##// END OF EJS Templates
implement %run myscript.ipy
vivainio -
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -0,0 +1,15 b''
1 import os
2
3
4 editor = r'q:/opt/np/notepad++.exe'
5
6
7 e = os.environ
8
9 e['EDITOR'] = editor
10 e['VISUAL'] = editor
11
12
13
14
15
@@ -1,3059 +1,3068 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Magic functions for InteractiveShell.
3 3
4 $Id: Magic.py 1962 2006-12-05 21:08:50Z vivainio $"""
4 $Id: Magic.py 1981 2006-12-12 21:51:54Z vivainio $"""
5 5
6 6 #*****************************************************************************
7 7 # Copyright (C) 2001 Janko Hauser <jhauser@zscout.de> and
8 8 # Copyright (C) 2001-2006 Fernando Perez <fperez@colorado.edu>
9 9 #
10 10 # Distributed under the terms of the BSD License. The full license is in
11 11 # the file COPYING, distributed as part of this software.
12 12 #*****************************************************************************
13 13
14 14 #****************************************************************************
15 15 # Modules and globals
16 16
17 17 from IPython import Release
18 18 __author__ = '%s <%s>\n%s <%s>' % \
19 19 ( Release.authors['Janko'] + Release.authors['Fernando'] )
20 20 __license__ = Release.license
21 21
22 22 # Python standard modules
23 23 import __builtin__
24 24 import bdb
25 25 import inspect
26 26 import os
27 27 import pdb
28 28 import pydoc
29 29 import sys
30 30 import re
31 31 import tempfile
32 32 import time
33 33 import cPickle as pickle
34 34 import textwrap
35 35 from cStringIO import StringIO
36 36 from getopt import getopt,GetoptError
37 37 from pprint import pprint, pformat
38 38
39 39 # cProfile was added in Python2.5
40 40 try:
41 41 import cProfile as profile
42 42 import pstats
43 43 except ImportError:
44 44 # profile isn't bundled by default in Debian for license reasons
45 45 try:
46 46 import profile,pstats
47 47 except ImportError:
48 48 profile = pstats = None
49 49
50 50 # Homebrewed
51 51 import IPython
52 52 from IPython import Debugger, OInspect, wildcard
53 53 from IPython.FakeModule import FakeModule
54 54 from IPython.Itpl import Itpl, itpl, printpl,itplns
55 55 from IPython.PyColorize import Parser
56 56 from IPython.ipstruct import Struct
57 57 from IPython.macro import Macro
58 58 from IPython.genutils import *
59 59 from IPython import platutils
60 60
61 61 #***************************************************************************
62 62 # Utility functions
63 63 def on_off(tag):
64 64 """Return an ON/OFF string for a 1/0 input. Simple utility function."""
65 65 return ['OFF','ON'][tag]
66 66
67 67 class Bunch: pass
68 68
69 69 #***************************************************************************
70 70 # Main class implementing Magic functionality
71 71 class Magic:
72 72 """Magic functions for InteractiveShell.
73 73
74 74 Shell functions which can be reached as %function_name. All magic
75 75 functions should accept a string, which they can parse for their own
76 76 needs. This can make some functions easier to type, eg `%cd ../`
77 77 vs. `%cd("../")`
78 78
79 79 ALL definitions MUST begin with the prefix magic_. The user won't need it
80 80 at the command line, but it is is needed in the definition. """
81 81
82 82 # class globals
83 83 auto_status = ['Automagic is OFF, % prefix IS needed for magic functions.',
84 84 'Automagic is ON, % prefix NOT needed for magic functions.']
85 85
86 86 #......................................................................
87 87 # some utility functions
88 88
89 89 def __init__(self,shell):
90 90
91 91 self.options_table = {}
92 92 if profile is None:
93 93 self.magic_prun = self.profile_missing_notice
94 94 self.shell = shell
95 95
96 96 # namespace for holding state we may need
97 97 self._magic_state = Bunch()
98 98
99 99 def profile_missing_notice(self, *args, **kwargs):
100 100 error("""\
101 101 The profile module could not be found. If you are a Debian user,
102 102 it has been removed from the standard Debian package because of its non-free
103 103 license. To use profiling, please install"python2.3-profiler" from non-free.""")
104 104
105 105 def default_option(self,fn,optstr):
106 106 """Make an entry in the options_table for fn, with value optstr"""
107 107
108 108 if fn not in self.lsmagic():
109 109 error("%s is not a magic function" % fn)
110 110 self.options_table[fn] = optstr
111 111
112 112 def lsmagic(self):
113 113 """Return a list of currently available magic functions.
114 114
115 115 Gives a list of the bare names after mangling (['ls','cd', ...], not
116 116 ['magic_ls','magic_cd',...]"""
117 117
118 118 # FIXME. This needs a cleanup, in the way the magics list is built.
119 119
120 120 # magics in class definition
121 121 class_magic = lambda fn: fn.startswith('magic_') and \
122 122 callable(Magic.__dict__[fn])
123 123 # in instance namespace (run-time user additions)
124 124 inst_magic = lambda fn: fn.startswith('magic_') and \
125 125 callable(self.__dict__[fn])
126 126 # and bound magics by user (so they can access self):
127 127 inst_bound_magic = lambda fn: fn.startswith('magic_') and \
128 128 callable(self.__class__.__dict__[fn])
129 129 magics = filter(class_magic,Magic.__dict__.keys()) + \
130 130 filter(inst_magic,self.__dict__.keys()) + \
131 131 filter(inst_bound_magic,self.__class__.__dict__.keys())
132 132 out = []
133 133 for fn in magics:
134 134 out.append(fn.replace('magic_','',1))
135 135 out.sort()
136 136 return out
137 137
138 138 def extract_input_slices(self,slices,raw=False):
139 139 """Return as a string a set of input history slices.
140 140
141 141 Inputs:
142 142
143 143 - slices: the set of slices is given as a list of strings (like
144 144 ['1','4:8','9'], since this function is for use by magic functions
145 145 which get their arguments as strings.
146 146
147 147 Optional inputs:
148 148
149 149 - raw(False): by default, the processed input is used. If this is
150 150 true, the raw input history is used instead.
151 151
152 152 Note that slices can be called with two notations:
153 153
154 154 N:M -> standard python form, means including items N...(M-1).
155 155
156 156 N-M -> include items N..M (closed endpoint)."""
157 157
158 158 if raw:
159 159 hist = self.shell.input_hist_raw
160 160 else:
161 161 hist = self.shell.input_hist
162 162
163 163 cmds = []
164 164 for chunk in slices:
165 165 if ':' in chunk:
166 166 ini,fin = map(int,chunk.split(':'))
167 167 elif '-' in chunk:
168 168 ini,fin = map(int,chunk.split('-'))
169 169 fin += 1
170 170 else:
171 171 ini = int(chunk)
172 172 fin = ini+1
173 173 cmds.append(hist[ini:fin])
174 174 return cmds
175 175
176 176 def _ofind(self, oname, namespaces=None):
177 177 """Find an object in the available namespaces.
178 178
179 179 self._ofind(oname) -> dict with keys: found,obj,ospace,ismagic
180 180
181 181 Has special code to detect magic functions.
182 182 """
183 183
184 184 oname = oname.strip()
185 185
186 186 alias_ns = None
187 187 if namespaces is None:
188 188 # Namespaces to search in:
189 189 # Put them in a list. The order is important so that we
190 190 # find things in the same order that Python finds them.
191 191 namespaces = [ ('Interactive', self.shell.user_ns),
192 192 ('IPython internal', self.shell.internal_ns),
193 193 ('Python builtin', __builtin__.__dict__),
194 194 ('Alias', self.shell.alias_table),
195 195 ]
196 196 alias_ns = self.shell.alias_table
197 197
198 198 # initialize results to 'null'
199 199 found = 0; obj = None; ospace = None; ds = None;
200 200 ismagic = 0; isalias = 0; parent = None
201 201
202 202 # Look for the given name by splitting it in parts. If the head is
203 203 # found, then we look for all the remaining parts as members, and only
204 204 # declare success if we can find them all.
205 205 oname_parts = oname.split('.')
206 206 oname_head, oname_rest = oname_parts[0],oname_parts[1:]
207 207 for nsname,ns in namespaces:
208 208 try:
209 209 obj = ns[oname_head]
210 210 except KeyError:
211 211 continue
212 212 else:
213 213 for part in oname_rest:
214 214 try:
215 215 parent = obj
216 216 obj = getattr(obj,part)
217 217 except:
218 218 # Blanket except b/c some badly implemented objects
219 219 # allow __getattr__ to raise exceptions other than
220 220 # AttributeError, which then crashes IPython.
221 221 break
222 222 else:
223 223 # If we finish the for loop (no break), we got all members
224 224 found = 1
225 225 ospace = nsname
226 226 if ns == alias_ns:
227 227 isalias = 1
228 228 break # namespace loop
229 229
230 230 # Try to see if it's magic
231 231 if not found:
232 232 if oname.startswith(self.shell.ESC_MAGIC):
233 233 oname = oname[1:]
234 234 obj = getattr(self,'magic_'+oname,None)
235 235 if obj is not None:
236 236 found = 1
237 237 ospace = 'IPython internal'
238 238 ismagic = 1
239 239
240 240 # Last try: special-case some literals like '', [], {}, etc:
241 241 if not found and oname_head in ["''",'""','[]','{}','()']:
242 242 obj = eval(oname_head)
243 243 found = 1
244 244 ospace = 'Interactive'
245 245
246 246 return {'found':found, 'obj':obj, 'namespace':ospace,
247 247 'ismagic':ismagic, 'isalias':isalias, 'parent':parent}
248 248
249 249 def arg_err(self,func):
250 250 """Print docstring if incorrect arguments were passed"""
251 251 print 'Error in arguments:'
252 252 print OInspect.getdoc(func)
253 253
254 254 def format_latex(self,strng):
255 255 """Format a string for latex inclusion."""
256 256
257 257 # Characters that need to be escaped for latex:
258 258 escape_re = re.compile(r'(%|_|\$|#|&)',re.MULTILINE)
259 259 # Magic command names as headers:
260 260 cmd_name_re = re.compile(r'^(%s.*?):' % self.shell.ESC_MAGIC,
261 261 re.MULTILINE)
262 262 # Magic commands
263 263 cmd_re = re.compile(r'(?P<cmd>%s.+?\b)(?!\}\}:)' % self.shell.ESC_MAGIC,
264 264 re.MULTILINE)
265 265 # Paragraph continue
266 266 par_re = re.compile(r'\\$',re.MULTILINE)
267 267
268 268 # The "\n" symbol
269 269 newline_re = re.compile(r'\\n')
270 270
271 271 # Now build the string for output:
272 272 #strng = cmd_name_re.sub(r'\n\\texttt{\\textsl{\\large \1}}:',strng)
273 273 strng = cmd_name_re.sub(r'\n\\bigskip\n\\texttt{\\textbf{ \1}}:',
274 274 strng)
275 275 strng = cmd_re.sub(r'\\texttt{\g<cmd>}',strng)
276 276 strng = par_re.sub(r'\\\\',strng)
277 277 strng = escape_re.sub(r'\\\1',strng)
278 278 strng = newline_re.sub(r'\\textbackslash{}n',strng)
279 279 return strng
280 280
281 281 def format_screen(self,strng):
282 282 """Format a string for screen printing.
283 283
284 284 This removes some latex-type format codes."""
285 285 # Paragraph continue
286 286 par_re = re.compile(r'\\$',re.MULTILINE)
287 287 strng = par_re.sub('',strng)
288 288 return strng
289 289
290 290 def parse_options(self,arg_str,opt_str,*long_opts,**kw):
291 291 """Parse options passed to an argument string.
292 292
293 293 The interface is similar to that of getopt(), but it returns back a
294 294 Struct with the options as keys and the stripped argument string still
295 295 as a string.
296 296
297 297 arg_str is quoted as a true sys.argv vector by using shlex.split.
298 298 This allows us to easily expand variables, glob files, quote
299 299 arguments, etc.
300 300
301 301 Options:
302 302 -mode: default 'string'. If given as 'list', the argument string is
303 303 returned as a list (split on whitespace) instead of a string.
304 304
305 305 -list_all: put all option values in lists. Normally only options
306 306 appearing more than once are put in a list.
307 307
308 308 -posix (True): whether to split the input line in POSIX mode or not,
309 309 as per the conventions outlined in the shlex module from the
310 310 standard library."""
311 311
312 312 # inject default options at the beginning of the input line
313 313 caller = sys._getframe(1).f_code.co_name.replace('magic_','')
314 314 arg_str = '%s %s' % (self.options_table.get(caller,''),arg_str)
315 315
316 316 mode = kw.get('mode','string')
317 317 if mode not in ['string','list']:
318 318 raise ValueError,'incorrect mode given: %s' % mode
319 319 # Get options
320 320 list_all = kw.get('list_all',0)
321 321 posix = kw.get('posix',True)
322 322
323 323 # Check if we have more than one argument to warrant extra processing:
324 324 odict = {} # Dictionary with options
325 325 args = arg_str.split()
326 326 if len(args) >= 1:
327 327 # If the list of inputs only has 0 or 1 thing in it, there's no
328 328 # need to look for options
329 329 argv = arg_split(arg_str,posix)
330 330 # Do regular option processing
331 331 try:
332 332 opts,args = getopt(argv,opt_str,*long_opts)
333 333 except GetoptError,e:
334 334 raise GetoptError('%s ( allowed: "%s" %s)' % (e.msg,opt_str,
335 335 " ".join(long_opts)))
336 336 for o,a in opts:
337 337 if o.startswith('--'):
338 338 o = o[2:]
339 339 else:
340 340 o = o[1:]
341 341 try:
342 342 odict[o].append(a)
343 343 except AttributeError:
344 344 odict[o] = [odict[o],a]
345 345 except KeyError:
346 346 if list_all:
347 347 odict[o] = [a]
348 348 else:
349 349 odict[o] = a
350 350
351 351 # Prepare opts,args for return
352 352 opts = Struct(odict)
353 353 if mode == 'string':
354 354 args = ' '.join(args)
355 355
356 356 return opts,args
357 357
358 358 #......................................................................
359 359 # And now the actual magic functions
360 360
361 361 # Functions for IPython shell work (vars,funcs, config, etc)
362 362 def magic_lsmagic(self, parameter_s = ''):
363 363 """List currently available magic functions."""
364 364 mesc = self.shell.ESC_MAGIC
365 365 print 'Available magic functions:\n'+mesc+\
366 366 (' '+mesc).join(self.lsmagic())
367 367 print '\n' + Magic.auto_status[self.shell.rc.automagic]
368 368 return None
369 369
370 370 def magic_magic(self, parameter_s = ''):
371 371 """Print information about the magic function system."""
