##// END OF EJS Templates
Fix up so tests pass again. input_splitter now uses ast module instead of compiler, bringing it closer to the Python 3 implementation.
Thomas Kluyver -
Show More
@@ -1,1023 +1,1007 b''
1 1 """Analysis of text input into executable blocks.
2 2
3 3 The main class in this module, :class:`InputSplitter`, is designed to break
4 4 input from either interactive, line-by-line environments or block-based ones,
5 5 into standalone blocks that can be executed by Python as 'single' statements
6 6 (thus triggering sys.displayhook).
7 7
8 8 A companion, :class:`IPythonInputSplitter`, provides the same functionality but
9 9 with full support for the extended IPython syntax (magics, system calls, etc).
10 10
11 11 For more details, see the class docstring below.
12 12
13 13 Syntax Transformations
14 14 ----------------------
15 15
16 16 One of the main jobs of the code in this file is to apply all syntax
17 17 transformations that make up 'the IPython language', i.e. magics, shell
18 18 escapes, etc. All transformations should be implemented as *fully stateless*
19 19 entities, that simply take one line as their input and return a line.
20 20 Internally for implementation purposes they may be a normal function or a
21 21 callable object, but the only input they receive will be a single line and they
22 22 should only return a line, without holding any data-dependent state between
23 23 calls.
24 24
25 25 As an example, the EscapedTransformer is a class so we can more clearly group
26 26 together the functionality of dispatching to individual functions based on the
27 27 starting escape character, but the only method for public use is its call
28 28 method.
29 29
30 30
31 31 ToDo
32 32 ----
33 33
34 34 - Should we make push() actually raise an exception once push_accepts_more()
35 35 returns False?
36 36
37 37 - Naming cleanups. The tr_* names aren't the most elegant, though now they are
38 38 at least just attributes of a class so not really very exposed.
39 39
40 40 - Think about the best way to support dynamic things: automagic, autocall,
41 41 macros, etc.
42 42
43 43 - Think of a better heuristic for the application of the transforms in
44 44 IPythonInputSplitter.push() than looking at the buffer ending in ':'. Idea:
45 45 track indentation change events (indent, dedent, nothing) and apply them only
46 46 if the indentation went up, but not otherwise.
47 47
48 48 - Think of the cleanest way for supporting user-specified transformations (the
49 49 user prefilters we had before).
50 50
51 51 Authors
52 52 -------
53 53
54 54 * Fernando Perez
55 55 * Brian Granger
56 56 """
57 57 #-----------------------------------------------------------------------------
58 58 # Copyright (C) 2010 The IPython Development Team
59 59 #
60 60 # Distributed under the terms of the BSD License. The full license is in
61 61 # the file COPYING, distributed as part of this software.
62 62 #-----------------------------------------------------------------------------
63 63 from __future__ import print_function
64 64
65 65 #-----------------------------------------------------------------------------
66 66 # Imports
67 67 #-----------------------------------------------------------------------------
68 68 # stdlib
69 import ast
69 70 import codeop
70 71 import re
71 72 import sys
72 73
73 74 # IPython modules
74 75 from IPython.utils.text import make_quoted_expr
75 76
76 77 #-----------------------------------------------------------------------------
77 78 # Globals
78 79 #-----------------------------------------------------------------------------
79 80
80 81 # The escape sequences that define the syntax transformations IPython will
81 82 # apply to user input. These can NOT be just changed here: many regular
82 83 # expressions and other parts of the code may use their hardcoded values, and
83 84 # for all intents and purposes they constitute the 'IPython syntax', so they
84 85 # should be considered fixed.
85 86
86 87 ESC_SHELL = '!' # Send line to underlying system shell
87 88 ESC_SH_CAP = '!!' # Send line to system shell and capture output
88 89 ESC_HELP = '?' # Find information about object
89 90 ESC_HELP2 = '??' # Find extra-detailed information about object
90 91 ESC_MAGIC = '%' # Call magic function
91 92 ESC_QUOTE = ',' # Split args on whitespace, quote each as string and call
92 93 ESC_QUOTE2 = ';' # Quote all args as a single string, call
93 94 ESC_PAREN = '/' # Call first argument with rest of line as arguments
94 95
95 96 #-----------------------------------------------------------------------------
96 97 # Utilities
97 98 #-----------------------------------------------------------------------------
98 99
99 100 # FIXME: These are general-purpose utilities that later can be moved to the
100 101 # general ward. Kept here for now because we're being very strict about test
101 102 # coverage with this code, and this lets us ensure that we keep 100% coverage
102 103 # while developing.
103 104
104 105 # compiled regexps for autoindent management
105 106 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
106 107 ini_spaces_re = re.compile(r'^([ \t\r\f\v]+)')
107 108
108 109 # regexp to match pure comment lines so we don't accidentally insert 'if 1:'
109 110 # before pure comments
110 111 comment_line_re = re.compile('^\s*\#')
111 112
112 113
113 114 def num_ini_spaces(s):
114 115 """Return the number of initial spaces in a string.
115 116
116 117 Note that tabs are counted as a single space. For now, we do *not* support
117 118 mixing of tabs and spaces in the user's input.
118 119
119 120 Parameters
120 121 ----------
121 122 s : string
122 123
123 124 Returns
124 125 -------
125 126 n : int
126 127 """
127 128
128 129 ini_spaces = ini_spaces_re.match(s)
129 130 if ini_spaces:
130 131 return ini_spaces.end()
131 132 else:
132 133 return 0
133 134
134 135
135 136 def remove_comments(src):
136 137 """Remove all comments from input source.
137 138
138 139 Note: comments are NOT recognized inside of strings!
139 140
140 141 Parameters
141 142 ----------
142 143 src : string
143 144 A single or multiline input string.
144 145
145 146 Returns
146 147 -------
147 148 String with all Python comments removed.
148 149 """
149 150
150 151 return re.sub('#.*', '', src)
151 152
152 153
153 154 def get_input_encoding():
154 155 """Return the default standard input encoding.
155 156
156 157 If sys.stdin has no encoding, 'ascii' is returned."""
157 158 # There are strange environments for which sys.stdin.encoding is None. We
158 159 # ensure that a valid encoding is returned.
159 160 encoding = getattr(sys.stdin, 'encoding', None)
160 161 if encoding is None:
161 162 encoding = 'ascii'
162 163 return encoding
163 164
164 165 #-----------------------------------------------------------------------------
165 166 # Classes and functions for normal Python syntax handling
166 167 #-----------------------------------------------------------------------------
167 168
168 169 # HACK! This implementation, written by Robert K a while ago using the
169 170 # compiler module, is more robust than the other one below, but it expects its
170 171 # input to be pure python (no ipython syntax). For now we're using it as a
171 172 # second-pass splitter after the first pass transforms the input to pure
172 173 # python.
173 174
174 175 def split_blocks(python):
175 176 """ Split multiple lines of code into discrete commands that can be
176 177 executed singly.
177 178
178 179 Parameters
179 180 ----------
180 181 python : str
181 182 Pure, exec'able Python code.
182 183
183 184 Returns
184 185 -------
185 186 commands : list of str
186 187 Separate commands that can be exec'ed independently.
187 188 """
188
189 import compiler
190
191 189 # compiler.parse treats trailing spaces after a newline as a
192 190 # SyntaxError. This is different than codeop.CommandCompiler, which
193 191 # will compile the trailng spaces just fine. We simply strip any
194 192 # trailing whitespace off. Passing a string with trailing whitespace
195 193 # to exec will fail however. There seems to be some inconsistency in
196 194 # how trailing whitespace is handled, but this seems to work.
197 195 python_ori = python # save original in case we bail on error
198 196 python = python.strip()
199 197
200 # The compiler module does not like unicode. We need to convert
201 # it encode it:
202 if isinstance(python, unicode):
203 # Use the utf-8-sig BOM so the compiler detects this a UTF-8
204 # encode string.
205 python = '\xef\xbb\xbf' + python.encode('utf-8')
206
207 198 # The compiler module will parse the code into an abstract syntax tree.
208 199 # This has a bug with str("a\nb"), but not str("""a\nb""")!!!
209 200 try:
210 ast = compiler.parse(python)
201 code_ast = ast.parse(python)
211 202 except:
212 203 return [python_ori]
213 204
214 205 # Uncomment to help debug the ast tree
215 # for n in ast.node:
206 # for n in code_ast.body:
216 207 # print n.lineno,'->',n
217 208
218 209 # Each separate command is available by iterating over ast.node. The
219 210 # lineno attribute is the line number (1-indexed) beginning the commands
220 211 # suite.
221 212 # lines ending with ";" yield a Discard Node that doesn't have a lineno
222 213 # attribute. These nodes can and should be discarded. But there are
223 214 # other situations that cause Discard nodes that shouldn't be discarded.
224 215 # We might eventually discover other cases where lineno is None and have
225 216 # to put in a more sophisticated test.
226 linenos = [x.lineno-1 for x in ast.node if x.lineno is not None]
227
228 # When we have a bare string as the first statement, it does not end up as
229 # a Discard Node in the AST as we might expect. Instead, it gets interpreted
230 # as the docstring of the module. Check for this case and prepend 0 (the
231 # first line number) to the list of linenos to account for it.
232 if ast.doc is not None:
233 linenos.insert(0, 0)
217 linenos = [x.lineno-1 for x in code_ast.body if x.lineno is not None]
234 218
235 219 # When we finally get the slices, we will need to slice all the way to
236 220 # the end even though we don't have a line number for it. Fortunately,
237 221 # None does the job nicely.
238 222 linenos.append(None)
239 223
240 224 # Same problem at the other end: sometimes the ast tree has its
241 225 # first complete statement not starting on line 0. In this case
242 226 # we might miss part of it. This fixes ticket 266993. Thanks Gael!
243 227 linenos[0] = 0
244 228
245 229 lines = python.splitlines()
246 230
247 231 # Create a list of atomic commands.
248 232 cmds = []
249 233 for i, j in zip(linenos[:-1], linenos[1:]):
250 234 cmd = lines[i:j]
251 235 if cmd:
252 236 cmds.append('\n'.join(cmd)+'\n')
253 237
254 238 return cmds
255 239
256 240
257 241 class InputSplitter(object):
258 242 """An object that can split Python source input in executable blocks.
259 243
260 244 This object is designed to be used in one of two basic modes:
261 245
262 246 1. By feeding it python source line-by-line, using :meth:`push`. In this
263 247 mode, it will return on each push whether the currently pushed code
264 248 could be executed already. In addition, it provides a method called
265 249 :meth:`push_accepts_more` that can be used to query whether more input
266 250 can be pushed into a single interactive block.
267 251
268 252 2. By calling :meth:`split_blocks` with a single, multiline Python string,
269 253 that is then split into blocks each of which can be executed
270 254 interactively as a single statement.
271 255
272 256 This is a simple example of how an interactive terminal-based client can use
273 257 this tool::
274 258
275 259 isp = InputSplitter()
276 260 while isp.push_accepts_more():
277 261 indent = ' '*isp.indent_spaces
278 262 prompt = '>>> ' + indent
279 263 line = indent + raw_input(prompt)
280 264 isp.push(line)
281 265 print 'Input source was:\n', isp.source_reset(),
282 266 """
283 267 # Number of spaces of indentation computed from input that has been pushed
284 268 # so far. This is the attributes callers should query to get the current
285 269 # indentation level, in order to provide auto-indent facilities.
286 270 indent_spaces = 0
287 271 # String, indicating the default input encoding. It is computed by default
288 272 # at initialization time via get_input_encoding(), but it can be reset by a
289 273 # client with specific knowledge of the encoding.
290 274 encoding = ''
291 275 # String where the current full source input is stored, properly encoded.
292 276 # Reading this attribute is the normal way of querying the currently pushed
293 277 # source code, that has been properly encoded.
294 278 source = ''
295 279 # Code object corresponding to the current source. It is automatically
296 280 # synced to the source, so it can be queried at any time to obtain the code
297 281 # object; it will be None if the source doesn't compile to valid Python.
298 282 code = None
299 283 # Input mode
300 284 input_mode = 'line'
301 285
302 286 # Private attributes
303 287
304 288 # List with lines of input accumulated so far
305 289 _buffer = None
306 290 # Command compiler
307 291 _compile = None
308 292 # Mark when input has changed indentation all the way back to flush-left
309 293 _full_dedent = False
310 294 # Boolean indicating whether the current block is complete
311 295 _is_complete = None
312 296
313 297 def __init__(self, input_mode=None):
314 298 """Create a new InputSplitter instance.
315 299
316 300 Parameters
317 301 ----------
318 302 input_mode : str
319 303
320 304 One of ['line', 'cell']; default is 'line'.
321 305
322 306 The input_mode parameter controls how new inputs are used when fed via
323 307 the :meth:`push` method:
324 308
325 309 - 'line': meant for line-oriented clients, inputs are appended one at a
326 310 time to the internal buffer and the whole buffer is compiled.
327 311
328 312 - 'cell': meant for clients that can edit multi-line 'cells' of text at
329 313 a time. A cell can contain one or more blocks that can be compile in
330 314 'single' mode by Python. In this mode, each new input new input
331 315 completely replaces all prior inputs. Cell mode is thus equivalent
332 316 to prepending a full reset() to every push() call.
333 317 """
334 318 self._buffer = []
335 319 self._compile = codeop.CommandCompiler()
336 320 self.encoding = get_input_encoding()
337 321 self.input_mode = InputSplitter.input_mode if input_mode is None \
338 322 else input_mode
339 323
340 324 def reset(self):
341 325 """Reset the input buffer and associated state."""
342 326 self.indent_spaces = 0
343 327 self._buffer[:] = []
344 328 self.source = ''
345 329 self.code = None
346 330 self._is_complete = False
347 331 self._full_dedent = False
348 332
349 333 def source_reset(self):
350 334 """Return the input source and perform a full reset.
351 335 """
352 336 out = self.source
353 337 self.reset()
354 338 return out
355 339
356 340 def push(self, lines):
357 341 """Push one or more lines of input.
358 342
359 343 This stores the given lines and returns a status code indicating
360 344 whether the code forms a complete Python block or not.
361 345
362 346 Any exceptions generated in compilation are swallowed, but if an
363 347 exception was produced, the method returns True.
364 348
365 349 Parameters
366 350 ----------
367 351 lines : string
368 352 One or more lines of Python input.
369 353
370 354 Returns
371 355 -------
372 356 is_complete : boolean
373 357 True if the current input source (the result of the current input
374 358 plus prior inputs) forms a complete Python execution block. Note that
375 359 this value is also stored as a private attribute (_is_complete), so it
376 360 can be queried at any time.
377 361 """
378 362 if self.input_mode == 'cell':
379 363 self.reset()
380 364
381 365 self._store(lines)
382 366 source = self.source
383 367
384 368 # Before calling _compile(), reset the code object to None so that if an
385 369 # exception is raised in compilation, we don't mislead by having
386 370 # inconsistent code/source attributes.
387 371 self.code, self._is_complete = None, None
388 372
389 373 # Honor termination lines properly
390 374 if source.rstrip().endswith('\\'):
391 375 return False
392 376
393 377 self._update_indent(lines)
394 378 try:
395 379 self.code = self._compile(source)
396 380 # Invalid syntax can produce any of a number of different errors from
397 381 # inside the compiler, so we have to catch them all. Syntax errors
398 382 # immediately produce a 'ready' block, so the invalid Python can be
399 383 # sent to the kernel for evaluation with possible ipython
400 384 # special-syntax conversion.
401 385 except (SyntaxError, OverflowError, ValueError, TypeError,
402 386 MemoryError):
403 387 self._is_complete = True
404 388 else:
405 389 # Compilation didn't produce any exceptions (though it may not have
406 390 # given a complete code object)
407 391 self._is_complete = self.code is not None
408 392
409 393 return self._is_complete
410 394
411 395 def push_accepts_more(self):
412 396 """Return whether a block of interactive input can accept more input.
413 397
414 398 This method is meant to be used by line-oriented frontends, who need to
415 399 guess whether a block is complete or not based solely on prior and
416 400 current input lines. The InputSplitter considers it has a complete
417 401 interactive block and will not accept more input only when either a
418 402 SyntaxError is raised, or *all* of the following are true:
419 403
420 404 1. The input compiles to a complete statement.
421 405
422 406 2. The indentation level is flush-left (because if we are indented,
423 407 like inside a function definition or for loop, we need to keep
424 408 reading new input).
425 409
426 410 3. There is one extra line consisting only of whitespace.
427 411
428 412 Because of condition #3, this method should be used only by
429 413 *line-oriented* frontends, since it means that intermediate blank lines
430 414 are not allowed in function definitions (or any other indented block).
431 415
432 416 Block-oriented frontends that have a separate keyboard event to
433 417 indicate execution should use the :meth:`split_blocks` method instead.
434 418
435 419 If the current input produces a syntax error, this method immediately
436 420 returns False but does *not* raise the syntax error exception, as
437 421 typically clients will want to send invalid syntax to an execution
438 422 backend which might convert the invalid syntax into valid Python via
439 423 one of the dynamic IPython mechanisms.
440 424 """
441 425
442 426 # With incomplete input, unconditionally accept more
443 427 if not self._is_complete:
444 428 return True
445 429
446 430 # If we already have complete input and we're flush left, the answer
447 431 # depends. In line mode, we're done. But in cell mode, we need to
448 432 # check how many blocks the input so far compiles into, because if
449 433 # there's already more than one full independent block of input, then
450 434 # the client has entered full 'cell' mode and is feeding lines that
451 435 # each is complete. In this case we should then keep accepting.
452 436 # The Qt terminal-like console does precisely this, to provide the
453 437 # convenience of terminal-like input of single expressions, but
454 438 # allowing the user (with a separate keystroke) to switch to 'cell'
455 439 # mode and type multiple expressions in one shot.
456 440 if self.indent_spaces==0:
457 441 if self.input_mode=='line':
458 442 return False
459 443 else:
460 444 nblocks = len(split_blocks(''.join(self._buffer)))
461 445 if nblocks==1:
462 446 return False
463 447
464 448 # When input is complete, then termination is marked by an extra blank
465 449 # line at the end.
466 450 last_line = self.source.splitlines()[-1]
467 451 return bool(last_line and not last_line.isspace())
468 452
469 453 def split_blocks(self, lines):
470 454 """Split a multiline string into multiple input blocks.
471 455
472 456 Note: this method starts by performing a full reset().
473 457
474 458 Parameters
475 459 ----------
476 460 lines : str
477 461 A possibly multiline string.
478 462
479 463 Returns
480 464 -------
481 465 blocks : list
482 466 A list of strings, each possibly multiline. Each string corresponds
483 467 to a single block that can be compiled in 'single' mode (unless it
484 468 has a syntax error)."""
485 469
486 470 # This code is fairly delicate. If you make any changes here, make
487 471 # absolutely sure that you do run the full test suite and ALL tests
488 472 # pass.
489 473
490 474 self.reset()
491 475 blocks = []
492 476
493 477 # Reversed copy so we can use pop() efficiently and consume the input
494 478 # as a stack
495 479 lines = lines.splitlines()[::-1]
496 480 # Outer loop over all input
497 481 while lines:
498 482 #print 'Current lines:', lines # dbg
499 483 # Inner loop to build each block
500 484 while True:
501 485 # Safety exit from inner loop
502 486 if not lines:
503 487 break
504 488 # Grab next line but don't push it yet
505 489 next_line = lines.pop()
506 490 # Blank/empty lines are pushed as-is
507 491 if not next_line or next_line.isspace():
508 492 self.push(next_line)
509 493 continue
510 494
511 495 # Check indentation changes caused by the *next* line
512 496 indent_spaces, _full_dedent = self._find_indent(next_line)
513 497
514 498 # If the next line causes a dedent, it can be for two differnt
515 499 # reasons: either an explicit de-dent by the user or a
516 500 # return/raise/pass statement. These MUST be handled
517 501 # separately:
518 502 #
519 503 # 1. the first case is only detected when the actual explicit
520 504 # dedent happens, and that would be the *first* line of a *new*
521 505 # block. Thus, we must put the line back into the input buffer
522 506 # so that it starts a new block on the next pass.
523 507 #
524 508 # 2. the second case is detected in the line before the actual
525 509 # dedent happens, so , we consume the line and we can break out
526 510 # to start a new block.
527 511
528 512 # Case 1, explicit dedent causes a break.
529 513 # Note: check that we weren't on the very last line, else we'll
530 514 # enter an infinite loop adding/removing the last line.
531 515 if _full_dedent and lines and not next_line.startswith(' '):
532 516 lines.append(next_line)
533 517 break
534 518
535 519 # Otherwise any line is pushed
536 520 self.push(next_line)
537 521
538 522 # Case 2, full dedent with full block ready:
539 523 if _full_dedent or \
540 524 self.indent_spaces==0 and not self.push_accepts_more():
541 525 break
542 526 # Form the new block with the current source input
543 527 blocks.append(self.source_reset())
544 528
545 529 #return blocks
546 530 # HACK!!! Now that our input is in blocks but guaranteed to be pure
547 531 # python syntax, feed it back a second time through the AST-based
548 532 # splitter, which is more accurate than ours.
549 533 return split_blocks(''.join(blocks))
550 534
551 535 #------------------------------------------------------------------------
552 536 # Private interface
553 537 #------------------------------------------------------------------------
554 538
555 539 def _find_indent(self, line):
556 540 """Compute the new indentation level for a single line.
557 541
558 542 Parameters
559 543 ----------
560 544 line : str
561 545 A single new line of non-whitespace, non-comment Python input.
562 546
563 547 Returns
564 548 -------
565 549 indent_spaces : int
566 550 New value for the indent level (it may be equal to self.indent_spaces
567 551 if indentation doesn't change.
568 552
569 553 full_dedent : boolean
570 554 Whether the new line causes a full flush-left dedent.
571 555 """
572 556 indent_spaces = self.indent_spaces
573 557 full_dedent = self._full_dedent
574 558
575 559 inisp = num_ini_spaces(line)
576 560 if inisp < indent_spaces:
577 561 indent_spaces = inisp
578 562 if indent_spaces <= 0:
579 563 #print 'Full dedent in text',self.source # dbg
580 564 full_dedent = True
581 565
582 566 if line[-1] == ':':
583 567 indent_spaces += 4
584 568 elif dedent_re.match(line):
585 569 indent_spaces -= 4
586 570 if indent_spaces <= 0:
587 571 full_dedent = True
588 572
589 573 # Safety
590 574 if indent_spaces < 0:
591 575 indent_spaces = 0
592 576 #print 'safety' # dbg
593 577
594 578 return indent_spaces, full_dedent
595 579
596 580 def _update_indent(self, lines):
597 581 for line in remove_comments(lines).splitlines():
598 582 if line and not line.isspace():
599 583 self.indent_spaces, self._full_dedent = self._find_indent(line)
600 584
601 585 def _store(self, lines, buffer=None, store='source'):
602 586 """Store one or more lines of input.
603 587
604 588 If input lines are not newline-terminated, a newline is automatically
605 589 appended."""
606 590 if not isinstance(lines, unicode):
607 591 lines = lines.decode(self.encoding)
608 592
609 593 if buffer is None:
610 594 buffer = self._buffer
611 595
612 596 if lines.endswith('\n'):
613 597 buffer.append(lines)
614 598 else:
615 599 buffer.append(lines+'\n')
616 600 setattr(self, store, self._set_source(buffer))
617 601
618 602 def _set_source(self, buffer):
619 return ''.join(buffer).encode(self.encoding)
603 return ''.join(buffer)
620 604
621 605
622 606 #-----------------------------------------------------------------------------
623 607 # Functions and classes for IPython-specific syntactic support
624 608 #-----------------------------------------------------------------------------
625 609
626 610 # RegExp for splitting line contents into pre-char//first word-method//rest.
627 611 # For clarity, each group in on one line.
628 612
629 613 line_split = re.compile("""
630 614 ^(\s*) # any leading space
631 615 ([,;/%]|!!?|\?\??) # escape character or characters
632 616 \s*(%?[\w\.\*]*) # function/method, possibly with leading %
633 617 # to correctly treat things like '?%magic'
634 618 (\s+.*$|$) # rest of line
635 619 """, re.VERBOSE)
636 620
637 621
638 622 def split_user_input(line):
639 623 """Split user input into early whitespace, esc-char, function part and rest.
640 624
641 625 This is currently handles lines with '=' in them in a very inconsistent
642 626 manner.
643 627
644 628 Examples
645 629 ========
646 630 >>> split_user_input('x=1')
647 631 ('', '', 'x=1', '')
648 632 >>> split_user_input('?')
649 633 ('', '?', '', '')
650 634 >>> split_user_input('??')
651 635 ('', '??', '', '')
652 636 >>> split_user_input(' ?')
653 637 (' ', '?', '', '')
654 638 >>> split_user_input(' ??')
655 639 (' ', '??', '', '')
656 640 >>> split_user_input('??x')
657 641 ('', '??', 'x', '')
658 642 >>> split_user_input('?x=1')
659 643 ('', '', '?x=1', '')
660 644 >>> split_user_input('!ls')
661 645 ('', '!', 'ls', '')
662 646 >>> split_user_input(' !ls')
663 647 (' ', '!', 'ls', '')
664 648 >>> split_user_input('!!ls')
665 649 ('', '!!', 'ls', '')
666 650 >>> split_user_input(' !!ls')
667 651 (' ', '!!', 'ls', '')
668 652 >>> split_user_input(',ls')
669 653 ('', ',', 'ls', '')
670 654 >>> split_user_input(';ls')
671 655 ('', ';', 'ls', '')
672 656 >>> split_user_input(' ;ls')
673 657 (' ', ';', 'ls', '')
674 658 >>> split_user_input('f.g(x)')
675 659 ('', '', 'f.g(x)', '')
676 660 >>> split_user_input('f.g (x)')
677 661 ('', '', 'f.g', '(x)')
678 662 >>> split_user_input('?%hist')
679 663 ('', '?', '%hist', '')
680 664 >>> split_user_input('?x*')
681 665 ('', '?', 'x*', '')
682 666 """
683 667 match = line_split.match(line)
684 668 if match:
685 669 lspace, esc, fpart, rest = match.groups()
686 670 else:
687 671 # print "match failed for line '%s'" % line
688 672 try:
689 673 fpart, rest = line.split(None, 1)
690 674 except ValueError:
691 675 # print "split failed for line '%s'" % line
692 676 fpart, rest = line,''
693 677 lspace = re.match('^(\s*)(.*)', line).groups()[0]
694 678 esc = ''
695 679
696 680 # fpart has to be a valid python identifier, so it better be only pure
697 681 # ascii, no unicode:
698 682 try:
699 683 fpart = fpart.encode('ascii')
700 684 except UnicodeEncodeError:
701 685 lspace = unicode(lspace)
702 686 rest = fpart + u' ' + rest
703 687 fpart = u''
704 688
705 689 #print 'line:<%s>' % line # dbg
706 690 #print 'esc <%s> fpart <%s> rest <%s>' % (esc,fpart.strip(),rest) # dbg
707 691 return lspace, esc, fpart.strip(), rest.lstrip()
708 692
709 693
710 694 # The escaped translators ALL receive a line where their own escape has been
711 695 # stripped. Only '?' is valid at the end of the line, all others can only be
712 696 # placed at the start.
713 697
714 698 class LineInfo(object):
715 699 """A single line of input and associated info.
716 700
717 701 This is a utility class that mostly wraps the output of
718 702 :func:`split_user_input` into a convenient object to be passed around
719 703 during input transformations.
720 704
721 705 Includes the following as properties:
722 706
723 707 line
724 708 The original, raw line
725 709
726 710 lspace
727 711 Any early whitespace before actual text starts.
728 712
729 713 esc
730 714 The initial esc character (or characters, for double-char escapes like
731 715 '??' or '!!').
732 716
733 717 fpart
734 718 The 'function part', which is basically the maximal initial sequence
735 719 of valid python identifiers and the '.' character. This is what is
736 720 checked for alias and magic transformations, used for auto-calling,
737 721 etc.
738 722
739 723 rest
740 724 Everything else on the line.
741 725 """
742 726 def __init__(self, line):
743 727 self.line = line
744 728 self.lspace, self.esc, self.fpart, self.rest = \
745 729 split_user_input(line)
746 730
747 731 def __str__(self):
748 732 return "LineInfo [%s|%s|%s|%s]" % (self.lspace, self.esc,
749 733 self.fpart, self.rest)
750 734
751 735
752 736 # Transformations of the special syntaxes that don't rely on an explicit escape
753 737 # character but instead on patterns on the input line
754 738
755 739 # The core transformations are implemented as standalone functions that can be
756 740 # tested and validated in isolation. Each of these uses a regexp, we
757 741 # pre-compile these and keep them close to each function definition for clarity
758 742
759 743 _assign_system_re = re.compile(r'(?P<lhs>(\s*)([\w\.]+)((\s*,\s*[\w\.]+)*))'
760 744 r'\s*=\s*!\s*(?P<cmd>.*)')
761 745
762 746 def transform_assign_system(line):
763 747 """Handle the `files = !ls` syntax."""
764 748 m = _assign_system_re.match(line)
765 749 if m is not None:
766 750 cmd = m.group('cmd')
767 751 lhs = m.group('lhs')
768 752 expr = make_quoted_expr(cmd)
769 753 new_line = '%s = get_ipython().getoutput(%s)' % (lhs, expr)
770 754 return new_line
771 755 return line
772 756
773 757
774 758 _assign_magic_re = re.compile(r'(?P<lhs>(\s*)([\w\.]+)((\s*,\s*[\w\.]+)*))'
775 759 r'\s*=\s*%\s*(?P<cmd>.*)')
776 760
777 761 def transform_assign_magic(line):
778 762 """Handle the `a = %who` syntax."""
779 763 m = _assign_magic_re.match(line)
780 764 if m is not None:
781 765 cmd = m.group('cmd')
782 766 lhs = m.group('lhs')
783 767 expr = make_quoted_expr(cmd)
784 768 new_line = '%s = get_ipython().magic(%s)' % (lhs, expr)
785 769 return new_line
786 770 return line
787 771
788 772
789 773 _classic_prompt_re = re.compile(r'^([ \t]*>>> |^[ \t]*\.\.\. )')
790 774
791 775 def transform_classic_prompt(line):
792 776 """Handle inputs that start with '>>> ' syntax."""
793 777
794 778 if not line or line.isspace():
795 779 return line
796 780 m = _classic_prompt_re.match(line)
797 781 if m:
798 782 return line[len(m.group(0)):]
799 783 else:
800 784 return line
801 785
802 786
803 787 _ipy_prompt_re = re.compile(r'^([ \t]*In \[\d+\]: |^[ \t]*\ \ \ \.\.\.+: )')
804 788
805 789 def transform_ipy_prompt(line):
806 790 """Handle inputs that start classic IPython prompt syntax."""
807 791
808 792 if not line or line.isspace():
809 793 return line
810 794 #print 'LINE: %r' % line # dbg
811 795 m = _ipy_prompt_re.match(line)
812 796 if m:
813 797 #print 'MATCH! %r -> %r' % (line, line[len(m.group(0)):]) # dbg
814 798 return line[len(m.group(0)):]
815 799 else:
816 800 return line
817 801
818 802
819 803 class EscapedTransformer(object):
820 804 """Class to transform lines that are explicitly escaped out."""
821 805
822 806 def __init__(self):
823 807 tr = { ESC_SHELL : self._tr_system,
824 808 ESC_SH_CAP : self._tr_system2,
825 809 ESC_HELP : self._tr_help,
826 810 ESC_HELP2 : self._tr_help,
827 811 ESC_MAGIC : self._tr_magic,
828 812 ESC_QUOTE : self._tr_quote,
829 813 ESC_QUOTE2 : self._tr_quote2,
830 814 ESC_PAREN : self._tr_paren }
831 815 self.tr = tr
832 816
833 817 # Support for syntax transformations that use explicit escapes typed by the
834 818 # user at the beginning of a line
835 819 @staticmethod
836 820 def _tr_system(line_info):
837 821 "Translate lines escaped with: !"
838 822 cmd = line_info.line.lstrip().lstrip(ESC_SHELL)
839 823 return '%sget_ipython().system(%s)' % (line_info.lspace,
840 824 make_quoted_expr(cmd))
841 825
842 826 @staticmethod
843 827 def _tr_system2(line_info):
844 828 "Translate lines escaped with: !!"
845 829 cmd = line_info.line.lstrip()[2:]
846 830 return '%sget_ipython().getoutput(%s)' % (line_info.lspace,
847 831 make_quoted_expr(cmd))
848 832
849 833 @staticmethod
850 834 def _tr_help(line_info):
851 835 "Translate lines escaped with: ?/??"
852 836 # A naked help line should just fire the intro help screen
853 837 if not line_info.line[1:]:
854 838 return 'get_ipython().show_usage()'
855 839
856 840 # There may be one or two '?' at the end, move them to the front so that
857 841 # the rest of the logic can assume escapes are at the start
858 842 l_ori = line_info
859 843 line = line_info.line
860 844 if line.endswith('?'):
861 845 line = line[-1] + line[:-1]
862 846 if line.endswith('?'):
863 847 line = line[-1] + line[:-1]
864 848 line_info = LineInfo(line)
865 849
866 850 # From here on, simply choose which level of detail to get, and
867 851 # special-case the psearch syntax
868 852 pinfo = 'pinfo' # default
869 853 if '*' in line_info.line:
870 854 pinfo = 'psearch'
871 855 elif line_info.esc == '??':
872 856 pinfo = 'pinfo2'
873 857
874 858 tpl = '%sget_ipython().magic("%s %s")'
875 859 return tpl % (line_info.lspace, pinfo,
876 860 ' '.join([line_info.fpart, line_info.rest]).strip())
877 861
878 862 @staticmethod
879 863 def _tr_magic(line_info):
880 864 "Translate lines escaped with: %"
881 865 tpl = '%sget_ipython().magic(%s)'
882 866 cmd = make_quoted_expr(' '.join([line_info.fpart,
883 867 line_info.rest]).strip())
884 868 return tpl % (line_info.lspace, cmd)
885 869
886 870 @staticmethod
887 871 def _tr_quote(line_info):
888 872 "Translate lines escaped with: ,"
889 873 return '%s%s("%s")' % (line_info.lspace, line_info.fpart,
890 874 '", "'.join(line_info.rest.split()) )
891 875
892 876 @staticmethod
893 877 def _tr_quote2(line_info):
894 878 "Translate lines escaped with: ;"
895 879 return '%s%s("%s")' % (line_info.lspace, line_info.fpart,
896 880 line_info.rest)
897 881
898 882 @staticmethod
899 883 def _tr_paren(line_info):
900 884 "Translate lines escaped with: /"
901 885 return '%s%s(%s)' % (line_info.lspace, line_info.fpart,
902 886 ", ".join(line_info.rest.split()))
903 887
904 888 def __call__(self, line):
905 889 """Class to transform lines that are explicitly escaped out.
906 890
907 891 This calls the above _tr_* static methods for the actual line
908 892 translations."""
909 893
910 894 # Empty lines just get returned unmodified
911 895 if not line or line.isspace():
912 896 return line
913 897
914 898 # Get line endpoints, where the escapes can be
915 899 line_info = LineInfo(line)
916 900
917 901 # If the escape is not at the start, only '?' needs to be special-cased.
918 902 # All other escapes are only valid at the start
919 903 if not line_info.esc in self.tr:
920 904 if line.endswith(ESC_HELP):
921 905 return self._tr_help(line_info)
922 906 else:
923 907 # If we don't recognize the escape, don't modify the line
924 908 return line
925 909
926 910 return self.tr[line_info.esc](line_info)
927 911
928 912
929 913 # A function-looking object to be used by the rest of the code. The purpose of
930 914 # the class in this case is to organize related functionality, more than to
931 915 # manage state.
