directory 'dir'.
2742 2745
2743 2746 cd -: changes to the last visited directory.
2744 2747
2745 2748 cd -<n>: changes to the n-th directory in the directory history.
2746 2749
2747 2750 cd --foo: change to directory that matches 'foo' in history
2748 2751
2749 2752 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2750 2753 (note: cd <bookmark_name> is enough if there is no
2751 2754 directory <bookmark_name>, but a bookmark with the name exists.)
2752 2755 'cd -b <tab>' allows you to tab-complete bookmark names.
2753 2756
2754 2757 Options:
2755 2758
2756 2759 -q: quiet. Do not print the working directory after the cd command is
2757 2760 executed. By default IPython's cd command does print this directory,
2758 2761 since the default prompts do not display path information.
2759 2762
2760 2763 Note that !cd doesn't work for this purpose because the shell where
2761 2764 !command runs is immediately discarded after executing 'command'.
2762 2765
2763 2766 Examples
2764 2767 --------
2765 2768 ::
2766 2769
2767 2770 In [10]: cd parent/child
2768 2771 /home/tsuser/parent/child
2769 2772 """
2770 2773
2771 2774 parameter_s = parameter_s.strip()
2772 2775 #bkms = self.shell.persist.get("bookmarks",{})
2773 2776
2774 2777 oldcwd = os.getcwd()
2775 2778 numcd = re.match(r'(-)(\d+)$',parameter_s)
2776 2779 # jump in directory history by number
2777 2780 if numcd:
2778 2781 nn = int(numcd.group(2))
2779 2782 try:
2780 2783 ps = self.shell.user_ns['_dh'][nn]
2781 2784 except IndexError:
2782 2785 print 'The requested directory does not exist in history.'
2783 2786 return
2784 2787 else:
2785 2788 opts = {}
2786 2789 elif parameter_s.startswith('--'):
2787 2790 ps = None
2788 2791 fallback = None
2789 2792 pat = parameter_s[2:]
2790 2793 dh = self.shell.user_ns['_dh']
2791 2794 # first search only by basename (last component)
2792 2795 for ent in reversed(dh):
2793 2796 if pat in os.path.basename(ent) and os.path.isdir(ent):
2794 2797 ps = ent
2795 2798 break
2796 2799
2797 2800 if fallback is None and pat in ent and os.path.isdir(ent):
2798 2801 fallback = ent
2799 2802
2800 2803 # if we have no last part match, pick the first full path match
2801 2804 if ps is None:
2802 2805 ps = fallback
2803 2806
2804 2807 if ps is None:
2805 2808 print "No matching entry in directory history"
2806 2809 return
2807 2810 else:
2808 2811 opts = {}
2809 2812
2810 2813
2811 2814 else:
2812 2815 #turn all non-space-escaping backslashes to slashes,
2813 2816 # for c:\windows\directory\names\
2814 2817 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2815 2818 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2816 2819 # jump to previous
2817 2820 if ps == '-':
2818 2821 try:
2819 2822 ps = self.shell.user_ns['_dh'][-2]
2820 2823 except IndexError:
2821 2824 raise UsageError('%cd -: No previous directory to change to.')