372 372
373 373 mode = ''
374 374 try:
375 375 if parameter_s.split()[0] == '-latex':
376 376 mode = 'latex'
377 377 if parameter_s.split()[0] == '-brief':
378 378 mode = 'brief'
379 379 except:
380 380 pass
381 381
382 382 magic_docs = []
383 383 for fname in self.lsmagic():
384 384 mname = 'magic_' + fname
385 385 for space in (Magic,self,self.__class__):
386 386 try:
387 387 fn = space.__dict__[mname]
388 388 except KeyError:
389 389 pass
390 390 else:
391 391 break
392 392 if mode == 'brief':
393 393 # only first line
394 394 fndoc = fn.__doc__.split('\n',1)[0]
395 395 else:
396 396 fndoc = fn.__doc__
397 397
398 398 magic_docs.append('%s%s:\n\t%s\n' %(self.shell.ESC_MAGIC,
399 399 fname,fndoc))
400 400 magic_docs = ''.join(magic_docs)
401 401
402 402 if mode == 'latex':
403 403 print self.format_latex(magic_docs)
404 404 return
405 405 else:
406 406 magic_docs = self.format_screen(magic_docs)
407 407 if mode == 'brief':
408 408 return magic_docs
409 409
410 410 outmsg = """
411 411 IPython's 'magic' functions
412 412 ===========================
413 413
414 414 The magic function system provides a series of functions which allow you to
415 415 control the behavior of IPython itself, plus a lot of system-type
416 416 features. All these functions are prefixed with a % character, but parameters
417 417 are given without parentheses or quotes.
418 418
419 419 NOTE: If you have 'automagic' enabled (via the command line option or with the
420 420 %automagic function), you don't need to type in the % explicitly. By default,
421 421 IPython ships with automagic on, so you should only rarely need the % escape.
422 422
423 423 Example: typing '%cd mydir' (without the quotes) changes you working directory
424 424 to 'mydir', if it exists.
425 425
426 426 You can define your own magic functions to extend the system. See the supplied
427 427 ipythonrc and example-magic.py files for details (in your ipython
428 428 configuration directory, typically $HOME/.ipython/).
429 429
430 430 You can also define your own aliased names for magic functions. In your
431 431 ipythonrc file, placing a line like:
432 432
433 433 execute __IPYTHON__.magic_pf = __IPYTHON__.magic_profile
434 434
435 435 will define %pf as a new name for %profile.
436 436
437 437 You can also call magics in code using the ipmagic() function, which IPython
438 438 automatically adds to the builtin namespace. Type 'ipmagic?' for details.
439 439
440 440 For a list of the available magic functions, use %lsmagic. For a description
441 441 of any of them, type %magic_name?, e.g. '%cd?'.
442 442
443 443 Currently the magic system has the following functions:\n"""
444 444
445 445 mesc = self.shell.ESC_MAGIC
446 446 outmsg = ("%s\n%s\n\nSummary of magic functions (from %slsmagic):"
447 447 "\n\n%s%s\n\n%s" % (outmsg,
448 448 magic_docs,mesc,mesc,
449 449 (' '+mesc).join(self.lsmagic()),
450 450 Magic.auto_status[self.shell.rc.automagic] ) )
451 451
452 452 page(outmsg,screen_lines=self.shell.rc.screen_length)
453 453
454 454 def magic_automagic(self, parameter_s = ''):
455 455 """Make magic functions callable without having to type the initial %.
456 456
457 457 Toggles on/off (when off, you must call it as %automagic, of
458 458 course). Note that magic functions have lowest priority, so if there's
459 459 a variable whose name collides with that of a magic fn, automagic
460 460 won't work for that function (you get the variable instead). However,
461 461 if you delete the variable (del var), the previously shadowed magic
462 462 function becomes visible to automagic again."""
463 463
464 464 rc = self.shell.rc
465 465 rc.automagic = not rc.automagic
466 466 print '\n' + Magic.auto_status[rc.automagic]
467 467
468 468 def magic_autocall(self, parameter_s = ''):
469 469 """Make functions callable without having to type parentheses.
470 470
471 471 Usage:
472 472
473 473 %autocall [mode]
474 474
475 475 The mode can be one of: 0->Off, 1->Smart, 2->Full. If not given, the
476 476 value is toggled on and off (remembering the previous state)."""
477 477
478 478 rc = self.shell.rc
479 479
480 480 if parameter_s:
481 481 arg = int(parameter_s)
482 482 else:
483 483 arg = 'toggle'
484 484
485 485 if not arg in (0,1,2,'toggle'):
486 486 error('Valid modes: (0->Off, 1->Smart, 2->Full')
487 487 return
488 488
489 489 if arg in (0,1,2):
490 490 rc.autocall = arg
491 491 else: # toggle
492 492 if rc.autocall:
493 493 self._magic_state.autocall_save = rc.autocall
494 494 rc.autocall = 0
495 495 else:
496 496 try:
497 497 rc.autocall = self._magic_state.autocall_save
498 498 except AttributeError:
499 499 rc.autocall = self._magic_state.autocall_save = 1
500 500
501 501 print "Automatic calling is:",['OFF','Smart','Full'][rc.autocall]
502 502
503 503 def magic_autoindent(self, parameter_s = ''):
504 504 """Toggle autoindent on/off (if available)."""
505 505
506 506 self.shell.set_autoindent()
507 507 print "Automatic indentation is:",['OFF','ON'][self.shell.autoindent]
508 508
509 509 def magic_system_verbose(self, parameter_s = ''):
510 510 """Set verbose printing of system calls.
511 511
512 512 If called without an argument, act as a toggle"""
513 513
514 514 if parameter_s:
515 515 val = bool(eval(parameter_s))
516 516 else:
517 517 val = None
518 518
519 519 self.shell.rc_set_toggle('system_verbose',val)
520 520 print "System verbose printing is:",\
521 521 ['OFF','ON'][self.shell.rc.system_verbose]
522 522
523 523 def magic_history(self, parameter_s = ''):
524 524 """Print input history (_i<n> variables), with most recent last.
525 525
526 526 %history -> print at most 40 inputs (some may be multi-line)\\
527 527 %history n -> print at most n inputs\\
528 528 %history n1 n2 -> print inputs between n1 and n2 (n2 not included)\\
529 529
530 530 Each input's number <n> is shown, and is accessible as the
531 531 automatically generated variable _i<n>. Multi-line statements are
532 532 printed starting at a new line for easy copy/paste.
533 533
534 534
535 535 Options:
536 536
537 537 -n: do NOT print line numbers. This is useful if you want to get a
538 538 printout of many lines which can be directly pasted into a text
539 539 editor.
540 540
541 541 This feature is only available if numbered prompts are in use.
542 542
543 543 -r: print the 'raw' history. IPython filters your input and
544 544 converts it all into valid Python source before executing it (things
545 545 like magics or aliases are turned into function calls, for
546 546 example). With this option, you'll see the unfiltered history
547 547 instead of the filtered version: '%cd /' will be seen as '%cd /'
548 548 instead of '_ip.magic("%cd /")'.
549 549 """
550 550
551 551 shell = self.shell
552 552 if not shell.outputcache.do_full_cache:
553 553 print 'This feature is only available if numbered prompts are in use.'
554 554 return
555 555 opts,args = self.parse_options(parameter_s,'nr',mode='list')
556 556
557 557 if opts.has_key('r'):
558 558 input_hist = shell.input_hist_raw
559 559 else:
560 560 input_hist = shell.input_hist
561 561
562 562 default_length = 40
563 563 if len(args) == 0:
564 564 final = len(input_hist)
565 565 init = max(1,final-default_length)
566 566 elif len(args) == 1:
567 567 final = len(input_hist)
568 568 init = max(1,final-int(args[0]))
569 569 elif len(args) == 2:
570 570 init,final = map(int,args)
571 571 else:
572 572 warn('%hist takes 0, 1 or 2 arguments separated by spaces.')
573 573 print self.magic_hist.__doc__
574 574 return
575 575 width = len(str(final))
576 576 line_sep = ['','\n']
577 577 print_nums = not opts.has_key('n')
578 578 for in_num in range(init,final):
579 579 inline = input_hist[in_num]
580 580 multiline = int(inline.count('\n') > 1)
581 581 if print_nums:
582 582 print '%s:%s' % (str(in_num).ljust(width),line_sep[multiline]),
583 583 print inline,
584 584
585 585 def magic_hist(self, parameter_s=''):
586 586 """Alternate name for %history."""
587 587 return self.magic_history(parameter_s)
588 588
589 589 def magic_p(self, parameter_s=''):
590 590 """Just a short alias for Python's 'print'."""
591 591 exec 'print ' + parameter_s in self.shell.user_ns
592 592
593 593 def magic_r(self, parameter_s=''):
594 594 """Repeat previous input.
595 595
596 596 If given an argument, repeats the previous command which starts with
597 597 the same string, otherwise it just repeats the previous input.
598 598
599 599 Shell escaped commands (with ! as first character) are not recognized
600 600 by this system, only pure python code and magic commands.
601 601 """
602 602
603 603 start = parameter_s.strip()
604 604 esc_magic = self.shell.ESC_MAGIC
605 605 # Identify magic commands even if automagic is on (which means
606 606 # the in-memory version is different from that typed by the user).
607 607 if self.shell.rc.automagic:
608 608 start_magic = esc_magic+start
609 609 else:
610 610 start_magic = start
611 611 # Look through the input history in reverse
612 612 for n in range(len(self.shell.input_hist)-2,0,-1):
613 613 input = self.shell.input_hist[n]
614 614 # skip plain 'r' lines so we don't recurse to infinity
615 615 if input != '_ip.magic("r")\n' and \
616 616 (input.startswith(start) or input.startswith(start_magic)):
617 617 #print 'match',`input` # dbg
618 618 print 'Executing:',input,
619 619 self.shell.runlines(input)
620 620 return
621 621 print 'No previous input matching `%s` found.' % start
622 622
623 623 def magic_page(self, parameter_s=''):
624 624 """Pretty print the object and display it through a pager.
625 625
626 626 %page [options] OBJECT
627 627
628 628 If no object is given, use _ (last output).
629 629
630 630 Options:
631 631
632 632 -r: page str(object), don't pretty-print it."""
633 633
634 634 # After a function contributed by Olivier Aubert, slightly modified.
635 635
636 636 # Process options/args
637 637 opts,args = self.parse_options(parameter_s,'r')
638 638 raw = 'r' in opts
639 639
640 640 oname = args and args or '_'
641 641 info = self._ofind(oname)
642 642 if info['found']:
643 643 txt = (raw and str or pformat)( info['obj'] )
644 644 page(txt)
645 645 else:
646 646 print 'Object `%s` not found' % oname
647 647
648 648 def magic_profile(self, parameter_s=''):
649 649 """Print your currently active IPyhton profile."""
650 650 if self.shell.rc.profile:
651 651 printpl('Current IPython profile: $self.shell.rc.profile.')
652 652 else:
653 653 print 'No profile active.'
654 654
655 655 def _inspect(self,meth,oname,namespaces=None,**kw):
656 656 """Generic interface to the inspector system.
657 657
658 658 This function is meant to be called by pdef, pdoc & friends."""
659 659
660 660 oname = oname.strip()
661 661 info = Struct(self._ofind(oname, namespaces))
662 662
663 663 if info.found:
664 664 # Get the docstring of the class property if it exists.
665 665 path = oname.split('.')
666 666 root = '.'.join(path[:-1])
667 667 if info.parent is not None:
668 668 try:
669 669 target = getattr(info.parent, '__class__')
670 670 # The object belongs to a class instance.
671 671 try:
672 672 target = getattr(target, path[-1])
673 673 # The class defines the object.
674 674 if isinstance(target, property):
675 675 oname = root + '.__class__.' + path[-1]
676 676 info = Struct(self._ofind(oname))
677 677 except AttributeError: pass
678 678 except AttributeError: pass
679 679
680 680 pmethod = getattr(self.shell.inspector,meth)
681 681 formatter = info.ismagic and self.format_screen or None
682 682 if meth == 'pdoc':
683 683 pmethod(info.obj,oname,formatter)
684 684 elif meth == 'pinfo':
685 685 pmethod(info.obj,oname,formatter,info,**kw)
686 686 else:
687 687 pmethod(info.obj,oname)
688 688 else:
689 689 print 'Object `%s` not found.' % oname
690 690 return 'not found' # so callers can take other action
691 691
692 692 def magic_pdef(self, parameter_s='', namespaces=None):
693 693 """Print the definition header for any callable object.
694 694
695 695 If the object is a class, print the constructor information."""
696 696 self._inspect('pdef',parameter_s, namespaces)
697 697
698 698 def magic_pdoc(self, parameter_s='', namespaces=None):
699 699 """Print the docstring for an object.
700 700
701 701 If the given object is a class, it will print both the class and the
702 702 constructor docstrings."""
703 703 self._inspect('pdoc',parameter_s, namespaces)
704 704
705 705 def magic_psource(self, parameter_s='', namespaces=None):
706 706 """Print (or run through pager) the source code for an object."""
707 707 self._inspect('psource',parameter_s, namespaces)
708 708
709 709 def magic_pfile(self, parameter_s=''):
710 710 """Print (or run through pager) the file where an object is defined.
711 711
712 712 The file opens at the line where the object definition begins. IPython
713 713 will honor the environment variable PAGER if set, and otherwise will
714 714 do its best to print the file in a convenient form.
715 715
716 716 If the given argument is not an object currently defined, IPython will
717 717 try to interpret it as a filename (automatically adding a .py extension
718 718 if needed). You can thus use %pfile as a syntax highlighting code
719 719 viewer."""
720 720
721 721 # first interpret argument as an object name
722 722 out = self._inspect('pfile',parameter_s)
723 723 # if not, try the input as a filename
724 724 if out == 'not found':
725 725 try:
726 726 filename = get_py_filename(parameter_s)
727 727 except IOError,msg:
728 728 print msg
729 729 return
730 730 page(self.shell.inspector.format(file(filename).read()))
731 731
732 732 def magic_pinfo(self, parameter_s='', namespaces=None):
733 733 """Provide detailed information about an object.
734 734
735 735 '%pinfo object' is just a synonym for object? or ?object."""
736 736
737 737 #print 'pinfo par: <%s>' % parameter_s # dbg
738 738
739 739 # detail_level: 0 -> obj? , 1 -> obj??
740 740 detail_level = 0
741 741 # We need to detect if we got called as 'pinfo pinfo foo', which can
742 742 # happen if the user types 'pinfo foo?' at the cmd line.
743 743 pinfo,qmark1,oname,qmark2 = \
744 744 re.match('(pinfo )?(\?*)(.*?)(\??$)',parameter_s).groups()
745 745 if pinfo or qmark1 or qmark2:
746 746 detail_level = 1
747 747 if "*" in oname:
748 748 self.magic_psearch(oname)
749 749 else:
750 750 self._inspect('pinfo', oname, detail_level=detail_level,
751 751 namespaces=namespaces)
752 752
753 753 def magic_psearch(self, parameter_s=''):
754 754 """Search for object in namespaces by wildcard.