932 916 transform_escaped = EscapedTransformer()
933 917
934 918
935 919 class IPythonInputSplitter(InputSplitter):
936 920 """An input splitter that recognizes all of IPython's special syntax."""
937 921
938 922 # String with raw, untransformed input.
939 923 source_raw = ''
940 924
941 925 # Private attributes
942 926
943 927 # List with lines of raw input accumulated so far.
944 928 _buffer_raw = None
945 929
946 930 def __init__(self, input_mode=None):
947 931 InputSplitter.__init__(self, input_mode)
948 932 self._buffer_raw = []
949 933
950 934 def reset(self):
951 935 """Reset the input buffer and associated state."""
952 936 InputSplitter.reset(self)
953 937 self._buffer_raw[:] = []
954 938 self.source_raw = ''
955 939
956 940 def source_raw_reset(self):
957 941 """Return input and raw source and perform a full reset.
958 942 """
959 943 out = self.source
960 944 out_r = self.source_raw
961 945 self.reset()
962 946 return out, out_r
963 947
964 948 def push(self, lines):
965 949 """Push one or more lines of IPython input.
966 950 """
967 951 if not lines:
968 952 return super(IPythonInputSplitter, self).push(lines)
969 953
970 954 # We must ensure all input is pure unicode
971 955 if type(lines)==str:
972 956 lines = lines.decode(self.encoding)
973 957
974 958 lines_list = lines.splitlines()
975 959
976 960 transforms = [transform_escaped, transform_assign_system,
977 961 transform_assign_magic, transform_ipy_prompt,
978 962 transform_classic_prompt]
979 963
980 964 # Transform logic
981 965 #
982 966 # We only apply the line transformers to the input if we have either no
983 967 # input yet, or complete input, or if the last line of the buffer ends
984 968 # with ':' (opening an indented block). This prevents the accidental
985 969 # transformation of escapes inside multiline expressions like
986 970 # triple-quoted strings or parenthesized expressions.
987 971 #
988 972 # The last heuristic, while ugly, ensures that the first line of an
989 973 # indented block is correctly transformed.
990 974 #
991 975 # FIXME: try to find a cleaner approach for this last bit.
992 976
993 977 # If we were in 'block' mode, since we're going to pump the parent
994 978 # class by hand line by line, we need to temporarily switch out to
995 979 # 'line' mode, do a single manual reset and then feed the lines one
996 980 # by one. Note that this only matters if the input has more than one
997 981 # line.
998 982 changed_input_mode = False
999 983
1000 984 if self.input_mode == 'cell':
1001 985 self.reset()
1002 986 changed_input_mode = True
1003 987 saved_input_mode = 'cell'
1004 988 self.input_mode = 'line'
1005 989
1006 990 # Store raw source before applying any transformations to it. Note
1007 991 # that this must be done *after* the reset() call that would otherwise
1008 992 # flush the buffer.
1009 993 self._store(lines, self._buffer_raw, 'source_raw')
1010 994
1011 995 try:
1012 996 push = super(IPythonInputSplitter, self).push
1013 997 for line in lines_list:
1014 998 if self._is_complete or not self._buffer or \
1015 999 (self._buffer and self._buffer[-1].rstrip().endswith(':')):
1016 1000 for f in transforms:
1017 1001 line = f(line)
1018 1002
1019 1003 out = push(line)
1020 1004 finally:
1021 1005 if changed_input_mode:
1022 1006 self.input_mode = saved_input_mode
1023 1007 return out
@@ -1,2529 +1,2530 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Main IPython class."""
3 3
4 4 #-----------------------------------------------------------------------------
5 5 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de>
6 6 # Copyright (C) 2001-2007 Fernando Perez. <fperez@colorado.edu>
7 7 # Copyright (C) 2008-2011 The IPython Development Team
8 8 #
9 9 # Distributed under the terms of the BSD License. The full license is in
10 10 # the file COPYING, distributed as part of this software.
11 11 #-----------------------------------------------------------------------------
12 12
13 13 #-----------------------------------------------------------------------------
14 14 # Imports
15 15 #-----------------------------------------------------------------------------
16 16
17 17 from __future__ import with_statement
18 18 from __future__ import absolute_import
19 19
20 20 import __builtin__
21 21 import __future__
22 22 import abc
23 23 import atexit
24 24 import codeop
25 25 import os
26 26 import re
27 27 import sys
28 28 import tempfile
29 29 import types
30 30 from contextlib import nested
31 31
32 32 from IPython.config.configurable import Configurable
33 33 from IPython.core import debugger, oinspect
34 34 from IPython.core import history as ipcorehist
35 35 from IPython.core import page
36 36 from IPython.core import prefilter
37 37 from IPython.core import shadowns
38 38 from IPython.core import ultratb
39 39 from IPython.core.alias import AliasManager
40 40 from IPython.core.builtin_trap import BuiltinTrap
41 41 from IPython.core.compilerop import CachingCompiler
42 42 from IPython.core.display_trap import DisplayTrap
43 43 from IPython.core.displayhook import DisplayHook
44 44 from IPython.core.displaypub import DisplayPublisher
45 45 from IPython.core.error import TryNext, UsageError
46 46 from IPython.core.extensions import ExtensionManager
47 47 from IPython.core.fakemodule import FakeModule, init_fakemod_dict
48 48 from IPython.core.formatters import DisplayFormatter
49 49 from IPython.core.history import HistoryManager
50 50 from IPython.core.inputsplitter import IPythonInputSplitter
51 51 from IPython.core.logger import Logger
52 52 from IPython.core.magic import Magic
53 53 from IPython.core.payload import PayloadManager
54 54 from IPython.core.plugin import PluginManager
55 55 from IPython.core.prefilter import PrefilterManager, ESC_MAGIC
56 56 from IPython.external.Itpl import ItplNS
57 57 from IPython.utils import PyColorize
58 58 from IPython.utils import io
59 59 from IPython.utils.doctestreload import doctest_reload
60 60 from IPython.utils.io import ask_yes_no, rprint
61 61 from IPython.utils.ipstruct import Struct
62 62 from IPython.utils.path import get_home_dir, get_ipython_dir, HomeDirError
63 63 from IPython.utils.pickleshare import PickleShareDB
64 64 from IPython.utils.process import system, getoutput
65 65 from IPython.utils.strdispatch import StrDispatch
66 66 from IPython.utils.syspathcontext import prepended_to_syspath
67 67 from IPython.utils.text import num_ini_spaces, format_screen, LSString, SList
68 68 from IPython.utils.traitlets import (Int, Str, CBool, CaselessStrEnum, Enum,
69 69 List, Unicode, Instance, Type)
70 70 from IPython.utils.warn import warn, error, fatal
71 71 import IPython.core.hooks
72 72
73 73 #-----------------------------------------------------------------------------
74 74 # Globals
75 75 #-----------------------------------------------------------------------------
76 76
77 77 # compiled regexps for autoindent management
78 78 dedent_re = re.compile(r'^\s+raise|^\s+return|^\s+pass')
79 79
80 80 #-----------------------------------------------------------------------------
81 81 # Utilities
82 82 #-----------------------------------------------------------------------------
83 83
84 84 # store the builtin raw_input globally, and use this always, in case user code
85 85 # overwrites it (like wx.py.PyShell does)
86 86 raw_input_original = raw_input
87 87
88 88 def softspace(file, newvalue):
89 89 """Copied from code.py, to remove the dependency"""
90 90
91 91 oldvalue = 0
92 92 try:
93 93 oldvalue = file.softspace
94 94 except AttributeError:
95 95 pass
96 96 try:
97 97 file.softspace = newvalue
98 98 except (AttributeError, TypeError):
99 99 # "attribute-less object" or "read-only attributes"
100 100 pass
101 101 return oldvalue
102 102
103 103
104 104 def no_op(*a, **kw): pass
105 105
106 106 class SpaceInInput(Exception): pass
107 107
108 108 class Bunch: pass
109 109
110 110
111 111 def get_default_colors():
112 112 if sys.platform=='darwin':
113 113 return "LightBG"
114 114 elif os.name=='nt':
115 115 return 'Linux'
116 116 else:
117 117 return 'Linux'
118 118
119 119
120 120 class SeparateStr(Str):
121 121 """A Str subclass to validate separate_in, separate_out, etc.
122 122
123 123 This is a Str based trait that converts '0'->'' and '\\n'->'\n'.
124 124 """
125 125
126 126 def validate(self, obj, value):
127 127 if value == '0': value = ''
128 128 value = value.replace('\\n','\n')
129 129 return super(SeparateStr, self).validate(obj, value)
130 130
131 131 class MultipleInstanceError(Exception):
132 132 pass
133 133
134 134
135 135 #-----------------------------------------------------------------------------
136 136 # Main IPython class
137 137 #-----------------------------------------------------------------------------
138 138
139 139 class InteractiveShell(Configurable, Magic):
140 140 """An enhanced, interactive shell for Python."""
141 141
142 142 _instance = None
143 143 autocall = Enum((0,1,2), default_value=1, config=True)
144 144 # TODO: remove all autoindent logic and put into frontends.
145 145 # We can't do this yet because even runlines uses the autoindent.
146 146 autoindent = CBool(True, config=True)
147 147 automagic = CBool(True, config=True)
148 148 cache_size = Int(1000, config=True)
149 149 color_info = CBool(True, config=True)
150 150 colors = CaselessStrEnum(('NoColor','LightBG','Linux'),
151 151 default_value=get_default_colors(), config=True)
152 152 debug = CBool(False, config=True)
153 153 deep_reload = CBool(False, config=True)
154 154 display_formatter = Instance(DisplayFormatter)
155 155 displayhook_class = Type(DisplayHook)
156 156 display_pub_class = Type(DisplayPublisher)
157 157
158 158 exit_now = CBool(False)
159 159 # Monotonically increasing execution counter
160 160 execution_count = Int(1)
161 161 filename = Str("<ipython console>")
162 162 ipython_dir= Unicode('', config=True) # Set to get_ipython_dir() in __init__
163 163
164 164 # Input splitter, to split entire cells of input into either individual
165 165 # interactive statements or whole blocks.
166 166 input_splitter = Instance('IPython.core.inputsplitter.IPythonInputSplitter',
167 167 (), {})
168 168 logstart = CBool(False, config=True)
169 169 logfile = Str('', config=True)
170 170 logappend = Str('', config=True)
171 171 object_info_string_level = Enum((0,1,2), default_value=0,
172 172 config=True)
173 173 pdb = CBool(False, config=True)
174 174
175 175 profile = Str('', config=True)
176 176 prompt_in1 = Str('In [\\#]: ', config=True)
177 177 prompt_in2 = Str(' .\\D.: ', config=True)
178 178 prompt_out = Str('Out[\\#]: ', config=True)
179 179 prompts_pad_left = CBool(True, config=True)
180 180 quiet = CBool(False, config=True)
181 181
182 182 history_length = Int(10000, config=True)
183 183
184 184 # The readline stuff will eventually be moved to the terminal subclass
185 185 # but for now, we can't do that as readline is welded in everywhere.
186 186 readline_use = CBool(True, config=True)
187 187 readline_merge_completions = CBool(True, config=True)
188 188 readline_omit__names = Enum((0,1,2), default_value=2, config=True)
189 189 readline_remove_delims = Str('-/~', config=True)
190 190 readline_parse_and_bind = List([
191 191 'tab: complete',
192 192 '"\C-l": clear-screen',
193 193 'set show-all-if-ambiguous on',
194 194 '"\C-o": tab-insert',
195 195 # See bug gh-58 - with \M-i enabled, chars 0x9000-0x9fff
196 196 # crash IPython.
197 197 '"\M-o": "\d\d\d\d"',
198 198 '"\M-I": "\d\d\d\d"',
199 199 '"\C-r": reverse-search-history',
200 200 '"\C-s": forward-search-history',
201 201 '"\C-p": history-search-backward',
202 202 '"\C-n": history-search-forward',
203 203 '"\e[A": history-search-backward',
204 204 '"\e[B": history-search-forward',
205 205 '"\C-k": kill-line',
206 206 '"\C-u": unix-line-discard',
207 207 ], allow_none=False, config=True)
208 208
209 209 # TODO: this part of prompt management should be moved to the frontends.
210 210 # Use custom TraitTypes that convert '0'->'' and '\\n'->'\n'
211 211 separate_in = SeparateStr('\n', config=True)
212 212 separate_out = SeparateStr('', config=True)
213 213 separate_out2 = SeparateStr('', config=True)
214 214 wildcards_case_sensitive = CBool(True, config=True)
215 215 xmode = CaselessStrEnum(('Context','Plain', 'Verbose'),
216 216 default_value='Context', config=True)
217 217
218 218 # Subcomponents of InteractiveShell
219 219 alias_manager = Instance('IPython.core.alias.AliasManager')
220 220 prefilter_manager = Instance('IPython.core.prefilter.PrefilterManager')
221 221 builtin_trap = Instance('IPython.core.builtin_trap.BuiltinTrap')
222 222 display_trap = Instance('IPython.core.display_trap.DisplayTrap')
223 223 extension_manager = Instance('IPython.core.extensions.ExtensionManager')
224 224 plugin_manager = Instance('IPython.core.plugin.PluginManager')
225 225 payload_manager = Instance('IPython.core.payload.PayloadManager')
226 226 history_manager = Instance('IPython.core.history.HistoryManager')
227 227
228 228 # Private interface
229 229 _post_execute = set()
230 230
231 231 def __init__(self, config=None, ipython_dir=None,
232 232 user_ns=None, user_global_ns=None,
233 233 custom_exceptions=((), None)):
234 234
235 235 # This is where traits with a config_key argument are updated
236 236 # from the values on config.
237 237 super(InteractiveShell, self).__init__(config=config)
238 238
239 239 # These are relatively independent and stateless
240 240 self.init_ipython_dir(ipython_dir)
241 241 self.init_instance_attrs()
242 242 self.init_environment()
243 243
244 244 # Create namespaces (user_ns, user_global_ns, etc.)
245 245 self.init_create_namespaces(user_ns, user_global_ns)
246 246 # This has to be done after init_create_namespaces because it uses
247 247 # something in self.user_ns, but before init_sys_modules, which
248 248 # is the first thing to modify sys.
249 249 # TODO: When we override sys.stdout and sys.stderr before this class
250 250 # is created, we are saving the overridden ones here. Not sure if this
251 251 # is what we want to do.
252 252 self.save_sys_module_state()
253 253 self.init_sys_modules()
254 254
255 255 # While we're trying to have each part of the code directly access what
256 256 # it needs without keeping redundant references to objects, we have too
257 257 # much legacy code that expects ip.db to exist.
258 258 self.db = PickleShareDB(os.path.join(self.ipython_dir, 'db'))
259 259
260 260 self.init_history()
261 261 self.init_encoding()
262 262 self.init_prefilter()
263 263
264 264 Magic.__init__(self, self)
265 265
266 266 self.init_syntax_highlighting()
267 267 self.init_hooks()
268 268 self.init_pushd_popd_magic()
269 269 # self.init_traceback_handlers use to be here, but we moved it below
270 270 # because it and init_io have to come after init_readline.
271 271 self.init_user_ns()
272 272 self.init_logger()
273 273 self.init_alias()
274 274 self.init_builtins()
275 275
276 276 # pre_config_initialization
277 277
278 278 # The next section should contain everything that was in ipmaker.
279 279 self.init_logstart()
280 280
281 281 # The following was in post_config_initialization
282 282 self.init_inspector()
283 283 # init_readline() must come before init_io(), because init_io uses
284 284 # readline related things.
285 285 self.init_readline()
286 286 # init_completer must come after init_readline, because it needs to
287 287 # know whether readline is present or not system-wide to configure the
288 288 # completers, since the completion machinery can now operate
289 289 # independently of readline (e.g. over the network)
290 290 self.init_completer()
291 291 # TODO: init_io() needs to happen before init_traceback handlers
292 292 # because the traceback handlers hardcode the stdout/stderr streams.
293 293 # This logic in in debugger.Pdb and should eventually be changed.
294 294 self.init_io()
295 295 self.init_traceback_handlers(custom_exceptions)
296 296 self.init_prompts()
297 297 self.init_display_formatter()
298 298 self.init_display_pub()
299 299 self.init_displayhook()
300 300 self.init_reload_doctest()
301 301 self.init_magics()
302 302 self.init_pdb()
303 303 self.init_extension_manager()
304 304 self.init_plugin_manager()
305 305 self.init_payload()
306 306 self.hooks.late_startup_hook()
307 307 atexit.register(self.atexit_operations)
308 308
309 309 @classmethod
310 310 def instance(cls, *args, **kwargs):
311 311 """Returns a global InteractiveShell instance."""
312 312 if cls._instance is None:
313 313 inst = cls(*args, **kwargs)
314 314 # Now make sure that the instance will also be returned by
315 315 # the subclasses instance attribute.
316 316 for subclass in cls.mro():
317 317 if issubclass(cls, subclass) and \
318 318 issubclass(subclass, InteractiveShell):
319 319 subclass._instance = inst
320 320 else:
321 321 break
322 322 if isinstance(cls._instance, cls):
323 323 return cls._instance
324 324 else:
325 325 raise MultipleInstanceError(
326 326 'Multiple incompatible subclass instances of '
327 327 'InteractiveShell are being created.'
328 328 )
329 329
330 330 @classmethod
331 331 def initialized(cls):
332 332 return hasattr(cls, "_instance")
333 333
334 334 def get_ipython(self):
335 335 """Return the currently running IPython instance."""
336 336 return self
337 337
338 338 #-------------------------------------------------------------------------
339 339 # Trait changed handlers
340 340 #-------------------------------------------------------------------------
341 341
342 342 def _ipython_dir_changed(self, name, new):
343 343 if not os.path.isdir(new):
344 344 os.makedirs(new, mode = 0777)
345 345
346 346 def set_autoindent(self,value=None):
347 347 """Set the autoindent flag, checking for readline support.
348 348
349 349 If called with no arguments, it acts as a toggle."""
350 350
351 351 if not self.has_readline:
352 352 if os.name == 'posix':
353 353 warn("The auto-indent feature requires the readline library")
354 354 self.autoindent = 0
355 355 return
356 356 if value is None:
357 357 self.autoindent = not self.autoindent
358 358 else:
359 359 self.autoindent = value
360 360
361 361 #-------------------------------------------------------------------------
362 362 # init_* methods called by __init__
363 363 #-------------------------------------------------------------------------
364 364
365 365 def init_ipython_dir(self, ipython_dir):
366 366 if ipython_dir is not None:
367 367 self.ipython_dir = ipython_dir
368 368 self.config.Global.ipython_dir = self.ipython_dir
369 369 return
370 370
371 371 if hasattr(self.config.Global, 'ipython_dir'):
372 372 self.ipython_dir = self.config.Global.ipython_dir
373 373 else:
374 374 self.ipython_dir = get_ipython_dir()
375 375
376 376 # All children can just read this
377 377 self.config.Global.ipython_dir = self.ipython_dir
378 378
379 379 def init_instance_attrs(self):
380 380 self.more = False
381 381
382 382 # command compiler
383 383 self.compile = CachingCompiler()
384 384
385 385 # User input buffers
386 386 # NOTE: these variables are slated for full removal, once we are 100%
387 387 # sure that the new execution logic is solid. We will delte runlines,
388 388 # push_line and these buffers, as all input will be managed by the
389 389 # frontends via an inputsplitter instance.
390 390 self.buffer = []
391 391 self.buffer_raw = []
392 392
393 393 # Make an empty namespace, which extension writers can rely on both
394 394 # existing and NEVER being used by ipython itself. This gives them a
395 395 # convenient location for storing additional information and state
396 396 # their extensions may require, without fear of collisions with other
397 397 # ipython names that may develop later.
398 398 self.meta = Struct()
399 399
400 400 # Object variable to store code object waiting execution. This is
401 401 # used mainly by the multithreaded shells, but it can come in handy in
402 402 # other situations. No need to use a Queue here, since it's a single
403 403 # item which gets cleared once run.
404 404 self.code_to_run = None
405 405
406 406 # Temporary files used for various purposes. Deleted at exit.
407 407 self.tempfiles = []
408 408
409 409 # Keep track of readline usage (later set by init_readline)
410 410 self.has_readline = False
411 411
412 412 # keep track of where we started running (mainly for crash post-mortem)
413 413 # This is not being used anywhere currently.
414 414 self.starting_dir = os.getcwd()
415 415
416 416 # Indentation management
417 417 self.indent_current_nsp = 0
418 418
419 419 def init_environment(self):
420 420 """Any changes we need to make to the user's environment."""
421 421 pass
422 422
423 423 def init_encoding(self):
424 424 # Get system encoding at startup time. Certain terminals (like Emacs
425 425 # under Win32 have it set to None, and we need to have a known valid
426 426 # encoding to use in the raw_input() method
427 427 try:
428 428 self.stdin_encoding = sys.stdin.encoding or 'ascii'
429 429 except AttributeError:
430 430 self.stdin_encoding = 'ascii'
431 431
432 432 def init_syntax_highlighting(self):
433 433 # Python source parser/formatter for syntax highlighting
434 434 pyformat = PyColorize.Parser().format
435 435 self.pycolorize = lambda src: pyformat(src,'str',self.colors)
436 436
437 437 def init_pushd_popd_magic(self):
438 438 # for pushd/popd management
439 439 try:
440 440 self.home_dir = get_home_dir()
441 441 except HomeDirError, msg:
442 442 fatal(msg)
443 443
444 444 self.dir_stack = []
445 445
446 446 def init_logger(self):
447 447 self.logger = Logger(self.home_dir, logfname='ipython_log.py',
448 448 logmode='rotate')
449 449
450 450 def init_logstart(self):
451 451 """Initialize logging in case it was requested at the command line.
452 452 """
453 453 if self.logappend:
454 454 self.magic_logstart(self.logappend + ' append')
455 455 elif self.logfile:
456 456 self.magic_logstart(self.logfile)
457 457 elif self.logstart:
458 458 self.magic_logstart()
459 459
460 460 def init_builtins(self):
461 461 self.builtin_trap = BuiltinTrap(shell=self)
462 462
463 463 def init_inspector(self):
464 464 # Object inspector
465 465 self.inspector = oinspect.Inspector(oinspect.InspectColors,
466 466 PyColorize.ANSICodeColors,
467 467 'NoColor',
468 468 self.object_info_string_level)
469 469
470 470 def init_io(self):
471 471 # This will just use sys.stdout and sys.stderr. If you want to
472 472 # override sys.stdout and sys.stderr themselves, you need to do that
473 473 # *before* instantiating this class, because Term holds onto
474 474 # references to the underlying streams.
475 475 if sys.platform == 'win32' and self.has_readline:
476 476 Term = io.IOTerm(cout=self.readline._outputfile,
477 477 cerr=self.readline._outputfile)
478 478 else:
479 479 Term = io.IOTerm()
480 480 io.Term = Term
481 481
482 482 def init_prompts(self):
483 483 # TODO: This is a pass for now because the prompts are managed inside
484 484 # the DisplayHook. Once there is a separate prompt manager, this
485 485 # will initialize that object and all prompt related information.
486 486 pass
487 487
488 488 def init_display_formatter(self):
489 489 self.display_formatter = DisplayFormatter(config=self.config)
490 490
491 491 def init_display_pub(self):
492 492 self.display_pub = self.display_pub_class(config=self.config)
493 493
494 494 def init_displayhook(self):
495 495 # Initialize displayhook, set in/out prompts and printing system
496 496 self.displayhook = self.displayhook_class(
497 497 config=self.config,
498 498 shell=self,
499 499 cache_size=self.cache_size,
500 500 input_sep = self.separate_in,
501 501 output_sep = self.separate_out,
502 502 output_sep2 = self.separate_out2,
503 503 ps1 = self.prompt_in1,
504 504 ps2 = self.prompt_in2,
505 505 ps_out = self.prompt_out,
506 506 pad_left = self.prompts_pad_left
507 507 )
508 508 # This is a context manager that installs/revmoes the displayhook at
509 509 # the appropriate time.
510 510 self.display_trap = DisplayTrap(hook=self.displayhook)
511 511
512 512 def init_reload_doctest(self):
513 513 # Do a proper resetting of doctest, including the necessary displayhook
514 514 # monkeypatching
515 515 try:
516 516 doctest_reload()
517 517 except ImportError:
518 518 warn("doctest module does not exist.")
519 519
520 520 #-------------------------------------------------------------------------
521 521 # Things related to injections into the sys module
522 522 #-------------------------------------------------------------------------
523 523
524 524 def save_sys_module_state(self):
525 525 """Save the state of hooks in the sys module.
526 526
527 527 This has to be called after self.user_ns is created.
528 528 """
529 529 self._orig_sys_module_state = {}
530 530 self._orig_sys_module_state['stdin'] = sys.stdin
531 531 self._orig_sys_module_state['stdout'] = sys.stdout
532 532 self._orig_sys_module_state['stderr'] = sys.stderr
533 533 self._orig_sys_module_state['excepthook'] = sys.excepthook
534 534 try:
535 535 self._orig_sys_modules_main_name = self.user_ns['__name__']
536 536 except KeyError:
537 537 pass
538 538
539 539 def restore_sys_module_state(self):
540 540 """Restore the state of the sys module."""
541 541 try:
542 542 for k, v in self._orig_sys_module_state.iteritems():
543 543 setattr(sys, k, v)
544 544 except AttributeError:
545 545 pass
546 546 # Reset what what done in self.init_sys_modules
547 547 try:
548 548 sys.modules[self.user_ns['__name__']] = self._orig_sys_modules_main_name
549 549 except (AttributeError, KeyError):
550 550 pass
551 551
552 552 #-------------------------------------------------------------------------
553 553 # Things related to hooks
554 554 #-------------------------------------------------------------------------
555 555
556 556 def init_hooks(self):
557 557 # hooks holds pointers used for user-side customizations
558 558 self.hooks = Struct()
559 559
560 560 self.strdispatchers = {}
561 561
562 562 # Set all default hooks, defined in the IPython.hooks module.
563 563 hooks = IPython.core.hooks
564 564 for hook_name in hooks.__all__:
565 565 # default hooks have priority 100, i.e. low; user hooks should have
566 566 # 0-100 priority
567 567 self.set_hook(hook_name,getattr(hooks,hook_name), 100)
568 568
569 569 def set_hook(self,name,hook, priority = 50, str_key = None, re_key = None):
570 570 """set_hook(name,hook) -> sets an internal IPython hook.
571 571
572 572 IPython exposes some of its internal API as user-modifiable hooks. By
573 573 adding your function to one of these hooks, you can modify IPython's
574 574 behavior to call at runtime your own routines."""
575 575
576 576 # At some point in the future, this should validate the hook before it
577 577 # accepts it. Probably at least check that the hook takes the number
578 578 # of args it's supposed to.
579 579
580 580 f = types.MethodType(hook,self)
581 581
582 582 # check if the hook is for strdispatcher first
583 583 if str_key is not None:
584 584 sdp = self.strdispatchers.get(name, StrDispatch())
585 585 sdp.add_s(str_key, f, priority )
586 586 self.strdispatchers[name] = sdp
587 587 return
588 588 if re_key is not None:
589 589 sdp = self.strdispatchers.get(name, StrDispatch())
590 590 sdp.add_re(re.compile(re_key), f, priority )
591 591 self.strdispatchers[name] = sdp
592 592 return
593 593
594 594 dp = getattr(self.hooks, name, None)
595 595 if name not in IPython.core.hooks.__all__:
596 596 print "Warning! Hook '%s' is not one of %s" % \
597 597 (name, IPython.core.hooks.__all__ )
598 598 if not dp:
599 599 dp = IPython.core.hooks.CommandChainDispatcher()
600 600
601 601 try:
602 602 dp.add(f,priority)
603 603 except AttributeError:
604 604 # it was not commandchain, plain old func - replace
605 605 dp = f
606 606
607 607 setattr(self.hooks,name, dp)
608 608
609 609 def register_post_execute(self, func):
610 610 """Register a function for calling after code execution.
611 611 """
612 612 if not callable(func):
613 613 raise ValueError('argument %s must be callable' % func)
614 614 self._post_execute.add(func)
615 615
616 616 #-------------------------------------------------------------------------
617 617 # Things related to the "main" module
618 618 #-------------------------------------------------------------------------
619 619
620 620 def new_main_mod(self,ns=None):
621 621 """Return a new 'main' module object for user code execution.
622 622 """
623 623 main_mod = self._user_main_module
624 624 init_fakemod_dict(main_mod,ns)
625 625 return main_mod
626 626
627 627 def cache_main_mod(self,ns,fname):
628 628 """Cache a main module's namespace.
629 629
630 630 When scripts are executed via %run, we must keep a reference to the
631 631 namespace of their __main__ module (a FakeModule instance) around so
632 632 that Python doesn't clear it, rendering objects defined therein
633 633 useless.
634 634
635 635 This method keeps said reference in a private dict, keyed by the
636 636 absolute path of the module object (which corresponds to the script
637 637 path). This way, for multiple executions of the same script we only
638 638 keep one copy of the namespace (the last one), thus preventing memory
639 639 leaks from old references while allowing the objects from the last
640 640 execution to be accessible.
641 641
642 642 Note: we can not allow the actual FakeModule instances to be deleted,
643 643 because of how Python tears down modules (it hard-sets all their
644 644 references to None without regard for reference counts). This method
645 645 must therefore make a *copy* of the given namespace, to allow the
646 646 original module's __dict__ to be cleared and reused.
647 647
648 648
649 649 Parameters
650 650 ----------
651 651 ns : a namespace (a dict, typically)
652 652
653 653 fname : str
654 654 Filename associated with the namespace.
655 655
656 656 Examples
657 657 --------
658 658
659 659 In [10]: import IPython
660 660
661 661 In [11]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
662 662
663 663 In [12]: IPython.__file__ in _ip._main_ns_cache
664 664 Out[12]: True
665 665 """
666 666 self._main_ns_cache[os.path.abspath(fname)] = ns.copy()
667 667
668 668 def clear_main_mod_cache(self):
669 669 """Clear the cache of main modules.
670 670
671 671 Mainly for use by utilities like %reset.
672 672
673 673 Examples
674 674 --------
675 675
676 676 In [15]: import IPython
677 677
678 678 In [16]: _ip.cache_main_mod(IPython.__dict__,IPython.__file__)
679 679
680 680 In [17]: len(_ip._main_ns_cache) > 0
681 681 Out[17]: True
682 682
683 683 In [18]: _ip.clear_main_mod_cache()
684 684
685 685 In [19]: len(_ip._main_ns_cache) == 0
686 686 Out[19]: True
687 687 """
688 688 self._main_ns_cache.clear()
689 689
690 690 #-------------------------------------------------------------------------
691 691 # Things related to debugging
692 692 #-------------------------------------------------------------------------
693 693
694 694 def init_pdb(self):
695 695 # Set calling of pdb on exceptions
696 696 # self.call_pdb is a property
697 697 self.call_pdb = self.pdb
698 698
699 699 def _get_call_pdb(self):
700 700 return self._call_pdb
701 701
702 702 def _set_call_pdb(self,val):
703 703
704 704 if val not in (0,1,False,True):
705 705 raise ValueError,'new call_pdb value must be boolean'
706 706
707 707 # store value in instance
708 708 self._call_pdb = val
709 709
710 710 # notify the actual exception handlers
711 711 self.InteractiveTB.call_pdb = val
712 712
713 713 call_pdb = property(_get_call_pdb,_set_call_pdb,None,
714 714 'Control auto-activation of pdb at exceptions')
715 715
716 716 def debugger(self,force=False):
717 717 """Call the pydb/pdb debugger.
718 718
719 719 Keywords:
720 720
721 721 - force(False): by default, this routine checks the instance call_pdb
722 722 flag and does not actually invoke the debugger if the flag is false.
723 723 The 'force' option forces the debugger to activate even if the flag
724 724 is false.
725 725 """
726 726
727 727 if not (force or self.call_pdb):
728 728 return
729 729
730 730 if not hasattr(sys,'last_traceback'):
731 731 error('No traceback has been produced, nothing to debug.')
732 732 return
733 733
734 734 # use pydb if available
735 735 if debugger.has_pydb:
736 736 from pydb import pm
737 737 else:
738 738 # fallback to our internal debugger
739 739 pm = lambda : self.InteractiveTB.debugger(force=True)
740 740 self.history_saving_wrapper(pm)()
741 741
742 742 #-------------------------------------------------------------------------
743 743 # Things related to IPython's various namespaces
744 744 #-------------------------------------------------------------------------
745 745
746 746 def init_create_namespaces(self, user_ns=None, user_global_ns=None):
747 747 # Create the namespace where the user will operate. user_ns is
748 748 # normally the only one used, and it is passed to the exec calls as
749 749 # the locals argument. But we do carry a user_global_ns namespace
750 750 # given as the exec 'globals' argument, This is useful in embedding
751 751 # situations where the ipython shell opens in a context where the
752 752 # distinction between locals and globals is meaningful. For
753 753 # non-embedded contexts, it is just the same object as the user_ns dict.
754 754
755 755 # FIXME. For some strange reason, __builtins__ is showing up at user
756 756 # level as a dict instead of a module. This is a manual fix, but I
757 757 # should really track down where the problem is coming from. Alex
758 758 # Schmolck reported this problem first.
759 759
760 760 # A useful post by Alex Martelli on this topic:
761 761 # Re: inconsistent value from __builtins__
762 762 # Von: Alex Martelli <aleaxit@yahoo.com>
763 763 # Datum: Freitag 01 Oktober 2004 04:45:34 nachmittags/abends
764 764 # Gruppen: comp.lang.python
765 765
766 766 # Michael Hohn <hohn@hooknose.lbl.gov> wrote:
767 767 # > >>> print type(builtin_check.get_global_binding('__builtins__'))
768 768 # > <type 'dict'>
769 769 # > >>> print type(__builtins__)
770 770 # > <type 'module'>
771 771 # > Is this difference in return value intentional?
772 772
773 773 # Well, it's documented that '__builtins__' can be either a dictionary
774 774 # or a module, and it's been that way for a long time. Whether it's
775 775 # intentional (or sensible), I don't know. In any case, the idea is
776 776 # that if you need to access the built-in namespace directly, you
777 777 # should start with "import __builtin__" (note, no 's') which will
778 778 # definitely give you a module. Yeah, it's somewhat confusing:-(.
779 779
780 780 # These routines return properly built dicts as needed by the rest of
781 781 # the code, and can also be used by extension writers to generate
782 782 # properly initialized namespaces.
783 783 user_ns, user_global_ns = self.make_user_namespaces(user_ns,
784 784 user_global_ns)
785 785
786 786 # Assign namespaces
787 787 # This is the namespace where all normal user variables live
788 788 self.user_ns = user_ns
789 789 self.user_global_ns = user_global_ns
790 790
791 791 # An auxiliary namespace that checks what parts of the user_ns were
792 792 # loaded at startup, so we can list later only variables defined in
793 793 # actual interactive use. Since it is always a subset of user_ns, it
794 794 # doesn't need to be separately tracked in the ns_table.
795 795 self.user_ns_hidden = {}
796 796
797 797 # A namespace to keep track of internal data structures to prevent
798 798 # them from cluttering user-visible stuff. Will be updated later
799 799 self.internal_ns = {}
800 800
801 801 # Now that FakeModule produces a real module, we've run into a nasty
802 802 # problem: after script execution (via %run), the module where the user
803 803 # code ran is deleted. Now that this object is a true module (needed
804 804 # so docetst and other tools work correctly), the Python module
805 805 # teardown mechanism runs over it, and sets to None every variable
806 806 # present in that module. Top-level references to objects from the
807 807 # script survive, because the user_ns is updated with them. However,
808 808 # calling functions defined in the script that use other things from
809 809 # the script will fail, because the function's closure had references
810 810 # to the original objects, which are now all None. So we must protect
811 811 # these modules from deletion by keeping a cache.