2822 2825 # jump to bookmark if needed
2823 2826 else:
2824 2827 if not os.path.isdir(ps) or opts.has_key('b'):
2825 2828 bkms = self.db.get('bookmarks', {})
2826 2829
2827 2830 if bkms.has_key(ps):
2828 2831 target = bkms[ps]
2829 2832 print '(bookmark:%s) -> %s' % (ps,target)
2830 2833 ps = target
2831 2834 else:
2832 2835 if opts.has_key('b'):
2833 2836 raise UsageError("Bookmark '%s' not found. "
2834 2837 "Use '%%bookmark -l' to see your bookmarks." % ps)
2835 2838
2836 2839 # strip extra quotes on Windows, because os.chdir doesn't like them
2837 2840 if sys.platform == 'win32':
2838 2841 ps = ps.strip('\'"')
2839 2842 # at this point ps should point to the target dir
2840 2843 if ps:
2841 2844 try:
2842 2845 os.chdir(os.path.expanduser(ps))
2843 2846 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2844 2847 set_term_title('IPython: ' + abbrev_cwd())
2845 2848 except OSError:
2846 2849 print sys.exc_info()[1]
2847 2850 else:
2848 2851 cwd = os.getcwd()
2849 2852 dhist = self.shell.user_ns['_dh']
2850 2853 if oldcwd != cwd:
2851 2854 dhist.append(cwd)
2852 2855 self.db['dhist'] = compress_dhist(dhist)[-100:]
2853 2856
2854 2857 else:
2855 2858 os.chdir(self.shell.home_dir)
2856 2859 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2857 2860 set_term_title('IPython: ' + '~')
2858 2861 cwd = os.getcwd()
2859 2862 dhist = self.shell.user_ns['_dh']
2860 2863
2861 2864 if oldcwd != cwd:
2862 2865 dhist.append(cwd)
2863 2866 self.db['dhist'] = compress_dhist(dhist)[-100:]
2864 2867 if not 'q' in opts and self.shell.user_ns['_dh']:
2865 2868 print self.shell.user_ns['_dh'][-1]
2866 2869
2867 2870
2868 2871 def magic_env(self, parameter_s=''):
2869 2872 """List environment variables."""
2870 2873
2871 2874 return os.environ.data
2872 2875
2873 2876 def magic_pushd(self, parameter_s=''):
2874 2877 """Place the current dir on stack and change directory.
2875 2878
2876 2879 Usage:\\
2877 2880 %pushd ['dirname']
2878 2881 """
2879 2882
2880 2883 dir_s = self.shell.dir_stack
2881 2884 tgt = os.path.expanduser(parameter_s)
2882 2885 cwd = os.getcwd().replace(self.home_dir,'~')
2883 2886 if tgt:
2884 2887 self.magic_cd(parameter_s)
2885 2888 dir_s.insert(0,cwd)
2886 2889 return self.magic_dirs()
2887 2890
2888 2891 def magic_popd(self, parameter_s=''):
2889 2892 """Change to directory popped off the top of the stack.
2890 2893 """
2891 2894 if not self.shell.dir_stack:
2892 2895 raise UsageError("%popd on empty stack")
2893 2896 top = self.shell.dir_stack.pop(0)
2894 2897 self.magic_cd(top)
2895 2898 print "popd ->",top
2896 2899
2897 2900 def magic_dirs(self, parameter_s=''):
2898 2901 """Return the current directory stack."""
2899 2902
2900 2903 return self.shell.dir_stack
2901 2904
2902 2905 def magic_dhist(self, parameter_s=''):
2903 2906 """Print your history of visited directories.
2904 2907
2905 2908 %dhist -> print full history\\
2906 2909 %dhist n -> print last n entries only\\
2907 2910 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2908 2911
2909 2912 This history is automatically maintained by the %cd command, and
2910 2913 always available as the global list variable _dh. You can use %cd -<n>
2911 2914 to go to directory number <n>.
2912 2915
2913 2916 Note that most of time, you should view directory history by entering
2914 2917 cd -<TAB>.
2915 2918
2916 2919 """
2917 2920
2918 2921 dh = self.shell.user_ns['_dh']
2919 2922 if parameter_s:
2920 2923 try:
2921 2924 args = map(int,parameter_s.split())
2922 2925 except:
2923 2926 self.arg_err(Magic.magic_dhist)
2924 2927 return
2925 2928 if len(args) == 1:
2926 2929 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2927 2930 elif len(args) == 2:
2928 2931 ini,fin = args
2929 2932 else:
2930 2933 self.arg_err(Magic.magic_dhist)
2931 2934 return
2932 2935 else:
2933 2936 ini,fin = 0,len(dh)
2934 2937 nlprint(dh,
2935 2938 header = 'Directory history (kept in _dh)',
2936 2939 start=ini,stop=fin)
2937 2940
2938 2941 @skip_doctest
2939 2942 def magic_sc(self, parameter_s=''):
2940 2943 """Shell capture - execute a shell command and capture its output.