755 755
756 756 %psearch [options] PATTERN [OBJECT TYPE]
757 757
758 758 Note: ? can be used as a synonym for %psearch, at the beginning or at
759 759 the end: both a*? and ?a* are equivalent to '%psearch a*'. Still, the
760 760 rest of the command line must be unchanged (options come first), so
761 761 for example the following forms are equivalent
762 762
763 763 %psearch -i a* function
764 764 -i a* function?
765 765 ?-i a* function
766 766
767 767 Arguments:
768 768
769 769 PATTERN
770 770
771 771 where PATTERN is a string containing * as a wildcard similar to its
772 772 use in a shell. The pattern is matched in all namespaces on the
773 773 search path. By default objects starting with a single _ are not
774 774 matched, many IPython generated objects have a single
775 775 underscore. The default is case insensitive matching. Matching is
776 776 also done on the attributes of objects and not only on the objects
777 777 in a module.
778 778
779 779 [OBJECT TYPE]
780 780
781 781 Is the name of a python type from the types module. The name is
782 782 given in lowercase without the ending type, ex. StringType is
783 783 written string. By adding a type here only objects matching the
784 784 given type are matched. Using all here makes the pattern match all
785 785 types (this is the default).
786 786
787 787 Options:
788 788
789 789 -a: makes the pattern match even objects whose names start with a
790 790 single underscore. These names are normally ommitted from the
791 791 search.
792 792
793 793 -i/-c: make the pattern case insensitive/sensitive. If neither of
794 794 these options is given, the default is read from your ipythonrc
795 795 file. The option name which sets this value is
796 796 'wildcards_case_sensitive'. If this option is not specified in your
797 797 ipythonrc file, IPython's internal default is to do a case sensitive
798 798 search.
799 799
800 800 -e/-s NAMESPACE: exclude/search a given namespace. The pattern you
801 801 specifiy can be searched in any of the following namespaces:
802 802 'builtin', 'user', 'user_global','internal', 'alias', where
803 803 'builtin' and 'user' are the search defaults. Note that you should
804 804 not use quotes when specifying namespaces.
805 805
806 806 'Builtin' contains the python module builtin, 'user' contains all
807 807 user data, 'alias' only contain the shell aliases and no python
808 808 objects, 'internal' contains objects used by IPython. The
809 809 'user_global' namespace is only used by embedded IPython instances,
810 810 and it contains module-level globals. You can add namespaces to the
811 811 search with -s or exclude them with -e (these options can be given
812 812 more than once).
813 813
814 814 Examples:
815 815
816 816 %psearch a* -> objects beginning with an a
817 817 %psearch -e builtin a* -> objects NOT in the builtin space starting in a
818 818 %psearch a* function -> all functions beginning with an a
819 819 %psearch re.e* -> objects beginning with an e in module re
820 820 %psearch r*.e* -> objects that start with e in modules starting in r
821 821 %psearch r*.* string -> all strings in modules beginning with r
822 822
823 823 Case sensitve search:
824 824
825 825 %psearch -c a* list all object beginning with lower case a
826 826
827 827 Show objects beginning with a single _:
828 828
829 829 %psearch -a _* list objects beginning with a single underscore"""
830 830
831 831 # default namespaces to be searched
832 832 def_search = ['user','builtin']
833 833
834 834 # Process options/args
835 835 opts,args = self.parse_options(parameter_s,'cias:e:',list_all=True)
836 836 opt = opts.get
837 837 shell = self.shell
838 838 psearch = shell.inspector.psearch
839 839
840 840 # select case options
841 841 if opts.has_key('i'):
842 842 ignore_case = True
843 843 elif opts.has_key('c'):
844 844 ignore_case = False
845 845 else:
846 846 ignore_case = not shell.rc.wildcards_case_sensitive
847 847
848 848 # Build list of namespaces to search from user options
849 849 def_search.extend(opt('s',[]))
850 850 ns_exclude = ns_exclude=opt('e',[])
851 851 ns_search = [nm for nm in def_search if nm not in ns_exclude]
852 852
853 853 # Call the actual search
854 854 try:
855 855 psearch(args,shell.ns_table,ns_search,
856 856 show_all=opt('a'),ignore_case=ignore_case)
857 857 except:
858 858 shell.showtraceback()
859 859
860 860 def magic_who_ls(self, parameter_s=''):
861 861 """Return a sorted list of all interactive variables.
862 862
863 863 If arguments are given, only variables of types matching these
864 864 arguments are returned."""
865 865
866 866 user_ns = self.shell.user_ns
867 867 internal_ns = self.shell.internal_ns
868 868 user_config_ns = self.shell.user_config_ns
869 869 out = []
870 870 typelist = parameter_s.split()
871 871
872 872 for i in user_ns:
873 873 if not (i.startswith('_') or i.startswith('_i')) \
874 874 and not (i in internal_ns or i in user_config_ns):
875 875 if typelist:
876 876 if type(user_ns[i]).__name__ in typelist:
877 877 out.append(i)
878 878 else:
879 879 out.append(i)
880 880 out.sort()
881 881 return out
882 882
883 883 def magic_who(self, parameter_s=''):
884 884 """Print all interactive variables, with some minimal formatting.
885 885
886 886 If any arguments are given, only variables whose type matches one of
887 887 these are printed. For example:
888 888
889 889 %who function str
890 890
891 891 will only list functions and strings, excluding all other types of
892 892 variables. To find the proper type names, simply use type(var) at a
893 893 command line to see how python prints type names. For example:
894 894
895 895 In [1]: type('hello')\\
896 896 Out[1]: <type 'str'>
897 897
898 898 indicates that the type name for strings is 'str'.
899 899
900 900 %who always excludes executed names loaded through your configuration
901 901 file and things which are internal to IPython.
902 902
903 903 This is deliberate, as typically you may load many modules and the
904 904 purpose of %who is to show you only what you've manually defined."""
905 905
906 906 varlist = self.magic_who_ls(parameter_s)
907 907 if not varlist:
908 908 print 'Interactive namespace is empty.'
909 909 return
910 910
911 911 # if we have variables, move on...
912 912
913 913 # stupid flushing problem: when prompts have no separators, stdout is
914 914 # getting lost. I'm starting to think this is a python bug. I'm having
915 915 # to force a flush with a print because even a sys.stdout.flush
916 916 # doesn't seem to do anything!
917 917
918 918 count = 0
919 919 for i in varlist:
920 920 print i+'\t',
921 921 count += 1
922 922 if count > 8:
923 923 count = 0
924 924 print
925 925 sys.stdout.flush() # FIXME. Why the hell isn't this flushing???
926 926
927 927 print # well, this does force a flush at the expense of an extra \n
928 928
929 929 def magic_whos(self, parameter_s=''):
930 930 """Like %who, but gives some extra information about each variable.
931 931
932 932 The same type filtering of %who can be applied here.
933 933
934 934 For all variables, the type is printed. Additionally it prints:
935 935
936 936 - For {},[],(): their length.
937 937
938 938 - For Numeric arrays, a summary with shape, number of elements,
939 939 typecode and size in memory.
940 940
941 941 - Everything else: a string representation, snipping their middle if
942 942 too long."""
943 943
944 944 varnames = self.magic_who_ls(parameter_s)
945 945 if not varnames:
946 946 print 'Interactive namespace is empty.'
947 947 return
948 948
949 949 # if we have variables, move on...
950 950
951 951 # for these types, show len() instead of data:
952 952 seq_types = [types.DictType,types.ListType,types.TupleType]
953 953
954 954 # for Numeric arrays, display summary info
955 955 try:
956 956 import Numeric
957 957 except ImportError:
958 958 array_type = None
959 959 else:
960 960 array_type = Numeric.ArrayType.__name__
961 961
962 962 # Find all variable names and types so we can figure out column sizes
963 963
964 964 def get_vars(i):
965 965 return self.shell.user_ns[i]
966 966
967 967 # some types are well known and can be shorter
968 968 abbrevs = {'IPython.macro.Macro' : 'Macro'}
969 969 def type_name(v):
970 970 tn = type(v).__name__
971 971 return abbrevs.get(tn,tn)
972 972
973 973 varlist = map(get_vars,varnames)
974 974
975 975 typelist = []
976 976 for vv in varlist:
977 977 tt = type_name(vv)
978 978
979 979 if tt=='instance':
980 980 typelist.append( abbrevs.get(str(vv.__class__),str(vv.__class__)))
981 981 else:
982 982 typelist.append(tt)
983 983
984 984 # column labels and # of spaces as separator
985 985 varlabel = 'Variable'
986 986 typelabel = 'Type'
987 987 datalabel = 'Data/Info'
988 988 colsep = 3
989 989 # variable format strings
990 990 vformat = "$vname.ljust(varwidth)$vtype.ljust(typewidth)"
991 991 vfmt_short = '$vstr[:25]<...>$vstr[-25:]'
992 992 aformat = "%s: %s elems, type `%s`, %s bytes"
993 993 # find the size of the columns to format the output nicely
994 994 varwidth = max(max(map(len,varnames)), len(varlabel)) + colsep
995 995 typewidth = max(max(map(len,typelist)), len(typelabel)) + colsep
996 996 # table header
997 997 print varlabel.ljust(varwidth) + typelabel.ljust(typewidth) + \
998 998 ' '+datalabel+'\n' + '-'*(varwidth+typewidth+len(datalabel)+1)
999 999 # and the table itself
1000 1000 kb = 1024
1001 1001 Mb = 1048576 # kb**2
1002 1002 for vname,var,vtype in zip(varnames,varlist,typelist):
1003 1003 print itpl(vformat),
1004 1004 if vtype in seq_types:
1005 1005 print len(var)
1006 1006 elif vtype==array_type:
1007 1007 vshape = str(var.shape).replace(',','').replace(' ','x')[1:-1]
1008 1008 vsize = Numeric.size(var)
1009 1009 vbytes = vsize*var.itemsize()
1010 1010 if vbytes < 100000:
1011 1011 print aformat % (vshape,vsize,var.typecode(),vbytes)
1012 1012 else:
1013 1013 print aformat % (vshape,vsize,var.typecode(),vbytes),
1014 1014 if vbytes < Mb:
1015 1015 print '(%s kb)' % (vbytes/kb,)
1016 1016 else:
1017 1017 print '(%s Mb)' % (vbytes/Mb,)
1018 1018 else:
1019 1019 vstr = str(var).replace('\n','\\n')
1020 1020 if len(vstr) < 50:
1021 1021 print vstr
1022 1022 else:
1023 1023 printpl(vfmt_short)
1024 1024
1025 1025 def magic_reset(self, parameter_s=''):
1026 1026 """Resets the namespace by removing all names defined by the user.
1027 1027
1028 1028 Input/Output history are left around in case you need them."""
1029 1029
1030 1030 ans = self.shell.ask_yes_no(
1031 1031 "Once deleted, variables cannot be recovered. Proceed (y/[n])? ")
1032 1032 if not ans:
1033 1033 print 'Nothing done.'
1034 1034 return
1035 1035 user_ns = self.shell.user_ns
1036 1036 for i in self.magic_who_ls():
1037 1037 del(user_ns[i])
1038 1038
1039 1039 def magic_logstart(self,parameter_s=''):
1040 1040 """Start logging anywhere in a session.
1041 1041
1042 1042 %logstart [-o|-r|-t] [log_name [log_mode]]
1043 1043
1044 1044 If no name is given, it defaults to a file named 'ipython_log.py' in your
1045 1045 current directory, in 'rotate' mode (see below).
1046 1046
1047 1047 '%logstart name' saves to file 'name' in 'backup' mode. It saves your
1048 1048 history up to that point and then continues logging.
1049 1049
1050 1050 %logstart takes a second optional parameter: logging mode. This can be one
1051 1051 of (note that the modes are given unquoted):\\
1052 1052 append: well, that says it.\\
1053 1053 backup: rename (if exists) to name~ and start name.\\
1054 1054 global: single logfile in your home dir, appended to.\\
1055 1055 over : overwrite existing log.\\
1056 1056 rotate: create rotating logs name.1~, name.2~, etc.
1057 1057
1058 1058 Options:
1059 1059
1060 1060 -o: log also IPython's output. In this mode, all commands which
1061 1061 generate an Out[NN] prompt are recorded to the logfile, right after
1062 1062 their corresponding input line. The output lines are always
1063 1063 prepended with a '#[Out]# ' marker, so that the log remains valid
1064 1064 Python code.
1065 1065
1066 1066 Since this marker is always the same, filtering only the output from
1067 1067 a log is very easy, using for example a simple awk call:
1068 1068
1069 1069 awk -F'#\\[Out\\]# ' '{if($2) {print $2}}' ipython_log.py
1070 1070
1071 1071 -r: log 'raw' input. Normally, IPython's logs contain the processed
1072 1072 input, so that user lines are logged in their final form, converted
1073 1073 into valid Python. For example, %Exit is logged as
1074 1074 '_ip.magic("Exit"). If the -r flag is given, all input is logged
1075 1075 exactly as typed, with no transformations applied.
1076 1076
1077 1077 -t: put timestamps before each input line logged (these are put in
1078 1078 comments)."""
1079 1079
1080 1080 opts,par = self.parse_options(parameter_s,'ort')
1081 1081 log_output = 'o' in opts
1082 1082 log_raw_input = 'r' in opts
1083 1083 timestamp = 't' in opts
1084 1084
1085 1085 rc = self.shell.rc
1086 1086 logger = self.shell.logger
1087 1087
1088 1088 # if no args are given, the defaults set in the logger constructor by
1089 1089 # ipytohn remain valid
1090 1090 if par:
1091 1091 try:
1092 1092 logfname,logmode = par.split()
1093 1093 except:
1094 1094 logfname = par
1095 1095 logmode = 'backup'
1096 1096 else:
1097 1097 logfname = logger.logfname
1098 1098 logmode = logger.logmode
1099 1099 # put logfname into rc struct as if it had been called on the command
1100 1100 # line, so it ends up saved in the log header Save it in case we need
1101 1101 # to restore it...
1102 1102 old_logfile = rc.opts.get('logfile','')
1103 1103 if logfname:
1104 1104 logfname = os.path.expanduser(logfname)
1105 1105 rc.opts.logfile = logfname
1106 1106 loghead = self.shell.loghead_tpl % (rc.opts,rc.args)
1107 1107 try:
1108 1108 started = logger.logstart(logfname,loghead,logmode,
1109 1109 log_output,timestamp,log_raw_input)
1110 1110 except:
1111 1111 rc.opts.logfile = old_logfile
1112 1112 warn("Couldn't start log: %s" % sys.exc_info()[1])
1113 1113 else:
1114 1114 # log input history up to this point, optionally interleaving
1115 1115 # output if requested
1116 1116
1117 1117 if timestamp:
1118 1118 # disable timestamping for the previous history, since we've
1119 1119 # lost those already (no time machine here).