812 812 #
813 813 # To avoid keeping stale modules around (we only need the one from the
814 814 # last run), we use a dict keyed with the full path to the script, so
815 815 # only the last version of the module is held in the cache. Note,
816 816 # however, that we must cache the module *namespace contents* (their
817 817 # __dict__). Because if we try to cache the actual modules, old ones
818 818 # (uncached) could be destroyed while still holding references (such as
819 819 # those held by GUI objects that tend to be long-lived)>
820 820 #
821 821 # The %reset command will flush this cache. See the cache_main_mod()
822 822 # and clear_main_mod_cache() methods for details on use.
823 823
824 824 # This is the cache used for 'main' namespaces
825 825 self._main_ns_cache = {}
826 826 # And this is the single instance of FakeModule whose __dict__ we keep
827 827 # copying and clearing for reuse on each %run
828 828 self._user_main_module = FakeModule()
829 829
830 830 # A table holding all the namespaces IPython deals with, so that
831 831 # introspection facilities can search easily.
832 832 self.ns_table = {'user':user_ns,
833 833 'user_global':user_global_ns,
834 834 'internal':self.internal_ns,
835 835 'builtin':__builtin__.__dict__
836 836 }
837 837
838 838 # Similarly, track all namespaces where references can be held and that
839 839 # we can safely clear (so it can NOT include builtin). This one can be
840 840 # a simple list. Note that the main execution namespaces, user_ns and
841 841 # user_global_ns, can NOT be listed here, as clearing them blindly
842 842 # causes errors in object __del__ methods. Instead, the reset() method
843 843 # clears them manually and carefully.
844 844 self.ns_refs_table = [ self.user_ns_hidden,
845 845 self.internal_ns, self._main_ns_cache ]
846 846
847 847 def make_user_namespaces(self, user_ns=None, user_global_ns=None):
848 848 """Return a valid local and global user interactive namespaces.
849 849
850 850 This builds a dict with the minimal information needed to operate as a
851 851 valid IPython user namespace, which you can pass to the various
852 852 embedding classes in ipython. The default implementation returns the
853 853 same dict for both the locals and the globals to allow functions to
854 854 refer to variables in the namespace. Customized implementations can
855 855 return different dicts. The locals dictionary can actually be anything
856 856 following the basic mapping protocol of a dict, but the globals dict
857 857 must be a true dict, not even a subclass. It is recommended that any
858 858 custom object for the locals namespace synchronize with the globals
859 859 dict somehow.
860 860
861 861 Raises TypeError if the provided globals namespace is not a true dict.
862 862
863 863 Parameters
864 864 ----------
865 865 user_ns : dict-like, optional
866 866 The current user namespace. The items in this namespace should
867 867 be included in the output. If None, an appropriate blank
868 868 namespace should be created.
869 869 user_global_ns : dict, optional
870 870 The current user global namespace. The items in this namespace
871 871 should be included in the output. If None, an appropriate
872 872 blank namespace should be created.
873 873
874 874 Returns
875 875 -------
876 876 A pair of dictionary-like object to be used as the local namespace
877 877 of the interpreter and a dict to be used as the global namespace.
878 878 """
879 879
880 880
881 881 # We must ensure that __builtin__ (without the final 's') is always
882 882 # available and pointing to the __builtin__ *module*. For more details:
883 883 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
884 884
885 885 if user_ns is None:
886 886 # Set __name__ to __main__ to better match the behavior of the
887 887 # normal interpreter.
888 888 user_ns = {'__name__' :'__main__',
889 889 '__builtin__' : __builtin__,
890 890 '__builtins__' : __builtin__,
891 891 }
892 892 else:
893 893 user_ns.setdefault('__name__','__main__')
894 894 user_ns.setdefault('__builtin__',__builtin__)
895 895 user_ns.setdefault('__builtins__',__builtin__)
896 896
897 897 if user_global_ns is None:
898 898 user_global_ns = user_ns
899 899 if type(user_global_ns) is not dict:
900 900 raise TypeError("user_global_ns must be a true dict; got %r"
901 901 % type(user_global_ns))
902 902
903 903 return user_ns, user_global_ns
904 904
905 905 def init_sys_modules(self):
906 906 # We need to insert into sys.modules something that looks like a
907 907 # module but which accesses the IPython namespace, for shelve and
908 908 # pickle to work interactively. Normally they rely on getting
909 909 # everything out of __main__, but for embedding purposes each IPython
910 910 # instance has its own private namespace, so we can't go shoving
911 911 # everything into __main__.
912 912
913 913 # note, however, that we should only do this for non-embedded
914 914 # ipythons, which really mimic the __main__.__dict__ with their own
915 915 # namespace. Embedded instances, on the other hand, should not do
916 916 # this because they need to manage the user local/global namespaces
917 917 # only, but they live within a 'normal' __main__ (meaning, they
918 918 # shouldn't overtake the execution environment of the script they're
919 919 # embedded in).
920 920
921 921 # This is overridden in the InteractiveShellEmbed subclass to a no-op.
922 922
923 923 try:
924 924 main_name = self.user_ns['__name__']
925 925 except KeyError:
926 926 raise KeyError('user_ns dictionary MUST have a "__name__" key')
927 927 else:
928 928 sys.modules[main_name] = FakeModule(self.user_ns)
929 929
930 930 def init_user_ns(self):
931 931 """Initialize all user-visible namespaces to their minimum defaults.
932 932
933 933 Certain history lists are also initialized here, as they effectively
934 934 act as user namespaces.
935 935
936 936 Notes
937 937 -----
938 938 All data structures here are only filled in, they are NOT reset by this
939 939 method. If they were not empty before, data will simply be added to
940 940 therm.
941 941 """
942 942 # This function works in two parts: first we put a few things in
943 943 # user_ns, and we sync that contents into user_ns_hidden so that these
944 944 # initial variables aren't shown by %who. After the sync, we add the
945 945 # rest of what we *do* want the user to see with %who even on a new
946 946 # session (probably nothing, so theye really only see their own stuff)
947 947
948 948 # The user dict must *always* have a __builtin__ reference to the
949 949 # Python standard __builtin__ namespace, which must be imported.
950 950 # This is so that certain operations in prompt evaluation can be
951 951 # reliably executed with builtins. Note that we can NOT use
952 952 # __builtins__ (note the 's'), because that can either be a dict or a
953 953 # module, and can even mutate at runtime, depending on the context
954 954 # (Python makes no guarantees on it). In contrast, __builtin__ is
955 955 # always a module object, though it must be explicitly imported.
956 956
957 957 # For more details:
958 958 # http://mail.python.org/pipermail/python-dev/2001-April/014068.html
959 959 ns = dict(__builtin__ = __builtin__)
960 960
961 961 # Put 'help' in the user namespace
962 962 try:
963 963 from site import _Helper
964 964 ns['help'] = _Helper()
965 965 except ImportError:
966 966 warn('help() not available - check site.py')
967 967
968 968 # make global variables for user access to the histories
969 969 ns['_ih'] = self.history_manager.input_hist_parsed
970 970 ns['_oh'] = self.history_manager.output_hist
971 971 ns['_dh'] = self.history_manager.dir_hist
972 972
973 973 ns['_sh'] = shadowns
974 974
975 975 # user aliases to input and output histories. These shouldn't show up
976 976 # in %who, as they can have very large reprs.
977 977 ns['In'] = self.history_manager.input_hist_parsed
978 978 ns['Out'] = self.history_manager.output_hist
979 979
980 980 # Store myself as the public api!!!
981 981 ns['get_ipython'] = self.get_ipython
982 982
983 983 # Sync what we've added so far to user_ns_hidden so these aren't seen
984 984 # by %who
985 985 self.user_ns_hidden.update(ns)
986 986
987 987 # Anything put into ns now would show up in %who. Think twice before
988 988 # putting anything here, as we really want %who to show the user their
989 989 # stuff, not our variables.
990 990
991 991 # Finally, update the real user's namespace
992 992 self.user_ns.update(ns)
993 993
994 994 def reset(self, new_session=True):
995 995 """Clear all internal namespaces.
996 996
997 997 Note that this is much more aggressive than %reset, since it clears
998 998 fully all namespaces, as well as all input/output lists.
999 999
1000 1000 If new_session is True, a new history session will be opened.
1001 1001 """
1002 1002 # Clear histories
1003 1003 self.history_manager.reset(new_session)
1004 1004
1005 1005 # Reset counter used to index all histories
1006 1006 self.execution_count = 0
1007 1007
1008 1008 # Restore the user namespaces to minimal usability
1009 1009 for ns in self.ns_refs_table:
1010 1010 ns.clear()
1011 1011
1012 1012 # The main execution namespaces must be cleared very carefully,
1013 1013 # skipping the deletion of the builtin-related keys, because doing so
1014 1014 # would cause errors in many object's __del__ methods.
1015 1015 for ns in [self.user_ns, self.user_global_ns]:
1016 1016 drop_keys = set(ns.keys())
1017 1017 drop_keys.discard('__builtin__')
1018 1018 drop_keys.discard('__builtins__')
1019 1019 for k in drop_keys:
1020 1020 del ns[k]
1021 1021
1022 1022 # Restore the user namespaces to minimal usability
1023 1023 self.init_user_ns()
1024 1024
1025 1025 # Restore the default and user aliases
1026 1026 self.alias_manager.clear_aliases()
1027 1027 self.alias_manager.init_aliases()
1028 1028
1029 1029 def reset_selective(self, regex=None):
1030 1030 """Clear selective variables from internal namespaces based on a
1031 1031 specified regular expression.
1032 1032
1033 1033 Parameters
1034 1034 ----------
1035 1035 regex : string or compiled pattern, optional
1036 1036 A regular expression pattern that will be used in searching
1037 1037 variable names in the users namespaces.
1038 1038 """
1039 1039 if regex is not None:
1040 1040 try:
1041 1041 m = re.compile(regex)
1042 1042 except TypeError:
1043 1043 raise TypeError('regex must be a string or compiled pattern')
1044 1044 # Search for keys in each namespace that match the given regex
1045 1045 # If a match is found, delete the key/value pair.
1046 1046 for ns in self.ns_refs_table:
1047 1047 for var in ns:
1048 1048 if m.search(var):
1049 1049 del ns[var]
1050 1050
1051 1051 def push(self, variables, interactive=True):
1052 1052 """Inject a group of variables into the IPython user namespace.
1053 1053
1054 1054 Parameters
1055 1055 ----------
1056 1056 variables : dict, str or list/tuple of str
1057 1057 The variables to inject into the user's namespace. If a dict, a
1058 1058 simple update is done. If a str, the string is assumed to have
1059 1059 variable names separated by spaces. A list/tuple of str can also
1060 1060 be used to give the variable names. If just the variable names are
1061 1061 give (list/tuple/str) then the variable values looked up in the
1062 1062 callers frame.
1063 1063 interactive : bool
1064 1064 If True (default), the variables will be listed with the ``who``
1065 1065 magic.
1066 1066 """
1067 1067 vdict = None
1068 1068
1069 1069 # We need a dict of name/value pairs to do namespace updates.
1070 1070 if isinstance(variables, dict):
1071 1071 vdict = variables
1072 1072 elif isinstance(variables, (basestring, list, tuple)):
1073 1073 if isinstance(variables, basestring):
1074 1074 vlist = variables.split()
1075 1075 else:
1076 1076 vlist = variables
1077 1077 vdict = {}
1078 1078 cf = sys._getframe(1)
1079 1079 for name in vlist:
1080 1080 try:
1081 1081 vdict[name] = eval(name, cf.f_globals, cf.f_locals)
1082 1082 except:
1083 1083 print ('Could not get variable %s from %s' %
1084 1084 (name,cf.f_code.co_name))
1085 1085 else:
1086 1086 raise ValueError('variables must be a dict/str/list/tuple')
1087 1087
1088 1088 # Propagate variables to user namespace
1089 1089 self.user_ns.update(vdict)
1090 1090
1091 1091 # And configure interactive visibility
1092 1092 config_ns = self.user_ns_hidden
1093 1093 if interactive:
1094 1094 for name, val in vdict.iteritems():
1095 1095 config_ns.pop(name, None)
1096 1096 else:
1097 1097 for name,val in vdict.iteritems():
1098 1098 config_ns[name] = val
1099 1099
1100 1100 #-------------------------------------------------------------------------
1101 1101 # Things related to object introspection
1102 1102 #-------------------------------------------------------------------------
1103 1103
1104 1104 def _ofind(self, oname, namespaces=None):
1105 1105 """Find an object in the available namespaces.
1106 1106
1107 1107 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
1108 1108
1109 1109 Has special code to detect magic functions.
1110 1110 """
1111 1111 #oname = oname.strip()
1112 1112 #print '1- oname: <%r>' % oname # dbg
1113 1113 try:
1114 1114 oname = oname.strip().encode('ascii')
1115 1115 #print '2- oname: <%r>' % oname # dbg
1116 1116 except UnicodeEncodeError:
1117 1117 print 'Python identifiers can only contain ascii characters.'
1118 1118 return dict(found=False)
1119 1119
1120 1120 alias_ns = None
1121 1121 if namespaces is None:
1122 1122 # Namespaces to search in:
1123 1123 # Put them in a list. The order is important so that we
1124 1124 # find things in the same order that Python finds them.
1125 1125 namespaces = [ ('Interactive', self.user_ns),
1126 1126 ('IPython internal', self.internal_ns),
1127 1127 ('Python builtin', __builtin__.__dict__),
1128 1128 ('Alias', self.alias_manager.alias_table),
1129 1129 ]
1130 1130 alias_ns = self.alias_manager.alias_table
1131 1131
1132 1132 # initialize results to 'null'
1133 1133 found = False; obj = None; ospace = None; ds = None;
1134 1134 ismagic = False; isalias = False; parent = None
1135 1135
1136 1136 # We need to special-case 'print', which as of python2.6 registers as a
1137 1137 # function but should only be treated as one if print_function was
1138 1138 # loaded with a future import. In this case, just bail.
1139 1139 if (oname == 'print' and not (self.compile.compiler_flags &
1140 1140 __future__.CO_FUTURE_PRINT_FUNCTION)):
1141 1141 return {'found':found, 'obj':obj, 'namespace':ospace,
1142 1142 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1143 1143
1144 1144 # Look for the given name by splitting it in parts. If the head is
1145 1145 # found, then we look for all the remaining parts as members, and only
1146 1146 # declare success if we can find them all.
1147 1147 oname_parts = oname.split('.')
1148 1148 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
1149 1149 for nsname,ns in namespaces:
1150 1150 try:
1151 1151 obj = ns[oname_head]
1152 1152 except KeyError:
1153 1153 continue
1154 1154 else:
1155 1155 #print 'oname_rest:', oname_rest # dbg
1156 1156 for part in oname_rest:
1157 1157 try:
1158 1158 parent = obj
1159 1159 obj = getattr(obj,part)
1160 1160 except:
1161 1161 # Blanket except b/c some badly implemented objects
1162 1162 # allow __getattr__ to raise exceptions other than
1163 1163 # AttributeError, which then crashes IPython.
1164 1164 break
1165 1165 else:
1166 1166 # If we finish the for loop (no break), we got all members
1167 1167 found = True
1168 1168 ospace = nsname
1169 1169 if ns == alias_ns:
1170 1170 isalias = True
1171 1171 break # namespace loop
1172 1172
1173 1173 # Try to see if it's magic
1174 1174 if not found:
1175 1175 if oname.startswith(ESC_MAGIC):
1176 1176 oname = oname[1:]
1177 1177 obj = getattr(self,'magic_'+oname,None)
1178 1178 if obj is not None:
1179 1179 found = True
1180 1180 ospace = 'IPython internal'
1181 1181 ismagic = True
1182 1182
1183 1183 # Last try: special-case some literals like '', [], {}, etc:
1184 1184 if not found and oname_head in ["''",'""','[]','{}','()']:
1185 1185 obj = eval(oname_head)
1186 1186 found = True
1187 1187 ospace = 'Interactive'
1188 1188
1189 1189 return {'found':found, 'obj':obj, 'namespace':ospace,
1190 1190 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
1191 1191
1192 1192 def _ofind_property(self, oname, info):
1193 1193 """Second part of object finding, to look for property details."""
1194 1194 if info.found:
1195 1195 # Get the docstring of the class property if it exists.
1196 1196 path = oname.split('.')
1197 1197 root = '.'.join(path[:-1])
1198 1198 if info.parent is not None:
1199 1199 try:
1200 1200 target = getattr(info.parent, '__class__')
1201 1201 # The object belongs to a class instance.
1202 1202 try:
1203 1203 target = getattr(target, path[-1])
1204 1204 # The class defines the object.
1205 1205 if isinstance(target, property):
1206 1206 oname = root + '.__class__.' + path[-1]
1207 1207 info = Struct(self._ofind(oname))
1208 1208 except AttributeError: pass
1209 1209 except AttributeError: pass
1210 1210
1211 1211 # We return either the new info or the unmodified input if the object
1212 1212 # hadn't been found
1213 1213 return info
1214 1214
1215 1215 def _object_find(self, oname, namespaces=None):
1216 1216 """Find an object and return a struct with info about it."""
1217 1217 inf = Struct(self._ofind(oname, namespaces))
1218 1218 return Struct(self._ofind_property(oname, inf))
1219 1219
1220 1220 def _inspect(self, meth, oname, namespaces=None, **kw):
1221 1221 """Generic interface to the inspector system.
1222 1222
1223 1223 This function is meant to be called by pdef, pdoc & friends."""
1224 1224 info = self._object_find(oname)
1225 1225 if info.found:
1226 1226 pmethod = getattr(self.inspector, meth)
1227 1227 formatter = format_screen if info.ismagic else None
1228 1228 if meth == 'pdoc':
1229 1229 pmethod(info.obj, oname, formatter)
1230 1230 elif meth == 'pinfo':
1231 1231 pmethod(info.obj, oname, formatter, info, **kw)
1232 1232 else:
1233 1233 pmethod(info.obj, oname)
1234 1234 else:
1235 1235 print 'Object `%s` not found.' % oname
1236 1236 return 'not found' # so callers can take other action
1237 1237
1238 1238 def object_inspect(self, oname):
1239 1239 info = self._object_find(oname)
1240 1240 if info.found:
1241 1241 return self.inspector.info(info.obj, oname, info=info)
1242 1242 else:
1243 1243 return oinspect.object_info(name=oname, found=False)
1244 1244
1245 1245 #-------------------------------------------------------------------------
1246 1246 # Things related to history management
1247 1247 #-------------------------------------------------------------------------
1248 1248
1249 1249 def init_history(self):
1250 1250 """Sets up the command history, and starts regular autosaves."""
1251 1251 self.history_manager = HistoryManager(shell=self, config=self.config)
1252 1252
1253 1253 def history_saving_wrapper(self, func):
1254 1254 """ Wrap func for readline history saving
1255 1255
1256 1256 Convert func into callable that saves & restores
1257 1257 history around the call """
1258 1258
1259 1259 if self.has_readline:
1260 1260 from IPython.utils import rlineimpl as readline
1261 1261 else:
1262 1262 return func
1263 1263
1264 1264 def wrapper():
1265 1265 self.save_history()
1266 1266 try:
1267 1267 func()
1268 1268 finally:
1269 1269 self.reload_history()
1270 1270 return wrapper
1271 1271
1272 1272
1273 1273 #-------------------------------------------------------------------------
1274 1274 # Things related to exception handling and tracebacks (not debugging)
1275 1275 #-------------------------------------------------------------------------
1276 1276
1277 1277 def init_traceback_handlers(self, custom_exceptions):
1278 1278 # Syntax error handler.
1279 1279 self.SyntaxTB = ultratb.SyntaxTB(color_scheme='NoColor')
1280 1280
1281 1281 # The interactive one is initialized with an offset, meaning we always
1282 1282 # want to remove the topmost item in the traceback, which is our own
1283 1283 # internal code. Valid modes: ['Plain','Context','Verbose']
1284 1284 self.InteractiveTB = ultratb.AutoFormattedTB(mode = 'Plain',
1285 1285 color_scheme='NoColor',
1286 1286 tb_offset = 1,
1287 1287 check_cache=self.compile.check_cache)
1288 1288
1289 1289 # The instance will store a pointer to the system-wide exception hook,
1290 1290 # so that runtime code (such as magics) can access it. This is because
1291 1291 # during the read-eval loop, it may get temporarily overwritten.
1292 1292 self.sys_excepthook = sys.excepthook
1293 1293
1294 1294 # and add any custom exception handlers the user may have specified
1295 1295 self.set_custom_exc(*custom_exceptions)
1296 1296
1297 1297 # Set the exception mode
1298 1298 self.InteractiveTB.set_mode(mode=self.xmode)
1299 1299
1300 1300 def set_custom_exc(self, exc_tuple, handler):
1301 1301 """set_custom_exc(exc_tuple,handler)
1302 1302
1303 1303 Set a custom exception handler, which will be called if any of the
1304 1304 exceptions in exc_tuple occur in the mainloop (specifically, in the
1305 1305 run_code() method.
1306 1306
1307 1307 Inputs:
1308 1308
1309 1309 - exc_tuple: a *tuple* of valid exceptions to call the defined
1310 1310 handler for. It is very important that you use a tuple, and NOT A
1311 1311 LIST here, because of the way Python's except statement works. If
1312 1312 you only want to trap a single exception, use a singleton tuple:
1313 1313
1314 1314 exc_tuple == (MyCustomException,)
1315 1315
1316 1316 - handler: this must be defined as a function with the following
1317 1317 basic interface::
1318 1318
1319 1319 def my_handler(self, etype, value, tb, tb_offset=None)
1320 1320 ...
1321 1321 # The return value must be
1322 1322 return structured_traceback
1323 1323
1324 1324 This will be made into an instance method (via types.MethodType)
1325 1325 of IPython itself, and it will be called if any of the exceptions
1326 1326 listed in the exc_tuple are caught. If the handler is None, an
1327 1327 internal basic one is used, which just prints basic info.
1328 1328
1329 1329 WARNING: by putting in your own exception handler into IPython's main
1330 1330 execution loop, you run a very good chance of nasty crashes. This
1331 1331 facility should only be used if you really know what you are doing."""
1332 1332
1333 1333 assert type(exc_tuple)==type(()) , \
1334 1334 "The custom exceptions must be given AS A TUPLE."
1335 1335
1336 1336 def dummy_handler(self,etype,value,tb):
1337 1337 print '*** Simple custom exception handler ***'
1338 1338 print 'Exception type :',etype
1339 1339 print 'Exception value:',value
1340 1340 print 'Traceback :',tb
1341 1341 print 'Source code :','\n'.join(self.buffer)
1342 1342
1343 1343 if handler is None: handler = dummy_handler
1344 1344
1345 1345 self.CustomTB = types.MethodType(handler,self)
1346 1346 self.custom_exceptions = exc_tuple
1347 1347
1348 1348 def excepthook(self, etype, value, tb):
1349 1349 """One more defense for GUI apps that call sys.excepthook.
1350 1350
1351 1351 GUI frameworks like wxPython trap exceptions and call
1352 1352 sys.excepthook themselves. I guess this is a feature that
1353 1353 enables them to keep running after exceptions that would
1354 1354 otherwise kill their mainloop. This is a bother for IPython
1355 1355 which excepts to catch all of the program exceptions with a try:
1356 1356 except: statement.
1357 1357
1358 1358 Normally, IPython sets sys.excepthook to a CrashHandler instance, so if
1359 1359 any app directly invokes sys.excepthook, it will look to the user like
1360 1360 IPython crashed. In order to work around this, we can disable the
1361 1361 CrashHandler and replace it with this excepthook instead, which prints a
1362 1362 regular traceback using our InteractiveTB. In this fashion, apps which
1363 1363 call sys.excepthook will generate a regular-looking exception from
1364 1364 IPython, and the CrashHandler will only be triggered by real IPython
1365 1365 crashes.
1366 1366
1367 1367 This hook should be used sparingly, only in places which are not likely
1368 1368 to be true IPython errors.
1369 1369 """
1370 1370 self.showtraceback((etype,value,tb),tb_offset=0)
1371 1371
1372 1372 def showtraceback(self,exc_tuple = None,filename=None,tb_offset=None,
1373 1373 exception_only=False):
1374 1374 """Display the exception that just occurred.
1375 1375
1376 1376 If nothing is known about the exception, this is the method which
1377 1377 should be used throughout the code for presenting user tracebacks,
1378 1378 rather than directly invoking the InteractiveTB object.
1379 1379
1380 1380 A specific showsyntaxerror() also exists, but this method can take
1381 1381 care of calling it if needed, so unless you are explicitly catching a
1382 1382 SyntaxError exception, don't try to analyze the stack manually and
1383 1383 simply call this method."""
1384 1384
1385 1385 try:
1386 1386 if exc_tuple is None:
1387 1387 etype, value, tb = sys.exc_info()
1388 1388 else:
1389 1389 etype, value, tb = exc_tuple
1390 1390
1391 1391 if etype is None:
1392 1392 if hasattr(sys, 'last_type'):
1393 1393 etype, value, tb = sys.last_type, sys.last_value, \
1394 1394 sys.last_traceback
1395 1395 else:
1396 1396 self.write_err('No traceback available to show.\n')
1397 1397 return
1398 1398
1399 1399 if etype is SyntaxError:
1400 1400 # Though this won't be called by syntax errors in the input
1401 1401 # line, there may be SyntaxError cases whith imported code.
1402 1402 self.showsyntaxerror(filename)
1403 1403 elif etype is UsageError:
1404 1404 print "UsageError:", value
1405 1405 else:
1406 1406 # WARNING: these variables are somewhat deprecated and not
1407 1407 # necessarily safe to use in a threaded environment, but tools
1408 1408 # like pdb depend on their existence, so let's set them. If we
1409 1409 # find problems in the field, we'll need to revisit their use.
1410 1410 sys.last_type = etype
1411 1411 sys.last_value = value
1412 1412 sys.last_traceback = tb
1413 1413
1414 1414 if etype in self.custom_exceptions:
1415 1415 # FIXME: Old custom traceback objects may just return a
1416 1416 # string, in that case we just put it into a list
1417 1417 stb = self.CustomTB(etype, value, tb, tb_offset)
1418 1418 if isinstance(ctb, basestring):
1419 1419 stb = [stb]
1420 1420 else:
1421 1421 if exception_only:
1422 1422 stb = ['An exception has occurred, use %tb to see '
1423 1423 'the full traceback.\n']
1424 1424 stb.extend(self.InteractiveTB.get_exception_only(etype,
1425 1425 value))
1426 1426 else:
1427 1427 stb = self.InteractiveTB.structured_traceback(etype,
1428 1428 value, tb, tb_offset=tb_offset)
1429 1429 # FIXME: the pdb calling should be done by us, not by
1430 1430 # the code computing the traceback.
1431 1431 if self.InteractiveTB.call_pdb:
1432 1432 # pdb mucks up readline, fix it back
1433 1433 self.set_readline_completer()
1434 1434
1435 1435 # Actually show the traceback
1436 1436 self._showtraceback(etype, value, stb)
1437 1437
1438 1438 except KeyboardInterrupt:
1439 1439 self.write_err("\nKeyboardInterrupt\n")
1440 1440
1441 1441 def _showtraceback(self, etype, evalue, stb):
1442 1442 """Actually show a traceback.
1443 1443
1444 1444 Subclasses may override this method to put the traceback on a different
1445 1445 place, like a side channel.
1446 1446 """
1447 1447 print >> io.Term.cout, self.InteractiveTB.stb2text(stb)
1448 1448
1449 1449 def showsyntaxerror(self, filename=None):
1450 1450 """Display the syntax error that just occurred.
1451 1451
1452 1452 This doesn't display a stack trace because there isn't one.
1453 1453
1454 1454 If a filename is given, it is stuffed in the exception instead
1455 1455 of what was there before (because Python's parser always uses
1456 1456 "<string>" when reading from a string).
1457 1457 """
1458 1458 etype, value, last_traceback = sys.exc_info()
1459 1459
1460 1460 # See note about these variables in showtraceback() above
1461 1461 sys.last_type = etype
1462 1462 sys.last_value = value
1463 1463 sys.last_traceback = last_traceback
1464 1464
1465 1465 if filename and etype is SyntaxError:
1466 1466 # Work hard to stuff the correct filename in the exception
1467 1467 try:
1468 1468 msg, (dummy_filename, lineno, offset, line) = value
1469 1469 except:
1470 1470 # Not the format we expect; leave it alone
1471 1471 pass
1472 1472 else:
1473 1473 # Stuff in the right filename
1474 1474 try:
1475 1475 # Assume SyntaxError is a class exception
1476 1476 value = SyntaxError(msg, (filename, lineno, offset, line))
1477 1477 except:
1478 1478 # If that failed, assume SyntaxError is a string
1479 1479 value = msg, (filename, lineno, offset, line)
1480 1480 stb = self.SyntaxTB.structured_traceback(etype, value, [])
1481 1481 self._showtraceback(etype, value, stb)
1482 1482
1483 1483 #-------------------------------------------------------------------------
1484 1484 # Things related to readline
1485 1485 #-------------------------------------------------------------------------
1486 1486
1487 1487 def init_readline(self):
1488 1488 """Command history completion/saving/reloading."""
1489 1489
1490 1490 if self.readline_use:
1491 1491 import IPython.utils.rlineimpl as readline
1492 1492
1493 1493 self.rl_next_input = None
1494 1494 self.rl_do_indent = False
1495 1495
1496 1496 if not self.readline_use or not readline.have_readline:
1497 1497 self.has_readline = False
1498 1498 self.readline = None
1499 1499 # Set a number of methods that depend on readline to be no-op
1500 1500 self.set_readline_completer = no_op
1501 1501 self.set_custom_completer = no_op
1502 1502 self.set_completer_frame = no_op
1503 1503 warn('Readline services not available or not loaded.')
1504 1504 else:
1505 1505 self.has_readline = True
1506 1506 self.readline = readline
1507 1507 sys.modules['readline'] = readline
1508 1508
1509 1509 # Platform-specific configuration
1510 1510 if os.name == 'nt':
1511 1511 # FIXME - check with Frederick to see if we can harmonize
1512 1512 # naming conventions with pyreadline to avoid this
1513 1513 # platform-dependent check
1514 1514 self.readline_startup_hook = readline.set_pre_input_hook
1515 1515 else:
1516 1516 self.readline_startup_hook = readline.set_startup_hook
1517 1517
1518 1518 # Load user's initrc file (readline config)
1519 1519 # Or if libedit is used, load editrc.
1520 1520 inputrc_name = os.environ.get('INPUTRC')
1521 1521 if inputrc_name is None:
1522 1522 home_dir = get_home_dir()
1523 1523 if home_dir is not None:
1524 1524 inputrc_name = '.inputrc'
1525 1525 if readline.uses_libedit:
1526 1526 inputrc_name = '.editrc'
1527 1527 inputrc_name = os.path.join(home_dir, inputrc_name)
1528 1528 if os.path.isfile(inputrc_name):
1529 1529 try:
1530 1530 readline.read_init_file(inputrc_name)
1531 1531 except:
1532 1532 warn('Problems reading readline initialization file <%s>'
1533 1533 % inputrc_name)
1534 1534
1535 1535 # Configure readline according to user's prefs
1536 1536 # This is only done if GNU readline is being used. If libedit
1537 1537 # is being used (as on Leopard) the readline config is
1538 1538 # not run as the syntax for libedit is different.
1539 1539 if not readline.uses_libedit:
1540 1540 for rlcommand in self.readline_parse_and_bind:
1541 1541 #print "loading rl:",rlcommand # dbg
1542 1542 readline.parse_and_bind(rlcommand)
1543 1543
1544 1544 # Remove some chars from the delimiters list. If we encounter
1545 1545 # unicode chars, discard them.
1546 1546 delims = readline.get_completer_delims().encode("ascii", "ignore")
1547 1547 delims = delims.translate(None, self.readline_remove_delims)
1548 1548 delims = delims.replace(ESC_MAGIC, '')
1549 1549 readline.set_completer_delims(delims)
1550 1550 # otherwise we end up with a monster history after a while:
1551 1551 readline.set_history_length(self.history_length)
1552 1552
1553 stdin_encoding = sys.stdin.encoding or "utf-8"
1554
1553 1555 # Load the last 1000 lines from history
1554 1556 for _, _, cell in self.history_manager.get_tail(1000,
1555 1557 include_latest=True):
1556 1558 if cell.strip(): # Ignore blank lines
1557 1559 for line in cell.splitlines():
1558 readline.add_history(line)
1560 readline.add_history(line.encode(stdin_encoding))
1559 1561
1560 1562 # Configure auto-indent for all platforms
1561 1563 self.set_autoindent(self.autoindent)
1562 1564
1563 1565 def set_next_input(self, s):
1564 1566 """ Sets the 'default' input string for the next command line.
1565 1567
1566 1568 Requires readline.
1567 1569
1568 1570 Example:
1569 1571
1570 1572 [D:\ipython]|1> _ip.set_next_input("Hello Word")
1571 1573 [D:\ipython]|2> Hello Word_ # cursor is here
1572 1574 """
1573 1575
1574 1576 self.rl_next_input = s
1575 1577
1576 1578 # Maybe move this to the terminal subclass?
1577 1579 def pre_readline(self):
1578 1580 """readline hook to be used at the start of each line.
1579 1581
1580 1582 Currently it handles auto-indent only."""
1581 1583
1582 1584 if self.rl_do_indent:
1583 1585 self.readline.insert_text(self._indent_current_str())
1584 1586 if self.rl_next_input is not None:
1585 1587 self.readline.insert_text(self.rl_next_input)
1586 1588 self.rl_next_input = None
1587 1589
1588 1590 def _indent_current_str(self):
1589 1591 """return the current level of indentation as a string"""
1590 1592 return self.input_splitter.indent_spaces * ' '
1591 1593
1592 1594 #-------------------------------------------------------------------------
1593 1595 # Things related to text completion
1594 1596 #-------------------------------------------------------------------------
1595 1597
1596 1598 def init_completer(self):
1597 1599 """Initialize the completion machinery.
1598 1600
1599 1601 This creates completion machinery that can be used by client code,
1600 1602 either interactively in-process (typically triggered by the readline
1601 1603 library), programatically (such as in test suites) or out-of-prcess
1602 1604 (typically over the network by remote frontends).
1603 1605 """
1604 1606 from IPython.core.completer import IPCompleter
1605 1607 from IPython.core.completerlib import (module_completer,
1606 1608 magic_run_completer, cd_completer)
1607 1609
1608 1610 self.Completer = IPCompleter(self,
1609 1611 self.user_ns,
1610 1612 self.user_global_ns,
1611 1613 self.readline_omit__names,
1612 1614 self.alias_manager.alias_table,
1613 1615 self.has_readline)
1614 1616
1615 1617 # Add custom completers to the basic ones built into IPCompleter
1616 1618 sdisp = self.strdispatchers.get('complete_command', StrDispatch())
1617 1619 self.strdispatchers['complete_command'] = sdisp
1618 1620 self.Completer.custom_completers = sdisp
1619 1621
1620 1622 self.set_hook('complete_command', module_completer, str_key = 'import')
1621 1623 self.set_hook('complete_command', module_completer, str_key = 'from')
1622 1624 self.set_hook('complete_command', magic_run_completer, str_key = '%run')
1623 1625 self.set_hook('complete_command', cd_completer, str_key = '%cd')
1624 1626
1625 1627 # Only configure readline if we truly are using readline. IPython can
1626 1628 # do tab-completion over the network, in GUIs, etc, where readline
1627 1629 # itself may be absent
1628 1630 if self.has_readline:
1629 1631 self.set_readline_completer()
1630 1632
1631 1633 def complete(self, text, line=None, cursor_pos=None):
1632 1634 """Return the completed text and a list of completions.