2941 2944
2942 2945 DEPRECATED. Suboptimal, retained for backwards compatibility.
2943 2946
2944 2947 You should use the form 'var = !command' instead. Example:
2945 2948
2946 2949 "%sc -l myfiles = ls ~" should now be written as
2947 2950
2948 2951 "myfiles = !ls ~"
2949 2952
2950 2953 myfiles.s, myfiles.l and myfiles.n still apply as documented
2951 2954 below.
2952 2955
2953 2956 --
2954 2957 %sc [options] varname=command
2955 2958
2956 2959 IPython will run the given command using commands.getoutput(), and
2957 2960 will then update the user's interactive namespace with a variable
2958 2961 called varname, containing the value of the call. Your command can
2959 2962 contain shell wildcards, pipes, etc.
2960 2963
2961 2964 The '=' sign in the syntax is mandatory, and the variable name you
2962 2965 supply must follow Python's standard conventions for valid names.
2963 2966
2964 2967 (A special format without variable name exists for internal use)
2965 2968
2966 2969 Options:
2967 2970
2968 2971 -l: list output. Split the output on newlines into a list before
2969 2972 assigning it to the given variable. By default the output is stored
2970 2973 as a single string.
2971 2974
2972 2975 -v: verbose. Print the contents of the variable.
2973 2976
2974 2977 In most cases you should not need to split as a list, because the
2975 2978 returned value is a special type of string which can automatically
2976 2979 provide its contents either as a list (split on newlines) or as a
2977 2980 space-separated string. These are convenient, respectively, either
2978 2981 for sequential processing or to be passed to a shell command.
2979 2982
2980 2983 For example:
2981 2984
2982 2985 # all-random
2983 2986
2984 2987 # Capture into variable a
2985 2988 In [1]: sc a=ls *py
2986 2989
2987 2990 # a is a string with embedded newlines
2988 2991 In [2]: a
2989 2992 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2990 2993
2991 2994 # which can be seen as a list:
2992 2995 In [3]: a.l
2993 2996 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2994 2997
2995 2998 # or as a whitespace-separated string:
2996 2999 In [4]: a.s
2997 3000 Out[4]: 'setup.py win32_manual_post_install.py'
2998 3001
2999 3002 # a.s is useful to pass as a single command line:
3000 3003 In [5]: !wc -l $a.s
3001 3004 146 setup.py
3002 3005 130 win32_manual_post_install.py
3003 3006 276 total
3004 3007
3005 3008 # while the list form is useful to loop over:
3006 3009 In [6]: for f in a.l:
3007 3010 ...: !wc -l $f
3008 3011 ...:
3009 3012 146 setup.py
3010 3013 130 win32_manual_post_install.py
3011 3014
3012 3015 Similiarly, the lists returned by the -l option are also special, in
3013 3016 the sense that you can equally invoke the .s attribute on them to
3014 3017 automatically get a whitespace-separated string from their contents:
3015 3018
3016 3019 In [7]: sc -l b=ls *py
3017 3020
3018 3021 In [8]: b
3019 3022 Out[8]: ['setup.py', 'win32_manual_post_install.py']
3020 3023
3021 3024 In [9]: b.s
3022 3025 Out[9]: 'setup.py win32_manual_post_install.py'
3023 3026
3024 3027 In summary, both the lists and strings used for ouptut capture have
3025 3028 the following special attributes:
3026 3029
3027 3030 .l (or .list) : value as list.
3028 3031 .n (or .nlstr): value as newline-separated string.
3029 3032 .s (or .spstr): value as space-separated string.
3030 3033 """
3031 3034
3032 3035 opts,args = self.parse_options(parameter_s,'lv')
3033 3036 # Try to get a variable name and command to run
3034 3037 try:
3035 3038 # the variable name must be obtained from the parse_options
3036 3039 # output, which uses shlex.split to strip options out.