1120 1120 logger.timestamp = False
1121 1121
1122 1122 if log_raw_input:
1123 1123 input_hist = self.shell.input_hist_raw
1124 1124 else:
1125 1125 input_hist = self.shell.input_hist
1126 1126
1127 1127 if log_output:
1128 1128 log_write = logger.log_write
1129 1129 output_hist = self.shell.output_hist
1130 1130 for n in range(1,len(input_hist)-1):
1131 1131 log_write(input_hist[n].rstrip())
1132 1132 if n in output_hist:
1133 1133 log_write(repr(output_hist[n]),'output')
1134 1134 else:
1135 1135 logger.log_write(input_hist[1:])
1136 1136 if timestamp:
1137 1137 # re-enable timestamping
1138 1138 logger.timestamp = True
1139 1139
1140 1140 print ('Activating auto-logging. '
1141 1141 'Current session state plus future input saved.')
1142 1142 logger.logstate()
1143 1143
1144 1144 def magic_logoff(self,parameter_s=''):
1145 1145 """Temporarily stop logging.
1146 1146
1147 1147 You must have previously started logging."""
1148 1148 self.shell.logger.switch_log(0)
1149 1149
1150 1150 def magic_logon(self,parameter_s=''):
1151 1151 """Restart logging.
1152 1152
1153 1153 This function is for restarting logging which you've temporarily
1154 1154 stopped with %logoff. For starting logging for the first time, you
1155 1155 must use the %logstart function, which allows you to specify an
1156 1156 optional log filename."""
1157 1157
1158 1158 self.shell.logger.switch_log(1)
1159 1159
1160 1160 def magic_logstate(self,parameter_s=''):
1161 1161 """Print the status of the logging system."""
1162 1162
1163 1163 self.shell.logger.logstate()
1164 1164
1165 1165 def magic_pdb(self, parameter_s=''):
1166 1166 """Control the automatic calling of the pdb interactive debugger.
1167 1167
1168 1168 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
1169 1169 argument it works as a toggle.
1170 1170
1171 1171 When an exception is triggered, IPython can optionally call the
1172 1172 interactive pdb debugger after the traceback printout. %pdb toggles
1173 1173 this feature on and off.
1174 1174
1175 1175 The initial state of this feature is set in your ipythonrc
1176 1176 configuration file (the variable is called 'pdb').
1177 1177
1178 1178 If you want to just activate the debugger AFTER an exception has fired,
1179 1179 without having to type '%pdb on' and rerunning your code, you can use
1180 1180 the %debug magic."""
1181 1181
1182 1182 par = parameter_s.strip().lower()
1183 1183
1184 1184 if par:
1185 1185 try:
1186 1186 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
1187 1187 except KeyError:
1188 1188 print ('Incorrect argument. Use on/1, off/0, '
1189 1189 'or nothing for a toggle.')
1190 1190 return
1191 1191 else:
1192 1192 # toggle
1193 1193 new_pdb = not self.shell.call_pdb
1194 1194
1195 1195 # set on the shell
1196 1196 self.shell.call_pdb = new_pdb
1197 1197 print 'Automatic pdb calling has been turned',on_off(new_pdb)
1198 1198
1199 1199 def magic_debug(self, parameter_s=''):
1200 1200 """Activate the interactive debugger in post-mortem mode.
1201 1201
1202 1202 If an exception has just occurred, this lets you inspect its stack
1203 1203 frames interactively. Note that this will always work only on the last
1204 1204 traceback that occurred, so you must call this quickly after an
1205 1205 exception that you wish to inspect has fired, because if another one
1206 1206 occurs, it clobbers the previous one.
1207 1207
1208 1208 If you want IPython to automatically do this on every exception, see
1209 1209 the %pdb magic for more details.
1210 1210 """
1211 1211
1212 1212 self.shell.debugger(force=True)
1213 1213
1214 1214 def magic_prun(self, parameter_s ='',user_mode=1,
1215 1215 opts=None,arg_lst=None,prog_ns=None):
1216 1216
1217 1217 """Run a statement through the python code profiler.
1218 1218
1219 1219 Usage:\\
1220 1220 %prun [options] statement
1221 1221
1222 1222 The given statement (which doesn't require quote marks) is run via the
1223 1223 python profiler in a manner similar to the profile.run() function.
1224 1224 Namespaces are internally managed to work correctly; profile.run
1225 1225 cannot be used in IPython because it makes certain assumptions about
1226 1226 namespaces which do not hold under IPython.
1227 1227
1228 1228 Options:
1229 1229
1230 1230 -l <limit>: you can place restrictions on what or how much of the
1231 1231 profile gets printed. The limit value can be:
1232 1232
1233 1233 * A string: only information for function names containing this string
1234 1234 is printed.
1235 1235
1236 1236 * An integer: only these many lines are printed.
1237 1237
1238 1238 * A float (between 0 and 1): this fraction of the report is printed
1239 1239 (for example, use a limit of 0.4 to see the topmost 40% only).
1240 1240
1241 1241 You can combine several limits with repeated use of the option. For
1242 1242 example, '-l __init__ -l 5' will print only the topmost 5 lines of
1243 1243 information about class constructors.
1244 1244
1245 1245 -r: return the pstats.Stats object generated by the profiling. This
1246 1246 object has all the information about the profile in it, and you can
1247 1247 later use it for further analysis or in other functions.
1248 1248
1249 1249 -s <key>: sort profile by given key. You can provide more than one key
1250 1250 by using the option several times: '-s key1 -s key2 -s key3...'. The
1251 1251 default sorting key is 'time'.
1252 1252
1253 1253 The following is copied verbatim from the profile documentation
1254 1254 referenced below:
1255 1255
1256 1256 When more than one key is provided, additional keys are used as
1257 1257 secondary criteria when the there is equality in all keys selected
1258 1258 before them.
1259 1259
1260 1260 Abbreviations can be used for any key names, as long as the
1261 1261 abbreviation is unambiguous. The following are the keys currently
1262 1262 defined:
1263 1263
1264 1264 Valid Arg Meaning\\
1265 1265 "calls" call count\\
1266 1266 "cumulative" cumulative time\\
1267 1267 "file" file name\\
1268 1268 "module" file name\\
1269 1269 "pcalls" primitive call count\\
1270 1270 "line" line number\\
1271 1271 "name" function name\\
1272 1272 "nfl" name/file/line\\
1273 1273 "stdname" standard name\\
1274 1274 "time" internal time
1275 1275
1276 1276 Note that all sorts on statistics are in descending order (placing
1277 1277 most time consuming items first), where as name, file, and line number
1278 1278 searches are in ascending order (i.e., alphabetical). The subtle
1279 1279 distinction between "nfl" and "stdname" is that the standard name is a
1280 1280 sort of the name as printed, which means that the embedded line
1281 1281 numbers get compared in an odd way. For example, lines 3, 20, and 40
1282 1282 would (if the file names were the same) appear in the string order
1283 1283 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
1284 1284 line numbers. In fact, sort_stats("nfl") is the same as
1285 1285 sort_stats("name", "file", "line").
1286 1286
1287 1287 -T <filename>: save profile results as shown on screen to a text
1288 1288 file. The profile is still shown on screen.
1289 1289
1290 1290 -D <filename>: save (via dump_stats) profile statistics to given
1291 1291 filename. This data is in a format understod by the pstats module, and
1292 1292 is generated by a call to the dump_stats() method of profile
1293 1293 objects. The profile is still shown on screen.
1294 1294
1295 1295 If you want to run complete programs under the profiler's control, use
1296 1296 '%run -p [prof_opts] filename.py [args to program]' where prof_opts
1297 1297 contains profiler specific options as described here.
1298 1298
1299 1299 You can read the complete documentation for the profile module with:\\
1300 1300 In [1]: import profile; profile.help() """
1301 1301
1302 1302 opts_def = Struct(D=[''],l=[],s=['time'],T=[''])
1303 1303 # protect user quote marks
1304 1304 parameter_s = parameter_s.replace('"',r'\"').replace("'",r"\'")
1305 1305
1306 1306 if user_mode: # regular user call
1307 1307 opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:',
1308 1308 list_all=1)
1309 1309 namespace = self.shell.user_ns
1310 1310 else: # called to run a program by %run -p
1311 1311 try:
1312 1312 filename = get_py_filename(arg_lst[0])
1313 1313 except IOError,msg:
1314 1314 error(msg)
1315 1315 return
1316 1316
1317 1317 arg_str = 'execfile(filename,prog_ns)'
1318 1318 namespace = locals()
1319 1319
1320 1320 opts.merge(opts_def)
1321 1321
1322 1322 prof = profile.Profile()
1323 1323 try:
1324 1324 prof = prof.runctx(arg_str,namespace,namespace)
1325 1325 sys_exit = ''
1326 1326 except SystemExit:
1327 1327 sys_exit = """*** SystemExit exception caught in code being profiled."""
1328 1328
1329 1329 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
1330 1330
1331 1331 lims = opts.l
1332 1332 if lims:
1333 1333 lims = [] # rebuild lims with ints/floats/strings
1334 1334 for lim in opts.l:
1335 1335 try:
1336 1336 lims.append(int(lim))
1337 1337 except ValueError:
1338 1338 try:
1339 1339 lims.append(float(lim))
1340 1340 except ValueError:
1341 1341 lims.append(lim)
1342 1342
1343 1343 # trap output
1344 1344 sys_stdout = sys.stdout
1345 1345 stdout_trap = StringIO()
1346 1346 try:
1347 1347 sys.stdout = stdout_trap
1348 1348 stats.print_stats(*lims)
1349 1349 finally:
1350 1350 sys.stdout = sys_stdout
1351 1351 output = stdout_trap.getvalue()
1352 1352 output = output.rstrip()
1353 1353
1354 1354 page(output,screen_lines=self.shell.rc.screen_length)
1355 1355 print sys_exit,
1356 1356
1357 1357 dump_file = opts.D[0]
1358 1358 text_file = opts.T[0]
1359 1359 if dump_file:
1360 1360 prof.dump_stats(dump_file)
1361 1361 print '\n*** Profile stats marshalled to file',\
1362 1362 `dump_file`+'.',sys_exit
1363 1363 if text_file:
1364 1364 file(text_file,'w').write(output)
1365 1365 print '\n*** Profile printout saved to text file',\
1366 1366 `text_file`+'.',sys_exit
1367 1367
1368 1368 if opts.has_key('r'):
1369 1369 return stats
1370 1370 else:
1371 1371 return None
1372 1372
1373 1373 def magic_run(self, parameter_s ='',runner=None):
1374 1374 """Run the named file inside IPython as a program.
1375 1375
1376 1376 Usage:\\
1377 1377 %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args]
1378
1378
1379 1379 Parameters after the filename are passed as command-line arguments to
1380 1380 the program (put in sys.argv). Then, control returns to IPython's
1381 1381 prompt.
1382 1382
1383 1383 This is similar to running at a system prompt:\\
1384 1384 $ python file args\\
1385 1385 but with the advantage of giving you IPython's tracebacks, and of
1386 1386 loading all variables into your interactive namespace for further use
1387 1387 (unless -p is used, see below).
1388 1388
1389 1389 The file is executed in a namespace initially consisting only of
1390 1390 __name__=='__main__' and sys.argv constructed as indicated. It thus
1391 1391 sees its environment as if it were being run as a stand-alone
1392 1392 program. But after execution, the IPython interactive namespace gets
1393 1393 updated with all variables defined in the program (except for __name__
1394 1394 and sys.argv). This allows for very convenient loading of code for
1395 1395 interactive work, while giving each program a 'clean sheet' to run in.
1396 1396
1397 1397 Options:
1398 1398
1399 1399 -n: __name__ is NOT set to '__main__', but to the running file's name
1400 1400 without extension (as python does under import). This allows running
1401 1401 scripts and reloading the definitions in them without calling code
1402 1402 protected by an ' if __name__ == "__main__" ' clause.
1403 1403
1404 1404 -i: run the file in IPython's namespace instead of an empty one. This
1405 1405 is useful if you are experimenting with code written in a text editor
1406 1406 which depends on variables defined interactively.
1407 1407
1408 1408 -e: ignore sys.exit() calls or SystemExit exceptions in the script
1409 1409 being run. This is particularly useful if IPython is being used to
1410 1410 run unittests, which always exit with a sys.exit() call. In such
1411 1411 cases you are interested in the output of the test results, not in
1412 1412 seeing a traceback of the unittest module.
1413 1413
1414 1414 -t: print timing information at the end of the run. IPython will give
1415 1415 you an estimated CPU time consumption for your script, which under
1416 1416 Unix uses the resource module to avoid the wraparound problems of
1417 1417 time.clock(). Under Unix, an estimate of time spent on system tasks
1418 1418 is also given (for Windows platforms this is reported as 0.0).
1419 1419
1420 1420 If -t is given, an additional -N<N> option can be given, where <N>
1421 1421 must be an integer indicating how many times you want the script to
1422 1422 run. The final timing report will include total and per run results.
1423 1423
1424 1424 For example (testing the script uniq_stable.py):
1425 1425
1426 1426 In [1]: run -t uniq_stable
1427 1427
1428 1428 IPython CPU timings (estimated):\\
1429 1429 User : 0.19597 s.\\
1430 1430 System: 0.0 s.\\
1431 1431
1432 1432 In [2]: run -t -N5 uniq_stable
1433 1433
1434 1434 IPython CPU timings (estimated):\\
1435 1435 Total runs performed: 5\\
1436 1436 Times : Total Per run\\
1437 1437 User : 0.910862 s, 0.1821724 s.\\
1438 1438 System: 0.0 s, 0.0 s.
1439 1439
1440 1440 -d: run your program under the control of pdb, the Python debugger.
1441 1441 This allows you to execute your program step by step, watch variables,
1442 1442 etc. Internally, what IPython does is similar to calling:
1443 1443
1444 1444 pdb.run('execfile("YOURFILENAME")')
1445 1445
1446 1446 with a breakpoint set on line 1 of your file. You can change the line
1447 1447 number for this automatic breakpoint to be <N> by using the -bN option
1448 1448 (where N must be an integer). For example:
1449 1449
1450 1450 %run -d -b40 myscript
1451 1451
1452 1452 will set the first breakpoint at line 40 in myscript.py. Note that
1453 1453 the first breakpoint must be set on a line which actually does
1454 1454 something (not a comment or docstring) for it to stop execution.
1455 1455
1456 1456 When the pdb debugger starts, you will see a (Pdb) prompt. You must
1457 1457 first enter 'c' (without qoutes) to start execution up to the first
1458 1458 breakpoint.