1633 1635
1634 1636 Parameters
1635 1637 ----------
1636 1638
1637 1639 text : string
1638 1640 A string of text to be completed on. It can be given as empty and
1639 1641 instead a line/position pair are given. In this case, the
1640 1642 completer itself will split the line like readline does.
1641 1643
1642 1644 line : string, optional
1643 1645 The complete line that text is part of.
1644 1646
1645 1647 cursor_pos : int, optional
1646 1648 The position of the cursor on the input line.
1647 1649
1648 1650 Returns
1649 1651 -------
1650 1652 text : string
1651 1653 The actual text that was completed.
1652 1654
1653 1655 matches : list
1654 1656 A sorted list with all possible completions.
1655 1657
1656 1658 The optional arguments allow the completion to take more context into
1657 1659 account, and are part of the low-level completion API.
1658 1660
1659 1661 This is a wrapper around the completion mechanism, similar to what
1660 1662 readline does at the command line when the TAB key is hit. By
1661 1663 exposing it as a method, it can be used by other non-readline
1662 1664 environments (such as GUIs) for text completion.
1663 1665
1664 1666 Simple usage example:
1665 1667
1666 1668 In [1]: x = 'hello'
1667 1669
1668 1670 In [2]: _ip.complete('x.l')
1669 1671 Out[2]: ('x.l', ['x.ljust', 'x.lower', 'x.lstrip'])
1670 1672 """
1671 1673
1672 1674 # Inject names into __builtin__ so we can complete on the added names.
1673 1675 with self.builtin_trap:
1674 1676 return self.Completer.complete(text, line, cursor_pos)
1675 1677
1676 1678 def set_custom_completer(self, completer, pos=0):
1677 1679 """Adds a new custom completer function.
1678 1680
1679 1681 The position argument (defaults to 0) is the index in the completers
1680 1682 list where you want the completer to be inserted."""
1681 1683
1682 1684 newcomp = types.MethodType(completer,self.Completer)
1683 1685 self.Completer.matchers.insert(pos,newcomp)
1684 1686
1685 1687 def set_readline_completer(self):
1686 1688 """Reset readline's completer to be our own."""
1687 1689 self.readline.set_completer(self.Completer.rlcomplete)
1688 1690
1689 1691 def set_completer_frame(self, frame=None):
1690 1692 """Set the frame of the completer."""
1691 1693 if frame:
1692 1694 self.Completer.namespace = frame.f_locals
1693 1695 self.Completer.global_namespace = frame.f_globals
1694 1696 else:
1695 1697 self.Completer.namespace = self.user_ns
1696 1698 self.Completer.global_namespace = self.user_global_ns
1697 1699
1698 1700 #-------------------------------------------------------------------------
1699 1701 # Things related to magics
1700 1702 #-------------------------------------------------------------------------
1701 1703
1702 1704 def init_magics(self):
1703 1705 # FIXME: Move the color initialization to the DisplayHook, which
1704 1706 # should be split into a prompt manager and displayhook. We probably
1705 1707 # even need a centralize colors management object.
1706 1708 self.magic_colors(self.colors)
1707 1709 # History was moved to a separate module
1708 1710 from . import history
1709 1711 history.init_ipython(self)
1710 1712
1711 1713 def magic(self,arg_s):
1712 1714 """Call a magic function by name.
1713 1715
1714 1716 Input: a string containing the name of the magic function to call and
1715 1717 any additional arguments to be passed to the magic.
1716 1718
1717 1719 magic('name -opt foo bar') is equivalent to typing at the ipython
1718 1720 prompt:
1719 1721
1720 1722 In[1]: %name -opt foo bar
1721 1723
1722 1724 To call a magic without arguments, simply use magic('name').
1723 1725
1724 1726 This provides a proper Python function to call IPython's magics in any
1725 1727 valid Python code you can type at the interpreter, including loops and
1726 1728 compound statements.
1727 1729 """
1728 1730 args = arg_s.split(' ',1)
1729 1731 magic_name = args[0]
1730 1732 magic_name = magic_name.lstrip(prefilter.ESC_MAGIC)
1731 1733
1732 1734 try:
1733 1735 magic_args = args[1]
1734 1736 except IndexError:
1735 1737 magic_args = ''
1736 1738 fn = getattr(self,'magic_'+magic_name,None)
1737 1739 if fn is None:
1738 1740 error("Magic function `%s` not found." % magic_name)
1739 1741 else:
1740 1742 magic_args = self.var_expand(magic_args,1)
1741 1743 with nested(self.builtin_trap,):
1742 1744 result = fn(magic_args)
1743 1745 return result
1744 1746
1745 1747 def define_magic(self, magicname, func):
1746 1748 """Expose own function as magic function for ipython
1747 1749
1748 1750 def foo_impl(self,parameter_s=''):
1749 1751 'My very own magic!. (Use docstrings, IPython reads them).'
1750 1752 print 'Magic function. Passed parameter is between < >:'
1751 1753 print '<%s>' % parameter_s
1752 1754 print 'The self object is:',self
1753 1755
1754 1756 self.define_magic('foo',foo_impl)
1755 1757 """
1756 1758
1757 1759 import new
1758 1760 im = types.MethodType(func,self)
1759 1761 old = getattr(self, "magic_" + magicname, None)
1760 1762 setattr(self, "magic_" + magicname, im)
1761 1763 return old
1762 1764
1763 1765 #-------------------------------------------------------------------------
1764 1766 # Things related to macros
1765 1767 #-------------------------------------------------------------------------
1766 1768
1767 1769 def define_macro(self, name, themacro):
1768 1770 """Define a new macro
1769 1771
1770 1772 Parameters
1771 1773 ----------
1772 1774 name : str
1773 1775 The name of the macro.
1774 1776 themacro : str or Macro
1775 1777 The action to do upon invoking the macro. If a string, a new
1776 1778 Macro object is created by passing the string to it.
1777 1779 """
1778 1780
1779 1781 from IPython.core import macro
1780 1782
1781 1783 if isinstance(themacro, basestring):
1782 1784 themacro = macro.Macro(themacro)
1783 1785 if not isinstance(themacro, macro.Macro):
1784 1786 raise ValueError('A macro must be a string or a Macro instance.')
1785 1787 self.user_ns[name] = themacro
1786 1788
1787 1789 #-------------------------------------------------------------------------
1788 1790 # Things related to the running of system commands
1789 1791 #-------------------------------------------------------------------------
1790 1792
1791 1793 def system(self, cmd):
1792 1794 """Call the given cmd in a subprocess.
1793 1795
1794 1796 Parameters
1795 1797 ----------
1796 1798 cmd : str
1797 1799 Command to execute (can not end in '&', as bacground processes are
1798 1800 not supported.
1799 1801 """
1800 1802 # We do not support backgrounding processes because we either use
1801 1803 # pexpect or pipes to read from. Users can always just call
1802 1804 # os.system() if they really want a background process.
1803 1805 if cmd.endswith('&'):
1804 1806 raise OSError("Background processes not supported.")
1805 1807
1806 1808 return system(self.var_expand(cmd, depth=2))
1807 1809
1808 1810 def getoutput(self, cmd, split=True):
1809 1811 """Get output (possibly including stderr) from a subprocess.
1810 1812
1811 1813 Parameters
1812 1814 ----------
1813 1815 cmd : str
1814 1816 Command to execute (can not end in '&', as background processes are
1815 1817 not supported.
1816 1818 split : bool, optional
1817 1819
1818 1820 If True, split the output into an IPython SList. Otherwise, an
1819 1821 IPython LSString is returned. These are objects similar to normal
1820 1822 lists and strings, with a few convenience attributes for easier
1821 1823 manipulation of line-based output. You can use '?' on them for
1822 1824 details.
1823 1825 """
1824 1826 if cmd.endswith('&'):
1825 1827 raise OSError("Background processes not supported.")
1826 1828 out = getoutput(self.var_expand(cmd, depth=2))
1827 1829 if split:
1828 1830 out = SList(out.splitlines())
1829 1831 else:
1830 1832 out = LSString(out)
1831 1833 return out
1832 1834
1833 1835 #-------------------------------------------------------------------------
1834 1836 # Things related to aliases
1835 1837 #-------------------------------------------------------------------------
1836 1838
1837 1839 def init_alias(self):
1838 1840 self.alias_manager = AliasManager(shell=self, config=self.config)
1839 1841 self.ns_table['alias'] = self.alias_manager.alias_table,
1840 1842
1841 1843 #-------------------------------------------------------------------------
1842 1844 # Things related to extensions and plugins
1843 1845 #-------------------------------------------------------------------------
1844 1846
1845 1847 def init_extension_manager(self):
1846 1848 self.extension_manager = ExtensionManager(shell=self, config=self.config)
1847 1849
1848 1850 def init_plugin_manager(self):
1849 1851 self.plugin_manager = PluginManager(config=self.config)
1850 1852
1851 1853 #-------------------------------------------------------------------------
1852 1854 # Things related to payloads
1853 1855 #-------------------------------------------------------------------------
1854 1856
1855 1857 def init_payload(self):
1856 1858 self.payload_manager = PayloadManager(config=self.config)
1857 1859
1858 1860 #-------------------------------------------------------------------------
1859 1861 # Things related to the prefilter
1860 1862 #-------------------------------------------------------------------------
1861 1863
1862 1864 def init_prefilter(self):
1863 1865 self.prefilter_manager = PrefilterManager(shell=self, config=self.config)
1864 1866 # Ultimately this will be refactored in the new interpreter code, but
1865 1867 # for now, we should expose the main prefilter method (there's legacy
1866 1868 # code out there that may rely on this).
1867 1869 self.prefilter = self.prefilter_manager.prefilter_lines
1868 1870
1869 1871 def auto_rewrite_input(self, cmd):
1870 1872 """Print to the screen the rewritten form of the user's command.
1871 1873
1872 1874 This shows visual feedback by rewriting input lines that cause
1873 1875 automatic calling to kick in, like::
1874 1876
1875 1877 /f x
1876 1878
1877 1879 into::
1878 1880
1879 1881 ------> f(x)
1880 1882
1881 1883 after the user's input prompt. This helps the user understand that the
1882 1884 input line was transformed automatically by IPython.
1883 1885 """
1884 1886 rw = self.displayhook.prompt1.auto_rewrite() + cmd
1885 1887
1886 1888 try:
1887 1889 # plain ascii works better w/ pyreadline, on some machines, so
1888 1890 # we use it and only print uncolored rewrite if we have unicode
1889 1891 rw = str(rw)
1890 1892 print >> IPython.utils.io.Term.cout, rw
1891 1893 except UnicodeEncodeError:
1892 1894 print "------> " + cmd
1893 1895
1894 1896 #-------------------------------------------------------------------------
1895 1897 # Things related to extracting values/expressions from kernel and user_ns
1896 1898 #-------------------------------------------------------------------------
1897 1899
1898 1900 def _simple_error(self):
1899 1901 etype, value = sys.exc_info()[:2]
1900 1902 return u'[ERROR] {e.__name__}: {v}'.format(e=etype, v=value)
1901 1903
1902 1904 def user_variables(self, names):
1903 1905 """Get a list of variable names from the user's namespace.
1904 1906
1905 1907 Parameters
1906 1908 ----------
1907 1909 names : list of strings
1908 1910 A list of names of variables to be read from the user namespace.
1909 1911
1910 1912 Returns
1911 1913 -------
1912 1914 A dict, keyed by the input names and with the repr() of each value.
1913 1915 """
1914 1916 out = {}
1915 1917 user_ns = self.user_ns
1916 1918 for varname in names:
1917 1919 try:
1918 1920 value = repr(user_ns[varname])
1919 1921 except:
1920 1922 value = self._simple_error()
1921 1923 out[varname] = value
1922 1924 return out
1923 1925
1924 1926 def user_expressions(self, expressions):
1925 1927 """Evaluate a dict of expressions in the user's namespace.
1926 1928
1927 1929 Parameters
1928 1930 ----------
1929 1931 expressions : dict
1930 1932 A dict with string keys and string values. The expression values
1931 1933 should be valid Python expressions, each of which will be evaluated
1932 1934 in the user namespace.
1933 1935
1934 1936 Returns
1935 1937 -------
1936 1938 A dict, keyed like the input expressions dict, with the repr() of each
1937 1939 value.
1938 1940 """
1939 1941 out = {}
1940 1942 user_ns = self.user_ns
1941 1943 global_ns = self.user_global_ns
1942 1944 for key, expr in expressions.iteritems():
1943 1945 try:
1944 1946 value = repr(eval(expr, global_ns, user_ns))
1945 1947 except:
1946 1948 value = self._simple_error()
1947 1949 out[key] = value
1948 1950 return out
1949 1951
1950 1952 #-------------------------------------------------------------------------
1951 1953 # Things related to the running of code
1952 1954 #-------------------------------------------------------------------------
1953 1955
1954 1956 def ex(self, cmd):
1955 1957 """Execute a normal python statement in user namespace."""
1956 1958 with nested(self.builtin_trap,):
1957 1959 exec cmd in self.user_global_ns, self.user_ns
1958 1960
1959 1961 def ev(self, expr):
1960 1962 """Evaluate python expression expr in user namespace.
1961 1963
1962 1964 Returns the result of evaluation
1963 1965 """
1964 1966 with nested(self.builtin_trap,):
1965 1967 return eval(expr, self.user_global_ns, self.user_ns)
1966 1968
1967 1969 def safe_execfile(self, fname, *where, **kw):
1968 1970 """A safe version of the builtin execfile().
1969 1971
1970 1972 This version will never throw an exception, but instead print
1971 1973 helpful error messages to the screen. This only works on pure
1972 1974 Python files with the .py extension.
1973 1975
1974 1976 Parameters
1975 1977 ----------
1976 1978 fname : string
1977 1979 The name of the file to be executed.
1978 1980 where : tuple
1979 1981 One or two namespaces, passed to execfile() as (globals,locals).
1980 1982 If only one is given, it is passed as both.
1981 1983 exit_ignore : bool (False)
1982 1984 If True, then silence SystemExit for non-zero status (it is always
1983 1985 silenced for zero status, as it is so common).
1984 1986 """
1985 1987 kw.setdefault('exit_ignore', False)
1986 1988
1987 1989 fname = os.path.abspath(os.path.expanduser(fname))
1988 1990
1989 1991 # Make sure we have a .py file
1990 1992 if not fname.endswith('.py'):
1991 1993 warn('File must end with .py to be run using execfile: <%s>' % fname)
1992 1994
1993 1995 # Make sure we can open the file
1994 1996 try:
1995 1997 with open(fname) as thefile:
1996 1998 pass
1997 1999 except:
1998 2000 warn('Could not open file <%s> for safe execution.' % fname)
1999 2001 return
2000 2002
2001 2003 # Find things also in current directory. This is needed to mimic the
2002 2004 # behavior of running a script from the system command line, where
2003 2005 # Python inserts the script's directory into sys.path
2004 2006 dname = os.path.dirname(fname)
2005 2007
2006 2008 with prepended_to_syspath(dname):
2007 2009 try:
2008 2010 execfile(fname,*where)
2009 2011 except SystemExit, status:
2010 2012 # If the call was made with 0 or None exit status (sys.exit(0)
2011 2013 # or sys.exit() ), don't bother showing a traceback, as both of
2012 2014 # these are considered normal by the OS:
2013 2015 # > python -c'import sys;sys.exit(0)'; echo $?
2014 2016 # 0
2015 2017 # > python -c'import sys;sys.exit()'; echo $?
2016 2018 # 0
2017 2019 # For other exit status, we show the exception unless
2018 2020 # explicitly silenced, but only in short form.
2019 2021 if status.code not in (0, None) and not kw['exit_ignore']:
2020 2022 self.showtraceback(exception_only=True)
2021 2023 except:
2022 2024 self.showtraceback()
2023 2025
2024 2026 def safe_execfile_ipy(self, fname):
2025 2027 """Like safe_execfile, but for .ipy files with IPython syntax.
2026 2028
2027 2029 Parameters
2028 2030 ----------
2029 2031 fname : str
2030 2032 The name of the file to execute. The filename must have a
2031 2033 .ipy extension.
2032 2034 """
2033 2035 fname = os.path.abspath(os.path.expanduser(fname))
2034 2036
2035 2037 # Make sure we have a .py file
2036 2038 if not fname.endswith('.ipy'):
2037 2039 warn('File must end with .py to be run using execfile: <%s>' % fname)
2038 2040
2039 2041 # Make sure we can open the file
2040 2042 try:
2041 2043 with open(fname) as thefile:
2042 2044 pass
2043 2045 except:
2044 2046 warn('Could not open file <%s> for safe execution.' % fname)
2045 2047 return
2046 2048
2047 2049 # Find things also in current directory. This is needed to mimic the
2048 2050 # behavior of running a script from the system command line, where
2049 2051 # Python inserts the script's directory into sys.path
2050 2052 dname = os.path.dirname(fname)
2051 2053
2052 2054 with prepended_to_syspath(dname):
2053 2055 try:
2054 2056 with open(fname) as thefile:
2055 2057 # self.run_cell currently captures all exceptions
2056 2058 # raised in user code. It would be nice if there were
2057 2059 # versions of runlines, execfile that did raise, so
2058 2060 # we could catch the errors.
2059 2061 self.run_cell(thefile.read())
2060 2062 except:
2061 2063 self.showtraceback()
2062 2064 warn('Unknown failure executing file: <%s>' % fname)
2063 2065
2064 2066 def run_cell(self, cell, store_history=True):
2065 2067 """Run the contents of an entire multiline 'cell' of code, and store it
2066 2068 in the history.
2067 2069
2068 2070 The cell is split into separate blocks which can be executed
2069 2071 individually. Then, based on how many blocks there are, they are
2070 2072 executed as follows:
2071 2073
2072 2074 - A single block: 'single' mode. If it is also a single line, dynamic
2073 2075 transformations, including automagic and macros, will be applied.
2074 2076
2075 2077 If there's more than one block, it depends:
2076 2078
2077 2079 - if the last one is no more than two lines long, run all but the last
2078 2080 in 'exec' mode and the very last one in 'single' mode. This makes it
2079 2081 easy to type simple expressions at the end to see computed values. -
2080 2082 otherwise (last one is also multiline), run all in 'exec' mode
2081 2083
2082 2084 When code is executed in 'single' mode, :func:`sys.displayhook` fires,
2083 2085 results are displayed and output prompts are computed. In 'exec' mode,
2084 2086 no results are displayed unless :func:`print` is called explicitly;
2085 2087 this mode is more akin to running a script.
2086 2088
2087 2089 Parameters
2088 2090 ----------
2089 2091 cell : str
2090 2092 A single or multiline string.
2091 2093 """
2092 2094 # Store the untransformed code
2093 2095 raw_cell = cell
2094 2096
2095 2097 # We need to break up the input into executable blocks that can be run
2096 2098 # in 'single' mode, to provide comfortable user behavior.
2097 2099 blocks = self.input_splitter.split_blocks(cell)
2098 2100
2099 2101 if not blocks: # Blank cell
2100 2102 return
2101 2103
2102 2104 # We only do dynamic transforms on a single line. But a macro can
2103 2105 # be expanded to several lines, so we need to split it into input
2104 2106 # blocks again.
2105 2107 if len(cell.splitlines()) <= 1:
2106 2108 cell = self.prefilter_manager.prefilter_line(blocks[0])
2107 2109 blocks = self.input_splitter.split_blocks(cell)
2108
2109 2110
2110 2111 # Store the 'ipython' version of the cell as well, since that's what
2111 2112 # needs to go into the translated history and get executed (the
2112 2113 # original cell may contain non-python syntax).
2113 2114 cell = ''.join(blocks)
2114 2115
2115 2116 # Store raw and processed history
2116 2117 if store_history:
2117 2118 self.history_manager.store_inputs(self.execution_count,
2118 2119 cell, raw_cell)
2119 2120
2120 2121 self.logger.log(cell, raw_cell)
2121 2122
2122 2123 # All user code execution must happen with our context managers active
2123 2124 with nested(self.builtin_trap, self.display_trap):
2124 2125
2125 2126 # Single-block input should behave like an interactive prompt
2126 2127 if len(blocks) == 1:
2127 2128 out = self.run_source(blocks[0])
2128 2129 # Write output to the database. Does nothing unless
2129 2130 # history output logging is enabled.
2130 2131 if store_history:
2131 2132 self.history_manager.store_output(self.execution_count)
2132 2133 # since we return here, we need to update the execution count
2133 2134 self.execution_count += 1
2134 2135 return out
2135 2136
2136 2137 # In multi-block input, if the last block is a simple (one-two
2137 2138 # lines) expression, run it in single mode so it produces output.
2138 2139 # Otherwise just run it all in 'exec' mode. This seems like a
2139 2140 # reasonable usability design.
2140 2141 last = blocks[-1]
2141 2142 last_nlines = len(last.splitlines())
2142 2143
2143 2144 if last_nlines < 2:
2144 2145 # Here we consider the cell split between 'body' and 'last',
2145 2146 # store all history and execute 'body', and if successful, then
2146 2147 # proceed to execute 'last'.
2147 2148
2148 2149 # Get the main body to run as a cell
2149 2150 ipy_body = ''.join(blocks[:-1])
2150 2151 retcode = self.run_source(ipy_body, symbol='exec',
2151 2152 post_execute=False)
2152 2153 if retcode==0:
2153 2154 # Last expression compiled as 'single' so it produces output
2154 2155 self.run_source(last)
2155 2156 else:
2156 2157 # Run the whole cell as one entity, storing both raw and
2157 2158 # processed input in history
2158 2159 self.run_source(ipy_cell, symbol='exec')
2159 2160
2160 2161 # Write output to the database. Does nothing unless
2161 2162 # history output logging is enabled.
2162 2163 if store_history:
2163 2164 self.history_manager.store_output(self.execution_count)
2164 2165 # Each cell is a *single* input, regardless of how many lines it has
2165 2166 self.execution_count += 1
2166 2167
2167 2168 # PENDING REMOVAL: this method is slated for deletion, once our new
2168 2169 # input logic has been 100% moved to frontends and is stable.
2169 2170 def runlines(self, lines, clean=False):
2170 2171 """Run a string of one or more lines of source.
2171 2172
2172 2173 This method is capable of running a string containing multiple source
2173 2174 lines, as if they had been entered at the IPython prompt. Since it
2174 2175 exposes IPython's processing machinery, the given strings can contain
2175 2176 magic calls (%magic), special shell access (!cmd), etc.
2176 2177 """
2177 2178
2178 2179 if not isinstance(lines, (list, tuple)):
2179 2180 lines = lines.splitlines()
2180 2181
2181 2182 if clean:
2182 2183 lines = self._cleanup_ipy_script(lines)
2183 2184
2184 2185 # We must start with a clean buffer, in case this is run from an
2185 2186 # interactive IPython session (via a magic, for example).
2186 2187 self.reset_buffer()
2187 2188
2188 2189 # Since we will prefilter all lines, store the user's raw input too
2189 2190 # before we apply any transformations
2190 2191 self.buffer_raw[:] = [ l+'\n' for l in lines]
2191 2192
2192 2193 more = False
2193 2194 prefilter_lines = self.prefilter_manager.prefilter_lines
2194 2195 with nested(self.builtin_trap, self.display_trap):
2195 2196 for line in lines:
2196 2197 # skip blank lines so we don't mess up the prompt counter, but
2197 2198 # do NOT skip even a blank line if we are in a code block (more
2198 2199 # is true)
2199 2200
2200 2201 if line or more:
2201 2202 more = self.push_line(prefilter_lines(line, more))
2202 2203 # IPython's run_source returns None if there was an error
2203 2204 # compiling the code. This allows us to stop processing
2204 2205 # right away, so the user gets the error message at the
2205 2206 # right place.
2206 2207 if more is None:
2207 2208 break
2208 2209 # final newline in case the input didn't have it, so that the code
2209 2210 # actually does get executed
2210 2211 if more:
2211 2212 self.push_line('\n')
2212 2213
2213 2214 def run_source(self, source, filename=None,
2214 2215 symbol='single', post_execute=True):
2215 2216 """Compile and run some source in the interpreter.
2216 2217
2217 2218 Arguments are as for compile_command().
2218 2219
2219 2220 One several things can happen:
2220 2221
2221 2222 1) The input is incorrect; compile_command() raised an
2222 2223 exception (SyntaxError or OverflowError). A syntax traceback
2223 2224 will be printed by calling the showsyntaxerror() method.
2224 2225
2225 2226 2) The input is incomplete, and more input is required;
2226 2227 compile_command() returned None. Nothing happens.
2227 2228
2228 2229 3) The input is complete; compile_command() returned a code
2229 2230 object. The code is executed by calling self.run_code() (which
2230 2231 also handles run-time exceptions, except for SystemExit).
2231 2232
2232 2233 The return value is:
2233 2234
2234 2235 - True in case 2
2235 2236
2236 2237 - False in the other cases, unless an exception is raised, where
2237 2238 None is returned instead. This can be used by external callers to
2238 2239 know whether to continue feeding input or not.
2239 2240
2240 2241 The return value can be used to decide whether to use sys.ps1 or
2241 2242 sys.ps2 to prompt the next line."""
2242 2243
2243 2244 # We need to ensure that the source is unicode from here on.
2244 2245 if type(source)==str:
2245 2246 usource = source.decode(self.stdin_encoding)
2246 2247 else:
2247 2248 usource = source
2248 2249
2249 if 0: # dbg
2250 if False: # dbg
2250 2251 print 'Source:', repr(source) # dbg
2251 2252 print 'USource:', repr(usource) # dbg
2252 2253 print 'type:', type(source) # dbg
2253 2254 print 'encoding', self.stdin_encoding # dbg
2254 2255
2255 2256 try:
2256 2257 code = self.compile(usource, symbol, self.execution_count)
2257 2258 except (OverflowError, SyntaxError, ValueError, TypeError, MemoryError):
2258 2259 # Case 1
2259 2260 self.showsyntaxerror(filename)
2260 2261 return None
2261 2262
2262 2263 if code is None:
2263 2264 # Case 2
2264 2265 return True
2265 2266
2266 2267 # Case 3
2267 2268 # We store the code object so that threaded shells and
2268 2269 # custom exception handlers can access all this info if needed.
2269 2270 # The source corresponding to this can be obtained from the
2270 2271 # buffer attribute as '\n'.join(self.buffer).
2271 2272 self.code_to_run = code
2272 2273 # now actually execute the code object
2273 2274 if self.run_code(code, post_execute) == 0:
2274 2275 return False
2275 2276 else:
2276 2277 return None
2277 2278
2278 2279 # For backwards compatibility
2279 2280 runsource = run_source
2280 2281
2281 2282 def run_code(self, code_obj, post_execute=True):
2282 2283 """Execute a code object.
2283 2284
2284 2285 When an exception occurs, self.showtraceback() is called to display a
2285 2286 traceback.
2286 2287
2287 2288 Return value: a flag indicating whether the code to be run completed
2288 2289 successfully:
2289 2290
2290 2291 - 0: successful execution.
2291 2292 - 1: an error occurred.
2292 2293 """
2293 2294
2294 2295 # Set our own excepthook in case the user code tries to call it
2295 2296 # directly, so that the IPython crash handler doesn't get triggered
2296 2297 old_excepthook,sys.excepthook = sys.excepthook, self.excepthook
2297 2298
2298 2299 # we save the original sys.excepthook in the instance, in case config
2299 2300 # code (such as magics) needs access to it.
2300 2301 self.sys_excepthook = old_excepthook
2301 2302 outflag = 1 # happens in more places, so it's easier as default
2302 2303 try:
2303 2304 try:
2304 2305 self.hooks.pre_run_code_hook()
2305 2306 #rprint('Running code', repr(code_obj)) # dbg
2306 2307 exec code_obj in self.user_global_ns, self.user_ns
2307 2308 finally:
2308 2309 # Reset our crash handler in place
2309 2310 sys.excepthook = old_excepthook
2310 2311 except SystemExit:
2311 2312 self.reset_buffer()
2312 2313 self.showtraceback(exception_only=True)
2313 2314 warn("To exit: use any of 'exit', 'quit', %Exit or Ctrl-D.", level=1)
2314 2315 except self.custom_exceptions:
2315 2316 etype,value,tb = sys.exc_info()
2316 2317 self.CustomTB(etype,value,tb)
2317 2318 except:
2318 2319 self.showtraceback()
2319 2320 else:
2320 2321 outflag = 0
2321 2322 if softspace(sys.stdout, 0):
2322 2323 print
2323 2324
2324 2325 # Execute any registered post-execution functions. Here, any errors
2325 2326 # are reported only minimally and just on the terminal, because the
2326 2327 # main exception channel may be occupied with a user traceback.
2327 2328 # FIXME: we need to think this mechanism a little more carefully.
2328 2329 if post_execute:
2329 2330 for func in self._post_execute:
2330 2331 try:
2331 2332 func()
2332 2333 except:
2333 2334 head = '[ ERROR ] Evaluating post_execute function: %s' % \
2334 2335 func
2335 2336 print >> io.Term.cout, head
2336 2337 print >> io.Term.cout, self._simple_error()
2337 2338 print >> io.Term.cout, 'Removing from post_execute'
2338 2339 self._post_execute.remove(func)
2339 2340
2340 2341 # Flush out code object which has been run (and source)
2341 2342 self.code_to_run = None
2342 2343 return outflag
2343 2344
2344 2345 # For backwards compatibility
2345 2346 runcode = run_code
2346 2347
2347 2348 # PENDING REMOVAL: this method is slated for deletion, once our new
2348 2349 # input logic has been 100% moved to frontends and is stable.
2349 2350 def push_line(self, line):
2350 2351 """Push a line to the interpreter.
2351 2352
2352 2353 The line should not have a trailing newline; it may have
2353 2354 internal newlines. The line is appended to a buffer and the
2354 2355 interpreter's run_source() method is called with the
2355 2356 concatenated contents of the buffer as source. If this
2356 2357 indicates that the command was executed or invalid, the buffer
2357 2358 is reset; otherwise, the command is incomplete, and the buffer
2358 2359 is left as it was after the line was appended. The return
2359 2360 value is 1 if more input is required, 0 if the line was dealt
2360 2361 with in some way (this is the same as run_source()).
2361 2362 """
2362 2363
2363 2364 # autoindent management should be done here, and not in the
2364 2365 # interactive loop, since that one is only seen by keyboard input. We
2365 2366 # need this done correctly even for code run via runlines (which uses
2366 2367 # push).
2367 2368
2368 2369 #print 'push line: <%s>' % line # dbg
2369 2370 self.buffer.append(line)
2370 2371 full_source = '\n'.join(self.buffer)
2371 2372 more = self.run_source(full_source, self.filename)
2372 2373 if not more:
2373 2374 self.history_manager.store_inputs(self.execution_count,
2374 2375 '\n'.join(self.buffer_raw), full_source)
2375 2376 self.reset_buffer()
2376 2377 self.execution_count += 1
2377 2378 return more
2378 2379
2379 2380 def reset_buffer(self):
2380 2381 """Reset the input buffer."""
2381 2382 self.buffer[:] = []
2382 2383 self.buffer_raw[:] = []
2383 2384 self.input_splitter.reset()
2384 2385
2385 2386 # For backwards compatibility
2386 2387 resetbuffer = reset_buffer
2387 2388
2388 2389 def _is_secondary_block_start(self, s):
2389 2390 if not s.endswith(':'):
2390 2391 return False
2391 2392 if (s.startswith('elif') or
2392 2393 s.startswith('else') or
2393 2394 s.startswith('except') or
2394 2395 s.startswith('finally')):
2395 2396 return True
2396 2397
2397 2398 def _cleanup_ipy_script(self, script):
2398 2399 """Make a script safe for self.runlines()
2399 2400
2400 2401 Currently, IPython is lines based, with blocks being detected by
2401 2402 empty lines. This is a problem for block based scripts that may
2402 2403 not have empty lines after blocks. This script adds those empty
2403 2404 lines to make scripts safe for running in the current line based
2404 2405 IPython.
2405 2406 """
2406 2407 res = []
2407 2408 lines = script.splitlines()
2408 2409 level = 0
2409 2410
2410 2411 for l in lines:
2411 2412 lstripped = l.lstrip()
2412 2413 stripped = l.strip()
2413 2414 if not stripped:
2414 2415 continue
2415 2416 newlevel = len(l) - len(lstripped)
2416 2417 if level > 0 and newlevel == 0 and \
2417 2418 not self._is_secondary_block_start(stripped):
2418 2419 # add empty line
2419 2420 res.append('')
2420 2421 res.append(l)
2421 2422 level = newlevel
2422 2423
2423 2424 return '\n'.join(res) + '\n'
2424 2425
2425 2426 #-------------------------------------------------------------------------
2426 2427 # Things related to GUI support and pylab
2427 2428 #-------------------------------------------------------------------------
2428 2429
2429 2430 def enable_pylab(self, gui=None):
2430 2431 raise NotImplementedError('Implement enable_pylab in a subclass')
2431 2432
2432 2433 #-------------------------------------------------------------------------
2433 2434 # Utilities
2434 2435 #-------------------------------------------------------------------------
2435 2436
2436 2437 def var_expand(self,cmd,depth=0):
2437 2438 """Expand python variables in a string.
2438 2439
2439 2440 The depth argument indicates how many frames above the caller should
2440 2441 be walked to look for the local namespace where to expand variables.
2441 2442
2442 2443 The global namespace for expansion is always the user's interactive
2443 2444 namespace.
2444 2445 """
2445 2446
2446 2447 return str(ItplNS(cmd,
2447 2448 self.user_ns, # globals
2448 2449 # Skip our own frame in searching for locals:
2449 2450 sys._getframe(depth+1).f_locals # locals
2450 2451 ))
2451 2452
2452 2453 def mktempfile(self, data=None, prefix='ipython_edit_'):
2453 2454 """Make a new tempfile and return its filename.
2454 2455
2455 2456 This makes a call to tempfile.mktemp, but it registers the created
2456 2457 filename internally so ipython cleans it up at exit time.
2457 2458
2458 2459 Optional inputs:
2459 2460
2460 2461 - data(None): if data is given, it gets written out to the temp file
2461 2462 immediately, and the file is closed again."""
2462 2463
2463 2464 filename = tempfile.mktemp('.py', prefix)
2464 2465 self.tempfiles.append(filename)
2465 2466
2466 2467 if data:
2467 2468 tmp_file = open(filename,'w')
2468 2469 tmp_file.write(data)
2469 2470 tmp_file.close()
2470 2471 return filename
2471 2472
2472 2473 # TODO: This should be removed when Term is refactored.
2473 2474 def write(self,data):
2474 2475 """Write a string to the default output"""
2475 2476 io.Term.cout.write(data)
2476 2477
2477 2478 # TODO: This should be removed when Term is refactored.
2478 2479 def write_err(self,data):
2479 2480 """Write a string to the default error output"""
2480 2481 io.Term.cerr.write(data)
2481 2482
2482 2483 def ask_yes_no(self,prompt,default=True):
2483 2484 if self.quiet:
2484 2485 return True
2485 2486 return ask_yes_no(prompt,default)
2486 2487
2487 2488 def show_usage(self):
2488 2489 """Show a usage message"""
2489 2490 page.page(IPython.core.usage.interactive_usage)
2490 2491
2491 2492 #-------------------------------------------------------------------------
2492 2493 # Things related to IPython exiting
2493 2494 #-------------------------------------------------------------------------
2494 2495 def atexit_operations(self):
2495 2496 """This will be executed at the time of exit.