3037 3040 var,_ = args.split('=',1)
3038 3041 var = var.strip()
3039 3042 # But the the command has to be extracted from the original input
3040 3043 # parameter_s, not on what parse_options returns, to avoid the
3041 3044 # quote stripping which shlex.split performs on it.
3042 3045 _,cmd = parameter_s.split('=',1)
3043 3046 except ValueError:
3044 3047 var,cmd = '',''
3045 3048 # If all looks ok, proceed
3046 3049 split = 'l' in opts
3047 3050 out = self.shell.getoutput(cmd, split=split)
3048 3051 if opts.has_key('v'):
3049 3052 print '%s ==\n%s' % (var,pformat(out))
3050 3053 if var:
3051 3054 self.shell.user_ns.update({var:out})
3052 3055 else:
3053 3056 return out
3054 3057
3055 3058 def magic_sx(self, parameter_s=''):
3056 3059 """Shell execute - run a shell command and capture its output.
3057 3060
3058 3061 %sx command
3059 3062
3060 3063 IPython will run the given command using commands.getoutput(), and
3061 3064 return the result formatted as a list (split on '\\n'). Since the
3062 3065 output is _returned_, it will be stored in ipython's regular output
3063 3066 cache Out[N] and in the '_N' automatic variables.
3064 3067
3065 3068 Notes:
3066 3069
3067 3070 1) If an input line begins with '!!', then %sx is automatically
3068 3071 invoked. That is, while:
3069 3072 !ls
3070 3073 causes ipython to simply issue system('ls'), typing
3071 3074 !!ls
3072 3075 is a shorthand equivalent to:
3073 3076 %sx ls
3074 3077
3075 3078 2) %sx differs from %sc in that %sx automatically splits into a list,
3076 3079 like '%sc -l'. The reason for this is to make it as easy as possible
3077 3080 to process line-oriented shell output via further python commands.
3078 3081 %sc is meant to provide much finer control, but requires more
3079 3082 typing.
3080 3083
3081 3084 3) Just like %sc -l, this is a list with special attributes:
3082 3085
3083 3086 .l (or .list) : value as list.
3084 3087 .n (or .nlstr): value as newline-separated string.
3085 3088 .s (or .spstr): value as whitespace-separated string.
3086 3089
3087 3090 This is very useful when trying to use such lists as arguments to
3088 3091 system commands."""
3089 3092
3090 3093 if parameter_s:
3091 3094 return self.shell.getoutput(parameter_s)
3092 3095
3093 3096
3094 3097 def magic_bookmark(self, parameter_s=''):
3095 3098 """Manage IPython's bookmark system.
3096 3099
3097 3100 %bookmark <name> - set bookmark to current dir
3098 3101 %bookmark <name> <dir> - set bookmark to <dir>
3099 3102 %bookmark -l - list all bookmarks
3100 3103 %bookmark -d <name> - remove bookmark
3101 3104 %bookmark -r - remove all bookmarks
3102 3105
3103 3106 You can later on access a bookmarked folder with:
3104 3107 %cd -b <name>
3105 3108 or simply '%cd <name>' if there is no directory called <name> AND
3106 3109 there is such a bookmark defined.
3107 3110
3108 3111 Your bookmarks persist through IPython sessions, but they are
3109 3112 associated with each profile."""