1459 1459
1460 1460 Entering 'help' gives information about the use of the debugger. You
1461 1461 can easily see pdb's full documentation with "import pdb;pdb.help()"
1462 1462 at a prompt.
1463 1463
1464 1464 -p: run program under the control of the Python profiler module (which
1465 1465 prints a detailed report of execution times, function calls, etc).
1466 1466
1467 1467 You can pass other options after -p which affect the behavior of the
1468 1468 profiler itself. See the docs for %prun for details.
1469 1469
1470 1470 In this mode, the program's variables do NOT propagate back to the
1471 1471 IPython interactive namespace (because they remain in the namespace
1472 1472 where the profiler executes them).
1473 1473
1474 1474 Internally this triggers a call to %prun, see its documentation for
1475 details on the options available specifically for profiling."""
1475 details on the options available specifically for profiling.
1476
1477 There is one special usage for which the text above doesn't apply:
1478 if the filename ends with .ipy, the file is run as ipython script,
1479 just as if the commands were written on IPython prompt.
1480 """
1476 1481
1477 1482 # get arguments and set sys.argv for program to be run.
1478 1483 opts,arg_lst = self.parse_options(parameter_s,'nidtN:b:pD:l:rs:T:e',
1479 1484 mode='list',list_all=1)
1480 1485
1481 1486 try:
1482 1487 filename = get_py_filename(arg_lst[0])
1483 1488 except IndexError:
1484 1489 warn('you must provide at least a filename.')
1485 1490 print '\n%run:\n',OInspect.getdoc(self.magic_run)
1486 1491 return
1487 1492 except IOError,msg:
1488 1493 error(msg)
1489 1494 return
1490 1495
1496 if filename.lower().endswith('.ipy'):
1497 self.api.runlines(open(filename).read())
1498 return
1499
1491 1500 # Control the response to exit() calls made by the script being run
1492 1501 exit_ignore = opts.has_key('e')
1493 1502
1494 1503 # Make sure that the running script gets a proper sys.argv as if it
1495 1504 # were run from a system shell.
1496 1505 save_argv = sys.argv # save it for later restoring
1497 1506 sys.argv = [filename]+ arg_lst[1:] # put in the proper filename
1498 1507
1499 1508 if opts.has_key('i'):
1500 1509 prog_ns = self.shell.user_ns
1501 1510 __name__save = self.shell.user_ns['__name__']
1502 1511 prog_ns['__name__'] = '__main__'
1503 1512 else:
1504 1513 if opts.has_key('n'):
1505 1514 name = os.path.splitext(os.path.basename(filename))[0]
1506 1515 else:
1507 1516 name = '__main__'
1508 1517 prog_ns = {'__name__':name}
1509 1518
1510 1519 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
1511 1520 # set the __file__ global in the script's namespace
1512 1521 prog_ns['__file__'] = filename
1513 1522
1514 1523 # pickle fix. See iplib for an explanation. But we need to make sure
1515 1524 # that, if we overwrite __main__, we replace it at the end
1516 1525 if prog_ns['__name__'] == '__main__':
1517 1526 restore_main = sys.modules['__main__']
1518 1527 else:
1519 1528 restore_main = False
1520 1529
1521 1530 sys.modules[prog_ns['__name__']] = FakeModule(prog_ns)
1522 1531
1523 1532 stats = None
1524 1533 try:
1525 1534 if self.shell.has_readline:
1526 1535 self.shell.savehist()
1527 1536
1528 1537 if opts.has_key('p'):
1529 1538 stats = self.magic_prun('',0,opts,arg_lst,prog_ns)
1530 1539 else:
1531 1540 if opts.has_key('d'):
1532 1541 deb = Debugger.Pdb(self.shell.rc.colors)
1533 1542 # reset Breakpoint state, which is moronically kept
1534 1543 # in a class
1535 1544 bdb.Breakpoint.next = 1
1536 1545 bdb.Breakpoint.bplist = {}
1537 1546 bdb.Breakpoint.bpbynumber = [None]
1538 1547 # Set an initial breakpoint to stop execution
1539 1548 maxtries = 10
1540 1549 bp = int(opts.get('b',[1])[0])
1541 1550 checkline = deb.checkline(filename,bp)
1542 1551 if not checkline:
1543 1552 for bp in range(bp+1,bp+maxtries+1):
1544 1553 if deb.checkline(filename,bp):
1545 1554 break
1546 1555 else:
1547 1556 msg = ("\nI failed to find a valid line to set "
1548 1557 "a breakpoint\n"
1549 1558 "after trying up to line: %s.\n"
1550 1559 "Please set a valid breakpoint manually "
1551 1560 "with the -b option." % bp)
1552 1561 error(msg)
1553 1562 return
1554 1563 # if we find a good linenumber, set the breakpoint
1555 1564 deb.do_break('%s:%s' % (filename,bp))
1556 1565 # Start file run
1557 1566 print "NOTE: Enter 'c' at the",
1558 1567 print "%s prompt to start your script." % deb.prompt
1559 1568 try:
1560 1569 deb.run('execfile("%s")' % filename,prog_ns)
1561 1570
1562 1571 except:
1563 1572 etype, value, tb = sys.exc_info()
1564 1573 # Skip three frames in the traceback: the %run one,
1565 1574 # one inside bdb.py, and the command-line typed by the
1566 1575 # user (run by exec in pdb itself).
1567 1576 self.shell.InteractiveTB(etype,value,tb,tb_offset=3)
1568 1577 else:
1569 1578 if runner is None:
1570 1579 runner = self.shell.safe_execfile
1571 1580 if opts.has_key('t'):
1572 1581 try:
1573 1582 nruns = int(opts['N'][0])
1574 1583 if nruns < 1:
1575 1584 error('Number of runs must be >=1')
1576 1585 return
1577 1586 except (KeyError):
1578 1587 nruns = 1
1579 1588 if nruns == 1:
1580 1589 t0 = clock2()
1581 1590 runner(filename,prog_ns,prog_ns,
1582 1591 exit_ignore=exit_ignore)
1583 1592 t1 = clock2()
1584 1593 t_usr = t1[0]-t0[0]
1585 1594 t_sys = t1[1]-t1[1]
1586 1595 print "\nIPython CPU timings (estimated):"
1587 1596 print " User : %10s s." % t_usr
1588 1597 print " System: %10s s." % t_sys
1589 1598 else:
1590 1599 runs = range(nruns)
1591 1600 t0 = clock2()
1592 1601 for nr in runs:
1593 1602 runner(filename,prog_ns,prog_ns,
1594 1603 exit_ignore=exit_ignore)
1595 1604 t1 = clock2()
1596 1605 t_usr = t1[0]-t0[0]
1597 1606 t_sys = t1[1]-t1[1]
1598 1607 print "\nIPython CPU timings (estimated):"
1599 1608 print "Total runs performed:",nruns
1600 1609 print " Times : %10s %10s" % ('Total','Per run')
1601 1610 print " User : %10s s, %10s s." % (t_usr,t_usr/nruns)
1602 1611 print " System: %10s s, %10s s." % (t_sys,t_sys/nruns)
1603 1612
1604 1613 else:
1605 1614 runner(filename,prog_ns,prog_ns,exit_ignore=exit_ignore)
1606 1615 if opts.has_key('i'):
1607 1616 self.shell.user_ns['__name__'] = __name__save
1608 1617 else:
1609 1618 # update IPython interactive namespace
1610 1619 del prog_ns['__name__']
1611 1620 self.shell.user_ns.update(prog_ns)
1612 1621 finally:
1613 1622 sys.argv = save_argv
1614 1623 if restore_main:
1615 1624 sys.modules['__main__'] = restore_main
1616 1625 if self.shell.has_readline:
1617 1626 self.shell.readline.read_history_file(self.shell.histfile)
1618 1627
1619 1628 return stats
1620 1629
1621 1630 def magic_runlog(self, parameter_s =''):
1622 1631 """Run files as logs.
1623 1632
1624 1633 Usage:\\
1625 1634 %runlog file1 file2 ...
1626 1635
1627 1636 Run the named files (treating them as log files) in sequence inside
1628 1637 the interpreter, and return to the prompt. This is much slower than
1629 1638 %run because each line is executed in a try/except block, but it
1630 1639 allows running files with syntax errors in them.
1631 1640
1632 1641 Normally IPython will guess when a file is one of its own logfiles, so
1633 1642 you can typically use %run even for logs. This shorthand allows you to
1634 1643 force any file to be treated as a log file."""
1635 1644
1636 1645 for f in parameter_s.split():
1637 1646 self.shell.safe_execfile(f,self.shell.user_ns,
1638 1647 self.shell.user_ns,islog=1)
1639 1648
1640 1649 def magic_timeit(self, parameter_s =''):
1641 1650 """Time execution of a Python statement or expression
1642 1651
1643 1652 Usage:\\
1644 1653 %timeit [-n<N> -r<R> [-t|-c]] statement
1645 1654
1646 1655 Time execution of a Python statement or expression using the timeit
1647 1656 module.
1648 1657
1649 1658 Options:
1650 1659 -n<N>: execute the given statement <N> times in a loop. If this value
1651 1660 is not given, a fitting value is chosen.
1652 1661
1653 1662 -r<R>: repeat the loop iteration <R> times and take the best result.
1654 1663 Default: 3
1655 1664
1656 1665 -t: use time.time to measure the time, which is the default on Unix.
1657 1666 This function measures wall time.
1658 1667
1659 1668 -c: use time.clock to measure the time, which is the default on
1660 1669 Windows and measures wall time. On Unix, resource.getrusage is used
1661 1670 instead and returns the CPU user time.
1662 1671
1663 1672 -p<P>: use a precision of <P> digits to display the timing result.
1664 1673 Default: 3
1665 1674
1666 1675
1667 1676 Examples:\\
1668 1677 In [1]: %timeit pass
1669 1678 10000000 loops, best of 3: 53.3 ns per loop
1670 1679
1671 1680 In [2]: u = None
1672 1681
1673 1682 In [3]: %timeit u is None
1674 1683 10000000 loops, best of 3: 184 ns per loop
1675 1684
1676 1685 In [4]: %timeit -r 4 u == None
1677 1686 1000000 loops, best of 4: 242 ns per loop
1678 1687
1679 1688 In [5]: import time
1680 1689
1681 1690 In [6]: %timeit -n1 time.sleep(2)
1682 1691 1 loops, best of 3: 2 s per loop
1683 1692
1684 1693
1685 1694 The times reported by %timeit will be slightly higher than those
1686 1695 reported by the timeit.py script when variables are accessed. This is
1687 1696 due to the fact that %timeit executes the statement in the namespace
1688 1697 of the shell, compared with timeit.py, which uses a single setup
1689 1698 statement to import function or create variables. Generally, the bias
1690 1699 does not matter as long as results from timeit.py are not mixed with
1691 1700 those from %timeit."""
1692 1701
1693 1702 import timeit
1694 1703 import math
1695 1704
1696 1705 units = ["s", "ms", "\xc2\xb5s", "ns"]
1697 1706 scaling = [1, 1e3, 1e6, 1e9]
1698 1707
1699 1708 opts, stmt = self.parse_options(parameter_s,'n:r:tcp:',
1700 1709 posix=False)
1701 1710 if stmt == "":
1702 1711 return
1703 1712 timefunc = timeit.default_timer
1704 1713 number = int(getattr(opts, "n", 0))
1705 1714 repeat = int(getattr(opts, "r", timeit.default_repeat))
1706 1715 precision = int(getattr(opts, "p", 3))
1707 1716 if hasattr(opts, "t"):
1708 1717 timefunc = time.time
1709 1718 if hasattr(opts, "c"):
1710 1719 timefunc = clock
1711 1720
1712 1721 timer = timeit.Timer(timer=timefunc)
1713 1722 # this code has tight coupling to the inner workings of timeit.Timer,
1714 1723 # but is there a better way to achieve that the code stmt has access
1715 1724 # to the shell namespace?
1716 1725
1717 1726 src = timeit.template % {'stmt': timeit.reindent(stmt, 8),
1718 1727 'setup': "pass"}
1719 1728 code = compile(src, "<magic-timeit>", "exec")
1720 1729 ns = {}
1721 1730 exec code in self.shell.user_ns, ns
1722 1731 timer.inner = ns["inner"]
1723 1732
1724 1733 if number == 0:
1725 1734 # determine number so that 0.2 <= total time < 2.0
1726 1735 number = 1
1727 1736 for i in range(1, 10):
1728 1737 number *= 10
1729 1738 if timer.timeit(number) >= 0.2:
1730 1739 break
1731 1740
1732 1741 best = min(timer.repeat(repeat, number)) / number
1733 1742
1734 1743 if best > 0.0:
1735 1744 order = min(-int(math.floor(math.log10(best)) // 3), 3)
1736 1745 else:
1737 1746 order = 3
1738 1747 print "%d loops, best of %d: %.*g %s per loop" % (number, repeat,
1739 1748 precision,
1740 1749 best * scaling[order],
1741 1750 units[order])
1742 1751
1743 1752 def magic_time(self,parameter_s = ''):
1744 1753 """Time execution of a Python statement or expression.
1745 1754
1746 1755 The CPU and wall clock times are printed, and the value of the
1747 1756 expression (if any) is returned. Note that under Win32, system time
1748 1757 is always reported as 0, since it can not be measured.
1749 1758
1750 1759 This function provides very basic timing functionality. In Python
1751 1760 2.3, the timeit module offers more control and sophistication, so this
1752 1761 could be rewritten to use it (patches welcome).
1753 1762
1754 1763 Some examples:
1755 1764
1756 1765 In [1]: time 2**128
1757 1766 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1758 1767 Wall time: 0.00
1759 1768 Out[1]: 340282366920938463463374607431768211456L
1760 1769
1761 1770 In [2]: n = 1000000
1762 1771
1763 1772 In [3]: time sum(range(n))
1764 1773 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1765 1774 Wall time: 1.37
1766 1775 Out[3]: 499999500000L
1767 1776
1768 1777 In [4]: time print 'hello world'
1769 1778 hello world
1770 1779 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1771 1780 Wall time: 0.00
1772 1781 """
1773 1782
1774 1783 # fail immediately if the given expression can't be compiled
1775 1784 try:
1776 1785 mode = 'eval'
1777 1786 code = compile(parameter_s,'<timed eval>',mode)
1778 1787 except SyntaxError:
1779 1788 mode = 'exec'
1780 1789 code = compile(parameter_s,'<timed exec>',mode)
1781 1790 # skew measurement as little as possible
1782 1791 glob = self.shell.user_ns
1783 1792 clk = clock2
1784 1793 wtime = time.time
1785 1794 # time execution
1786 1795 wall_st = wtime()
1787 1796 if mode=='eval':
1788 1797 st = clk()
1789 1798 out = eval(code,glob)
1790 1799 end = clk()
1791 1800 else:
1792 1801 st = clk()
1793 1802 exec code in glob
1794 1803 end = clk()
1795 1804 out = None
1796 1805 wall_end = wtime()
1797 1806 # Compute actual times and report
1798 1807 wall_time = wall_end-wall_st
1799 1808 cpu_user = end[0]-st[0]
1800 1809 cpu_sys = end[1]-st[1]
1801 1810 cpu_tot = cpu_user+cpu_sys
1802 1811 print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \
1803 1812 (cpu_user,cpu_sys,cpu_tot)
1804 1813 print "Wall time: %.2f" % wall_time
1805 1814 return out
1806 1815
1807 1816 def magic_macro(self,parameter_s = ''):
1808 1817 """Define a set of input lines as a macro for future re-execution.