2496 2497
2497 2498 Cleanup operations and saving of persistent data that is done
2498 2499 unconditionally by IPython should be performed here.
2499 2500
2500 2501 For things that may depend on startup flags or platform specifics (such
2501 2502 as having readline or not), register a separate atexit function in the
2502 2503 code that has the appropriate information, rather than trying to
2503 2504 clutter
2504 2505 """
2505 2506 # Cleanup all tempfiles left around
2506 2507 for tfile in self.tempfiles:
2507 2508 try:
2508 2509 os.unlink(tfile)
2509 2510 except OSError:
2510 2511 pass
2511 2512
2512 2513 # Close the history session (this stores the end time and line count)
2513 2514 self.history_manager.end_session()
2514 2515
2515 2516 # Clear all user namespaces to release all references cleanly.
2516 2517 self.reset(new_session=False)
2517 2518
2518 2519 # Run user hooks
2519 2520 self.hooks.shutdown_hook()
2520 2521
2521 2522 def cleanup(self):
2522 2523 self.restore_sys_module_state()
2523 2524
2524 2525
2525 2526 class InteractiveShellABC(object):
2526 2527 """An abstract base class for InteractiveShell."""
2527 2528 __metaclass__ = abc.ABCMeta
2528 2529
2529 2530 InteractiveShellABC.register(InteractiveShell)
@@ -1,3450 +1,3451 b''
1 1 # encoding: utf-8
2 2 """Magic functions for InteractiveShell.
3 3 """
4 4
5 5 #-----------------------------------------------------------------------------
6 6 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
7 7 # Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
8 8 # Copyright (C) 2008-2009 The IPython Development Team
9 9
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #-----------------------------------------------------------------------------
13 13
14 14 #-----------------------------------------------------------------------------
15 15 # Imports
16 16 #-----------------------------------------------------------------------------
17 17
18 18 import __builtin__
19 19 import __future__
20 20 import bdb
21 21 import inspect
22 22 import os
23 23 import sys
24 24 import shutil
25 25 import re
26 26 import time
27 27 import textwrap
28 28 import types
29 29 from cStringIO import StringIO
30 30 from getopt import getopt,GetoptError
31 31 from pprint import pformat
32 32
33 33 # cProfile was added in Python2.5
34 34 try:
35 35 import cProfile as profile
36 36 import pstats
37 37 except ImportError:
38 38 # profile isn't bundled by default in Debian for license reasons
39 39 try:
40 40 import profile,pstats
41 41 except ImportError:
42 42 profile = pstats = None
43 43
44 44 import IPython
45 45 from IPython.core import debugger, oinspect
46 46 from IPython.core.error import TryNext
47 47 from IPython.core.error import UsageError
48 48 from IPython.core.fakemodule import FakeModule
49 49 from IPython.core.macro import Macro
50 50 from IPython.core import page
51 51 from IPython.core.prefilter import ESC_MAGIC
52 52 from IPython.lib.pylabtools import mpl_runner
53 53 from IPython.external.Itpl import itpl, printpl
54 54 from IPython.testing import decorators as testdec
55 55 from IPython.utils.io import file_read, nlprint
56 56 import IPython.utils.io
57 57 from IPython.utils.path import get_py_filename
58 58 from IPython.utils.process import arg_split, abbrev_cwd
59 59 from IPython.utils.terminal import set_term_title
60 60 from IPython.utils.text import LSString, SList, format_screen
61 61 from IPython.utils.timing import clock, clock2
62 62 from IPython.utils.warn import warn, error
63 63 from IPython.utils.ipstruct import Struct
64 64 import IPython.utils.generics
65 65
66 66 #-----------------------------------------------------------------------------
67 67 # Utility functions
68 68 #-----------------------------------------------------------------------------
69 69
70 70 def on_off(tag):
71 71 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
72 72 return ['OFF','ON'][tag]
73 73
74 74 class Bunch: pass
75 75
76 76 def compress_dhist(dh):
77 77 head, tail = dh[:-10], dh[-10:]
78 78
79 79 newhead = []
80 80 done = set()
81 81 for h in head:
82 82 if h in done:
83 83 continue
84 84 newhead.append(h)
85 85 done.add(h)
86 86
87 87 return newhead + tail
88 88
89 89
90 90 #***************************************************************************
91 91 # Main class implementing Magic functionality
92 92
93 93 # XXX - for some odd reason, if Magic is made a new-style class, we get errors
94 94 # on construction of the main InteractiveShell object. Something odd is going
95 95 # on with super() calls, Configurable and the MRO... For now leave it as-is, but
96 96 # eventually this needs to be clarified.
97 97 # BG: This is because InteractiveShell inherits from this, but is itself a
98 98 # Configurable. This messes up the MRO in some way. The fix is that we need to
99 99 # make Magic a configurable that InteractiveShell does not subclass.
100 100
101 101 class Magic:
102 102 """Magic functions for InteractiveShell.
103 103
104 104 Shell functions which can be reached as %function_name. All magic
105 105 functions should accept a string, which they can parse for their own
106 106 needs. This can make some functions easier to type, eg `%cd ../`
107 107 vs. `%cd("../")`
108 108
109 109 ALL definitions MUST begin with the prefix magic_. The user won't need it
110 110 at the command line, but it is is needed in the definition. """
111 111
112 112 # class globals
113 113 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
114 114 'Automagic is ON, % prefix NOT needed for magic functions.']
115 115
116 116 #......................................................................
117 117 # some utility functions
118 118
119 119 def __init__(self,shell):
120 120
121 121 self.options_table = {}
122 122 if profile is None:
123 123 self.magic_prun = self.profile_missing_notice
124 124 self.shell = shell
125 125
126 126 # namespace for holding state we may need
127 127 self._magic_state = Bunch()
128 128
129 129 def profile_missing_notice(self, *args, **kwargs):
130 130 error("""\
131 131 The profile module could not be found. It has been removed from the standard
132 132 python packages because of its non-free license. To use profiling, install the
133 133 python-profiler package from non-free.""")
134 134
135 135 def default_option(self,fn,optstr):
136 136 """Make an entry in the options_table for fn, with value optstr"""
137 137
138 138 if fn not in self.lsmagic():
139 139 error("%s is not a magic function" % fn)
140 140 self.options_table[fn] = optstr
141 141
142 142 def lsmagic(self):
143 143 """Return a list of currently available magic functions.
144 144
145 145 Gives a list of the bare names after mangling (['ls','cd', ...], not
146 146 ['magic_ls','magic_cd',...]"""
147 147
148 148 # FIXME. This needs a cleanup, in the way the magics list is built.
149 149
150 150 # magics in class definition
151 151 class_magic = lambda fn: fn.startswith('magic_') and \
152 152 callable(Magic.__dict__[fn])
153 153 # in instance namespace (run-time user additions)
154 154 inst_magic = lambda fn: fn.startswith('magic_') and \
155 155 callable(self.__dict__[fn])
156 156 # and bound magics by user (so they can access self):
157 157 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
158 158 callable(self.__class__.__dict__[fn])
159 159 magics = filter(class_magic,Magic.__dict__.keys()) + \
160 160 filter(inst_magic,self.__dict__.keys()) + \
161 161 filter(inst_bound_magic,self.__class__.__dict__.keys())
162 162 out = []
163 163 for fn in set(magics):
164 164 out.append(fn.replace('magic_','',1))
165 165 out.sort()
166 166 return out
167 167
168 168 def extract_input_lines(self, range_str, raw=False):
169 169 """Return as a string a set of input history slices.
170 170
171 171 Inputs:
172 172
173 173 - range_str: the set of slices is given as a string, like
174 174 "~5/6-~4/2 4:8 9", since this function is for use by magic functions
175 175 which get their arguments as strings. The number before the / is the
176 176 session number: ~n goes n back from the current session.
177 177
178 178 Optional inputs:
179 179
180 180 - raw(False): by default, the processed input is used. If this is
181 181 true, the raw input history is used instead.
182 182
183 183 Note that slices can be called with two notations:
184 184
185 185 N:M -> standard python form, means including items N...(M-1).
186 186
187 187 N-M -> include items N..M (closed endpoint)."""
188 188 lines = self.shell.history_manager.\
189 189 get_range_by_str(range_str, raw=raw)
190 190 return "\n".join(x for _, _, x in lines)
191 191
192 192 def arg_err(self,func):
193 193 """Print docstring if incorrect arguments were passed"""
194 194 print 'Error in arguments:'
195 195 print oinspect.getdoc(func)
196 196
197 197 def format_latex(self,strng):
198 198 """Format a string for latex inclusion."""
199 199
200 200 # Characters that need to be escaped for latex:
201 201 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
202 202 # Magic command names as headers:
203 203 cmd_name_re = re.compile(r'^(%s.*?):' % ESC_MAGIC,
204 204 re.MULTILINE)
205 205 # Magic commands
206 206 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % ESC_MAGIC,
207 207 re.MULTILINE)
208 208 # Paragraph continue
209 209 par_re = re.compile(r'\\$',re.MULTILINE)
210 210
211 211 # The "\n" symbol
212 212 newline_re = re.compile(r'\\n')
213 213
214 214 # Now build the string for output:
215 215 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
216 216 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
217 217 strng)
218 218 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
219 219 strng = par_re.sub(r'\\\\',strng)
220 220 strng = escape_re.sub(r'\\\1',strng)
221 221 strng = newline_re.sub(r'\\textbackslash{}n',strng)
222 222 return strng
223 223
224 224 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
225 225 """Parse options passed to an argument string.
226 226
227 227 The interface is similar to that of getopt(), but it returns back a
228 228 Struct with the options as keys and the stripped argument string still
229 229 as a string.
230 230
231 231 arg_str is quoted as a true sys.argv vector by using shlex.split.
232 232 This allows us to easily expand variables, glob files, quote
233 233 arguments, etc.
234 234
235 235 Options:
236 236 -mode: default 'string'. If given as 'list', the argument string is
237 237 returned as a list (split on whitespace) instead of a string.
238 238
239 239 -list_all: put all option values in lists. Normally only options
240 240 appearing more than once are put in a list.
241 241
242 242 -posix (True): whether to split the input line in POSIX mode or not,
243 243 as per the conventions outlined in the shlex module from the
244 244 standard library."""
245 245
246 246 # inject default options at the beginning of the input line
247 247 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
248 248 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
249 249
250 250 mode = kw.get('mode','string')
251 251 if mode not in ['string','list']:
252 252 raise ValueError,'incorrect mode given: %s' % mode
253 253 # Get options
254 254 list_all = kw.get('list_all',0)
255 255 posix = kw.get('posix', os.name == 'posix')
256 256
257 257 # Check if we have more than one argument to warrant extra processing:
258 258 odict = {} # Dictionary with options
259 259 args = arg_str.split()
260 260 if len(args) >= 1:
261 261 # If the list of inputs only has 0 or 1 thing in it, there's no
262 262 # need to look for options
263 263 argv = arg_split(arg_str,posix)
264 264 # Do regular option processing
265 265 try:
266 266 opts,args = getopt(argv,opt_str,*long_opts)
267 267 except GetoptError,e:
268 268 raise UsageError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
269 269 " ".join(long_opts)))
270 270 for o,a in opts:
271 271 if o.startswith('--'):
272 272 o = o[2:]
273 273 else:
274 274 o = o[1:]
275 275 try:
276 276 odict[o].append(a)
277 277 except AttributeError:
278 278 odict[o] = [odict[o],a]
279 279 except KeyError:
280 280 if list_all:
281 281 odict[o] = [a]
282 282 else:
283 283 odict[o] = a
284 284
285 285 # Prepare opts,args for return
286 286 opts = Struct(odict)
287 287 if mode == 'string':
288 288 args = ' '.join(args)
289 289
290 290 return opts,args
291 291
292 292 #......................................................................
293 293 # And now the actual magic functions
294 294
295 295 # Functions for IPython shell work (vars,funcs, config, etc)
296 296 def magic_lsmagic(self, parameter_s = ''):
297 297 """List currently available magic functions."""
298 298 mesc = ESC_MAGIC
299 299 print 'Available magic functions:\n'+mesc+\
300 300 (' '+mesc).join(self.lsmagic())
301 301 print '\n' + Magic.auto_status[self.shell.automagic]
302 302 return None
303 303
304 304 def magic_magic(self, parameter_s = ''):
305 305 """Print information about the magic function system.
306 306
307 307 Supported formats: -latex, -brief, -rest
308 308 """
309 309
310 310 mode = ''
311 311 try:
312 312 if parameter_s.split()[0] == '-latex':
313 313 mode = 'latex'
314 314 if parameter_s.split()[0] == '-brief':
315 315 mode = 'brief'
316 316 if parameter_s.split()[0] == '-rest':
317 317 mode = 'rest'
318 318 rest_docs = []
319 319 except:
320 320 pass
321 321
322 322 magic_docs = []
323 323 for fname in self.lsmagic():
324 324 mname = 'magic_' + fname
325 325 for space in (Magic,self,self.__class__):
326 326 try:
327 327 fn = space.__dict__[mname]
328 328 except KeyError:
329 329 pass
330 330 else:
331 331 break
332 332 if mode == 'brief':
333 333 # only first line
334 334 if fn.__doc__:
335 335 fndoc = fn.__doc__.split('\n',1)[0]
336 336 else:
337 337 fndoc = 'No documentation'
338 338 else:
339 339 if fn.__doc__:
340 340 fndoc = fn.__doc__.rstrip()
341 341 else:
342 342 fndoc = 'No documentation'
343 343
344 344
345 345 if mode == 'rest':
346 346 rest_docs.append('**%s%s**::\n\n\t%s\n\n' %(ESC_MAGIC,
347 347 fname,fndoc))
348 348
349 349 else:
350 350 magic_docs.append('%s%s:\n\t%s\n' %(ESC_MAGIC,
351 351 fname,fndoc))
352 352
353 353 magic_docs = ''.join(magic_docs)
354 354
355 355 if mode == 'rest':
356 356 return "".join(rest_docs)
357 357
358 358 if mode == 'latex':
359 359 print self.format_latex(magic_docs)
360 360 return
361 361 else:
362 362 magic_docs = format_screen(magic_docs)
363 363 if mode == 'brief':
364 364 return magic_docs
365 365
366 366 outmsg = """
367 367 IPython's 'magic' functions
368 368 ===========================
369 369
370 370 The magic function system provides a series of functions which allow you to
371 371 control the behavior of IPython itself, plus a lot of system-type
372 372 features. All these functions are prefixed with a % character, but parameters
373 373 are given without parentheses or quotes.
374 374
375 375 NOTE: If you have 'automagic' enabled (via the command line option or with the
376 376 %automagic function), you don't need to type in the % explicitly. By default,
377 377 IPython ships with automagic on, so you should only rarely need the % escape.
378 378
379 379 Example: typing '%cd mydir' (without the quotes) changes you working directory
380 380 to 'mydir', if it exists.
381 381
382 382 You can define your own magic functions to extend the system. See the supplied
383 383 ipythonrc and example-magic.py files for details (in your ipython
384 384 configuration directory, typically $HOME/.config/ipython on Linux or $HOME/.ipython elsewhere).
385 385
386 386 You can also define your own aliased names for magic functions. In your
387 387 ipythonrc file, placing a line like:
388 388
389 389 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
390 390
391 391 will define %pf as a new name for %profile.
392 392
393 393 You can also call magics in code using the magic() function, which IPython
394 394 automatically adds to the builtin namespace. Type 'magic?' for details.
395 395
396 396 For a list of the available magic functions, use %lsmagic. For a description
397 397 of any of them, type %magic_name?, e.g. '%cd?'.
398 398
399 399 Currently the magic system has the following functions:\n"""
400 400
401 401 mesc = ESC_MAGIC
402 402 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
403 403 "\n\n%s%s\n\n%s" % (outmsg,
404 404 magic_docs,mesc,mesc,
405 405 (' '+mesc).join(self.lsmagic()),
406 406 Magic.auto_status[self.shell.automagic] ) )
407 407 page.page(outmsg)
408 408
409 409 def magic_automagic(self, parameter_s = ''):
410 410 """Make magic functions callable without having to type the initial %.
411 411
412 412 Without argumentsl toggles on/off (when off, you must call it as
413 413 %automagic, of course). With arguments it sets the value, and you can
414 414 use any of (case insensitive):
415 415
416 416 - on,1,True: to activate
417 417
418 418 - off,0,False: to deactivate.
419 419
420 420 Note that magic functions have lowest priority, so if there's a
421 421 variable whose name collides with that of a magic fn, automagic won't
422 422 work for that function (you get the variable instead). However, if you
423 423 delete the variable (del var), the previously shadowed magic function
424 424 becomes visible to automagic again."""
425 425
426 426 arg = parameter_s.lower()
427 427 if parameter_s in ('on','1','true'):
428 428 self.shell.automagic = True
429 429 elif parameter_s in ('off','0','false'):
430 430 self.shell.automagic = False
431 431 else:
432 432 self.shell.automagic = not self.shell.automagic
433 433 print '\n' + Magic.auto_status[self.shell.automagic]
434 434
435 435 @testdec.skip_doctest
436 436 def magic_autocall(self, parameter_s = ''):
437 437 """Make functions callable without having to type parentheses.
438 438
439 439 Usage:
440 440
441 441 %autocall [mode]
442 442
443 443 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
444 444 value is toggled on and off (remembering the previous state).
445 445
446 446 In more detail, these values mean:
447 447
448 448 0 -> fully disabled
449 449
450 450 1 -> active, but do not apply if there are no arguments on the line.
451 451
452 452 In this mode, you get:
453 453
454 454 In [1]: callable
455 455 Out[1]: <built-in function callable>
456 456
457 457 In [2]: callable 'hello'
458 458 ------> callable('hello')
459 459 Out[2]: False
460 460
461 461 2 -> Active always. Even if no arguments are present, the callable
462 462 object is called:
463 463
464 464 In [2]: float
465 465 ------> float()
466 466 Out[2]: 0.0
467 467
468 468 Note that even with autocall off, you can still use '/' at the start of
469 469 a line to treat the first argument on the command line as a function
470 470 and add parentheses to it:
471 471
472 472 In [8]: /str 43
473 473 ------> str(43)
474 474 Out[8]: '43'
475 475
476 476 # all-random (note for auto-testing)
477 477 """
478 478
479 479 if parameter_s:
480 480 arg = int(parameter_s)
481 481 else:
482 482 arg = 'toggle'
483 483
484 484 if not arg in (0,1,2,'toggle'):
485 485 error('Valid modes: (0->Off, 1->Smart, 2->Full')
486 486 return
487 487
488 488 if arg in (0,1,2):
489 489 self.shell.autocall = arg
490 490 else: # toggle
491 491 if self.shell.autocall:
492 492 self._magic_state.autocall_save = self.shell.autocall
493 493 self.shell.autocall = 0
494 494 else:
495 495 try:
496 496 self.shell.autocall = self._magic_state.autocall_save
497 497 except AttributeError:
498 498 self.shell.autocall = self._magic_state.autocall_save = 1
499 499
500 500 print "Automatic calling is:",['OFF','Smart','Full'][self.shell.autocall]
501 501
502 502
503 503 def magic_page(self, parameter_s=''):
504 504 """Pretty print the object and display it through a pager.
505 505
506 506 %page [options] OBJECT
507 507
508 508 If no object is given, use _ (last output).
509 509
510 510 Options:
511 511
512 512 -r: page str(object), don't pretty-print it."""
513 513
514 514 # After a function contributed by Olivier Aubert, slightly modified.
515 515
516 516 # Process options/args
517 517 opts,args = self.parse_options(parameter_s,'r')
518 518 raw = 'r' in opts
519 519
520 520 oname = args and args or '_'
521 521 info = self._ofind(oname)
522 522 if info['found']:
523 523 txt = (raw and str or pformat)( info['obj'] )
524 524 page.page(txt)
525 525 else:
526 526 print 'Object `%s` not found' % oname
527 527
528 528 def magic_profile(self, parameter_s=''):
529 529 """Print your currently active IPython profile."""
530 530 if self.shell.profile:
531 531 printpl('Current IPython profile: $self.shell.profile.')
532 532 else:
533 533 print 'No profile active.'
534 534
535 535 def magic_pinfo(self, parameter_s='', namespaces=None):
536 536 """Provide detailed information about an object.
537 537
538 538 '%pinfo object' is just a synonym for object? or ?object."""
539 539
540 540 #print 'pinfo par: <%s>' % parameter_s # dbg
541 541
542 542
543 543 # detail_level: 0 -> obj? , 1 -> obj??
544 544 detail_level = 0
545 545 # We need to detect if we got called as 'pinfo pinfo foo', which can
546 546 # happen if the user types 'pinfo foo?' at the cmd line.
547 547 pinfo,qmark1,oname,qmark2 = \
548 548 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
549 549 if pinfo or qmark1 or qmark2:
550 550 detail_level = 1
551 551 if "*" in oname:
552 552 self.magic_psearch(oname)
553 553 else:
554 554 self.shell._inspect('pinfo', oname, detail_level=detail_level,
555 555 namespaces=namespaces)
556 556
557 557 def magic_pinfo2(self, parameter_s='', namespaces=None):
558 558 """Provide extra detailed information about an object.
559 559
560 560 '%pinfo2 object' is just a synonym for object?? or ??object."""
561 561 self.shell._inspect('pinfo', parameter_s, detail_level=1,
562 562 namespaces=namespaces)
563 563
564 564 @testdec.skip_doctest
565 565 def magic_pdef(self, parameter_s='', namespaces=None):
566 566 """Print the definition header for any callable object.
567 567
568 568 If the object is a class, print the constructor information.
569 569
570 570 Examples
571 571 --------
572 572 ::
573 573
574 574 In [3]: %pdef urllib.urlopen
575 575 urllib.urlopen(url, data=None, proxies=None)
576 576 """
577 577 self._inspect('pdef',parameter_s, namespaces)
578 578
579 579 def magic_pdoc(self, parameter_s='', namespaces=None):
580 580 """Print the docstring for an object.
581 581
582 582 If the given object is a class, it will print both the class and the
583 583 constructor docstrings."""
584 584 self._inspect('pdoc',parameter_s, namespaces)
585 585
586 586 def magic_psource(self, parameter_s='', namespaces=None):
587 587 """Print (or run through pager) the source code for an object."""
588 588 self._inspect('psource',parameter_s, namespaces)
589 589
590 590 def magic_pfile(self, parameter_s=''):
591 591 """Print (or run through pager) the file where an object is defined.
592 592
593 593 The file opens at the line where the object definition begins. IPython
594 594 will honor the environment variable PAGER if set, and otherwise will
595 595 do its best to print the file in a convenient form.
596 596
597 597 If the given argument is not an object currently defined, IPython will
598 598 try to interpret it as a filename (automatically adding a .py extension
599 599 if needed). You can thus use %pfile as a syntax highlighting code
600 600 viewer."""
601 601
602 602 # first interpret argument as an object name
603 603 out = self._inspect('pfile',parameter_s)
604 604 # if not, try the input as a filename
605 605 if out == 'not found':
606 606 try:
607 607 filename = get_py_filename(parameter_s)
608 608 except IOError,msg:
609 609 print msg
610 610 return
611 611 page.page(self.shell.inspector.format(file(filename).read()))
612 612
613 613 def magic_psearch(self, parameter_s=''):
614 614 """Search for object in namespaces by wildcard.
615 615
616 616 %psearch [options] PATTERN [OBJECT TYPE]
617 617
618 618 Note: ? can be used as a synonym for %psearch, at the beginning or at
619 619 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
620 620 rest of the command line must be unchanged (options come first), so
621 621 for example the following forms are equivalent
622 622
623 623 %psearch -i a* function
624 624 -i a* function?
625 625 ?-i a* function
626 626
627 627 Arguments:
628 628
629 629 PATTERN
630 630
631 631 where PATTERN is a string containing * as a wildcard similar to its
632 632 use in a shell. The pattern is matched in all namespaces on the
633 633 search path. By default objects starting with a single _ are not
634 634 matched, many IPython generated objects have a single
635 635 underscore. The default is case insensitive matching. Matching is
636 636 also done on the attributes of objects and not only on the objects
637 637 in a module.
638 638
639 639 [OBJECT TYPE]
640 640
641 641 Is the name of a python type from the types module. The name is
642 642 given in lowercase without the ending type, ex. StringType is
643 643 written string. By adding a type here only objects matching the
644 644 given type are matched. Using all here makes the pattern match all
645 645 types (this is the default).
646 646
647 647 Options:
648 648
649 649 -a: makes the pattern match even objects whose names start with a
650 650 single underscore. These names are normally ommitted from the
651 651 search.
652 652
653 653 -i/-c: make the pattern case insensitive/sensitive. If neither of
654 654 these options is given, the default is read from your ipythonrc
655 655 file. The option name which sets this value is
656 656 'wildcards_case_sensitive'. If this option is not specified in your
657 657 ipythonrc file, IPython's internal default is to do a case sensitive
658 658 search.
659 659
660 660 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
661 661 specifiy can be searched in any of the following namespaces:
662 662 'builtin', 'user', 'user_global','internal', 'alias', where
663 663 'builtin' and 'user' are the search defaults. Note that you should
664 664 not use quotes when specifying namespaces.
665 665
666 666 'Builtin' contains the python module builtin, 'user' contains all
667 667 user data, 'alias' only contain the shell aliases and no python
668 668 objects, 'internal' contains objects used by IPython. The
669 669 'user_global' namespace is only used by embedded IPython instances,
670 670 and it contains module-level globals. You can add namespaces to the
671 671 search with -s or exclude them with -e (these options can be given
672 672 more than once).
673 673
674 674 Examples:
675 675
676 676 %psearch a* -> objects beginning with an a
677 677 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
678 678 %psearch a* function -> all functions beginning with an a
679 679 %psearch re.e* -> objects beginning with an e in module re
680 680 %psearch r*.e* -> objects that start with e in modules starting in r
681 681 %psearch r*.* string -> all strings in modules beginning with r
682 682
683 683 Case sensitve search:
684 684
685 685 %psearch -c a* list all object beginning with lower case a
686 686
687 687 Show objects beginning with a single _:
688 688
689 689 %psearch -a _* list objects beginning with a single underscore"""
690 690 try:
691 691 parameter_s = parameter_s.encode('ascii')
692 692 except UnicodeEncodeError:
693 693 print 'Python identifiers can only contain ascii characters.'
694 694 return
695 695
696 696 # default namespaces to be searched
697 697 def_search = ['user','builtin']
698 698
699 699 # Process options/args
700 700 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
701 701 opt = opts.get
702 702 shell = self.shell
703 703 psearch = shell.inspector.psearch
704 704
705 705 # select case options
706 706 if opts.has_key('i'):
707 707 ignore_case = True
708 708 elif opts.has_key('c'):
709 709 ignore_case = False
710 710 else:
711 711 ignore_case = not shell.wildcards_case_sensitive
712 712
713 713 # Build list of namespaces to search from user options
714 714 def_search.extend(opt('s',[]))
715 715 ns_exclude = ns_exclude=opt('e',[])
716 716 ns_search = [nm for nm in def_search if nm not in ns_exclude]
717 717
718 718 # Call the actual search
719 719 try:
720 720 psearch(args,shell.ns_table,ns_search,
721 721 show_all=opt('a'),ignore_case=ignore_case)
722 722 except:
723 723 shell.showtraceback()
724 724
725 725 @testdec.skip_doctest
726 726 def magic_who_ls(self, parameter_s=''):
727 727 """Return a sorted list of all interactive variables.
728 728
729 729 If arguments are given, only variables of types matching these
730 730 arguments are returned.
731 731
732 732 Examples
733 733 --------
734 734
735 735 Define two variables and list them with who_ls::
736 736
737 737 In [1]: alpha = 123
738 738
739 739 In [2]: beta = 'test'
740 740
741 741 In [3]: %who_ls
742 742 Out[3]: ['alpha', 'beta']
743 743
744 744 In [4]: %who_ls int
745 745 Out[4]: ['alpha']
746 746
747 747 In [5]: %who_ls str
748 748 Out[5]: ['beta']
749 749 """
750 750
751 751 user_ns = self.shell.user_ns
752 752 internal_ns = self.shell.internal_ns
753 753 user_ns_hidden = self.shell.user_ns_hidden
754 754 out = [ i for i in user_ns
755 755 if not i.startswith('_') \
756 756 and not (i in internal_ns or i in user_ns_hidden) ]
757 757
758 758 typelist = parameter_s.split()
759 759 if typelist:
760 760 typeset = set(typelist)
761 761 out = [i for i in out if type(user_ns[i]).__name__ in typeset]
762 762
763 763 out.sort()
764 764 return out
765 765
766 766 @testdec.skip_doctest
767 767 def magic_who(self, parameter_s=''):
768 768 """Print all interactive variables, with some minimal formatting.
769 769
770 770 If any arguments are given, only variables whose type matches one of
771 771 these are printed. For example:
772 772
773 773 %who function str
774 774
775 775 will only list functions and strings, excluding all other types of
776 776 variables. To find the proper type names, simply use type(var) at a
777 777 command line to see how python prints type names. For example:
778 778
779 779 In [1]: type('hello')\\
780 780 Out[1]: <type 'str'>
781 781
782 782 indicates that the type name for strings is 'str'.
783 783
784 784 %who always excludes executed names loaded through your configuration
785 785 file and things which are internal to IPython.
786 786
787 787 This is deliberate, as typically you may load many modules and the
788 788 purpose of %who is to show you only what you've manually defined.
789 789
790 790 Examples
791 791 --------
792 792
793 793 Define two variables and list them with who::
794 794
795 795 In [1]: alpha = 123
796 796
797 797 In [2]: beta = 'test'
798 798
799 799 In [3]: %who
800 800 alpha beta
801 801
802 802 In [4]: %who int
803 803 alpha
804 804
805 805 In [5]: %who str
806 806 beta
807 807 """
808 808
809 809 varlist = self.magic_who_ls(parameter_s)
810 810 if not varlist:
811 811 if parameter_s:
812 812 print 'No variables match your requested type.'
813 813 else:
814 814 print 'Interactive namespace is empty.'
815 815 return
816 816
817 817 # if we have variables, move on...
818 818 count = 0
819 819 for i in varlist:
820 820 print i+'\t',
821 821 count += 1
822 822 if count > 8:
823 823 count = 0
824 824 print
825 825 print
826 826
827 827 @testdec.skip_doctest
828 828 def magic_whos(self, parameter_s=''):
829 829 """Like %who, but gives some extra information about each variable.
830 830
831 831 The same type filtering of %who can be applied here.
832 832
833 833 For all variables, the type is printed. Additionally it prints:
834 834
835 835 - For {},[],(): their length.
836 836
837 837 - For numpy and Numeric arrays, a summary with shape, number of
838 838 elements, typecode and size in memory.
839 839
840 840 - Everything else: a string representation, snipping their middle if
841 841 too long.
842 842
843 843 Examples
844 844 --------
845 845
846 846 Define two variables and list them with whos::
847 847
848 848 In [1]: alpha = 123
849 849
850 850 In [2]: beta = 'test'
851 851
852 852 In [3]: %whos
853 853 Variable Type Data/Info
854 854 --------------------------------
855 855 alpha int 123
856 856 beta str test
857 857 """
858 858
859 859 varnames = self.magic_who_ls(parameter_s)
860 860 if not varnames:
861 861 if parameter_s:
862 862 print 'No variables match your requested type.'
863 863 else:
864 864 print 'Interactive namespace is empty.'
865 865 return
866 866
867 867 # if we have variables, move on...
868 868
869 869 # for these types, show len() instead of data:
870 870 seq_types = [types.DictType,types.ListType,types.TupleType]
871 871
872 872 # for numpy/Numeric arrays, display summary info
873 873 try:
874 874 import numpy
875 875 except ImportError:
876 876 ndarray_type = None
877 877 else:
878 878 ndarray_type = numpy.ndarray.__name__
879 879 try:
880 880 import Numeric
881 881 except ImportError:
882 882 array_type = None
883 883 else:
884 884 array_type = Numeric.ArrayType.__name__
885 885
886 886 # Find all variable names and types so we can figure out column sizes
887 887 def get_vars(i):
888 888 return self.shell.user_ns[i]
889 889
890 890 # some types are well known and can be shorter
891 891 abbrevs = {'IPython.core.macro.Macro' : 'Macro'}
892 892 def type_name(v):
893 893 tn = type(v).__name__
894 894 return abbrevs.get(tn,tn)
895 895
896 896 varlist = map(get_vars,varnames)
897 897
898 898 typelist = []
899 899 for vv in varlist:
900 900 tt = type_name(vv)
901 901
902 902 if tt=='instance':
903 903 typelist.append( abbrevs.get(str(vv.__class__),
904 904 str(vv.__class__)))
905 905 else:
906 906 typelist.append(tt)
907 907
908 908 # column labels and # of spaces as separator
909 909 varlabel = 'Variable'
910 910 typelabel = 'Type'
911 911 datalabel = 'Data/Info'
912 912 colsep = 3
913 913 # variable format strings
914 914 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
915 915 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
916 916 aformat = "%s: %s elems, type `%s`, %s bytes"
917 917 # find the size of the columns to format the output nicely
918 918 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
919 919 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
920 920 # table header
921 921 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
922 922 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
923 923 # and the table itself
924 924 kb = 1024
925 925 Mb = 1048576 # kb**2
926 926 for vname,var,vtype in zip(varnames,varlist,typelist):
927 927 print itpl(vformat),
928 928 if vtype in seq_types:
929 929 print len(var)
930 930 elif vtype in [array_type,ndarray_type]:
931 931 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
932 932 if vtype==ndarray_type:
933 933 # numpy
934 934 vsize = var.size
935 935 vbytes = vsize*var.itemsize
936 936 vdtype = var.dtype
937 937 else:
938 938 # Numeric
939 939 vsize = Numeric.size(var)
940 940 vbytes = vsize*var.itemsize()
941 941 vdtype = var.typecode()
942 942
943 943 if vbytes < 100000:
944 944 print aformat % (vshape,vsize,vdtype,vbytes)
945 945 else:
946 946 print aformat % (vshape,vsize,vdtype,vbytes),
947 947 if vbytes < Mb:
948 948 print '(%s kb)' % (vbytes/kb,)
949 949 else:
950 950 print '(%s Mb)' % (vbytes/Mb,)
951 951 else:
952 952 try:
953 953 vstr = str(var)
954 954 except UnicodeEncodeError:
955 955 vstr = unicode(var).encode(sys.getdefaultencoding(),
956 956 'backslashreplace')
957 957 vstr = vstr.replace('\n','\\n')
958 958 if len(vstr) < 50:
959 959 print vstr
960 960 else:
961 961 printpl(vfmt_short)
962 962
963 963 def magic_reset(self, parameter_s=''):
964 964 """Resets the namespace by removing all names defined by the user.
965 965
966 966 Input/Output history are left around in case you need them.
967 967
968 968 Parameters
969 969 ----------
970 970 -f : force reset without asking for confirmation.
971 971
972 972 Examples
973 973 --------
974 974 In [6]: a = 1
975 975
976 976 In [7]: a
977 977 Out[7]: 1
978 978
979 979 In [8]: 'a' in _ip.user_ns
980 980 Out[8]: True
981 981
982 982 In [9]: %reset -f
983 983
984 984 In [10]: 'a' in _ip.user_ns
985 985 Out[10]: False
986 986 """
987 987
988 988 if parameter_s == '-f':
989 989 ans = True
990 990 else:
991 991 ans = self.shell.ask_yes_no(
992 992 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
993 993 if not ans:
994 994 print 'Nothing done.'