3110 3113
3111 3114 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3112 3115 if len(args) > 2:
3113 3116 raise UsageError("%bookmark: too many arguments")
3114 3117
3115 3118 bkms = self.db.get('bookmarks',{})
3116 3119
3117 3120 if opts.has_key('d'):
3118 3121 try:
3119 3122 todel = args[0]
3120 3123 except IndexError:
3121 3124 raise UsageError(
3122 3125 "%bookmark -d: must provide a bookmark to delete")
3123 3126 else:
3124 3127 try:
3125 3128 del bkms[todel]
3126 3129 except KeyError:
3127 3130 raise UsageError(
3128 3131 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3129 3132
3130 3133 elif opts.has_key('r'):
3131 3134 bkms = {}
3132 3135 elif opts.has_key('l'):
3133 3136 bks = bkms.keys()
3134 3137 bks.sort()
3135 3138 if bks:
3136 3139 size = max(map(len,bks))
3137 3140 else:
3138 3141 size = 0
3139 3142 fmt = '%-'+str(size)+'s -> %s'
3140 3143 print 'Current bookmarks:'
3141 3144 for bk in bks:
3142 3145 print fmt % (bk,bkms[bk])
3143 3146 else:
3144 3147 if not args:
3145 3148 raise UsageError("%bookmark: You must specify the bookmark name")
3146 3149 elif len(args)==1:
3147 3150 bkms[args[0]] = os.getcwd()
3148 3151 elif len(args)==2:
3149 3152 bkms[args[0]] = args[1]
3150 3153 self.db['bookmarks'] = bkms
3151 3154
3152 3155 def magic_pycat(self, parameter_s=''):
3153 3156 """Show a syntax-highlighted file through a pager.
3154 3157
3155 3158 This magic is similar to the cat utility, but it will assume the file
3156 3159 to be Python source and will show it with syntax highlighting. """
3157 3160
3158 3161 try:
3159 3162 filename = get_py_filename(parameter_s)
3160 3163 cont = file_read(filename)
3161 3164 except IOError:
3162 3165 try:
3163 3166 cont = eval(parameter_s,self.user_ns)
3164 3167 except NameError:
3165 3168 cont = None
3166 3169 if cont is None:
3167 3170 print "Error: no such file or variable"
3168 3171 return
3169 3172
3170 3173 page.page(self.shell.pycolorize(cont))
3171 3174
3172 3175 def _rerun_pasted(self):
3173 3176 """ Rerun a previously pasted command.
3174 3177 """
3175 3178 b = self.user_ns.get('pasted_block', None)
3176 3179 if b is None:
3177 3180 raise UsageError('No previous pasted block available')
3178 3181 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3179 3182 exec b in self.user_ns
3180 3183
3181 3184 def _get_pasted_lines(self, sentinel):
3182 3185 """ Yield pasted lines until the user enters the given sentinel value.
3183 3186 """
3184 3187 from IPython.core import interactiveshell
3185 3188 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3186 3189 while True:
3187 3190 l = interactiveshell.raw_input_original(':')
3188 3191 if l == sentinel:
3189 3192 return
3190 3193 else:
3191 3194 yield l
3192 3195
3193 3196 def _strip_pasted_lines_for_code(self, raw_lines):
3194 3197 """ Strip non-code parts of a sequence of lines to return a block of
3195 3198 code.
3196 3199 """
3197 3200 # Regular expressions that declare text we strip from the input:
3198 3201 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3199 3202 r'^\s*(\s?>)+', # Python input prompt
3200 3203 r'^\s*\.{3,}', # Continuation prompts
3201 3204 r'^\++',
3202 3205 ]
3203 3206
3204 3207 strip_from_start = map(re.compile,strip_re)
3205 3208
3206 3209 lines = []
3207 3210 for l in raw_lines:
3208 3211 for pat in strip_from_start:
3209 3212 l = pat.sub('',l)
3210 3213 lines.append(l)
3211 3214
3212 3215 block = "\n".join(lines) + '\n'
3213 3216 #print "block:\n",block
3214 3217 return block
3215 3218
3216 3219 def _execute_block(self, block, par):
3217 3220 """ Execute a block, or store it in a variable, per the user's request.
3218 3221 """
3219 3222 if not par:
3220 3223 b = textwrap.dedent(block)
3221 3224 self.user_ns['pasted_block'] = b
3222 3225 exec b in self.user_ns
3223 3226 else:
3224 3227 self.user_ns[par] = SList(block.splitlines())
3225 3228 print "Block assigned to '%s'" % par
3226 3229
3227 3230 def magic_quickref(self,arg):
3228 3231 """ Show a quick reference sheet """
3229 3232 import IPython.core.usage
3230 3233 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3231 3234
3232 3235 page.page(qr)
3233 3236
3234 3237 def magic_doctest_mode(self,parameter_s=''):
3235 3238 """Toggle doctest mode on and off.