1809 1818
1810 1819 Usage:\\
1811 1820 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1812 1821
1813 1822 Options:
1814 1823
1815 1824 -r: use 'raw' input. By default, the 'processed' history is used,
1816 1825 so that magics are loaded in their transformed version to valid
1817 1826 Python. If this option is given, the raw input as typed as the
1818 1827 command line is used instead.
1819 1828
1820 1829 This will define a global variable called `name` which is a string
1821 1830 made of joining the slices and lines you specify (n1,n2,... numbers
1822 1831 above) from your input history into a single string. This variable
1823 1832 acts like an automatic function which re-executes those lines as if
1824 1833 you had typed them. You just type 'name' at the prompt and the code
1825 1834 executes.
1826 1835
1827 1836 The notation for indicating number ranges is: n1-n2 means 'use line
1828 1837 numbers n1,...n2' (the endpoint is included). That is, '5-7' means
1829 1838 using the lines numbered 5,6 and 7.
1830 1839
1831 1840 Note: as a 'hidden' feature, you can also use traditional python slice
1832 1841 notation, where N:M means numbers N through M-1.
1833 1842
1834 1843 For example, if your history contains (%hist prints it):
1835 1844
1836 1845 44: x=1\\
1837 1846 45: y=3\\
1838 1847 46: z=x+y\\
1839 1848 47: print x\\
1840 1849 48: a=5\\
1841 1850 49: print 'x',x,'y',y\\
1842 1851
1843 1852 you can create a macro with lines 44 through 47 (included) and line 49
1844 1853 called my_macro with:
1845 1854
1846 1855 In [51]: %macro my_macro 44-47 49
1847 1856
1848 1857 Now, typing `my_macro` (without quotes) will re-execute all this code
1849 1858 in one pass.
1850 1859
1851 1860 You don't need to give the line-numbers in order, and any given line
1852 1861 number can appear multiple times. You can assemble macros with any
1853 1862 lines from your input history in any order.
1854 1863
1855 1864 The macro is a simple object which holds its value in an attribute,
1856 1865 but IPython's display system checks for macros and executes them as
1857 1866 code instead of printing them when you type their name.
1858 1867
1859 1868 You can view a macro's contents by explicitly printing it with:
1860 1869
1861 1870 'print macro_name'.
1862 1871
1863 1872 For one-off cases which DON'T contain magic function calls in them you
1864 1873 can obtain similar results by explicitly executing slices from your
1865 1874 input history with:
1866 1875
1867 1876 In [60]: exec In[44:48]+In[49]"""
1868 1877
1869 1878 opts,args = self.parse_options(parameter_s,'r',mode='list')
1870 1879 name,ranges = args[0], args[1:]
1871 1880 #print 'rng',ranges # dbg
1872 1881 lines = self.extract_input_slices(ranges,opts.has_key('r'))
1873 1882 macro = Macro(lines)
1874 1883 self.shell.user_ns.update({name:macro})
1875 1884 print 'Macro `%s` created. To execute, type its name (without quotes).' % name
1876 1885 print 'Macro contents:'
1877 1886 print macro,
1878 1887
1879 1888 def magic_save(self,parameter_s = ''):
1880 1889 """Save a set of lines to a given filename.
1881 1890
1882 1891 Usage:\\
1883 1892 %save [options] filename n1-n2 n3-n4 ... n5 .. n6 ...
1884 1893
1885 1894 Options:
1886 1895
1887 1896 -r: use 'raw' input. By default, the 'processed' history is used,
1888 1897 so that magics are loaded in their transformed version to valid
1889 1898 Python. If this option is given, the raw input as typed as the
1890 1899 command line is used instead.
1891 1900
1892 1901 This function uses the same syntax as %macro for line extraction, but
1893 1902 instead of creating a macro it saves the resulting string to the
1894 1903 filename you specify.
1895 1904
1896 1905 It adds a '.py' extension to the file if you don't do so yourself, and
1897 1906 it asks for confirmation before overwriting existing files."""
1898 1907
1899 1908 opts,args = self.parse_options(parameter_s,'r',mode='list')
1900 1909 fname,ranges = args[0], args[1:]
1901 1910 if not fname.endswith('.py'):
1902 1911 fname += '.py'
1903 1912 if os.path.isfile(fname):
1904 1913 ans = raw_input('File `%s` exists. Overwrite (y/[N])? ' % fname)
1905 1914 if ans.lower() not in ['y','yes']:
1906 1915 print 'Operation cancelled.'
1907 1916 return
1908 1917 cmds = ''.join(self.extract_input_slices(ranges,opts.has_key('r')))
1909 1918 f = file(fname,'w')
1910 1919 f.write(cmds)
1911 1920 f.close()
1912 1921 print 'The following commands were written to file `%s`:' % fname
1913 1922 print cmds
1914 1923
1915 1924 def _edit_macro(self,mname,macro):
1916 1925 """open an editor with the macro data in a file"""
1917 1926 filename = self.shell.mktempfile(macro.value)
1918 1927 self.shell.hooks.editor(filename)
1919 1928
1920 1929 # and make a new macro object, to replace the old one
1921 1930 mfile = open(filename)
1922 1931 mvalue = mfile.read()
1923 1932 mfile.close()
1924 1933 self.shell.user_ns[mname] = Macro(mvalue)
1925 1934
1926 1935 def magic_ed(self,parameter_s=''):
1927 1936 """Alias to %edit."""
1928 1937 return self.magic_edit(parameter_s)
1929 1938
1930 1939 def magic_edit(self,parameter_s='',last_call=['','']):
1931 1940 """Bring up an editor and execute the resulting code.
1932 1941
1933 1942 Usage:
1934 1943 %edit [options] [args]
1935 1944
1936 1945 %edit runs IPython's editor hook. The default version of this hook is
1937 1946 set to call the __IPYTHON__.rc.editor command. This is read from your
1938 1947 environment variable $EDITOR. If this isn't found, it will default to
1939 1948 vi under Linux/Unix and to notepad under Windows. See the end of this
1940 1949 docstring for how to change the editor hook.
1941 1950
1942 1951 You can also set the value of this editor via the command line option
1943 1952 '-editor' or in your ipythonrc file. This is useful if you wish to use
1944 1953 specifically for IPython an editor different from your typical default
1945 1954 (and for Windows users who typically don't set environment variables).
1946 1955
1947 1956 This command allows you to conveniently edit multi-line code right in
1948 1957 your IPython session.
1949 1958
1950 1959 If called without arguments, %edit opens up an empty editor with a
1951 1960 temporary file and will execute the contents of this file when you
1952 1961 close it (don't forget to save it!).
1953 1962
1954 1963
1955 1964 Options:
1956 1965
1957 1966 -n <number>: open the editor at a specified line number. By default,
1958 1967 the IPython editor hook uses the unix syntax 'editor +N filename', but
1959 1968 you can configure this by providing your own modified hook if your
1960 1969 favorite editor supports line-number specifications with a different
1961 1970 syntax.
1962 1971
1963 1972 -p: this will call the editor with the same data as the previous time
1964 1973 it was used, regardless of how long ago (in your current session) it
1965 1974 was.
1966 1975
1967 1976 -r: use 'raw' input. This option only applies to input taken from the
1968 1977 user's history. By default, the 'processed' history is used, so that
1969 1978 magics are loaded in their transformed version to valid Python. If
1970 1979 this option is given, the raw input as typed as the command line is
1971 1980 used instead. When you exit the editor, it will be executed by
1972 1981 IPython's own processor.
1973 1982
1974 1983 -x: do not execute the edited code immediately upon exit. This is
1975 1984 mainly useful if you are editing programs which need to be called with
1976 1985 command line arguments, which you can then do using %run.
1977 1986
1978 1987
1979 1988 Arguments:
1980 1989
1981 1990 If arguments are given, the following possibilites exist:
1982 1991
1983 1992 - The arguments are numbers or pairs of colon-separated numbers (like
1984 1993 1 4:8 9). These are interpreted as lines of previous input to be
1985 1994 loaded into the editor. The syntax is the same of the %macro command.
1986 1995
1987 1996 - If the argument doesn't start with a number, it is evaluated as a
1988 1997 variable and its contents loaded into the editor. You can thus edit
1989 1998 any string which contains python code (including the result of
1990 1999 previous edits).
1991 2000
1992 2001 - If the argument is the name of an object (other than a string),
1993 2002 IPython will try to locate the file where it was defined and open the
1994 2003 editor at the point where it is defined. You can use `%edit function`
1995 2004 to load an editor exactly at the point where 'function' is defined,
1996 2005 edit it and have the file be executed automatically.
1997 2006
1998 2007 If the object is a macro (see %macro for details), this opens up your
1999 2008 specified editor with a temporary file containing the macro's data.
2000 2009 Upon exit, the macro is reloaded with the contents of the file.
2001 2010
2002 2011 Note: opening at an exact line is only supported under Unix, and some
2003 2012 editors (like kedit and gedit up to Gnome 2.8) do not understand the
2004 2013 '+NUMBER' parameter necessary for this feature. Good editors like
2005 2014 (X)Emacs, vi, jed, pico and joe all do.
2006 2015
2007 2016 - If the argument is not found as a variable, IPython will look for a
2008 2017 file with that name (adding .py if necessary) and load it into the
2009 2018 editor. It will execute its contents with execfile() when you exit,
2010 2019 loading any code in the file into your interactive namespace.
2011 2020
2012 2021 After executing your code, %edit will return as output the code you
2013 2022 typed in the editor (except when it was an existing file). This way
2014 2023 you can reload the code in further invocations of %edit as a variable,
2015 2024 via _<NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
2016 2025 the output.
2017 2026
2018 2027 Note that %edit is also available through the alias %ed.
2019 2028
2020 2029 This is an example of creating a simple function inside the editor and
2021 2030 then modifying it. First, start up the editor:
2022 2031
2023 2032 In [1]: ed\\
2024 2033 Editing... done. Executing edited code...\\
2025 2034 Out[1]: 'def foo():\\n print "foo() was defined in an editing session"\\n'
2026 2035
2027 2036 We can then call the function foo():
2028 2037
2029 2038 In [2]: foo()\\
2030 2039 foo() was defined in an editing session
2031 2040
2032 2041 Now we edit foo. IPython automatically loads the editor with the
2033 2042 (temporary) file where foo() was previously defined:
2034 2043
2035 2044 In [3]: ed foo\\
2036 2045 Editing... done. Executing edited code...
2037 2046
2038 2047 And if we call foo() again we get the modified version:
2039 2048
2040 2049 In [4]: foo()\\
2041 2050 foo() has now been changed!
2042 2051
2043 2052 Here is an example of how to edit a code snippet successive
2044 2053 times. First we call the editor:
2045 2054
2046 2055 In [8]: ed\\
2047 2056 Editing... done. Executing edited code...\\
2048 2057 hello\\
2049 2058 Out[8]: "print 'hello'\\n"
2050 2059
2051 2060 Now we call it again with the previous output (stored in _):
2052 2061
2053 2062 In [9]: ed _\\
2054 2063 Editing... done. Executing edited code...\\
2055 2064 hello world\\
2056 2065 Out[9]: "print 'hello world'\\n"
2057 2066
2058 2067 Now we call it with the output #8 (stored in _8, also as Out[8]):
2059 2068
2060 2069 In [10]: ed _8\\
2061 2070 Editing... done. Executing edited code...\\
2062 2071 hello again\\
2063 2072 Out[10]: "print 'hello again'\\n"
2064 2073
2065 2074
2066 2075 Changing the default editor hook:
2067 2076
2068 2077 If you wish to write your own editor hook, you can put it in a
2069 2078 configuration file which you load at startup time. The default hook
2070 2079 is defined in the IPython.hooks module, and you can use that as a
2071 2080 starting example for further modifications. That file also has
2072 2081 general instructions on how to set a new hook for use once you've
2073 2082 defined it."""
2074 2083
2075 2084 # FIXME: This function has become a convoluted mess. It needs a
2076 2085 # ground-up rewrite with clean, simple logic.
2077 2086
2078 2087 def make_filename(arg):
2079 2088 "Make a filename from the given args"
2080 2089 try:
2081 2090 filename = get_py_filename(arg)
2082 2091 except IOError:
2083 2092 if args.endswith('.py'):
2084 2093 filename = arg
2085 2094 else:
2086 2095 filename = None
2087 2096 return filename
2088 2097
2089 2098 # custom exceptions
2090 2099 class DataIsObject(Exception): pass
2091 2100
2092 2101 opts,args = self.parse_options(parameter_s,'prxn:')
2093 2102 # Set a few locals from the options for convenience:
2094 2103 opts_p = opts.has_key('p')
2095 2104 opts_r = opts.has_key('r')
2096 2105
2097 2106 # Default line number value
2098 2107 lineno = opts.get('n',None)
2099 2108
2100 2109 if opts_p:
2101 2110 args = '_%s' % last_call[0]
2102 2111 if not self.shell.user_ns.has_key(args):
2103 2112 args = last_call[1]
2104 2113
2105 2114 # use last_call to remember the state of the previous call, but don't
2106 2115 # let it be clobbered by successive '-p' calls.
2107 2116 try:
2108 2117 last_call[0] = self.shell.outputcache.prompt_count
2109 2118 if not opts_p:
2110 2119 last_call[1] = parameter_s
2111 2120 except:
2112 2121 pass
2113 2122
2114 2123 # by default this is done with temp files, except when the given
2115 2124 # arg is a filename
2116 2125 use_temp = 1
2117 2126
2118 2127 if re.match(r'\d',args):
2119 2128 # Mode where user specifies ranges of lines, like in %macro.
2120 2129 # This means that you can't edit files whose names begin with
2121 2130 # numbers this way. Tough.