995 995 return
996 996 user_ns = self.shell.user_ns
997 997 for i in self.magic_who_ls():
998 998 del(user_ns[i])
999 999
1000 1000 # Also flush the private list of module references kept for script
1001 1001 # execution protection
1002 1002 self.shell.clear_main_mod_cache()
1003 1003
1004 1004 def magic_reset_selective(self, parameter_s=''):
1005 1005 """Resets the namespace by removing names defined by the user.
1006 1006
1007 1007 Input/Output history are left around in case you need them.
1008 1008
1009 1009 %reset_selective [-f] regex
1010 1010
1011 1011 No action is taken if regex is not included
1012 1012
1013 1013 Options
1014 1014 -f : force reset without asking for confirmation.
1015 1015
1016 1016 Examples
1017 1017 --------
1018 1018
1019 1019 We first fully reset the namespace so your output looks identical to
1020 1020 this example for pedagogical reasons; in practice you do not need a
1021 1021 full reset.
1022 1022
1023 1023 In [1]: %reset -f
1024 1024
1025 1025 Now, with a clean namespace we can make a few variables and use
1026 1026 %reset_selective to only delete names that match our regexp:
1027 1027
1028 1028 In [2]: a=1; b=2; c=3; b1m=4; b2m=5; b3m=6; b4m=7; b2s=8
1029 1029
1030 1030 In [3]: who_ls
1031 1031 Out[3]: ['a', 'b', 'b1m', 'b2m', 'b2s', 'b3m', 'b4m', 'c']
1032 1032
1033 1033 In [4]: %reset_selective -f b[2-3]m
1034 1034
1035 1035 In [5]: who_ls
1036 1036 Out[5]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1037 1037
1038 1038 In [6]: %reset_selective -f d
1039 1039
1040 1040 In [7]: who_ls
1041 1041 Out[7]: ['a', 'b', 'b1m', 'b2s', 'b4m', 'c']
1042 1042
1043 1043 In [8]: %reset_selective -f c
1044 1044
1045 1045 In [9]: who_ls
1046 1046 Out[9]: ['a', 'b', 'b1m', 'b2s', 'b4m']
1047 1047
1048 1048 In [10]: %reset_selective -f b
1049 1049
1050 1050 In [11]: who_ls
1051 1051 Out[11]: ['a']
1052 1052 """
1053 1053
1054 1054 opts, regex = self.parse_options(parameter_s,'f')
1055 1055
1056 1056 if opts.has_key('f'):
1057 1057 ans = True
1058 1058 else:
1059 1059 ans = self.shell.ask_yes_no(
1060 1060 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1061 1061 if not ans:
1062 1062 print 'Nothing done.'
1063 1063 return
1064 1064 user_ns = self.shell.user_ns
1065 1065 if not regex:
1066 1066 print 'No regex pattern specified. Nothing done.'
1067 1067 return
1068 1068 else:
1069 1069 try:
1070 1070 m = re.compile(regex)
1071 1071 except TypeError:
1072 1072 raise TypeError('regex must be a string or compiled pattern')
1073 1073 for i in self.magic_who_ls():
1074 1074 if m.search(i):
1075 1075 del(user_ns[i])
1076 1076
1077 1077 def magic_logstart(self,parameter_s=''):
1078 1078 """Start logging anywhere in a session.
1079 1079
1080 1080 %logstart [-o|-r|-t] [log_name [log_mode]]
1081 1081
1082 1082 If no name is given, it defaults to a file named 'ipython_log.py' in your
1083 1083 current directory, in 'rotate' mode (see below).
1084 1084
1085 1085 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1086 1086 history up to that point and then continues logging.
1087 1087
1088 1088 %logstart takes a second optional parameter: logging mode. This can be one
1089 1089 of (note that the modes are given unquoted):\\
1090 1090 append: well, that says it.\\
1091 1091 backup: rename (if exists) to name~ and start name.\\
1092 1092 global: single logfile in your home dir, appended to.\\
1093 1093 over : overwrite existing log.\\
1094 1094 rotate: create rotating logs name.1~, name.2~, etc.
1095 1095
1096 1096 Options:
1097 1097
1098 1098 -o: log also IPython's output. In this mode, all commands which
1099 1099 generate an Out[NN] prompt are recorded to the logfile, right after
1100 1100 their corresponding input line. The output lines are always
1101 1101 prepended with a '#[Out]# ' marker, so that the log remains valid
1102 1102 Python code.
1103 1103
1104 1104 Since this marker is always the same, filtering only the output from
1105 1105 a log is very easy, using for example a simple awk call:
1106 1106
1107 1107 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1108 1108
1109 1109 -r: log 'raw' input. Normally, IPython's logs contain the processed
1110 1110 input, so that user lines are logged in their final form, converted
1111 1111 into valid Python. For example, %Exit is logged as
1112 1112 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1113 1113 exactly as typed, with no transformations applied.
1114 1114
1115 1115 -t: put timestamps before each input line logged (these are put in
1116 1116 comments)."""
1117 1117
1118 1118 opts,par = self.parse_options(parameter_s,'ort')
1119 1119 log_output = 'o' in opts
1120 1120 log_raw_input = 'r' in opts
1121 1121 timestamp = 't' in opts
1122 1122
1123 1123 logger = self.shell.logger
1124 1124
1125 1125 # if no args are given, the defaults set in the logger constructor by
1126 1126 # ipytohn remain valid
1127 1127 if par:
1128 1128 try:
1129 1129 logfname,logmode = par.split()
1130 1130 except:
1131 1131 logfname = par
1132 1132 logmode = 'backup'
1133 1133 else:
1134 1134 logfname = logger.logfname
1135 1135 logmode = logger.logmode
1136 1136 # put logfname into rc struct as if it had been called on the command
1137 1137 # line, so it ends up saved in the log header Save it in case we need
1138 1138 # to restore it...
1139 1139 old_logfile = self.shell.logfile
1140 1140 if logfname:
1141 1141 logfname = os.path.expanduser(logfname)
1142 1142 self.shell.logfile = logfname
1143 1143
1144 1144 loghead = '# IPython log file\n\n'
1145 1145 try:
1146 1146 started = logger.logstart(logfname,loghead,logmode,
1147 1147 log_output,timestamp,log_raw_input)
1148 1148 except:
1149 1149 self.shell.logfile = old_logfile
1150 1150 warn("Couldn't start log: %s" % sys.exc_info()[1])
1151 1151 else:
1152 1152 # log input history up to this point, optionally interleaving
1153 1153 # output if requested
1154 1154
1155 1155 if timestamp:
1156 1156 # disable timestamping for the previous history, since we've
1157 1157 # lost those already (no time machine here).
1158 1158 logger.timestamp = False
1159 1159
1160 1160 if log_raw_input:
1161 1161 input_hist = self.shell.history_manager.input_hist_raw
1162 1162 else:
1163 1163 input_hist = self.shell.history_manager.input_hist_parsed
1164 1164
1165 1165 if log_output:
1166 1166 log_write = logger.log_write
1167 1167 output_hist = self.shell.history_manager.output_hist
1168 1168 for n in range(1,len(input_hist)-1):
1169 1169 log_write(input_hist[n].rstrip())
1170 1170 if n in output_hist:
1171 1171 log_write(repr(output_hist[n]),'output')
1172 1172 else:
1173 1173 logger.log_write(''.join(input_hist[1:]))
1174 1174 if timestamp:
1175 1175 # re-enable timestamping
1176 1176 logger.timestamp = True
1177 1177
1178 1178 print ('Activating auto-logging. '
1179 1179 'Current session state plus future input saved.')
1180 1180 logger.logstate()
1181 1181
1182 1182 def magic_logstop(self,parameter_s=''):
1183 1183 """Fully stop logging and close log file.
1184 1184
1185 1185 In order to start logging again, a new %logstart call needs to be made,
1186 1186 possibly (though not necessarily) with a new filename, mode and other
1187 1187 options."""
1188 1188 self.logger.logstop()
1189 1189
1190 1190 def magic_logoff(self,parameter_s=''):
1191 1191 """Temporarily stop logging.
1192 1192
1193 1193 You must have previously started logging."""
1194 1194 self.shell.logger.switch_log(0)
1195 1195
1196 1196 def magic_logon(self,parameter_s=''):
1197 1197 """Restart logging.
1198 1198
1199 1199 This function is for restarting logging which you've temporarily
1200 1200 stopped with %logoff. For starting logging for the first time, you
1201 1201 must use the %logstart function, which allows you to specify an
1202 1202 optional log filename."""
1203 1203
1204 1204 self.shell.logger.switch_log(1)
1205 1205
1206 1206 def magic_logstate(self,parameter_s=''):
1207 1207 """Print the status of the logging system."""
1208 1208
1209 1209 self.shell.logger.logstate()
1210 1210
1211 1211 def magic_pdb(self, parameter_s=''):
1212 1212 """Control the automatic calling of the pdb interactive debugger.
1213 1213
1214 1214 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1215 1215 argument it works as a toggle.
1216 1216
1217 1217 When an exception is triggered, IPython can optionally call the
1218 1218 interactive pdb debugger after the traceback printout. %pdb toggles
1219 1219 this feature on and off.
1220 1220
1221 1221 The initial state of this feature is set in your ipythonrc
1222 1222 configuration file (the variable is called 'pdb').
1223 1223
1224 1224 If you want to just activate the debugger AFTER an exception has fired,
1225 1225 without having to type '%pdb on' and rerunning your code, you can use
1226 1226 the %debug magic."""
1227 1227
1228 1228 par = parameter_s.strip().lower()
1229 1229
1230 1230 if par:
1231 1231 try:
1232 1232 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1233 1233 except KeyError:
1234 1234 print ('Incorrect argument. Use on/1, off/0, '
1235 1235 'or nothing for a toggle.')
1236 1236 return
1237 1237 else:
1238 1238 # toggle
1239 1239 new_pdb = not self.shell.call_pdb
1240 1240
1241 1241 # set on the shell
1242 1242 self.shell.call_pdb = new_pdb
1243 1243 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1244 1244
1245 1245 def magic_debug(self, parameter_s=''):
1246 1246 """Activate the interactive debugger in post-mortem mode.
1247 1247
1248 1248 If an exception has just occurred, this lets you inspect its stack
1249 1249 frames interactively. Note that this will always work only on the last
1250 1250 traceback that occurred, so you must call this quickly after an
1251 1251 exception that you wish to inspect has fired, because if another one
1252 1252 occurs, it clobbers the previous one.
1253 1253
1254 1254 If you want IPython to automatically do this on every exception, see
1255 1255 the %pdb magic for more details.
1256 1256 """
1257 1257 self.shell.debugger(force=True)
1258 1258
1259 1259 @testdec.skip_doctest
1260 1260 def magic_prun(self, parameter_s ='',user_mode=1,
1261 1261 opts=None,arg_lst=None,prog_ns=None):
1262 1262
1263 1263 """Run a statement through the python code profiler.
1264 1264
1265 1265 Usage:
1266 1266 %prun [options] statement
1267 1267
1268 1268 The given statement (which doesn't require quote marks) is run via the
1269 1269 python profiler in a manner similar to the profile.run() function.
1270 1270 Namespaces are internally managed to work correctly; profile.run
1271 1271 cannot be used in IPython because it makes certain assumptions about
1272 1272 namespaces which do not hold under IPython.
1273 1273
1274 1274 Options:
1275 1275
1276 1276 -l <limit>: you can place restrictions on what or how much of the
1277 1277 profile gets printed. The limit value can be:
1278 1278
1279 1279 * A string: only information for function names containing this string
1280 1280 is printed.
1281 1281
1282 1282 * An integer: only these many lines are printed.
1283 1283
1284 1284 * A float (between 0 and 1): this fraction of the report is printed
1285 1285 (for example, use a limit of 0.4 to see the topmost 40% only).
1286 1286
1287 1287 You can combine several limits with repeated use of the option. For
1288 1288 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1289 1289 information about class constructors.
1290 1290
1291 1291 -r: return the pstats.Stats object generated by the profiling. This
1292 1292 object has all the information about the profile in it, and you can
1293 1293 later use it for further analysis or in other functions.
1294 1294
1295 1295 -s <key>: sort profile by given key. You can provide more than one key
1296 1296 by using the option several times: '-s key1 -s key2 -s key3...'. The
1297 1297 default sorting key is 'time'.
1298 1298
1299 1299 The following is copied verbatim from the profile documentation
1300 1300 referenced below:
1301 1301
1302 1302 When more than one key is provided, additional keys are used as
1303 1303 secondary criteria when the there is equality in all keys selected
1304 1304 before them.
1305 1305
1306 1306 Abbreviations can be used for any key names, as long as the
1307 1307 abbreviation is unambiguous. The following are the keys currently
1308 1308 defined:
1309 1309
1310 1310 Valid Arg Meaning
1311 1311 "calls" call count
1312 1312 "cumulative" cumulative time
1313 1313 "file" file name
1314 1314 "module" file name
1315 1315 "pcalls" primitive call count
1316 1316 "line" line number
1317 1317 "name" function name
1318 1318 "nfl" name/file/line
1319 1319 "stdname" standard name
1320 1320 "time" internal time
1321 1321
1322 1322 Note that all sorts on statistics are in descending order (placing
1323 1323 most time consuming items first), where as name, file, and line number
1324 1324 searches are in ascending order (i.e., alphabetical). The subtle
1325 1325 distinction between "nfl" and "stdname" is that the standard name is a
1326 1326 sort of the name as printed, which means that the embedded line
1327 1327 numbers get compared in an odd way. For example, lines 3, 20, and 40
1328 1328 would (if the file names were the same) appear in the string order
1329 1329 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1330 1330 line numbers. In fact, sort_stats("nfl") is the same as
1331 1331 sort_stats("name", "file", "line").
1332 1332
1333 1333 -T <filename>: save profile results as shown on screen to a text
1334 1334 file. The profile is still shown on screen.
1335 1335
1336 1336 -D <filename>: save (via dump_stats) profile statistics to given
1337 1337 filename. This data is in a format understod by the pstats module, and
1338 1338 is generated by a call to the dump_stats() method of profile
1339 1339 objects. The profile is still shown on screen.
1340 1340
1341 1341 If you want to run complete programs under the profiler's control, use
1342 1342 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1343 1343 contains profiler specific options as described here.
1344 1344
1345 1345 You can read the complete documentation for the profile module with::
1346 1346
1347 1347 In [1]: import profile; profile.help()
1348 1348 """
1349 1349
1350 1350 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1351 1351 # protect user quote marks
1352 1352 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1353 1353
1354 1354 if user_mode: # regular user call
1355 1355 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1356 1356 list_all=1)
1357 1357 namespace = self.shell.user_ns
1358 1358 else: # called to run a program by %run -p
1359 1359 try:
1360 1360 filename = get_py_filename(arg_lst[0])
1361 1361 except IOError,msg:
1362 1362 error(msg)
1363 1363 return
1364 1364
1365 1365 arg_str = 'execfile(filename,prog_ns)'
1366 1366 namespace = locals()
1367 1367
1368 1368 opts.merge(opts_def)
1369 1369
1370 1370 prof = profile.Profile()
1371 1371 try:
1372 1372 prof = prof.runctx(arg_str,namespace,namespace)
1373 1373 sys_exit = ''
1374 1374 except SystemExit:
1375 1375 sys_exit = """*** SystemExit exception caught in code being profiled."""
1376 1376
1377 1377 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1378 1378
1379 1379 lims = opts.l
1380 1380 if lims:
1381 1381 lims = [] # rebuild lims with ints/floats/strings
1382 1382 for lim in opts.l:
1383 1383 try:
1384 1384 lims.append(int(lim))
1385 1385 except ValueError:
1386 1386 try:
1387 1387 lims.append(float(lim))
1388 1388 except ValueError:
1389 1389 lims.append(lim)
1390 1390
1391 1391 # Trap output.
1392 1392 stdout_trap = StringIO()
1393 1393
1394 1394 if hasattr(stats,'stream'):
1395 1395 # In newer versions of python, the stats object has a 'stream'
1396 1396 # attribute to write into.
1397 1397 stats.stream = stdout_trap
1398 1398 stats.print_stats(*lims)
1399 1399 else:
1400 1400 # For older versions, we manually redirect stdout during printing
1401 1401 sys_stdout = sys.stdout
1402 1402 try:
1403 1403 sys.stdout = stdout_trap
1404 1404 stats.print_stats(*lims)
1405 1405 finally:
1406 1406 sys.stdout = sys_stdout
1407 1407
1408 1408 output = stdout_trap.getvalue()
1409 1409 output = output.rstrip()
1410 1410
1411 1411 page.page(output)
1412 1412 print sys_exit,
1413 1413
1414 1414 dump_file = opts.D[0]
1415 1415 text_file = opts.T[0]
1416 1416 if dump_file:
1417 1417 prof.dump_stats(dump_file)
1418 1418 print '\n*** Profile stats marshalled to file',\
1419 1419 `dump_file`+'.',sys_exit
1420 1420 if text_file:
1421 1421 pfile = file(text_file,'w')
1422 1422 pfile.write(output)
1423 1423 pfile.close()
1424 1424 print '\n*** Profile printout saved to text file',\
1425 1425 `text_file`+'.',sys_exit
1426 1426
1427 1427 if opts.has_key('r'):
1428 1428 return stats
1429 1429 else:
1430 1430 return None
1431 1431
1432 1432 @testdec.skip_doctest
1433 1433 def magic_run(self, parameter_s ='',runner=None,
1434 1434 file_finder=get_py_filename):
1435 1435 """Run the named file inside IPython as a program.
1436 1436
1437 1437 Usage:\\
1438 1438 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1439 1439
1440 1440 Parameters after the filename are passed as command-line arguments to
1441 1441 the program (put in sys.argv). Then, control returns to IPython's
1442 1442 prompt.
1443 1443
1444 1444 This is similar to running at a system prompt:\\
1445 1445 $ python file args\\
1446 1446 but with the advantage of giving you IPython's tracebacks, and of
1447 1447 loading all variables into your interactive namespace for further use
1448 1448 (unless -p is used, see below).
1449 1449
1450 1450 The file is executed in a namespace initially consisting only of
1451 1451 __name__=='__main__' and sys.argv constructed as indicated. It thus
1452 1452 sees its environment as if it were being run as a stand-alone program
1453 1453 (except for sharing global objects such as previously imported
1454 1454 modules). But after execution, the IPython interactive namespace gets
1455 1455 updated with all variables defined in the program (except for __name__
1456 1456 and sys.argv). This allows for very convenient loading of code for
1457 1457 interactive work, while giving each program a 'clean sheet' to run in.
1458 1458
1459 1459 Options:
1460 1460
1461 1461 -n: __name__ is NOT set to '__main__', but to the running file's name
1462 1462 without extension (as python does under import). This allows running
1463 1463 scripts and reloading the definitions in them without calling code
1464 1464 protected by an ' if __name__ == "__main__" ' clause.
1465 1465
1466 1466 -i: run the file in IPython's namespace instead of an empty one. This
1467 1467 is useful if you are experimenting with code written in a text editor
1468 1468 which depends on variables defined interactively.
1469 1469
1470 1470 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1471 1471 being run. This is particularly useful if IPython is being used to
1472 1472 run unittests, which always exit with a sys.exit() call. In such
1473 1473 cases you are interested in the output of the test results, not in
1474 1474 seeing a traceback of the unittest module.
1475 1475
1476 1476 -t: print timing information at the end of the run. IPython will give
1477 1477 you an estimated CPU time consumption for your script, which under
1478 1478 Unix uses the resource module to avoid the wraparound problems of
1479 1479 time.clock(). Under Unix, an estimate of time spent on system tasks
1480 1480 is also given (for Windows platforms this is reported as 0.0).
1481 1481
1482 1482 If -t is given, an additional -N<N> option can be given, where <N>
1483 1483 must be an integer indicating how many times you want the script to
1484 1484 run. The final timing report will include total and per run results.
1485 1485
1486 1486 For example (testing the script uniq_stable.py):
1487 1487
1488 1488 In [1]: run -t uniq_stable
1489 1489
1490 1490 IPython CPU timings (estimated):\\
1491 1491 User : 0.19597 s.\\
1492 1492 System: 0.0 s.\\
1493 1493
1494 1494 In [2]: run -t -N5 uniq_stable
1495 1495
1496 1496 IPython CPU timings (estimated):\\
1497 1497 Total runs performed: 5\\
1498 1498 Times : Total Per run\\
1499 1499 User : 0.910862 s, 0.1821724 s.\\
1500 1500 System: 0.0 s, 0.0 s.
1501 1501
1502 1502 -d: run your program under the control of pdb, the Python debugger.
1503 1503 This allows you to execute your program step by step, watch variables,
1504 1504 etc. Internally, what IPython does is similar to calling:
1505 1505
1506 1506 pdb.run('execfile("YOURFILENAME")')
1507 1507
1508 1508 with a breakpoint set on line 1 of your file. You can change the line
1509 1509 number for this automatic breakpoint to be <N> by using the -bN option
1510 1510 (where N must be an integer). For example:
1511 1511
1512 1512 %run -d -b40 myscript
1513 1513
1514 1514 will set the first breakpoint at line 40 in myscript.py. Note that
1515 1515 the first breakpoint must be set on a line which actually does
1516 1516 something (not a comment or docstring) for it to stop execution.
1517 1517
1518 1518 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1519 1519 first enter 'c' (without qoutes) to start execution up to the first
1520 1520 breakpoint.
1521 1521
1522 1522 Entering 'help' gives information about the use of the debugger. You
1523 1523 can easily see pdb's full documentation with "import pdb;pdb.help()"
1524 1524 at a prompt.
1525 1525
1526 1526 -p: run program under the control of the Python profiler module (which
1527 1527 prints a detailed report of execution times, function calls, etc).
1528 1528
1529 1529 You can pass other options after -p which affect the behavior of the
1530 1530 profiler itself. See the docs for %prun for details.
1531 1531
1532 1532 In this mode, the program's variables do NOT propagate back to the
1533 1533 IPython interactive namespace (because they remain in the namespace
1534 1534 where the profiler executes them).
1535 1535
1536 1536 Internally this triggers a call to %prun, see its documentation for
1537 1537 details on the options available specifically for profiling.
1538 1538
1539 1539 There is one special usage for which the text above doesn't apply:
1540 1540 if the filename ends with .ipy, the file is run as ipython script,
1541 1541 just as if the commands were written on IPython prompt.
1542 1542 """
1543 1543
1544 1544 # get arguments and set sys.argv for program to be run.
1545 1545 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1546 1546 mode='list',list_all=1)
1547 1547
1548 1548 try:
1549 1549 filename = file_finder(arg_lst[0])
1550 1550 except IndexError:
1551 1551 warn('you must provide at least a filename.')
1552 1552 print '\n%run:\n',oinspect.getdoc(self.magic_run)
1553 1553 return
1554 1554 except IOError,msg:
1555 1555 error(msg)
1556 1556 return
1557 1557
1558 1558 if filename.lower().endswith('.ipy'):
1559 1559 self.shell.safe_execfile_ipy(filename)
1560 1560 return
1561 1561
1562 1562 # Control the response to exit() calls made by the script being run
1563 1563 exit_ignore = opts.has_key('e')
1564 1564
1565 1565 # Make sure that the running script gets a proper sys.argv as if it
1566 1566 # were run from a system shell.
1567 1567 save_argv = sys.argv # save it for later restoring
1568 1568 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1569 1569
1570 1570 if opts.has_key('i'):
1571 1571 # Run in user's interactive namespace
1572 1572 prog_ns = self.shell.user_ns
1573 1573 __name__save = self.shell.user_ns['__name__']
1574 1574 prog_ns['__name__'] = '__main__'
1575 1575 main_mod = self.shell.new_main_mod(prog_ns)
1576 1576 else:
1577 1577 # Run in a fresh, empty namespace
1578 1578 if opts.has_key('n'):
1579 1579 name = os.path.splitext(os.path.basename(filename))[0]
1580 1580 else:
1581 1581 name = '__main__'
1582 1582
1583 1583 main_mod = self.shell.new_main_mod()
1584 1584 prog_ns = main_mod.__dict__
1585 1585 prog_ns['__name__'] = name
1586 1586
1587 1587 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1588 1588 # set the __file__ global in the script's namespace
1589 1589 prog_ns['__file__'] = filename
1590 1590
1591 1591 # pickle fix. See interactiveshell for an explanation. But we need to make sure
1592 1592 # that, if we overwrite __main__, we replace it at the end
1593 1593 main_mod_name = prog_ns['__name__']
1594 1594
1595 1595 if main_mod_name == '__main__':
1596 1596 restore_main = sys.modules['__main__']
1597 1597 else:
1598 1598 restore_main = False
1599 1599
1600 1600 # This needs to be undone at the end to prevent holding references to
1601 1601 # every single object ever created.
1602 1602 sys.modules[main_mod_name] = main_mod
1603 1603
1604 1604 stats = None
1605 1605 try:
1606 1606 #self.shell.save_history()
1607 1607
1608 1608 if opts.has_key('p'):
1609 1609 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1610 1610 else:
1611 1611 if opts.has_key('d'):
1612 1612 deb = debugger.Pdb(self.shell.colors)
1613 1613 # reset Breakpoint state, which is moronically kept
1614 1614 # in a class
1615 1615 bdb.Breakpoint.next = 1
1616 1616 bdb.Breakpoint.bplist = {}
1617 1617 bdb.Breakpoint.bpbynumber = [None]
1618 1618 # Set an initial breakpoint to stop execution
1619 1619 maxtries = 10
1620 1620 bp = int(opts.get('b',[1])[0])
1621 1621 checkline = deb.checkline(filename,bp)
1622 1622 if not checkline:
1623 1623 for bp in range(bp+1,bp+maxtries+1):
1624 1624 if deb.checkline(filename,bp):
1625 1625 break
1626 1626 else:
1627 1627 msg = ("\nI failed to find a valid line to set "
1628 1628 "a breakpoint\n"
1629 1629 "after trying up to line: %s.\n"
1630 1630 "Please set a valid breakpoint manually "
1631 1631 "with the -b option." % bp)
1632 1632 error(msg)
1633 1633 return
1634 1634 # if we find a good linenumber, set the breakpoint
1635 1635 deb.do_break('%s:%s' % (filename,bp))
1636 1636 # Start file run
1637 1637 print "NOTE: Enter 'c' at the",
1638 1638 print "%s prompt to start your script." % deb.prompt
1639 1639 try:
1640 1640 deb.run('execfile("%s")' % filename,prog_ns)
1641 1641
1642 1642 except:
1643 1643 etype, value, tb = sys.exc_info()
1644 1644 # Skip three frames in the traceback: the %run one,
1645 1645 # one inside bdb.py, and the command-line typed by the
1646 1646 # user (run by exec in pdb itself).
1647 1647 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1648 1648 else:
1649 1649 if runner is None:
1650 1650 runner = self.shell.safe_execfile
1651 1651 if opts.has_key('t'):
1652 1652 # timed execution
1653 1653 try:
1654 1654 nruns = int(opts['N'][0])
1655 1655 if nruns < 1:
1656 1656 error('Number of runs must be >=1')
1657 1657 return
1658 1658 except (KeyError):
1659 1659 nruns = 1
1660 1660 if nruns == 1:
1661 1661 t0 = clock2()
1662 1662 runner(filename,prog_ns,prog_ns,
1663 1663 exit_ignore=exit_ignore)
1664 1664 t1 = clock2()
1665 1665 t_usr = t1[0]-t0[0]
1666 1666 t_sys = t1[1]-t0[1]
1667 1667 print "\nIPython CPU timings (estimated):"
1668 1668 print " User : %10s s." % t_usr
1669 1669 print " System: %10s s." % t_sys
1670 1670 else:
1671 1671 runs = range(nruns)
1672 1672 t0 = clock2()
1673 1673 for nr in runs:
1674 1674 runner(filename,prog_ns,prog_ns,
1675 1675 exit_ignore=exit_ignore)
1676 1676 t1 = clock2()
1677 1677 t_usr = t1[0]-t0[0]
1678 1678 t_sys = t1[1]-t0[1]
1679 1679 print "\nIPython CPU timings (estimated):"
1680 1680 print "Total runs performed:",nruns
1681 1681 print " Times : %10s %10s" % ('Total','Per run')
1682 1682 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1683 1683 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1684 1684
1685 1685 else:
1686 1686 # regular execution
1687 1687 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1688 1688
1689 1689 if opts.has_key('i'):
1690 1690 self.shell.user_ns['__name__'] = __name__save
1691 1691 else:
1692 1692 # The shell MUST hold a reference to prog_ns so after %run
1693 1693 # exits, the python deletion mechanism doesn't zero it out
1694 1694 # (leaving dangling references).
1695 1695 self.shell.cache_main_mod(prog_ns,filename)
1696 1696 # update IPython interactive namespace
1697 1697
1698 1698 # Some forms of read errors on the file may mean the
1699 1699 # __name__ key was never set; using pop we don't have to
1700 1700 # worry about a possible KeyError.
1701 1701 prog_ns.pop('__name__', None)
1702 1702
1703 1703 self.shell.user_ns.update(prog_ns)
1704 1704 finally:
1705 1705 # It's a bit of a mystery why, but __builtins__ can change from
1706 1706 # being a module to becoming a dict missing some key data after
1707 1707 # %run. As best I can see, this is NOT something IPython is doing
1708 1708 # at all, and similar problems have been reported before:
1709 1709 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
1710 1710 # Since this seems to be done by the interpreter itself, the best
1711 1711 # we can do is to at least restore __builtins__ for the user on
1712 1712 # exit.
1713 1713 self.shell.user_ns['__builtins__'] = __builtin__
1714 1714
1715 1715 # Ensure key global structures are restored
1716 1716 sys.argv = save_argv
1717 1717 if restore_main:
1718 1718 sys.modules['__main__'] = restore_main
1719 1719 else:
1720 1720 # Remove from sys.modules the reference to main_mod we'd
1721 1721 # added. Otherwise it will trap references to objects
1722 1722 # contained therein.
1723 1723 del sys.modules[main_mod_name]
1724 1724
1725 1725 #self.shell.reload_history()
1726 1726
1727 1727 return stats
1728 1728
1729 1729 @testdec.skip_doctest
1730 1730 def magic_timeit(self, parameter_s =''):
1731 1731 """Time execution of a Python statement or expression
1732 1732
1733 1733 Usage:\\
1734 1734 %timeit [-n<N> -r<R> [-t|-c]] statement
1735 1735
1736 1736 Time execution of a Python statement or expression using the timeit
1737 1737 module.
1738 1738
1739 1739 Options:
1740 1740 -n<N>: execute the given statement <N> times in a loop. If this value
1741 1741 is not given, a fitting value is chosen.
1742 1742
1743 1743 -r<R>: repeat the loop iteration <R> times and take the best result.
1744 1744 Default: 3
1745 1745
1746 1746 -t: use time.time to measure the time, which is the default on Unix.
1747 1747 This function measures wall time.
1748 1748
1749 1749 -c: use time.clock to measure the time, which is the default on
1750 1750 Windows and measures wall time. On Unix, resource.getrusage is used
1751 1751 instead and returns the CPU user time.
1752 1752
1753 1753 -p<P>: use a precision of <P> digits to display the timing result.
1754 1754 Default: 3
1755 1755
1756 1756
1757 1757 Examples:
1758 1758
1759 1759 In [1]: %timeit pass
1760 1760 10000000 loops, best of 3: 53.3 ns per loop
1761 1761
1762 1762 In [2]: u = None
1763 1763
1764 1764 In [3]: %timeit u is None
1765 1765 10000000 loops, best of 3: 184 ns per loop
1766 1766
1767 1767 In [4]: %timeit -r 4 u == None
1768 1768 1000000 loops, best of 4: 242 ns per loop
1769 1769
1770 1770 In [5]: import time
1771 1771
1772 1772 In [6]: %timeit -n1 time.sleep(2)
1773 1773 1 loops, best of 3: 2 s per loop
1774 1774
1775 1775
1776 1776 The times reported by %timeit will be slightly higher than those
1777 1777 reported by the timeit.py script when variables are accessed. This is
1778 1778 due to the fact that %timeit executes the statement in the namespace
1779 1779 of the shell, compared with timeit.py, which uses a single setup
1780 1780 statement to import function or create variables. Generally, the bias
1781 1781 does not matter as long as results from timeit.py are not mixed with
1782 1782 those from %timeit."""
1783 1783
1784 1784 import timeit
1785 1785 import math
1786 1786
1787 1787 # XXX: Unfortunately the unicode 'micro' symbol can cause problems in
1788 1788 # certain terminals. Until we figure out a robust way of
1789 1789 # auto-detecting if the terminal can deal with it, use plain 'us' for
1790 1790 # microseconds. I am really NOT happy about disabling the proper
1791 1791 # 'micro' prefix, but crashing is worse... If anyone knows what the
1792 1792 # right solution for this is, I'm all ears...
1793 1793 #
1794 1794 # Note: using
1795 1795 #
1796 1796 # s = u'\xb5'
1797 1797 # s.encode(sys.getdefaultencoding())
1798 1798 #
1799 1799 # is not sufficient, as I've seen terminals where that fails but
1800 1800 # print s
1801 1801 #
1802 1802 # succeeds
1803 1803 #
1804 1804 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1805 1805
1806 1806 #units = [u"s", u"ms",u'\xb5',"ns"]
1807 1807 units = [u"s", u"ms",u'us',"ns"]
1808 1808
1809 1809 scaling = [1, 1e3, 1e6, 1e9]
1810 1810
1811 1811 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1812 1812 posix=False)
1813 1813 if stmt == "":
1814 1814 return
1815 1815 timefunc = timeit.default_timer
1816 1816 number = int(getattr(opts, "n", 0))
1817 1817 repeat = int(getattr(opts, "r", timeit.default_repeat))
1818 1818 precision = int(getattr(opts, "p", 3))
1819 1819 if hasattr(opts, "t"):
1820 1820 timefunc = time.time
1821 1821 if hasattr(opts, "c"):
1822 1822 timefunc = clock
1823 1823
1824 1824 timer = timeit.Timer(timer=timefunc)
1825 1825 # this code has tight coupling to the inner workings of timeit.Timer,
1826 1826 # but is there a better way to achieve that the code stmt has access
1827 1827 # to the shell namespace?
1828 1828
1829 1829 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1830 1830 'setup': "pass"}
1831 1831 # Track compilation time so it can be reported if too long
1832 1832 # Minimum time above which compilation time will be reported
1833 1833 tc_min = 0.1
1834 1834
1835 1835 t0 = clock()
1836 1836 code = compile(src, "<magic-timeit>", "exec")
1837 1837 tc = clock()-t0
1838 1838
1839 1839 ns = {}
1840 1840 exec code in self.shell.user_ns, ns
1841 1841 timer.inner = ns["inner"]
1842 1842
1843 1843 if number == 0:
1844 1844 # determine number so that 0.2 <= total time < 2.0
1845 1845 number = 1
1846 1846 for i in range(1, 10):
1847 1847 if timer.timeit(number) >= 0.2:
1848 1848 break
1849 1849 number *= 10
1850 1850
1851 1851 best = min(timer.repeat(repeat, number)) / number
1852 1852
1853 1853 if best > 0.0 and best < 1000.0:
1854 1854 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1855 1855 elif best >= 1000.0:
1856 1856 order = 0
1857 1857 else:
1858 1858 order = 3
1859 1859 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1860 1860 precision,
1861 1861 best * scaling[order],
1862 1862 units[order])
1863 1863 if tc > tc_min:
1864 1864 print "Compiler time: %.2f s" % tc
1865 1865
1866 1866 @testdec.skip_doctest
1867 1867 def magic_time(self,parameter_s = ''):
1868 1868 """Time execution of a Python statement or expression.