3236 3239
3237 3240 This mode is intended to make IPython behave as much as possible like a
3238 3241 plain Python shell, from the perspective of how its prompts, exceptions
3239 3242 and output look. This makes it easy to copy and paste parts of a
3240 3243 session into doctests. It does so by:
3241 3244
3242 3245 - Changing the prompts to the classic ``>>>`` ones.
3243 3246 - Changing the exception reporting mode to 'Plain'.
3244 3247 - Disabling pretty-printing of output.
3245 3248
3246 3249 Note that IPython also supports the pasting of code snippets that have
3247 3250 leading '>>>' and '...' prompts in them. This means that you can paste
3248 3251 doctests from files or docstrings (even if they have leading
3249 3252 whitespace), and the code will execute correctly. You can then use
3250 3253 '%history -t' to see the translated history; this will give you the
3251 3254 input after removal of all the leading prompts and whitespace, which
3252 3255 can be pasted back into an editor.
3253 3256
3254 3257 With these features, you can switch into this mode easily whenever you
3255 3258 need to do testing and changes to doctests, without having to leave
3256 3259 your existing IPython session.
3257 3260 """
3258 3261
3259 3262 from IPython.utils.ipstruct import Struct
3260 3263
3261 3264 # Shorthands
3262 3265 shell = self.shell
3263 3266 oc = shell.displayhook
3264 3267 meta = shell.meta
3265 3268 disp_formatter = self.shell.display_formatter
3266 3269 ptformatter = disp_formatter.formatters['text/plain']
3267 3270 # dstore is a data store kept in the instance metadata bag to track any
3268 3271 # changes we make, so we can undo them later.
3269 3272 dstore = meta.setdefault('doctest_mode',Struct())
3270 3273 save_dstore = dstore.setdefault
3271 3274
3272 3275 # save a few values we'll need to recover later
3273 3276 mode = save_dstore('mode',False)
3274 3277 save_dstore('rc_pprint',ptformatter.pprint)
3275 3278 save_dstore('xmode',shell.InteractiveTB.mode)
3276 3279 save_dstore('rc_separate_out',shell.separate_out)
3277 3280 save_dstore('rc_separate_out2',shell.separate_out2)
3278 3281 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3279 3282 save_dstore('rc_separate_in',shell.separate_in)
3280 3283 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3281 3284
3282 3285 if mode == False:
3283 3286 # turn on
3284 3287 oc.prompt1.p_template = '>>> '
3285 3288 oc.prompt2.p_template = '... '
3286 3289 oc.prompt_out.p_template = ''
3287 3290
3288 3291 # Prompt separators like plain python
3289 3292 oc.input_sep = oc.prompt1.sep = ''
3290 3293 oc.output_sep = ''
3291 3294 oc.output_sep2 = ''
3292 3295
3293 3296 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3294 3297 oc.prompt_out.pad_left = False
3295 3298
3296 3299 ptformatter.pprint = False
3297 3300 disp_formatter.plain_text_only = True
3298 3301
3299 3302 shell.magic_xmode('Plain')
3300 3303 else:
3301 3304 # turn off
3302 3305 oc.prompt1.p_template = shell.prompt_in1
3303 3306 oc.prompt2.p_template = shell.prompt_in2
3304 3307 oc.prompt_out.p_template = shell.prompt_out
3305 3308
3306 3309 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3307 3310
3308 3311 oc.output_sep = dstore.rc_separate_out
3309 3312 oc.output_sep2 = dstore.rc_separate_out2
3310 3313
3311 3314 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3312 3315 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3313 3316
3314 3317 ptformatter.pprint = dstore.rc_pprint
3315 3318 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3316 3319
3317 3320 shell.magic_xmode(dstore.xmode)
3318 3321
3319 3322 # Store new mode and inform
3320 3323 dstore.mode = bool(1-int(mode))
3321 3324 mode_label = ['OFF','ON'][dstore.mode]
3322 3325 print 'Doctest mode is:', mode_label
3323 3326
3324 3327 def magic_gui(self, parameter_s=''):
3325 3328 """Enable or disable IPython GUI event loop integration.