2122 2131 ranges = args.split()
2123 2132 data = ''.join(self.extract_input_slices(ranges,opts_r))
2124 2133 elif args.endswith('.py'):
2125 2134 filename = make_filename(args)
2126 2135 data = ''
2127 2136 use_temp = 0
2128 2137 elif args:
2129 2138 try:
2130 2139 # Load the parameter given as a variable. If not a string,
2131 2140 # process it as an object instead (below)
2132 2141
2133 2142 #print '*** args',args,'type',type(args) # dbg
2134 2143 data = eval(args,self.shell.user_ns)
2135 2144 if not type(data) in StringTypes:
2136 2145 raise DataIsObject
2137 2146
2138 2147 except (NameError,SyntaxError):
2139 2148 # given argument is not a variable, try as a filename
2140 2149 filename = make_filename(args)
2141 2150 if filename is None:
2142 2151 warn("Argument given (%s) can't be found as a variable "
2143 2152 "or as a filename." % args)
2144 2153 return
2145 2154
2146 2155 data = ''
2147 2156 use_temp = 0
2148 2157 except DataIsObject:
2149 2158
2150 2159 # macros have a special edit function
2151 2160 if isinstance(data,Macro):
2152 2161 self._edit_macro(args,data)
2153 2162 return
2154 2163
2155 2164 # For objects, try to edit the file where they are defined
2156 2165 try:
2157 2166 filename = inspect.getabsfile(data)
2158 2167 datafile = 1
2159 2168 except TypeError:
2160 2169 filename = make_filename(args)
2161 2170 datafile = 1
2162 2171 warn('Could not find file where `%s` is defined.\n'
2163 2172 'Opening a file named `%s`' % (args,filename))
2164 2173 # Now, make sure we can actually read the source (if it was in
2165 2174 # a temp file it's gone by now).
2166 2175 if datafile:
2167 2176 try:
2168 2177 if lineno is None:
2169 2178 lineno = inspect.getsourcelines(data)[1]
2170 2179 except IOError:
2171 2180 filename = make_filename(args)
2172 2181 if filename is None:
2173 2182 warn('The file `%s` where `%s` was defined cannot '
2174 2183 'be read.' % (filename,data))
2175 2184 return
2176 2185 use_temp = 0
2177 2186 else:
2178 2187 data = ''
2179 2188
2180 2189 if use_temp:
2181 2190 filename = self.shell.mktempfile(data)
2182 2191 print 'IPython will make a temporary file named:',filename
2183 2192
2184 2193 # do actual editing here
2185 2194 print 'Editing...',
2186 2195 sys.stdout.flush()
2187 2196 self.shell.hooks.editor(filename,lineno)
2188 2197 if opts.has_key('x'): # -x prevents actual execution
2189 2198 print
2190 2199 else:
2191 2200 print 'done. Executing edited code...'
2192 2201 if opts_r:
2193 2202 self.shell.runlines(file_read(filename))
2194 2203 else:
2195 2204 self.shell.safe_execfile(filename,self.shell.user_ns)
2196 2205 if use_temp:
2197 2206 try:
2198 2207 return open(filename).read()
2199 2208 except IOError,msg:
2200 2209 if msg.filename == filename:
2201 2210 warn('File not found. Did you forget to save?')
2202 2211 return
2203 2212 else:
2204 2213 self.shell.showtraceback()
2205 2214
2206 2215 def magic_xmode(self,parameter_s = ''):
2207 2216 """Switch modes for the exception handlers.
2208 2217
2209 2218 Valid modes: Plain, Context and Verbose.
2210 2219
2211 2220 If called without arguments, acts as a toggle."""
2212 2221
2213 2222 def xmode_switch_err(name):
2214 2223 warn('Error changing %s exception modes.\n%s' %
2215 2224 (name,sys.exc_info()[1]))
2216 2225
2217 2226 shell = self.shell
2218 2227 new_mode = parameter_s.strip().capitalize()
2219 2228 try:
2220 2229 shell.InteractiveTB.set_mode(mode=new_mode)
2221 2230 print 'Exception reporting mode:',shell.InteractiveTB.mode
2222 2231 except:
2223 2232 xmode_switch_err('user')
2224 2233
2225 2234 # threaded shells use a special handler in sys.excepthook
2226 2235 if shell.isthreaded:
2227 2236 try:
2228 2237 shell.sys_excepthook.set_mode(mode=new_mode)
2229 2238 except:
2230 2239 xmode_switch_err('threaded')
2231 2240
2232 2241 def magic_colors(self,parameter_s = ''):
2233 2242 """Switch color scheme for prompts, info system and exception handlers.
2234 2243
2235 2244 Currently implemented schemes: NoColor, Linux, LightBG.
2236 2245
2237 2246 Color scheme names are not case-sensitive."""
2238 2247
2239 2248 def color_switch_err(name):
2240 2249 warn('Error changing %s color schemes.\n%s' %
2241 2250 (name,sys.exc_info()[1]))
2242 2251
2243 2252
2244 2253 new_scheme = parameter_s.strip()
2245 2254 if not new_scheme:
2246 2255 print 'You must specify a color scheme.'
2247 2256 return
2248 2257 import IPython.rlineimpl as readline
2249 2258 if not readline.have_readline:
2250 2259 msg = """\
2251 2260 Proper color support under MS Windows requires the pyreadline library.
2252 2261 You can find it at:
2253 2262 http://ipython.scipy.org/moin/PyReadline/Intro
2254 2263 Gary's readline needs the ctypes module, from:
2255 2264 http://starship.python.net/crew/theller/ctypes
2256 2265 (Note that ctypes is already part of Python versions 2.5 and newer).
2257 2266
2258 2267 Defaulting color scheme to 'NoColor'"""
2259 2268 new_scheme = 'NoColor'
2260 2269 warn(msg)
2261 2270 # local shortcut
2262 2271 shell = self.shell
2263 2272
2264 2273 # Set prompt colors
2265 2274 try:
2266 2275 shell.outputcache.set_colors(new_scheme)
2267 2276 except:
2268 2277 color_switch_err('prompt')
2269 2278 else:
2270 2279 shell.rc.colors = \
2271 2280 shell.outputcache.color_table.active_scheme_name
2272 2281 # Set exception colors
2273 2282 try:
2274 2283 shell.InteractiveTB.set_colors(scheme = new_scheme)
2275 2284 shell.SyntaxTB.set_colors(scheme = new_scheme)
2276 2285 except:
2277 2286 color_switch_err('exception')
2278 2287
2279 2288 # threaded shells use a verbose traceback in sys.excepthook
2280 2289 if shell.isthreaded:
2281 2290 try:
2282 2291 shell.sys_excepthook.set_colors(scheme=new_scheme)
2283 2292 except:
2284 2293 color_switch_err('system exception handler')
2285 2294
2286 2295 # Set info (for 'object?') colors
2287 2296 if shell.rc.color_info:
2288 2297 try:
2289 2298 shell.inspector.set_active_scheme(new_scheme)
2290 2299 except:
2291 2300 color_switch_err('object inspector')
2292 2301 else:
2293 2302 shell.inspector.set_active_scheme('NoColor')
2294 2303
2295 2304 def magic_color_info(self,parameter_s = ''):
2296 2305 """Toggle color_info.
2297 2306
2298 2307 The color_info configuration parameter controls whether colors are
2299 2308 used for displaying object details (by things like %psource, %pfile or
2300 2309 the '?' system). This function toggles this value with each call.
2301 2310
2302 2311 Note that unless you have a fairly recent pager (less works better
2303 2312 than more) in your system, using colored object information displays
2304 2313 will not work properly. Test it and see."""
2305 2314
2306 2315 self.shell.rc.color_info = 1 - self.shell.rc.color_info
2307 2316 self.magic_colors(self.shell.rc.colors)
2308 2317 print 'Object introspection functions have now coloring:',
2309 2318 print ['OFF','ON'][self.shell.rc.color_info]
2310 2319
2311 2320 def magic_Pprint(self, parameter_s=''):
2312 2321 """Toggle pretty printing on/off."""
2313 2322
2314 2323 self.shell.rc.pprint = 1 - self.shell.rc.pprint
2315 2324 print 'Pretty printing has been turned', \
2316 2325 ['OFF','ON'][self.shell.rc.pprint]
2317 2326
2318 2327 def magic_exit(self, parameter_s=''):
2319 2328 """Exit IPython, confirming if configured to do so.
2320 2329
2321 2330 You can configure whether IPython asks for confirmation upon exit by
2322 2331 setting the confirm_exit flag in the ipythonrc file."""
2323 2332
2324 2333 self.shell.exit()
2325 2334
2326 2335 def magic_quit(self, parameter_s=''):
2327 2336 """Exit IPython, confirming if configured to do so (like %exit)"""
2328 2337
2329 2338 self.shell.exit()
2330 2339
2331 2340 def magic_Exit(self, parameter_s=''):
2332 2341 """Exit IPython without confirmation."""
2333 2342
2334 2343 self.shell.exit_now = True
2335 2344
2336 2345 def magic_Quit(self, parameter_s=''):
2337 2346 """Exit IPython without confirmation (like %Exit)."""
2338 2347
2339 2348 self.shell.exit_now = True
2340 2349
2341 2350 #......................................................................
2342 2351 # Functions to implement unix shell-type things
2343 2352
2344 2353 def magic_alias(self, parameter_s = ''):
2345 2354 """Define an alias for a system command.
2346 2355
2347 2356 '%alias alias_name cmd' defines 'alias_name' as an alias for 'cmd'
2348 2357
2349 2358 Then, typing 'alias_name params' will execute the system command 'cmd
2350 2359 params' (from your underlying operating system).
2351 2360
2352 2361 Aliases have lower precedence than magic functions and Python normal
2353 2362 variables, so if 'foo' is both a Python variable and an alias, the
2354 2363 alias can not be executed until 'del foo' removes the Python variable.
2355 2364
2356 2365 You can use the %l specifier in an alias definition to represent the
2357 2366 whole line when the alias is called. For example:
2358 2367
2359 2368 In [2]: alias all echo "Input in brackets: <%l>"\\
2360 2369 In [3]: all hello world\\
2361 2370 Input in brackets: <hello world>
2362 2371
2363 2372 You can also define aliases with parameters using %s specifiers (one
2364 2373 per parameter):
2365 2374
2366 2375 In [1]: alias parts echo first %s second %s\\
2367 2376 In [2]: %parts A B\\
2368 2377 first A second B\\
2369 2378 In [3]: %parts A\\
2370 2379 Incorrect number of arguments: 2 expected.\\
2371 2380 parts is an alias to: 'echo first %s second %s'
2372 2381
2373 2382 Note that %l and %s are mutually exclusive. You can only use one or
2374 2383 the other in your aliases.
2375 2384
2376 2385 Aliases expand Python variables just like system calls using ! or !!
2377 2386 do: all expressions prefixed with '$' get expanded. For details of
2378 2387 the semantic rules, see PEP-215:
2379 2388 http://www.python.org/peps/pep-0215.html. This is the library used by
2380 2389 IPython for variable expansion. If you want to access a true shell
2381 2390 variable, an extra $ is necessary to prevent its expansion by IPython:
2382 2391
2383 2392 In [6]: alias show echo\\
2384 2393 In [7]: PATH='A Python string'\\
2385 2394 In [8]: show $PATH\\
2386 2395 A Python string\\
2387 2396 In [9]: show $$PATH\\
2388 2397 /usr/local/lf9560/bin:/usr/local/intel/compiler70/ia32/bin:...
2389 2398
2390 2399 You can use the alias facility to acess all of $PATH. See the %rehash
2391 2400 and %rehashx functions, which automatically create aliases for the
2392 2401 contents of your $PATH.
2393 2402
2394 2403 If called with no parameters, %alias prints the current alias table."""
2395 2404
2396 2405 par = parameter_s.strip()
2397 2406 if not par:
2398 2407 stored = self.db.get('stored_aliases', {} )
2399 2408 atab = self.shell.alias_table
2400 2409 aliases = atab.keys()
2401 2410 aliases.sort()
2402 2411 res = []
2403 2412 showlast = []
2404 2413 for alias in aliases:
2405 2414 tgt = atab[alias][1]
2406 2415 # 'interesting' aliases
2407 2416 if (alias in stored or
2408 2417 alias != os.path.splitext(tgt)[0] or
2409 2418 ' ' in tgt):
2410 2419 showlast.append((alias, tgt))
2411 2420 else:
2412 2421 res.append((alias, tgt ))
2413 2422
2414 2423 # show most interesting aliases last
2415 2424 res.extend(showlast)
2416 2425 print "Total number of aliases:",len(aliases)
2417 2426 return res
2418 2427 try:
2419 2428 alias,cmd = par.split(None,1)
2420 2429 except:
2421 2430 print OInspect.getdoc(self.magic_alias)
2422 2431 else:
2423 2432 nargs = cmd.count('%s')
2424 2433 if nargs>0 and cmd.find('%l')>=0:
2425 2434 error('The %s and %l specifiers are mutually exclusive '
2426 2435 'in alias definitions.')
2427 2436 else: # all looks OK
2428 2437 self.shell.alias_table[alias] = (nargs,cmd)
2429 2438 self.shell.alias_table_validate(verbose=0)
2430 2439 # end magic_alias
2431 2440
2432 2441 def magic_unalias(self, parameter_s = ''):
2433 2442 """Remove an alias"""
2434 2443
2435 2444 aname = parameter_s.strip()
2436 2445 if aname in self.shell.alias_table:
2437 2446 del self.shell.alias_table[aname]
2438 2447 stored = self.db.get('stored_aliases', {} )
2439 2448 if aname in stored:
2440 2449 print "Removing %stored alias",aname
2441 2450 del stored[aname]
2442 2451 self.db['stored_aliases'] = stored
2443 2452
2444 2453 def magic_rehash(self, parameter_s = ''):
2445 2454 """Update the alias table with all entries in $PATH.
2446 2455
2447 2456 This version does no checks on execute permissions or whether the
2448 2457 contents of $PATH are truly files (instead of directories or something
2449 2458 else). For such a safer (but slower) version, use %rehashx."""
2450 2459
2451 2460 # This function (and rehashx) manipulate the alias_table directly
2452 2461 # rather than calling magic_alias, for speed reasons. A rehash on a
2453 2462 # typical Linux box involves several thousand entries, so efficiency
2454 2463 # here is a top concern.
2455 2464
2456 2465 path = filter(os.path.isdir,os.environ['PATH'].split(os.pathsep))
2457 2466 alias_table = self.shell.alias_table
2458 2467 for pdir in path:
2459 2468 for ff in os.listdir(pdir):
2460 2469 # each entry in the alias table must be (N,name), where
2461 2470 # N is the number of positional arguments of the alias.
2462 2471 alias_table[ff] = (0,ff)
2463 2472 # Make sure the alias table doesn't contain keywords or builtins
2464 2473 self.shell.alias_table_validate()
2465 2474 # Call again init_auto_alias() so we get 'rm -i' and other modified
2466 2475 # aliases since %rehash will probably clobber them
2467 2476 self.shell.init_auto_alias()
2468 2477
2469 2478 def magic_rehashx(self, parameter_s = ''):
2470 2479 """Update the alias table with all executable files in $PATH.
2471 2480
2472 2481 This version explicitly checks that every entry in $PATH is a file
2473 2482 with execute access (os.X_OK), so it is much slower than %rehash.