1869 1869
1870 1870 The CPU and wall clock times are printed, and the value of the
1871 1871 expression (if any) is returned. Note that under Win32, system time
1872 1872 is always reported as 0, since it can not be measured.
1873 1873
1874 1874 This function provides very basic timing functionality. In Python
1875 1875 2.3, the timeit module offers more control and sophistication, so this
1876 1876 could be rewritten to use it (patches welcome).
1877 1877
1878 1878 Some examples:
1879 1879
1880 1880 In [1]: time 2**128
1881 1881 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1882 1882 Wall time: 0.00
1883 1883 Out[1]: 340282366920938463463374607431768211456L
1884 1884
1885 1885 In [2]: n = 1000000
1886 1886
1887 1887 In [3]: time sum(range(n))
1888 1888 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1889 1889 Wall time: 1.37
1890 1890 Out[3]: 499999500000L
1891 1891
1892 1892 In [4]: time print 'hello world'
1893 1893 hello world
1894 1894 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1895 1895 Wall time: 0.00
1896 1896
1897 1897 Note that the time needed by Python to compile the given expression
1898 1898 will be reported if it is more than 0.1s. In this example, the
1899 1899 actual exponentiation is done by Python at compilation time, so while
1900 1900 the expression can take a noticeable amount of time to compute, that
1901 1901 time is purely due to the compilation:
1902 1902
1903 1903 In [5]: time 3**9999;
1904 1904 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1905 1905 Wall time: 0.00 s
1906 1906
1907 1907 In [6]: time 3**999999;
1908 1908 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1909 1909 Wall time: 0.00 s
1910 1910 Compiler : 0.78 s
1911 1911 """
1912 1912
1913 1913 # fail immediately if the given expression can't be compiled
1914 1914
1915 1915 expr = self.shell.prefilter(parameter_s,False)
1916 1916
1917 1917 # Minimum time above which compilation time will be reported
1918 1918 tc_min = 0.1
1919 1919
1920 1920 try:
1921 1921 mode = 'eval'
1922 1922 t0 = clock()
1923 1923 code = compile(expr,'<timed eval>',mode)
1924 1924 tc = clock()-t0
1925 1925 except SyntaxError:
1926 1926 mode = 'exec'
1927 1927 t0 = clock()
1928 1928 code = compile(expr,'<timed exec>',mode)
1929 1929 tc = clock()-t0
1930 1930 # skew measurement as little as possible
1931 1931 glob = self.shell.user_ns
1932 1932 clk = clock2
1933 1933 wtime = time.time
1934 1934 # time execution
1935 1935 wall_st = wtime()
1936 1936 if mode=='eval':
1937 1937 st = clk()
1938 1938 out = eval(code,glob)
1939 1939 end = clk()
1940 1940 else:
1941 1941 st = clk()
1942 1942 exec code in glob
1943 1943 end = clk()
1944 1944 out = None
1945 1945 wall_end = wtime()
1946 1946 # Compute actual times and report
1947 1947 wall_time = wall_end-wall_st
1948 1948 cpu_user = end[0]-st[0]
1949 1949 cpu_sys = end[1]-st[1]
1950 1950 cpu_tot = cpu_user+cpu_sys
1951 1951 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1952 1952 (cpu_user,cpu_sys,cpu_tot)
1953 1953 print "Wall time: %.2f s" % wall_time
1954 1954 if tc > tc_min:
1955 1955 print "Compiler : %.2f s" % tc
1956 1956 return out
1957 1957
1958 1958 @testdec.skip_doctest
1959 1959 def magic_macro(self,parameter_s = ''):
1960 1960 """Define a set of input lines as a macro for future re-execution.
1961 1961
1962 1962 Usage:\\
1963 1963 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1964 1964
1965 1965 Options:
1966 1966
1967 1967 -r: use 'raw' input. By default, the 'processed' history is used,
1968 1968 so that magics are loaded in their transformed version to valid
1969 1969 Python. If this option is given, the raw input as typed as the
1970 1970 command line is used instead.
1971 1971
1972 1972 This will define a global variable called `name` which is a string
1973 1973 made of joining the slices and lines you specify (n1,n2,... numbers
1974 1974 above) from your input history into a single string. This variable
1975 1975 acts like an automatic function which re-executes those lines as if
1976 1976 you had typed them. You just type 'name' at the prompt and the code
1977 1977 executes.
1978 1978
1979 1979 The syntax for indicating input ranges is described in %history.
1980 1980
1981 1981 Note: as a 'hidden' feature, you can also use traditional python slice
1982 1982 notation, where N:M means numbers N through M-1.
1983 1983
1984 1984 For example, if your history contains (%hist prints it):
1985 1985
1986 1986 44: x=1
1987 1987 45: y=3
1988 1988 46: z=x+y
1989 1989 47: print x
1990 1990 48: a=5
1991 1991 49: print 'x',x,'y',y
1992 1992
1993 1993 you can create a macro with lines 44 through 47 (included) and line 49
1994 1994 called my_macro with:
1995 1995
1996 1996 In [55]: %macro my_macro 44-47 49
1997 1997
1998 1998 Now, typing `my_macro` (without quotes) will re-execute all this code
1999 1999 in one pass.
2000 2000
2001 2001 You don't need to give the line-numbers in order, and any given line
2002 2002 number can appear multiple times. You can assemble macros with any
2003 2003 lines from your input history in any order.
2004 2004
2005 2005 The macro is a simple object which holds its value in an attribute,
2006 2006 but IPython's display system checks for macros and executes them as
2007 2007 code instead of printing them when you type their name.
2008 2008
2009 2009 You can view a macro's contents by explicitly printing it with:
2010 2010
2011 2011 'print macro_name'.
2012 2012
2013 2013 For one-off cases which DON'T contain magic function calls in them you
2014 2014 can obtain similar results by explicitly executing slices from your
2015 2015 input history with:
2016 2016
2017 2017 In [60]: exec In[44:48]+In[49]"""
2018 2018
2019 2019 opts,args = self.parse_options(parameter_s,'r',mode='list')
2020 2020 if not args: # List existing macros
2021 2021 return sorted(k for k,v in self.shell.user_ns.iteritems() if\
2022 2022 isinstance(v, Macro))
2023 2023 if len(args) == 1:
2024 2024 raise UsageError(
2025 2025 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
2026 2026 name, ranges = args[0], " ".join(args[1:])
2027 2027
2028 2028 #print 'rng',ranges # dbg
2029 2029 lines = self.extract_input_lines(ranges,'r' in opts)
2030 2030 macro = Macro(lines)
2031 2031 self.shell.define_macro(name, macro)
2032 2032 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
2033 2033 print 'Macro contents:'
2034 2034 print macro,
2035 2035
2036 2036 def magic_save(self,parameter_s = ''):
2037 2037 """Save a set of lines to a given filename.
2038 2038
2039 2039 Usage:\\
2040 2040 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
2041 2041
2042 2042 Options:
2043 2043
2044 2044 -r: use 'raw' input. By default, the 'processed' history is used,
2045 2045 so that magics are loaded in their transformed version to valid
2046 2046 Python. If this option is given, the raw input as typed as the
2047 2047 command line is used instead.
2048 2048
2049 2049 This function uses the same syntax as %history for input ranges,
2050 2050 then saves the lines to the filename you specify.
2051 2051
2052 2052 It adds a '.py' extension to the file if you don't do so yourself, and
2053 2053 it asks for confirmation before overwriting existing files."""
2054 2054
2055 2055 opts,args = self.parse_options(parameter_s,'r',mode='list')
2056 2056 fname,ranges = args[0], " ".join(args[1:])
2057 2057 if not fname.endswith('.py'):
2058 2058 fname += '.py'
2059 2059 if os.path.isfile(fname):
2060 2060 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
2061 2061 if ans.lower() not in ['y','yes']:
2062 2062 print 'Operation cancelled.'
2063 2063 return
2064 2064 cmds = self.extract_input_lines(ranges, 'r' in opts)
2065 2065 with open(fname,'w') as f:
2066 f.write(cmds)
2066 f.write("# coding: utf-8\n")
2067 f.write(cmds.encode("utf-8"))
2067 2068 print 'The following commands were written to file `%s`:' % fname
2068 2069 print cmds
2069 2070
2070 2071 def _edit_macro(self,mname,macro):
2071 2072 """open an editor with the macro data in a file"""
2072 2073 filename = self.shell.mktempfile(macro.value)
2073 2074 self.shell.hooks.editor(filename)
2074 2075
2075 2076 # and make a new macro object, to replace the old one
2076 2077 mfile = open(filename)
2077 2078 mvalue = mfile.read()
2078 2079 mfile.close()
2079 2080 self.shell.user_ns[mname] = Macro(mvalue)
2080 2081
2081 2082 def magic_ed(self,parameter_s=''):
2082 2083 """Alias to %edit."""
2083 2084 return self.magic_edit(parameter_s)
2084 2085
2085 2086 @testdec.skip_doctest
2086 2087 def magic_edit(self,parameter_s='',last_call=['','']):
2087 2088 """Bring up an editor and execute the resulting code.
2088 2089
2089 2090 Usage:
2090 2091 %edit [options] [args]
2091 2092
2092 2093 %edit runs IPython's editor hook. The default version of this hook is
2093 2094 set to call the __IPYTHON__.rc.editor command. This is read from your
2094 2095 environment variable $EDITOR. If this isn't found, it will default to
2095 2096 vi under Linux/Unix and to notepad under Windows. See the end of this
2096 2097 docstring for how to change the editor hook.
2097 2098
2098 2099 You can also set the value of this editor via the command line option
2099 2100 '-editor' or in your ipythonrc file. This is useful if you wish to use
2100 2101 specifically for IPython an editor different from your typical default
2101 2102 (and for Windows users who typically don't set environment variables).
2102 2103
2103 2104 This command allows you to conveniently edit multi-line code right in
2104 2105 your IPython session.
2105 2106
2106 2107 If called without arguments, %edit opens up an empty editor with a
2107 2108 temporary file and will execute the contents of this file when you
2108 2109 close it (don't forget to save it!).
2109 2110
2110 2111
2111 2112 Options:
2112 2113
2113 2114 -n <number>: open the editor at a specified line number. By default,
2114 2115 the IPython editor hook uses the unix syntax 'editor +N filename', but
2115 2116 you can configure this by providing your own modified hook if your
2116 2117 favorite editor supports line-number specifications with a different
2117 2118 syntax.
2118 2119
2119 2120 -p: this will call the editor with the same data as the previous time
2120 2121 it was used, regardless of how long ago (in your current session) it
2121 2122 was.
2122 2123
2123 2124 -r: use 'raw' input. This option only applies to input taken from the
2124 2125 user's history. By default, the 'processed' history is used, so that
2125 2126 magics are loaded in their transformed version to valid Python. If
2126 2127 this option is given, the raw input as typed as the command line is
2127 2128 used instead. When you exit the editor, it will be executed by
2128 2129 IPython's own processor.
2129 2130
2130 2131 -x: do not execute the edited code immediately upon exit. This is
2131 2132 mainly useful if you are editing programs which need to be called with
2132 2133 command line arguments, which you can then do using %run.
2133 2134
2134 2135
2135 2136 Arguments:
2136 2137
2137 2138 If arguments are given, the following possibilites exist:
2138 2139
2139 2140 - If the argument is a filename, IPython will load that into the
2140 2141 editor. It will execute its contents with execfile() when you exit,
2141 2142 loading any code in the file into your interactive namespace.
2142 2143
2143 2144 - The arguments are ranges of input history, e.g. "7 ~1/4-6".
2144 2145 The syntax is the same as in the %history magic.
2145 2146
2146 2147 - If the argument is a string variable, its contents are loaded
2147 2148 into the editor. You can thus edit any string which contains
2148 2149 python code (including the result of previous edits).
2149 2150
2150 2151 - If the argument is the name of an object (other than a string),
2151 2152 IPython will try to locate the file where it was defined and open the
2152 2153 editor at the point where it is defined. You can use `%edit function`
2153 2154 to load an editor exactly at the point where 'function' is defined,
2154 2155 edit it and have the file be executed automatically.
2155 2156
2156 2157 If the object is a macro (see %macro for details), this opens up your
2157 2158 specified editor with a temporary file containing the macro's data.
2158 2159 Upon exit, the macro is reloaded with the contents of the file.
2159 2160
2160 2161 Note: opening at an exact line is only supported under Unix, and some
2161 2162 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2162 2163 '+NUMBER' parameter necessary for this feature. Good editors like
2163 2164 (X)Emacs, vi, jed, pico and joe all do.
2164 2165
2165 2166 After executing your code, %edit will return as output the code you
2166 2167 typed in the editor (except when it was an existing file). This way
2167 2168 you can reload the code in further invocations of %edit as a variable,
2168 2169 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2169 2170 the output.
2170 2171
2171 2172 Note that %edit is also available through the alias %ed.
2172 2173
2173 2174 This is an example of creating a simple function inside the editor and
2174 2175 then modifying it. First, start up the editor:
2175 2176
2176 2177 In [1]: ed
2177 2178 Editing... done. Executing edited code...
2178 2179 Out[1]: 'def foo():n print "foo() was defined in an editing session"n'
2179 2180
2180 2181 We can then call the function foo():
2181 2182
2182 2183 In [2]: foo()
2183 2184 foo() was defined in an editing session
2184 2185
2185 2186 Now we edit foo. IPython automatically loads the editor with the
2186 2187 (temporary) file where foo() was previously defined:
2187 2188
2188 2189 In [3]: ed foo
2189 2190 Editing... done. Executing edited code...
2190 2191
2191 2192 And if we call foo() again we get the modified version:
2192 2193
2193 2194 In [4]: foo()
2194 2195 foo() has now been changed!
2195 2196
2196 2197 Here is an example of how to edit a code snippet successive
2197 2198 times. First we call the editor:
2198 2199
2199 2200 In [5]: ed
2200 2201 Editing... done. Executing edited code...
2201 2202 hello
2202 2203 Out[5]: "print 'hello'n"
2203 2204
2204 2205 Now we call it again with the previous output (stored in _):
2205 2206
2206 2207 In [6]: ed _
2207 2208 Editing... done. Executing edited code...
2208 2209 hello world
2209 2210 Out[6]: "print 'hello world'n"
2210 2211
2211 2212 Now we call it with the output #8 (stored in _8, also as Out[8]):
2212 2213
2213 2214 In [7]: ed _8
2214 2215 Editing... done. Executing edited code...
2215 2216 hello again
2216 2217 Out[7]: "print 'hello again'n"
2217 2218
2218 2219
2219 2220 Changing the default editor hook:
2220 2221
2221 2222 If you wish to write your own editor hook, you can put it in a
2222 2223 configuration file which you load at startup time. The default hook
2223 2224 is defined in the IPython.core.hooks module, and you can use that as a
2224 2225 starting example for further modifications. That file also has
2225 2226 general instructions on how to set a new hook for use once you've
2226 2227 defined it."""
2227 2228
2228 2229 # FIXME: This function has become a convoluted mess. It needs a
2229 2230 # ground-up rewrite with clean, simple logic.
2230 2231
2231 2232 def make_filename(arg):
2232 2233 "Make a filename from the given args"
2233 2234 try:
2234 2235 filename = get_py_filename(arg)
2235 2236 except IOError:
2236 2237 if args.endswith('.py'):
2237 2238 filename = arg
2238 2239 else:
2239 2240 filename = None
2240 2241 return filename
2241 2242
2242 2243 # custom exceptions
2243 2244 class DataIsObject(Exception): pass
2244 2245
2245 2246 opts,args = self.parse_options(parameter_s,'prxn:')
2246 2247 # Set a few locals from the options for convenience:
2247 2248 opts_prev = 'p' in opts
2248 2249 opts_raw = 'r' in opts
2249 2250
2250 2251 # Default line number value
2251 2252 lineno = opts.get('n',None)
2252 2253
2253 2254 if opts_prev:
2254 2255 args = '_%s' % last_call[0]
2255 2256 if not self.shell.user_ns.has_key(args):
2256 2257 args = last_call[1]
2257 2258
2258 2259 # use last_call to remember the state of the previous call, but don't
2259 2260 # let it be clobbered by successive '-p' calls.
2260 2261 try:
2261 2262 last_call[0] = self.shell.displayhook.prompt_count
2262 2263 if not opts_prev:
2263 2264 last_call[1] = parameter_s
2264 2265 except:
2265 2266 pass
2266 2267
2267 2268 # by default this is done with temp files, except when the given
2268 2269 # arg is a filename
2269 2270 use_temp = True
2270 2271
2271 2272 data = ''
2272 2273 if args.endswith('.py'):
2273 2274 filename = make_filename(args)
2274 2275 use_temp = False
2275 2276 elif args:
2276 2277 # Mode where user specifies ranges of lines, like in %macro.
2277 2278 data = self.extract_input_lines(args, opts_raw)
2278 2279 if not data:
2279 2280 try:
2280 2281 # Load the parameter given as a variable. If not a string,
2281 2282 # process it as an object instead (below)
2282 2283
2283 2284 #print '*** args',args,'type',type(args) # dbg
2284 2285 data = eval(args, self.shell.user_ns)
2285 2286 if not isinstance(data, basestring):
2286 2287 raise DataIsObject
2287 2288
2288 2289 except (NameError,SyntaxError):
2289 2290 # given argument is not a variable, try as a filename
2290 2291 filename = make_filename(args)
2291 2292 if filename is None:
2292 2293 warn("Argument given (%s) can't be found as a variable "
2293 2294 "or as a filename." % args)
2294 2295 return
2295 2296 use_temp = False
2296 2297
2297 2298 except DataIsObject:
2298 2299 # macros have a special edit function
2299 2300 if isinstance(data, Macro):
2300 2301 self._edit_macro(args,data)
2301 2302 return
2302 2303
2303 2304 # For objects, try to edit the file where they are defined
2304 2305 try:
2305 2306 filename = inspect.getabsfile(data)
2306 2307 if 'fakemodule' in filename.lower() and inspect.isclass(data):
2307 2308 # class created by %edit? Try to find source
2308 2309 # by looking for method definitions instead, the
2309 2310 # __module__ in those classes is FakeModule.
2310 2311 attrs = [getattr(data, aname) for aname in dir(data)]
2311 2312 for attr in attrs:
2312 2313 if not inspect.ismethod(attr):
2313 2314 continue
2314 2315 filename = inspect.getabsfile(attr)
2315 2316 if filename and 'fakemodule' not in filename.lower():
2316 2317 # change the attribute to be the edit target instead
2317 2318 data = attr
2318 2319 break
2319 2320
2320 2321 datafile = 1
2321 2322 except TypeError:
2322 2323 filename = make_filename(args)
2323 2324 datafile = 1
2324 2325 warn('Could not find file where `%s` is defined.\n'
2325 2326 'Opening a file named `%s`' % (args,filename))
2326 2327 # Now, make sure we can actually read the source (if it was in
2327 2328 # a temp file it's gone by now).
2328 2329 if datafile:
2329 2330 try:
2330 2331 if lineno is None:
2331 2332 lineno = inspect.getsourcelines(data)[1]
2332 2333 except IOError:
2333 2334 filename = make_filename(args)
2334 2335 if filename is None:
2335 2336 warn('The file `%s` where `%s` was defined cannot '
2336 2337 'be read.' % (filename,data))
2337 2338 return
2338 2339 use_temp = False
2339 2340
2340 2341 if use_temp:
2341 2342 filename = self.shell.mktempfile(data)
2342 2343 print 'IPython will make a temporary file named:',filename
2343 2344
2344 2345 # do actual editing here
2345 2346 print 'Editing...',
2346 2347 sys.stdout.flush()
2347 2348 try:
2348 2349 # Quote filenames that may have spaces in them
2349 2350 if ' ' in filename:
2350 2351 filename = "%s" % filename
2351 2352 self.shell.hooks.editor(filename,lineno)
2352 2353 except TryNext:
2353 2354 warn('Could not open editor')
2354 2355 return
2355 2356
2356 2357 # XXX TODO: should this be generalized for all string vars?
2357 2358 # For now, this is special-cased to blocks created by cpaste
2358 2359 if args.strip() == 'pasted_block':
2359 2360 self.shell.user_ns['pasted_block'] = file_read(filename)
2360 2361
2361 2362 if 'x' in opts: # -x prevents actual execution
2362 2363 print
2363 2364 else:
2364 2365 print 'done. Executing edited code...'
2365 2366 if opts_raw:
2366 2367 self.shell.run_cell(file_read(filename),
2367 2368 store_history=False)
2368 2369 else:
2369 2370 self.shell.safe_execfile(filename,self.shell.user_ns,
2370 2371 self.shell.user_ns)
2371 2372
2372 2373
2373 2374 if use_temp:
2374 2375 try:
2375 2376 return open(filename).read()
2376 2377 except IOError,msg:
2377 2378 if msg.filename == filename:
2378 2379 warn('File not found. Did you forget to save?')
2379 2380 return
2380 2381 else:
2381 2382 self.shell.showtraceback()
2382 2383
2383 2384 def magic_xmode(self,parameter_s = ''):
2384 2385 """Switch modes for the exception handlers.
2385 2386
2386 2387 Valid modes: Plain, Context and Verbose.
2387 2388
2388 2389 If called without arguments, acts as a toggle."""
2389 2390
2390 2391 def xmode_switch_err(name):
2391 2392 warn('Error changing %s exception modes.\n%s' %
2392 2393 (name,sys.exc_info()[1]))
2393 2394
2394 2395 shell = self.shell
2395 2396 new_mode = parameter_s.strip().capitalize()
2396 2397 try:
2397 2398 shell.InteractiveTB.set_mode(mode=new_mode)
2398 2399 print 'Exception reporting mode:',shell.InteractiveTB.mode
2399 2400 except:
2400 2401 xmode_switch_err('user')
2401 2402
2402 2403 def magic_colors(self,parameter_s = ''):
2403 2404 """Switch color scheme for prompts, info system and exception handlers.
2404 2405
2405 2406 Currently implemented schemes: NoColor, Linux, LightBG.
2406 2407
2407 2408 Color scheme names are not case-sensitive.
2408 2409
2409 2410 Examples
2410 2411 --------
2411 2412 To get a plain black and white terminal::
2412 2413
2413 2414 %colors nocolor
2414 2415 """
2415 2416
2416 2417 def color_switch_err(name):
2417 2418 warn('Error changing %s color schemes.\n%s' %
2418 2419 (name,sys.exc_info()[1]))
2419 2420
2420 2421
2421 2422 new_scheme = parameter_s.strip()
2422 2423 if not new_scheme:
2423 2424 raise UsageError(
2424 2425 "%colors: you must specify a color scheme. See '%colors?'")
2425 2426 return
2426 2427 # local shortcut
2427 2428 shell = self.shell
2428 2429
2429 2430 import IPython.utils.rlineimpl as readline
2430 2431
2431 2432 if not readline.have_readline and sys.platform == "win32":
2432 2433 msg = """\
2433 2434 Proper color support under MS Windows requires the pyreadline library.
2434 2435 You can find it at:
2435 2436 http://ipython.scipy.org/moin/PyReadline/Intro
2436 2437 Gary's readline needs the ctypes module, from:
2437 2438 http://starship.python.net/crew/theller/ctypes
2438 2439 (Note that ctypes is already part of Python versions 2.5 and newer).
2439 2440
2440 2441 Defaulting color scheme to 'NoColor'"""
2441 2442 new_scheme = 'NoColor'
2442 2443 warn(msg)
2443 2444
2444 2445 # readline option is 0
2445 2446 if not shell.has_readline:
2446 2447 new_scheme = 'NoColor'
2447 2448
2448 2449 # Set prompt colors
2449 2450 try:
2450 2451 shell.displayhook.set_colors(new_scheme)
2451 2452 except:
2452 2453 color_switch_err('prompt')
2453 2454 else:
2454 2455 shell.colors = \
2455 2456 shell.displayhook.color_table.active_scheme_name
2456 2457 # Set exception colors
2457 2458 try:
2458 2459 shell.InteractiveTB.set_colors(scheme = new_scheme)
2459 2460 shell.SyntaxTB.set_colors(scheme = new_scheme)
2460 2461 except:
2461 2462 color_switch_err('exception')
2462 2463
2463 2464 # Set info (for 'object?') colors
2464 2465 if shell.color_info:
2465 2466 try:
2466 2467 shell.inspector.set_active_scheme(new_scheme)
2467 2468 except:
2468 2469 color_switch_err('object inspector')
2469 2470 else:
2470 2471 shell.inspector.set_active_scheme('NoColor')
2471 2472
2472 2473 def magic_pprint(self, parameter_s=''):
2473 2474 """Toggle pretty printing on/off."""
2474 2475 ptformatter = self.shell.display_formatter.formatters['text/plain']
2475 2476 ptformatter.pprint = bool(1 - ptformatter.pprint)
2476 2477 print 'Pretty printing has been turned', \
2477 2478 ['OFF','ON'][ptformatter.pprint]
2478 2479
2479 2480 def magic_Exit(self, parameter_s=''):
2480 2481 """Exit IPython."""
2481 2482
2482 2483 self.shell.ask_exit()
2483 2484
2484 2485 # Add aliases as magics so all common forms work: exit, quit, Exit, Quit.
2485 2486 magic_exit = magic_quit = magic_Quit = magic_Exit
2486 2487
2487 2488 #......................................................................
2488 2489 # Functions to implement unix shell-type things
2489 2490
2490 2491 @testdec.skip_doctest
2491 2492 def magic_alias(self, parameter_s = ''):
2492 2493 """Define an alias for a system command.
2493 2494
2494 2495 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2495 2496
2496 2497 Then, typing 'alias_name params' will execute the system command 'cmd
2497 2498 params' (from your underlying operating system).
2498 2499
2499 2500 Aliases have lower precedence than magic functions and Python normal
2500 2501 variables, so if 'foo' is both a Python variable and an alias, the
2501 2502 alias can not be executed until 'del foo' removes the Python variable.
2502 2503
2503 2504 You can use the %l specifier in an alias definition to represent the
2504 2505 whole line when the alias is called. For example:
2505 2506
2506 2507 In [2]: alias bracket echo "Input in brackets: <%l>"
2507 2508 In [3]: bracket hello world
2508 2509 Input in brackets: <hello world>
2509 2510
2510 2511 You can also define aliases with parameters using %s specifiers (one
2511 2512 per parameter):
2512 2513
2513 2514 In [1]: alias parts echo first %s second %s
2514 2515 In [2]: %parts A B
2515 2516 first A second B
2516 2517 In [3]: %parts A
2517 2518 Incorrect number of arguments: 2 expected.
2518 2519 parts is an alias to: 'echo first %s second %s'
2519 2520
2520 2521 Note that %l and %s are mutually exclusive. You can only use one or
2521 2522 the other in your aliases.
2522 2523
2523 2524 Aliases expand Python variables just like system calls using ! or !!
2524 2525 do: all expressions prefixed with '$' get expanded. For details of
2525 2526 the semantic rules, see PEP-215:
2526 2527 http://www.python.org/peps/pep-0215.html. This is the library used by
2527 2528 IPython for variable expansion. If you want to access a true shell
2528 2529 variable, an extra $ is necessary to prevent its expansion by IPython:
2529 2530
2530 2531 In [6]: alias show echo
2531 2532 In [7]: PATH='A Python string'
2532 2533 In [8]: show $PATH
2533 2534 A Python string
2534 2535 In [9]: show $$PATH
2535 2536 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2536 2537
2537 2538 You can use the alias facility to acess all of $PATH. See the %rehash
2538 2539 and %rehashx functions, which automatically create aliases for the
2539 2540 contents of your $PATH.
2540 2541
2541 2542 If called with no parameters, %alias prints the current alias table."""
2542 2543
2543 2544 par = parameter_s.strip()
2544 2545 if not par:
2545 2546 stored = self.db.get('stored_aliases', {} )
2546 2547 aliases = sorted(self.shell.alias_manager.aliases)
2547 2548 # for k, v in stored:
2548 2549 # atab.append(k, v[0])
2549 2550
2550 2551 print "Total number of aliases:", len(aliases)
2551 2552 sys.stdout.flush()
2552 2553 return aliases
2553 2554
2554 2555 # Now try to define a new one
2555 2556 try:
2556 2557 alias,cmd = par.split(None, 1)
2557 2558 except:
2558 2559 print oinspect.getdoc(self.magic_alias)
2559 2560 else:
2560 2561 self.shell.alias_manager.soft_define_alias(alias, cmd)
2561 2562 # end magic_alias
2562 2563
2563 2564 def magic_unalias(self, parameter_s = ''):
2564 2565 """Remove an alias"""
2565 2566
2566 2567 aname = parameter_s.strip()
2567 2568 self.shell.alias_manager.undefine_alias(aname)
2568 2569 stored = self.db.get('stored_aliases', {} )
2569 2570 if aname in stored:
2570 2571 print "Removing %stored alias",aname
2571 2572 del stored[aname]
2572 2573 self.db['stored_aliases'] = stored
2573 2574
2574 2575 def magic_rehashx(self, parameter_s = ''):
2575 2576 """Update the alias table with all executable files in $PATH.
2576 2577
2577 2578 This version explicitly checks that every entry in $PATH is a file
2578 2579 with execute access (os.X_OK), so it is much slower than %rehash.
2579 2580
2580 2581 Under Windows, it checks executability as a match agains a
2581 2582 '|'-separated string of extensions, stored in the IPython config
2582 2583 variable win_exec_ext. This defaults to 'exe|com|bat'.
2583 2584
2584 2585 This function also resets the root module cache of module completer,
2585 2586 used on slow filesystems.
2586 2587 """
2587 2588 from IPython.core.alias import InvalidAliasError
2588 2589
2589 2590 # for the benefit of module completer in ipy_completers.py
2590 2591 del self.db['rootmodules']
2591 2592
2592 2593 path = [os.path.abspath(os.path.expanduser(p)) for p in
2593 2594 os.environ.get('PATH','').split(os.pathsep)]
2594 2595 path = filter(os.path.isdir,path)
2595 2596
2596 2597 syscmdlist = []
2597 2598 # Now define isexec in a cross platform manner.
2598 2599 if os.name == 'posix':
2599 2600 isexec = lambda fname:os.path.isfile(fname) and \
2600 2601 os.access(fname,os.X_OK)
2601 2602 else:
2602 2603 try:
2603 2604 winext = os.environ['pathext'].replace(';','|').replace('.','')
2604 2605 except KeyError:
2605 2606 winext = 'exe|com|bat|py'
2606 2607 if 'py' not in winext:
2607 2608 winext += '|py'
2608 2609 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2609 2610 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2610 2611 savedir = os.getcwd()
2611 2612
2612 2613 # Now walk the paths looking for executables to alias.
2613 2614 try:
2614 2615 # write the whole loop for posix/Windows so we don't have an if in
2615 2616 # the innermost part
2616 2617 if os.name == 'posix':
2617 2618 for pdir in path:
2618 2619 os.chdir(pdir)
2619 2620 for ff in os.listdir(pdir):
2620 2621 if isexec(ff):
2621 2622 try:
2622 2623 # Removes dots from the name since ipython
2623 2624 # will assume names with dots to be python.
2624 2625 self.shell.alias_manager.define_alias(
2625 2626 ff.replace('.',''), ff)
2626 2627 except InvalidAliasError:
2627 2628 pass
2628 2629 else:
2629 2630 syscmdlist.append(ff)
2630 2631 else:
2631 2632 no_alias = self.shell.alias_manager.no_alias
2632 2633 for pdir in path:
2633 2634 os.chdir(pdir)
2634 2635 for ff in os.listdir(pdir):
2635 2636 base, ext = os.path.splitext(ff)
2636 2637 if isexec(ff) and base.lower() not in no_alias:
2637 2638 if ext.lower() == '.exe':
2638 2639 ff = base
2639 2640 try:
2640 2641 # Removes dots from the name since ipython
2641 2642 # will assume names with dots to be python.
2642 2643 self.shell.alias_manager.define_alias(
2643 2644 base.lower().replace('.',''), ff)
2644 2645 except InvalidAliasError:
2645 2646 pass
2646 2647 syscmdlist.append(ff)
2647 2648 db = self.db
2648 2649 db['syscmdlist'] = syscmdlist
2649 2650 finally:
2650 2651 os.chdir(savedir)
2651 2652
2652 2653 @testdec.skip_doctest
2653 2654 def magic_pwd(self, parameter_s = ''):
2654 2655 """Return the current working directory path.
2655 2656
2656 2657 Examples
2657 2658 --------
2658 2659 ::
2659 2660
2660 2661 In [9]: pwd
2661 2662 Out[9]: '/home/tsuser/sprint/ipython'
2662 2663 """
2663 2664 return os.getcwd()
2664 2665
2665 2666 @testdec.skip_doctest
2666 2667 def magic_cd(self, parameter_s=''):
2667 2668 """Change the current working directory.
2668 2669
2669 2670 This command automatically maintains an internal list of directories
2670 2671 you visit during your IPython session, in the variable _dh. The
2671 2672 command %dhist shows this history nicely formatted. You can also
2672 2673 do 'cd -<tab>' to see directory history conveniently.
2673 2674
2674 2675 Usage:
2675 2676
2676 2677 cd 'dir': changes to directory 'dir'.
2677 2678
2678 2679 cd -: changes to the last visited directory.
2679 2680
2680 2681 cd -<n>: changes to the n-th directory in the directory history.
2681 2682
2682 2683 cd --foo: change to directory that matches 'foo' in history
2683 2684
2684 2685 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2685 2686 (note: cd <bookmark_name> is enough if there is no
2686 2687 directory <bookmark_name>, but a bookmark with the name exists.)
2687 2688 'cd -b <tab>' allows you to tab-complete bookmark names.
2688 2689
2689 2690 Options:
2690 2691
2691 2692 -q: quiet. Do not print the working directory after the cd command is
2692 2693 executed. By default IPython's cd command does print this directory,
2693 2694 since the default prompts do not display path information.
2694 2695
2695 2696 Note that !cd doesn't work for this purpose because the shell where
2696 2697 !command runs is immediately discarded after executing 'command'.
2697 2698
2698 2699 Examples
2699 2700 --------
2700 2701 ::
2701 2702
2702 2703 In [10]: cd parent/child
2703 2704 /home/tsuser/parent/child
2704 2705 """
2705 2706
2706 2707 parameter_s = parameter_s.strip()
2707 2708 #bkms = self.shell.persist.get("bookmarks",{})
2708 2709
2709 2710 oldcwd = os.getcwd()
2710 2711 numcd = re.match(r'(-)(\d+)$',parameter_s)
2711 2712 # jump in directory history by number
2712 2713 if numcd:
2713 2714 nn = int(numcd.group(2))
2714 2715 try:
2715 2716 ps = self.shell.user_ns['_dh'][nn]
2716 2717 except IndexError:
2717 2718 print 'The requested directory does not exist in history.'