3326 3329
3327 3330 %gui [GUINAME]
3328 3331
3329 3332 This magic replaces IPython's threaded shells that were activated
3330 3333 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3331 3334 can now be enabled, disabled and changed at runtime and keyboard
3332 3335 interrupts should work without any problems. The following toolkits
3333 3336 are supported: wxPython, PyQt4, PyGTK, and Tk::
3334 3337
3335 3338 %gui wx # enable wxPython event loop integration
3336 3339 %gui qt4|qt # enable PyQt4 event loop integration
3337 3340 %gui gtk # enable PyGTK event loop integration
3338 3341 %gui tk # enable Tk event loop integration
3339 3342 %gui # disable all event loop integration
3340 3343
3341 3344 WARNING: after any of these has been called you can simply create
3342 3345 an application object, but DO NOT start the event loop yourself, as
3343 3346 we have already handled that.
3344 3347 """
3345 3348 from IPython.lib.inputhook import enable_gui
3346 3349 opts, arg = self.parse_options(parameter_s, '')
3347 3350 if arg=='': arg = None
3348 3351 return enable_gui(arg)
3349 3352
3350 3353 def magic_load_ext(self, module_str):
3351 3354 """Load an IPython extension by its module name."""
3352 3355 return self.extension_manager.load_extension(module_str)
3353 3356
3354 3357 def magic_unload_ext(self, module_str):
3355 3358 """Unload an IPython extension by its module name."""
3356 3359 self.extension_manager.unload_extension(module_str)
3357 3360
3358 3361 def magic_reload_ext(self, module_str):
3359 3362 """Reload an IPython extension by its module name."""
3360 3363 self.extension_manager.reload_extension(module_str)
3361 3364
3362 3365 @skip_doctest
3363 3366 def magic_install_profiles(self, s):
3364 3367 """Install the default IPython profiles into the .ipython dir.
3365 3368
3366 3369 If the default profiles have already been installed, they will not
3367 3370 be overwritten. You can force overwriting them by using the ``-o``
3368 3371 option::
3369 3372
3370 3373 In [1]: %install_profiles -o
3371 3374 """
3372 3375 if '-o' in s:
3373 3376 overwrite = True
3374 3377 else:
3375 3378 overwrite = False
3376 3379 from IPython.config import profile
3377 3380 profile_dir = os.path.dirname(profile.__file__)
3378 3381 ipython_dir = self.ipython_dir
3379 3382 print "Installing profiles to: %s [overwrite=%s]"%(ipython_dir,overwrite)
3380 3383 for src in os.listdir(profile_dir):
3381 3384 if src.startswith('profile_'):
3382 3385 name = src.replace('profile_', '')
3383 3386 print " %s"%name
3384 3387 pd = ProfileDir.create_profile_dir_by_name(ipython_dir, name)
3385 3388 pd.copy_config_file('ipython_config.py', path=src,
3386 3389 overwrite=overwrite)
3387 3390
3388 3391 @skip_doctest
3389 3392 def magic_install_default_config(self, s):
3390 3393 """Install IPython's default config file into the .ipython dir.