2718 2719 return
2719 2720 else:
2720 2721 opts = {}
2721 2722 elif parameter_s.startswith('--'):
2722 2723 ps = None
2723 2724 fallback = None
2724 2725 pat = parameter_s[2:]
2725 2726 dh = self.shell.user_ns['_dh']
2726 2727 # first search only by basename (last component)
2727 2728 for ent in reversed(dh):
2728 2729 if pat in os.path.basename(ent) and os.path.isdir(ent):
2729 2730 ps = ent
2730 2731 break
2731 2732
2732 2733 if fallback is None and pat in ent and os.path.isdir(ent):
2733 2734 fallback = ent
2734 2735
2735 2736 # if we have no last part match, pick the first full path match
2736 2737 if ps is None:
2737 2738 ps = fallback
2738 2739
2739 2740 if ps is None:
2740 2741 print "No matching entry in directory history"
2741 2742 return
2742 2743 else:
2743 2744 opts = {}
2744 2745
2745 2746
2746 2747 else:
2747 2748 #turn all non-space-escaping backslashes to slashes,
2748 2749 # for c:\windows\directory\names\
2749 2750 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2750 2751 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2751 2752 # jump to previous
2752 2753 if ps == '-':
2753 2754 try:
2754 2755 ps = self.shell.user_ns['_dh'][-2]
2755 2756 except IndexError:
2756 2757 raise UsageError('%cd -: No previous directory to change to.')
2757 2758 # jump to bookmark if needed
2758 2759 else:
2759 2760 if not os.path.isdir(ps) or opts.has_key('b'):
2760 2761 bkms = self.db.get('bookmarks', {})
2761 2762
2762 2763 if bkms.has_key(ps):
2763 2764 target = bkms[ps]
2764 2765 print '(bookmark:%s) -> %s' % (ps,target)
2765 2766 ps = target
2766 2767 else:
2767 2768 if opts.has_key('b'):
2768 2769 raise UsageError("Bookmark '%s' not found. "
2769 2770 "Use '%%bookmark -l' to see your bookmarks." % ps)
2770 2771
2771 2772 # at this point ps should point to the target dir
2772 2773 if ps:
2773 2774 try:
2774 2775 os.chdir(os.path.expanduser(ps))
2775 2776 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2776 2777 set_term_title('IPython: ' + abbrev_cwd())
2777 2778 except OSError:
2778 2779 print sys.exc_info()[1]
2779 2780 else:
2780 2781 cwd = os.getcwd()
2781 2782 dhist = self.shell.user_ns['_dh']
2782 2783 if oldcwd != cwd:
2783 2784 dhist.append(cwd)
2784 2785 self.db['dhist'] = compress_dhist(dhist)[-100:]
2785 2786
2786 2787 else:
2787 2788 os.chdir(self.shell.home_dir)
2788 2789 if hasattr(self.shell, 'term_title') and self.shell.term_title:
2789 2790 set_term_title('IPython: ' + '~')
2790 2791 cwd = os.getcwd()
2791 2792 dhist = self.shell.user_ns['_dh']
2792 2793
2793 2794 if oldcwd != cwd:
2794 2795 dhist.append(cwd)
2795 2796 self.db['dhist'] = compress_dhist(dhist)[-100:]
2796 2797 if not 'q' in opts and self.shell.user_ns['_dh']:
2797 2798 print self.shell.user_ns['_dh'][-1]
2798 2799
2799 2800
2800 2801 def magic_env(self, parameter_s=''):
2801 2802 """List environment variables."""
2802 2803
2803 2804 return os.environ.data
2804 2805
2805 2806 def magic_pushd(self, parameter_s=''):
2806 2807 """Place the current dir on stack and change directory.
2807 2808
2808 2809 Usage:\\
2809 2810 %pushd ['dirname']
2810 2811 """
2811 2812
2812 2813 dir_s = self.shell.dir_stack
2813 2814 tgt = os.path.expanduser(parameter_s)
2814 2815 cwd = os.getcwd().replace(self.home_dir,'~')
2815 2816 if tgt:
2816 2817 self.magic_cd(parameter_s)
2817 2818 dir_s.insert(0,cwd)
2818 2819 return self.magic_dirs()
2819 2820
2820 2821 def magic_popd(self, parameter_s=''):
2821 2822 """Change to directory popped off the top of the stack.
2822 2823 """
2823 2824 if not self.shell.dir_stack:
2824 2825 raise UsageError("%popd on empty stack")
2825 2826 top = self.shell.dir_stack.pop(0)
2826 2827 self.magic_cd(top)
2827 2828 print "popd ->",top
2828 2829
2829 2830 def magic_dirs(self, parameter_s=''):
2830 2831 """Return the current directory stack."""
2831 2832
2832 2833 return self.shell.dir_stack
2833 2834
2834 2835 def magic_dhist(self, parameter_s=''):
2835 2836 """Print your history of visited directories.
2836 2837
2837 2838 %dhist -> print full history\\
2838 2839 %dhist n -> print last n entries only\\
2839 2840 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2840 2841
2841 2842 This history is automatically maintained by the %cd command, and
2842 2843 always available as the global list variable _dh. You can use %cd -<n>
2843 2844 to go to directory number <n>.
2844 2845
2845 2846 Note that most of time, you should view directory history by entering
2846 2847 cd -<TAB>.
2847 2848
2848 2849 """
2849 2850
2850 2851 dh = self.shell.user_ns['_dh']
2851 2852 if parameter_s:
2852 2853 try:
2853 2854 args = map(int,parameter_s.split())
2854 2855 except:
2855 2856 self.arg_err(Magic.magic_dhist)
2856 2857 return
2857 2858 if len(args) == 1:
2858 2859 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2859 2860 elif len(args) == 2:
2860 2861 ini,fin = args
2861 2862 else:
2862 2863 self.arg_err(Magic.magic_dhist)
2863 2864 return
2864 2865 else:
2865 2866 ini,fin = 0,len(dh)
2866 2867 nlprint(dh,
2867 2868 header = 'Directory history (kept in _dh)',
2868 2869 start=ini,stop=fin)
2869 2870
2870 2871 @testdec.skip_doctest
2871 2872 def magic_sc(self, parameter_s=''):
2872 2873 """Shell capture - execute a shell command and capture its output.
2873 2874
2874 2875 DEPRECATED. Suboptimal, retained for backwards compatibility.
2875 2876
2876 2877 You should use the form 'var = !command' instead. Example:
2877 2878
2878 2879 "%sc -l myfiles = ls ~" should now be written as
2879 2880
2880 2881 "myfiles = !ls ~"
2881 2882
2882 2883 myfiles.s, myfiles.l and myfiles.n still apply as documented
2883 2884 below.
2884 2885
2885 2886 --
2886 2887 %sc [options] varname=command
2887 2888
2888 2889 IPython will run the given command using commands.getoutput(), and
2889 2890 will then update the user's interactive namespace with a variable
2890 2891 called varname, containing the value of the call. Your command can
2891 2892 contain shell wildcards, pipes, etc.
2892 2893
2893 2894 The '=' sign in the syntax is mandatory, and the variable name you
2894 2895 supply must follow Python's standard conventions for valid names.
2895 2896
2896 2897 (A special format without variable name exists for internal use)
2897 2898
2898 2899 Options:
2899 2900
2900 2901 -l: list output. Split the output on newlines into a list before
2901 2902 assigning it to the given variable. By default the output is stored
2902 2903 as a single string.
2903 2904
2904 2905 -v: verbose. Print the contents of the variable.
2905 2906
2906 2907 In most cases you should not need to split as a list, because the
2907 2908 returned value is a special type of string which can automatically
2908 2909 provide its contents either as a list (split on newlines) or as a
2909 2910 space-separated string. These are convenient, respectively, either
2910 2911 for sequential processing or to be passed to a shell command.
2911 2912
2912 2913 For example:
2913 2914
2914 2915 # all-random
2915 2916
2916 2917 # Capture into variable a
2917 2918 In [1]: sc a=ls *py
2918 2919
2919 2920 # a is a string with embedded newlines
2920 2921 In [2]: a
2921 2922 Out[2]: 'setup.py\\nwin32_manual_post_install.py'
2922 2923
2923 2924 # which can be seen as a list:
2924 2925 In [3]: a.l
2925 2926 Out[3]: ['setup.py', 'win32_manual_post_install.py']
2926 2927
2927 2928 # or as a whitespace-separated string:
2928 2929 In [4]: a.s
2929 2930 Out[4]: 'setup.py win32_manual_post_install.py'
2930 2931
2931 2932 # a.s is useful to pass as a single command line:
2932 2933 In [5]: !wc -l $a.s
2933 2934 146 setup.py
2934 2935 130 win32_manual_post_install.py
2935 2936 276 total
2936 2937
2937 2938 # while the list form is useful to loop over:
2938 2939 In [6]: for f in a.l:
2939 2940 ...: !wc -l $f
2940 2941 ...:
2941 2942 146 setup.py
2942 2943 130 win32_manual_post_install.py
2943 2944
2944 2945 Similiarly, the lists returned by the -l option are also special, in
2945 2946 the sense that you can equally invoke the .s attribute on them to
2946 2947 automatically get a whitespace-separated string from their contents:
2947 2948
2948 2949 In [7]: sc -l b=ls *py
2949 2950
2950 2951 In [8]: b
2951 2952 Out[8]: ['setup.py', 'win32_manual_post_install.py']
2952 2953
2953 2954 In [9]: b.s
2954 2955 Out[9]: 'setup.py win32_manual_post_install.py'
2955 2956
2956 2957 In summary, both the lists and strings used for ouptut capture have
2957 2958 the following special attributes:
2958 2959
2959 2960 .l (or .list) : value as list.
2960 2961 .n (or .nlstr): value as newline-separated string.
2961 2962 .s (or .spstr): value as space-separated string.
2962 2963 """
2963 2964
2964 2965 opts,args = self.parse_options(parameter_s,'lv')
2965 2966 # Try to get a variable name and command to run
2966 2967 try:
2967 2968 # the variable name must be obtained from the parse_options
2968 2969 # output, which uses shlex.split to strip options out.
2969 2970 var,_ = args.split('=',1)
2970 2971 var = var.strip()
2971 2972 # But the the command has to be extracted from the original input
2972 2973 # parameter_s, not on what parse_options returns, to avoid the
2973 2974 # quote stripping which shlex.split performs on it.
2974 2975 _,cmd = parameter_s.split('=',1)
2975 2976 except ValueError:
2976 2977 var,cmd = '',''
2977 2978 # If all looks ok, proceed
2978 2979 split = 'l' in opts
2979 2980 out = self.shell.getoutput(cmd, split=split)
2980 2981 if opts.has_key('v'):
2981 2982 print '%s ==\n%s' % (var,pformat(out))
2982 2983 if var:
2983 2984 self.shell.user_ns.update({var:out})
2984 2985 else:
2985 2986 return out
2986 2987
2987 2988 def magic_sx(self, parameter_s=''):
2988 2989 """Shell execute - run a shell command and capture its output.
2989 2990
2990 2991 %sx command
2991 2992
2992 2993 IPython will run the given command using commands.getoutput(), and
2993 2994 return the result formatted as a list (split on '\\n'). Since the
2994 2995 output is _returned_, it will be stored in ipython's regular output
2995 2996 cache Out[N] and in the '_N' automatic variables.
2996 2997
2997 2998 Notes:
2998 2999
2999 3000 1) If an input line begins with '!!', then %sx is automatically
3000 3001 invoked. That is, while:
3001 3002 !ls
3002 3003 causes ipython to simply issue system('ls'), typing
3003 3004 !!ls
3004 3005 is a shorthand equivalent to:
3005 3006 %sx ls
3006 3007
3007 3008 2) %sx differs from %sc in that %sx automatically splits into a list,
3008 3009 like '%sc -l'. The reason for this is to make it as easy as possible
3009 3010 to process line-oriented shell output via further python commands.
3010 3011 %sc is meant to provide much finer control, but requires more
3011 3012 typing.
3012 3013
3013 3014 3) Just like %sc -l, this is a list with special attributes:
3014 3015
3015 3016 .l (or .list) : value as list.
3016 3017 .n (or .nlstr): value as newline-separated string.
3017 3018 .s (or .spstr): value as whitespace-separated string.
3018 3019
3019 3020 This is very useful when trying to use such lists as arguments to
3020 3021 system commands."""
3021 3022
3022 3023 if parameter_s:
3023 3024 return self.shell.getoutput(parameter_s)
3024 3025
3025 3026
3026 3027 def magic_bookmark(self, parameter_s=''):
3027 3028 """Manage IPython's bookmark system.
3028 3029
3029 3030 %bookmark <name> - set bookmark to current dir
3030 3031 %bookmark <name> <dir> - set bookmark to <dir>
3031 3032 %bookmark -l - list all bookmarks
3032 3033 %bookmark -d <name> - remove bookmark
3033 3034 %bookmark -r - remove all bookmarks
3034 3035
3035 3036 You can later on access a bookmarked folder with:
3036 3037 %cd -b <name>
3037 3038 or simply '%cd <name>' if there is no directory called <name> AND
3038 3039 there is such a bookmark defined.
3039 3040
3040 3041 Your bookmarks persist through IPython sessions, but they are
3041 3042 associated with each profile."""
3042 3043
3043 3044 opts,args = self.parse_options(parameter_s,'drl',mode='list')
3044 3045 if len(args) > 2:
3045 3046 raise UsageError("%bookmark: too many arguments")
3046 3047
3047 3048 bkms = self.db.get('bookmarks',{})
3048 3049
3049 3050 if opts.has_key('d'):
3050 3051 try:
3051 3052 todel = args[0]
3052 3053 except IndexError:
3053 3054 raise UsageError(
3054 3055 "%bookmark -d: must provide a bookmark to delete")
3055 3056 else:
3056 3057 try:
3057 3058 del bkms[todel]
3058 3059 except KeyError:
3059 3060 raise UsageError(
3060 3061 "%%bookmark -d: Can't delete bookmark '%s'" % todel)
3061 3062
3062 3063 elif opts.has_key('r'):
3063 3064 bkms = {}
3064 3065 elif opts.has_key('l'):
3065 3066 bks = bkms.keys()
3066 3067 bks.sort()
3067 3068 if bks:
3068 3069 size = max(map(len,bks))
3069 3070 else:
3070 3071 size = 0
3071 3072 fmt = '%-'+str(size)+'s -> %s'
3072 3073 print 'Current bookmarks:'
3073 3074 for bk in bks:
3074 3075 print fmt % (bk,bkms[bk])
3075 3076 else:
3076 3077 if not args:
3077 3078 raise UsageError("%bookmark: You must specify the bookmark name")
3078 3079 elif len(args)==1:
3079 3080 bkms[args[0]] = os.getcwd()
3080 3081 elif len(args)==2:
3081 3082 bkms[args[0]] = args[1]
3082 3083 self.db['bookmarks'] = bkms
3083 3084
3084 3085 def magic_pycat(self, parameter_s=''):
3085 3086 """Show a syntax-highlighted file through a pager.
3086 3087
3087 3088 This magic is similar to the cat utility, but it will assume the file
3088 3089 to be Python source and will show it with syntax highlighting. """
3089 3090
3090 3091 try:
3091 3092 filename = get_py_filename(parameter_s)
3092 3093 cont = file_read(filename)
3093 3094 except IOError:
3094 3095 try:
3095 3096 cont = eval(parameter_s,self.user_ns)
3096 3097 except NameError:
3097 3098 cont = None
3098 3099 if cont is None:
3099 3100 print "Error: no such file or variable"
3100 3101 return
3101 3102
3102 3103 page.page(self.shell.pycolorize(cont))
3103 3104
3104 3105 def _rerun_pasted(self):
3105 3106 """ Rerun a previously pasted command.
3106 3107 """
3107 3108 b = self.user_ns.get('pasted_block', None)
3108 3109 if b is None:
3109 3110 raise UsageError('No previous pasted block available')
3110 3111 print "Re-executing '%s...' (%d chars)"% (b.split('\n',1)[0], len(b))
3111 3112 exec b in self.user_ns
3112 3113
3113 3114 def _get_pasted_lines(self, sentinel):
3114 3115 """ Yield pasted lines until the user enters the given sentinel value.
3115 3116 """
3116 3117 from IPython.core import interactiveshell
3117 3118 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3118 3119 while True:
3119 3120 l = interactiveshell.raw_input_original(':')
3120 3121 if l == sentinel:
3121 3122 return
3122 3123 else:
3123 3124 yield l
3124 3125
3125 3126 def _strip_pasted_lines_for_code(self, raw_lines):
3126 3127 """ Strip non-code parts of a sequence of lines to return a block of
3127 3128 code.
3128 3129 """
3129 3130 # Regular expressions that declare text we strip from the input:
3130 3131 strip_re = [r'^\s*In \[\d+\]:', # IPython input prompt
3131 3132 r'^\s*(\s?>)+', # Python input prompt
3132 3133 r'^\s*\.{3,}', # Continuation prompts
3133 3134 r'^\++',
3134 3135 ]
3135 3136
3136 3137 strip_from_start = map(re.compile,strip_re)
3137 3138
3138 3139 lines = []
3139 3140 for l in raw_lines:
3140 3141 for pat in strip_from_start:
3141 3142 l = pat.sub('',l)
3142 3143 lines.append(l)
3143 3144
3144 3145 block = "\n".join(lines) + '\n'
3145 3146 #print "block:\n",block
3146 3147 return block
3147 3148
3148 3149 def _execute_block(self, block, par):
3149 3150 """ Execute a block, or store it in a variable, per the user's request.
3150 3151 """
3151 3152 if not par:
3152 3153 b = textwrap.dedent(block)
3153 3154 self.user_ns['pasted_block'] = b
3154 3155 exec b in self.user_ns
3155 3156 else:
3156 3157 self.user_ns[par] = SList(block.splitlines())
3157 3158 print "Block assigned to '%s'" % par
3158 3159
3159 3160 def magic_quickref(self,arg):
3160 3161 """ Show a quick reference sheet """
3161 3162 import IPython.core.usage
3162 3163 qr = IPython.core.usage.quick_reference + self.magic_magic('-brief')
3163 3164
3164 3165 page.page(qr)
3165 3166
3166 3167 def magic_doctest_mode(self,parameter_s=''):
3167 3168 """Toggle doctest mode on and off.
3168 3169
3169 3170 This mode is intended to make IPython behave as much as possible like a
3170 3171 plain Python shell, from the perspective of how its prompts, exceptions
3171 3172 and output look. This makes it easy to copy and paste parts of a
3172 3173 session into doctests. It does so by:
3173 3174
3174 3175 - Changing the prompts to the classic ``>>>`` ones.
3175 3176 - Changing the exception reporting mode to 'Plain'.
3176 3177 - Disabling pretty-printing of output.
3177 3178
3178 3179 Note that IPython also supports the pasting of code snippets that have
3179 3180 leading '>>>' and '...' prompts in them. This means that you can paste
3180 3181 doctests from files or docstrings (even if they have leading
3181 3182 whitespace), and the code will execute correctly. You can then use
3182 3183 '%history -t' to see the translated history; this will give you the
3183 3184 input after removal of all the leading prompts and whitespace, which
3184 3185 can be pasted back into an editor.
3185 3186
3186 3187 With these features, you can switch into this mode easily whenever you
3187 3188 need to do testing and changes to doctests, without having to leave
3188 3189 your existing IPython session.
3189 3190 """
3190 3191
3191 3192 from IPython.utils.ipstruct import Struct
3192 3193
3193 3194 # Shorthands
3194 3195 shell = self.shell
3195 3196 oc = shell.displayhook
3196 3197 meta = shell.meta
3197 3198 disp_formatter = self.shell.display_formatter
3198 3199 ptformatter = disp_formatter.formatters['text/plain']
3199 3200 # dstore is a data store kept in the instance metadata bag to track any
3200 3201 # changes we make, so we can undo them later.
3201 3202 dstore = meta.setdefault('doctest_mode',Struct())
3202 3203 save_dstore = dstore.setdefault
3203 3204
3204 3205 # save a few values we'll need to recover later
3205 3206 mode = save_dstore('mode',False)
3206 3207 save_dstore('rc_pprint',ptformatter.pprint)
3207 3208 save_dstore('xmode',shell.InteractiveTB.mode)
3208 3209 save_dstore('rc_separate_out',shell.separate_out)
3209 3210 save_dstore('rc_separate_out2',shell.separate_out2)
3210 3211 save_dstore('rc_prompts_pad_left',shell.prompts_pad_left)
3211 3212 save_dstore('rc_separate_in',shell.separate_in)
3212 3213 save_dstore('rc_plain_text_only',disp_formatter.plain_text_only)
3213 3214
3214 3215 if mode == False:
3215 3216 # turn on
3216 3217 oc.prompt1.p_template = '>>> '
3217 3218 oc.prompt2.p_template = '... '
3218 3219 oc.prompt_out.p_template = ''
3219 3220
3220 3221 # Prompt separators like plain python
3221 3222 oc.input_sep = oc.prompt1.sep = ''
3222 3223 oc.output_sep = ''
3223 3224 oc.output_sep2 = ''
3224 3225
3225 3226 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3226 3227 oc.prompt_out.pad_left = False
3227 3228
3228 3229 ptformatter.pprint = False
3229 3230 disp_formatter.plain_text_only = True
3230 3231
3231 3232 shell.magic_xmode('Plain')
3232 3233 else:
3233 3234 # turn off
3234 3235 oc.prompt1.p_template = shell.prompt_in1
3235 3236 oc.prompt2.p_template = shell.prompt_in2
3236 3237 oc.prompt_out.p_template = shell.prompt_out
3237 3238
3238 3239 oc.input_sep = oc.prompt1.sep = dstore.rc_separate_in
3239 3240
3240 3241 oc.output_sep = dstore.rc_separate_out
3241 3242 oc.output_sep2 = dstore.rc_separate_out2
3242 3243
3243 3244 oc.prompt1.pad_left = oc.prompt2.pad_left = \
3244 3245 oc.prompt_out.pad_left = dstore.rc_prompts_pad_left
3245 3246
3246 3247 ptformatter.pprint = dstore.rc_pprint
3247 3248 disp_formatter.plain_text_only = dstore.rc_plain_text_only
3248 3249
3249 3250 shell.magic_xmode(dstore.xmode)
3250 3251
3251 3252 # Store new mode and inform
3252 3253 dstore.mode = bool(1-int(mode))
3253 3254 mode_label = ['OFF','ON'][dstore.mode]
3254 3255 print 'Doctest mode is:', mode_label
3255 3256
3256 3257 def magic_gui(self, parameter_s=''):
3257 3258 """Enable or disable IPython GUI event loop integration.
3258 3259
3259 3260 %gui [GUINAME]
3260 3261
3261 3262 This magic replaces IPython's threaded shells that were activated
3262 3263 using the (pylab/wthread/etc.) command line flags. GUI toolkits
3263 3264 can now be enabled, disabled and swtiched at runtime and keyboard
3264 3265 interrupts should work without any problems. The following toolkits
3265 3266 are supported: wxPython, PyQt4, PyGTK, and Tk::
3266 3267
3267 3268 %gui wx # enable wxPython event loop integration
3268 3269 %gui qt4|qt # enable PyQt4 event loop integration
3269 3270 %gui gtk # enable PyGTK event loop integration
3270 3271 %gui tk # enable Tk event loop integration
3271 3272 %gui # disable all event loop integration
3272 3273
3273 3274 WARNING: after any of these has been called you can simply create
3274 3275 an application object, but DO NOT start the event loop yourself, as
3275 3276 we have already handled that.
3276 3277 """
3277 3278 from IPython.lib.inputhook import enable_gui
3278 3279 opts, arg = self.parse_options(parameter_s, '')
3279 3280 if arg=='': arg = None
3280 3281 return enable_gui(arg)
3281 3282
3282 3283 def magic_load_ext(self, module_str):
3283 3284 """Load an IPython extension by its module name."""
3284 3285 return self.extension_manager.load_extension(module_str)
3285 3286
3286 3287 def magic_unload_ext(self, module_str):
3287 3288 """Unload an IPython extension by its module name."""
3288 3289 self.extension_manager.unload_extension(module_str)
3289 3290
3290 3291 def magic_reload_ext(self, module_str):
3291 3292 """Reload an IPython extension by its module name."""
3292 3293 self.extension_manager.reload_extension(module_str)
3293 3294
3294 3295 @testdec.skip_doctest
3295 3296 def magic_install_profiles(self, s):
3296 3297 """Install the default IPython profiles into the .ipython dir.
3297 3298
3298 3299 If the default profiles have already been installed, they will not
3299 3300 be overwritten. You can force overwriting them by using the ``-o``
3300 3301 option::
3301 3302
3302 3303 In [1]: %install_profiles -o
3303 3304 """
3304 3305 if '-o' in s:
3305 3306 overwrite = True
3306 3307 else:
3307 3308 overwrite = False
3308 3309 from IPython.config import profile
3309 3310 profile_dir = os.path.split(profile.__file__)[0]
3310 3311 ipython_dir = self.ipython_dir
3311 3312 files = os.listdir(profile_dir)
3312 3313
3313 3314 to_install = []
3314 3315 for f in files:
3315 3316 if f.startswith('ipython_config'):
3316 3317 src = os.path.join(profile_dir, f)
3317 3318 dst = os.path.join(ipython_dir, f)
3318 3319 if (not os.path.isfile(dst)) or overwrite:
3319 3320 to_install.append((f, src, dst))
3320 3321 if len(to_install)>0:
3321 3322 print "Installing profiles to: ", ipython_dir
3322 3323 for (f, src, dst) in to_install:
3323 3324 shutil.copy(src, dst)
3324 3325 print " %s" % f
3325 3326
3326 3327 def magic_install_default_config(self, s):
3327 3328 """Install IPython's default config file into the .ipython dir.
3328 3329
3329 3330 If the default config file (:file:`ipython_config.py`) is already
3330 3331 installed, it will not be overwritten. You can force overwriting
3331 3332 by using the ``-o`` option::
3332 3333
3333 3334 In [1]: %install_default_config
3334 3335 """
3335 3336 if '-o' in s:
3336 3337 overwrite = True
3337 3338 else:
3338 3339 overwrite = False
3339 3340 from IPython.config import default
3340 3341 config_dir = os.path.split(default.__file__)[0]
3341 3342 ipython_dir = self.ipython_dir
3342 3343 default_config_file_name = 'ipython_config.py'
3343 3344 src = os.path.join(config_dir, default_config_file_name)
3344 3345 dst = os.path.join(ipython_dir, default_config_file_name)
3345 3346 if (not os.path.isfile(dst)) or overwrite:
3346 3347 shutil.copy(src, dst)
3347 3348 print "Installing default config file: %s" % dst
3348 3349
3349 3350 # Pylab support: simple wrappers that activate pylab, load gui input
3350 3351 # handling and modify slightly %run
3351 3352
3352 3353 @testdec.skip_doctest
3353 3354 def _pylab_magic_run(self, parameter_s=''):
3354 3355 Magic.magic_run(self, parameter_s,
3355 3356 runner=mpl_runner(self.shell.safe_execfile))
3356 3357
3357 3358 _pylab_magic_run.__doc__ = magic_run.__doc__
3358 3359
3359 3360 @testdec.skip_doctest
3360 3361 def magic_pylab(self, s):
3361 3362 """Load numpy and matplotlib to work interactively.
3362 3363
3363 3364 %pylab [GUINAME]
3364 3365
3365 3366 This function lets you activate pylab (matplotlib, numpy and
3366 3367 interactive support) at any point during an IPython session.
3367 3368
3368 3369 It will import at the top level numpy as np, pyplot as plt, matplotlib,
3369 3370 pylab and mlab, as well as all names from numpy and pylab.
3370 3371
3371 3372 Parameters
3372 3373 ----------
3373 3374 guiname : optional
3374 3375 One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk' or
3375 3376 'tk'). If given, the corresponding Matplotlib backend is used,
3376 3377 otherwise matplotlib's default (which you can override in your
3377 3378 matplotlib config file) is used.
3378 3379
3379 3380 Examples
3380 3381 --------
3381 3382 In this case, where the MPL default is TkAgg:
3382 3383 In [2]: %pylab
3383 3384
3384 3385 Welcome to pylab, a matplotlib-based Python environment.
3385 3386 Backend in use: TkAgg
3386 3387 For more information, type 'help(pylab)'.
3387 3388
3388 3389 But you can explicitly request a different backend:
3389 3390 In [3]: %pylab qt
3390 3391
3391 3392 Welcome to pylab, a matplotlib-based Python environment.
3392 3393 Backend in use: Qt4Agg
3393 3394 For more information, type 'help(pylab)'.
3394 3395 """
3395 3396 self.shell.enable_pylab(s)
3396 3397
3397 3398 def magic_tb(self, s):
3398 3399 """Print the last traceback with the currently active exception mode.
3399 3400
3400 3401 See %xmode for changing exception reporting modes."""
3401 3402 self.shell.showtraceback()
3402 3403
3403 3404 @testdec.skip_doctest
3404 3405 def magic_precision(self, s=''):
3405 3406 """Set floating point precision for pretty printing.
3406 3407
3407 3408 Can set either integer precision or a format string.
3408 3409
3409 3410 If numpy has been imported and precision is an int,
3410 3411 numpy display precision will also be set, via ``numpy.set_printoptions``.
3411 3412
3412 3413 If no argument is given, defaults will be restored.
3413 3414
3414 3415 Examples
3415 3416 --------
3416 3417 ::
3417 3418
3418 3419 In [1]: from math import pi
3419 3420
3420 3421 In [2]: %precision 3
3421 3422 Out[2]: '%.3f'
3422 3423
3423 3424 In [3]: pi
3424 3425 Out[3]: 3.142
3425 3426
3426 3427 In [4]: %precision %i
3427 3428 Out[4]: '%i'
3428 3429
3429 3430 In [5]: pi
3430 3431 Out[5]: 3
3431 3432
3432 3433 In [6]: %precision %e
3433 3434 Out[6]: '%e'
3434 3435
3435 3436 In [7]: pi**10
3436 3437 Out[7]: 9.364805e+04
3437 3438
3438 3439 In [8]: %precision
3439 3440 Out[8]: '%r'
3440 3441
3441 3442 In [9]: pi**10
3442 3443 Out[9]: 93648.047476082982
3443 3444
3444 3445 """
3445 3446
3446 3447 ptformatter = self.shell.display_formatter.formatters['text/plain']
3447 3448 ptformatter.float_precision = s
3448 3449 return ptformatter.float_format
3449 3450
3450 3451 # end Magic
@@ -1,116 +1,117 b''
1 1 # coding: utf-8
2 2 """Tests for the IPython tab-completion machinery.
3 3 """
4 4 #-----------------------------------------------------------------------------
5 5 # Module imports
6 6 #-----------------------------------------------------------------------------
7 7
8 8 # stdlib
9 9 import os
10 10 import sys
11 11 import unittest
12 12
13 13 # third party
14 14 import nose.tools as nt
15 15
16 16 # our own packages
17 17 from IPython.utils.tempdir import TemporaryDirectory
18 18 from IPython.core.history import HistoryManager, extract_hist_ranges
19 19
20 20 def test_history():
21 21 nt.assert_equal(sys.getdefaultencoding(), "ascii")
22 22 ip = get_ipython()
23 23 with TemporaryDirectory() as tmpdir:
24 24 #tmpdir = '/software/temp'
25 25 histfile = os.path.realpath(os.path.join(tmpdir, 'history.sqlite'))
26 26 # Ensure that we restore the history management that we mess with in
27 27 # this test doesn't affect the IPython instance used by the test suite
28 28 # beyond this test.
29 29 hist_manager_ori = ip.history_manager
30 30 try:
31 31 ip.history_manager = HistoryManager(shell=ip)
32 32 ip.history_manager.hist_file = histfile
33 33 ip.history_manager.init_db() # Has to be called after changing file
34 34 ip.history_manager.reset()
35 35 print 'test',histfile
36 36 hist = ['a=1', 'def f():\n test = 1\n return test', u"b='β‚¬Γ†ΒΎΓ·ΓŸ'"]
37 37 for i, h in enumerate(hist, start=1):
38 38 ip.history_manager.store_inputs(i, h)
39 39
40 40 ip.history_manager.db_log_output = True
41 41 # Doesn't match the input, but we'll just check it's stored.
42 42 ip.history_manager.output_hist_reprs[3].append("spam")
43 43 ip.history_manager.store_output(3)
44 44
45 45 nt.assert_equal(ip.history_manager.input_hist_raw, [''] + hist)
46 46
47 47 # Check lines were written to DB
48 48 c = ip.history_manager.db.execute("SELECT source_raw FROM history")
49 49 nt.assert_equal([x for x, in c], hist)
50 50
51 51 # New session
52 52 ip.history_manager.reset()
53 53 newcmds = ["z=5","class X(object):\n pass", "k='p'"]
54 54 for i, cmd in enumerate(newcmds, start=1):
55 55 ip.history_manager.store_inputs(i, cmd)
56 56 gothist = ip.history_manager.get_range(start=1, stop=4)
57 57 nt.assert_equal(list(gothist), zip([0,0,0],[1,2,3], newcmds))
58 58 # Previous session:
59 59 gothist = ip.history_manager.get_range(-1, 1, 4)
60 60 nt.assert_equal(list(gothist), zip([1,1,1],[1,2,3], hist))
61 61
62 62 # Check get_hist_tail
63 63 gothist = ip.history_manager.get_tail(4, output=True,
64 64 include_latest=True)
65 65 expected = [(1, 3, (hist[-1], ["spam"])),
66 66 (2, 1, (newcmds[0], None)),
67 67 (2, 2, (newcmds[1], None)),
68 68 (2, 3, (newcmds[2], None)),]
69 69 nt.assert_equal(list(gothist), expected)
70 70
71 71 gothist = ip.history_manager.get_tail(2)
72 72 expected = [(2, 1, newcmds[0]),
73 73 (2, 2, newcmds[1])]
74 74 nt.assert_equal(list(gothist), expected)
75 75
76 76 # Check get_hist_search
77 77 gothist = ip.history_manager.search("*test*")
78 78 nt.assert_equal(list(gothist), [(1,2,hist[1])] )
79 79 gothist = ip.history_manager.search("b*", output=True)
80 80 nt.assert_equal(list(gothist), [(1,3,(hist[2],["spam"]))] )
81 81
82 82 # Cross testing: check that magic %save can get previous session.
83 83 testfilename = os.path.realpath(os.path.join(tmpdir, "test.py"))
84 84 ip.magic_save(testfilename + " ~1/1-3")
85 85 testfile = open(testfilename, "r")
86 nt.assert_equal(testfile.read(), "\n".join(hist))
86 nt.assert_equal(testfile.read().decode("utf-8"),
87 "# coding: utf-8\n" + "\n".join(hist))
87 88
88 89 # Duplicate line numbers - check that it doesn't crash, and
89 90 # gets a new session
90 91 ip.history_manager.store_inputs(1, "rogue")
91 92 nt.assert_equal(ip.history_manager.session_number, 3)
92 93 finally:
93 94 # Restore history manager
94 95 ip.history_manager = hist_manager_ori
95 96
96 97
97 98 def test_extract_hist_ranges():
98 99 instr = "1 2/3 ~4/5-6 ~4/7-~4/9 ~9/2-~7/5"
99 100 expected = [(0, 1, 2), # 0 == current session
100 101 (2, 3, 4),
101 102 (-4, 5, 7),
102 103 (-4, 7, 10),
103 104 (-9, 2, None), # None == to end
104 105 (-8, 1, None),
105 106 (-7, 1, 6)]
106 107 actual = list(extract_hist_ranges(instr))
107 108 nt.assert_equal(actual, expected)
108 109
109 110 def test_magic_rerun():
110 111 """Simple test for %rerun (no args -> rerun last line)"""
111 112 ip = get_ipython()
112 113 ip.run_cell("a = 10")
113 114 ip.run_cell("a += 1")
114 115 nt.assert_equal(ip.user_ns["a"], 11)
115 116 ip.run_cell("%rerun")
116 117 nt.assert_equal(ip.user_ns["a"], 12)
General Comments 0
You need to be logged in to leave comments. Login now