3391 3394
3392 3395 If the default config file (:file:`ipython_config.py`) is already
3393 3396 installed, it will not be overwritten. You can force overwriting
3394 3397 by using the ``-o`` option::
3395 3398
3396 3399 In [1]: %install_default_config
3397 3400 """
3398 3401 if '-o' in s:
3399 3402 overwrite = True
3400 3403 else:
3401 3404 overwrite = False
3402 3405 pd = self.shell.profile_dir
3403 3406 print "Installing default config file in: %s" % pd.location
3404 3407 pd.copy_config_file('ipython_config.py', overwrite=overwrite)
3405 3408
3406 3409 # Pylab support: simple wrappers that activate pylab, load gui input
3407 3410 # handling and modify slightly %run
3408 3411
3409 3412 @skip_doctest
3410 3413 def _pylab_magic_run(self, parameter_s=''):
3411 3414 Magic.magic_run(self, parameter_s,
3412 3415 runner=mpl_runner(self.shell.safe_execfile))
3413 3416
3414 3417 _pylab_magic_run.__doc__ = magic_run.__doc__
3415 3418
3416 3419 @skip_doctest
3417 3420 def magic_pylab(self, s):
3418 3421 """Load numpy and matplotlib to work interactively.
3419 3422
3420 3423 %pylab [GUINAME]
3421 3424
3422 3425 This function lets you activate pylab (matplotlib, numpy and
3423 3426 interactive support) at any point during an IPython session.
3424 3427
3425 3428 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3426 3429 pylab and mlab, as well as all names from numpy and pylab.
3427 3430
3428 3431 Parameters
3429 3432 ----------
3430 3433 guiname : optional
3431 3434 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or
3432 3435 'tk'). If given, the corresponding Matplotlib backend is used,
3433 3436 otherwise matplotlib's default (which you can override in your
3434 3437 matplotlib config file) is used.
3435 3438
3436 3439 Examples
3437 3440 --------
3438 3441 In this case, where the MPL default is TkAgg:
3439 3442 In [2]: %pylab
3440 3443
3441 3444 Welcome to pylab, a matplotlib-based Python environment.
3442 3445 Backend in use: TkAgg
3443 3446 For more information, type 'help(pylab)'.
3444 3447
3445 3448 But you can explicitly request a different backend:
3446 3449 In [3]: %pylab qt
3447 3450
3448 3451 Welcome to pylab, a matplotlib-based Python environment.
3449 3452 Backend in use: Qt4Agg
3450 3453 For more information, type 'help(pylab)'.
3451 3454 """
3452 3455 self.shell.enable_pylab(s)
3453 3456
3454 3457 def magic_tb(self, s):
3455 3458 """Print the last traceback with the currently active exception mode.
3456 3459
3457 3460 See %xmode for changing exception reporting modes."""
3458 3461 self.shell.showtraceback()
3459 3462
3460 3463 @skip_doctest
3461 3464 def magic_precision(self, s=''):
3462 3465 """Set floating point precision for pretty printing.
3463 3466
3464 3467 Can set either integer precision or a format string.
3465 3468
3466 3469 If numpy has been imported and precision is an int,
3467 3470 numpy display precision will also be set, via ``numpy.set_printoptions``.
3468 3471
3469 3472 If no argument is given, defaults will be restored.
3470 3473
3471 3474 Examples
3472 3475 --------
3473 3476 ::
3474 3477
3475 3478 In [1]: from math import pi
3476 3479
3477 3480 In [2]: %precision 3
3478 3481 Out[2]: u'%.3f'
3479 3482
3480 3483 In [3]: pi
3481 3484 Out[3]: 3.142
3482 3485
3483 3486 In [4]: %precision %i
3484 3487 Out[4]: u'%i'
3485 3488
3486 3489 In [5]: pi
3487 3490 Out[5]: 3
3488 3491
3489 3492 In [6]: %precision %e
3490 3493 Out[6]: u'%e'
3491 3494
3492 3495 In [7]: pi**10
3493 3496 Out[7]: 9.364805e+04
3494 3497
3495 3498 In [8]: %precision
3496 3499 Out[8]: u'%r'
3497 3500
3498 3501 In [9]: pi**10
3499 3502 Out[9]: 93648.047476082982
3500 3503
3501 3504 """
3502 3505
3503 3506 ptformatter = self.shell.display_formatter.formatters['text/plain']
3504 3507 ptformatter.float_precision = s
3505 3508 return ptformatter.float_format
3506 3509
3507 3510 # end Magic
General Comments 0
You need to be logged in to leave comments. Login now