2474 2483
2475 2484 Under Windows, it checks executability as a match agains a
2476 2485 '|'-separated string of extensions, stored in the IPython config
2477 2486 variable win_exec_ext. This defaults to 'exe|com|bat'. """
2478 2487
2479 2488 path = [os.path.abspath(os.path.expanduser(p)) for p in
2480 2489 os.environ['PATH'].split(os.pathsep)]
2481 2490 path = filter(os.path.isdir,path)
2482 2491
2483 2492 alias_table = self.shell.alias_table
2484 2493 syscmdlist = []
2485 2494 if os.name == 'posix':
2486 2495 isexec = lambda fname:os.path.isfile(fname) and \
2487 2496 os.access(fname,os.X_OK)
2488 2497 else:
2489 2498
2490 2499 try:
2491 2500 winext = os.environ['pathext'].replace(';','|').replace('.','')
2492 2501 except KeyError:
2493 2502 winext = 'exe|com|bat|py'
2494 2503 if 'py' not in winext:
2495 2504 winext += '|py'
2496 2505 execre = re.compile(r'(.*)\.(%s)$' % winext,re.IGNORECASE)
2497 2506 isexec = lambda fname:os.path.isfile(fname) and execre.match(fname)
2498 2507 savedir = os.getcwd()
2499 2508 try:
2500 2509 # write the whole loop for posix/Windows so we don't have an if in
2501 2510 # the innermost part
2502 2511 if os.name == 'posix':
2503 2512 for pdir in path:
2504 2513 os.chdir(pdir)
2505 2514 for ff in os.listdir(pdir):
2506 2515 if isexec(ff) and ff not in self.shell.no_alias:
2507 2516 # each entry in the alias table must be (N,name),
2508 2517 # where N is the number of positional arguments of the
2509 2518 # alias.
2510 2519 alias_table[ff] = (0,ff)
2511 2520 syscmdlist.append(ff)
2512 2521 else:
2513 2522 for pdir in path:
2514 2523 os.chdir(pdir)
2515 2524 for ff in os.listdir(pdir):
2516 2525 base, ext = os.path.splitext(ff)
2517 2526 if isexec(ff) and base not in self.shell.no_alias:
2518 2527 if ext.lower() == '.exe':
2519 2528 ff = base
2520 2529 alias_table[base] = (0,ff)
2521 2530 syscmdlist.append(ff)
2522 2531 # Make sure the alias table doesn't contain keywords or builtins
2523 2532 self.shell.alias_table_validate()
2524 2533 # Call again init_auto_alias() so we get 'rm -i' and other
2525 2534 # modified aliases since %rehashx will probably clobber them
2526 2535 self.shell.init_auto_alias()
2527 2536 db = self.getapi().db
2528 2537 db['syscmdlist'] = syscmdlist
2529 2538 finally:
2530 2539 os.chdir(savedir)
2531 2540
2532 2541 def magic_pwd(self, parameter_s = ''):
2533 2542 """Return the current working directory path."""
2534 2543 return os.getcwd()
2535 2544
2536 2545 def magic_cd(self, parameter_s=''):
2537 2546 """Change the current working directory.
2538 2547
2539 2548 This command automatically maintains an internal list of directories
2540 2549 you visit during your IPython session, in the variable _dh. The
2541 2550 command %dhist shows this history nicely formatted. You can also
2542 2551 do 'cd -<tab>' to see directory history conveniently.
2543 2552
2544 2553 Usage:
2545 2554
2546 2555 cd 'dir': changes to directory 'dir'.
2547 2556
2548 2557 cd -: changes to the last visited directory.
2549 2558
2550 2559 cd -<n>: changes to the n-th directory in the directory history.
2551 2560
2552 2561 cd -b <bookmark_name>: jump to a bookmark set by %bookmark
2553 2562 (note: cd <bookmark_name> is enough if there is no
2554 2563 directory <bookmark_name>, but a bookmark with the name exists.)
2555 2564 'cd -b <tab>' allows you to tab-complete bookmark names.
2556 2565
2557 2566 Options:
2558 2567
2559 2568 -q: quiet. Do not print the working directory after the cd command is
2560 2569 executed. By default IPython's cd command does print this directory,
2561 2570 since the default prompts do not display path information.
2562 2571
2563 2572 Note that !cd doesn't work for this purpose because the shell where
2564 2573 !command runs is immediately discarded after executing 'command'."""
2565 2574
2566 2575 parameter_s = parameter_s.strip()
2567 2576 #bkms = self.shell.persist.get("bookmarks",{})
2568 2577
2569 2578 numcd = re.match(r'(-)(\d+)$',parameter_s)
2570 2579 # jump in directory history by number
2571 2580 if numcd:
2572 2581 nn = int(numcd.group(2))
2573 2582 try:
2574 2583 ps = self.shell.user_ns['_dh'][nn]
2575 2584 except IndexError:
2576 2585 print 'The requested directory does not exist in history.'
2577 2586 return
2578 2587 else:
2579 2588 opts = {}
2580 2589 else:
2581 2590 #turn all non-space-escaping backslashes to slashes,
2582 2591 # for c:\windows\directory\names\
2583 2592 parameter_s = re.sub(r'\\(?! )','/', parameter_s)
2584 2593 opts,ps = self.parse_options(parameter_s,'qb',mode='string')
2585 2594 # jump to previous
2586 2595 if ps == '-':
2587 2596 try:
2588 2597 ps = self.shell.user_ns['_dh'][-2]
2589 2598 except IndexError:
2590 2599 print 'No previous directory to change to.'
2591 2600 return
2592 2601 # jump to bookmark if needed
2593 2602 else:
2594 2603 if not os.path.isdir(ps) or opts.has_key('b'):
2595 2604 bkms = self.db.get('bookmarks', {})
2596 2605
2597 2606 if bkms.has_key(ps):
2598 2607 target = bkms[ps]
2599 2608 print '(bookmark:%s) -> %s' % (ps,target)
2600 2609 ps = target
2601 2610 else:
2602 2611 if opts.has_key('b'):
2603 2612 error("Bookmark '%s' not found. "
2604 2613 "Use '%%bookmark -l' to see your bookmarks." % ps)
2605 2614 return
2606 2615
2607 2616 # at this point ps should point to the target dir
2608 2617 if ps:
2609 2618 try:
2610 2619 os.chdir(os.path.expanduser(ps))
2611 2620 ttitle = ("IPy:" + (
2612 2621 os.getcwd() == '/' and '/' or os.path.basename(os.getcwd())))
2613 2622 platutils.set_term_title(ttitle)
2614 2623 except OSError:
2615 2624 print sys.exc_info()[1]
2616 2625 else:
2617 2626 self.shell.user_ns['_dh'].append(os.getcwd())
2618 2627 else:
2619 2628 os.chdir(self.shell.home_dir)
2620 2629 platutils.set_term_title("IPy:~")
2621 2630 self.shell.user_ns['_dh'].append(os.getcwd())
2622 2631 if not 'q' in opts:
2623 2632 print self.shell.user_ns['_dh'][-1]
2624 2633
2625 2634 def magic_dhist(self, parameter_s=''):
2626 2635 """Print your history of visited directories.
2627 2636
2628 2637 %dhist -> print full history\\
2629 2638 %dhist n -> print last n entries only\\
2630 2639 %dhist n1 n2 -> print entries between n1 and n2 (n1 not included)\\
2631 2640
2632 2641 This history is automatically maintained by the %cd command, and
2633 2642 always available as the global list variable _dh. You can use %cd -<n>
2634 2643 to go to directory number <n>."""
2635 2644
2636 2645 dh = self.shell.user_ns['_dh']
2637 2646 if parameter_s:
2638 2647 try:
2639 2648 args = map(int,parameter_s.split())
2640 2649 except:
2641 2650 self.arg_err(Magic.magic_dhist)
2642 2651 return
2643 2652 if len(args) == 1:
2644 2653 ini,fin = max(len(dh)-(args[0]),0),len(dh)
2645 2654 elif len(args) == 2:
2646 2655 ini,fin = args
2647 2656 else:
2648 2657 self.arg_err(Magic.magic_dhist)
2649 2658 return
2650 2659 else:
2651 2660 ini,fin = 0,len(dh)
2652 2661 nlprint(dh,
2653 2662 header = 'Directory history (kept in _dh)',
2654 2663 start=ini,stop=fin)
2655 2664
2656 2665 def magic_env(self, parameter_s=''):
2657 2666 """List environment variables."""
2658 2667
2659 2668 return os.environ.data
2660 2669
2661 2670 def magic_pushd(self, parameter_s=''):
2662 2671 """Place the current dir on stack and change directory.
2663 2672
2664 2673 Usage:\\
2665 2674 %pushd ['dirname']
2666 2675
2667 2676 %pushd with no arguments does a %pushd to your home directory.
2668 2677 """
2669 2678 if parameter_s == '': parameter_s = '~'
2670 2679 dir_s = self.shell.dir_stack
2671 2680 if len(dir_s)>0 and os.path.expanduser(parameter_s) != \
2672 2681 os.path.expanduser(self.shell.dir_stack[0]):
2673 2682 try:
2674 2683 self.magic_cd(parameter_s)
2675 2684 dir_s.insert(0,os.getcwd().replace(self.home_dir,'~'))
2676 2685 self.magic_dirs()
2677 2686 except:
2678 2687 print 'Invalid directory'
2679 2688 else:
2680 2689 print 'You are already there!'
2681 2690
2682 2691 def magic_popd(self, parameter_s=''):
2683 2692 """Change to directory popped off the top of the stack.
2684 2693 """
2685 2694 if len (self.shell.dir_stack) > 1:
2686 2695 self.shell.dir_stack.pop(0)
2687 2696 self.magic_cd(self.shell.dir_stack[0])
2688 2697 print self.shell.dir_stack[0]
2689 2698 else:
2690 2699 print "You can't remove the starting directory from the stack:",\
2691 2700 self.shell.dir_stack
2692 2701
2693 2702 def magic_dirs(self, parameter_s=''):
2694 2703 """Return the current directory stack."""
2695 2704
2696 2705 return self.shell.dir_stack[:]
2697 2706
2698 2707 def magic_sc(self, parameter_s=''):
2699 2708 """Shell capture - execute a shell command and capture its output.
2700 2709
2701 2710 DEPRECATED. Suboptimal, retained for backwards compatibility.
2702 2711
2703 2712 You should use the form 'var = !command' instead. Example:
2704 2713
2705 2714 "%sc -l myfiles = ls ~" should now be written as
2706 2715
2707 2716 "myfiles = !ls ~"
2708 2717
2709 2718 myfiles.s, myfiles.l and myfiles.n still apply as documented
2710 2719 below.
2711 2720
2712 2721 --
2713 2722 %sc [options] varname=command
2714 2723
2715 2724 IPython will run the given command using commands.getoutput(), and
2716 2725 will then update the user's interactive namespace with a variable
2717 2726 called varname, containing the value of the call. Your command can
2718 2727 contain shell wildcards, pipes, etc.
2719 2728
2720 2729 The '=' sign in the syntax is mandatory, and the variable name you
2721 2730 supply must follow Python's standard conventions for valid names.
2722 2731
2723 2732 (A special format without variable name exists for internal use)
2724 2733
2725 2734 Options:
2726 2735
2727 2736 -l: list output. Split the output on newlines into a list before
2728 2737 assigning it to the given variable. By default the output is stored
2729 2738 as a single string.
2730 2739
2731 2740 -v: verbose. Print the contents of the variable.
2732 2741
2733 2742 In most cases you should not need to split as a list, because the
2734 2743 returned value is a special type of string which can automatically
2735 2744 provide its contents either as a list (split on newlines) or as a
2736 2745 space-separated string. These are convenient, respectively, either
2737 2746 for sequential processing or to be passed to a shell command.
2738 2747
2739 2748 For example:
2740 2749
2741 2750 # Capture into variable a
2742 2751 In [9]: sc a=ls *py
2743 2752
2744 2753 # a is a string with embedded newlines
2745 2754 In [10]: a
2746 2755 Out[10]: 'setup.py\nwin32_manual_post_install.py'
2747 2756
2748 2757 # which can be seen as a list:
2749 2758 In [11]: a.l
2750 2759 Out[11]: ['setup.py', 'win32_manual_post_install.py']
2751 2760
2752 2761 # or as a whitespace-separated string:
2753 2762 In [12]: a.s
2754 2763 Out[12]: 'setup.py win32_manual_post_install.py'
2755 2764
2756 2765 # a.s is useful to pass as a single command line:
2757 2766 In [13]: !wc -l $a.s
2758 2767 146 setup.py
2759 2768 130 win32_manual_post_install.py
2760 2769 276 total
2761 2770
2762 2771 # while the list form is useful to loop over:
2763 2772 In [14]: for f in a.l:
2764 2773 ....: !wc -l $f
2765 2774 ....:
2766 2775 146 setup.py
2767 2776 130 win32_manual_post_install.py
2768 2777
2769 2778 Similiarly, the lists returned by the -l option are also special, in
2770 2779 the sense that you can equally invoke the .s attribute on them to
2771 2780 automatically get a whitespace-separated string from their contents:
2772 2781
2773 2782 In [1]: sc -l b=ls *py
2774 2783
2775 2784 In [2]: b
2776 2785 Out[2]: ['setup.py', 'win32_manual_post_install.py']
2777 2786
2778 2787 In [3]: b.s
2779 2788 Out[3]: 'setup.py win32_manual_post_install.py'
2780 2789
2781 2790 In summary, both the lists and strings used for ouptut capture have
2782 2791 the following special attributes:
2783 2792
2784 2793 .l (or .list) : value as list.
2785 2794 .n (or .nlstr): value as newline-separated string.
2786 2795 .s (or .spstr): value as space-separated string.
2787 2796 """
2788 2797
2789 2798 opts,args = self.parse_options(parameter_s,'lv')
2790 2799 # Try to get a variable name and command to run
2791 2800 try:
2792 2801 # the variable name must be obtained from the parse_options
2793 2802 # output, which uses shlex.split to strip options out.
2794 2803 var,_ = args.split('=',1)
2795 2804 var = var.strip()
2796 2805 # But the the command has to be extracted from the original input
2797 2806 # parameter_s, not on what parse_options returns, to avoid the
2798 2807 # quote stripping which shlex.split performs on it.
2799 2808 _,cmd = parameter_s.split('=',1)
2800 2809 except ValueError:
2801 2810 var,cmd = '',''
2802 2811 # If all looks ok, proceed
2803 2812 out,err = self.shell.getoutputerror(cmd)
2804 2813 if err:
2805 2814 print >> Term.cerr,err
2806 2815 if opts.has_key('l'):
2807 2816 out = SList(out.split('\n'))
2808 2817 else:
2809 2818 out = LSString(out)
2810 2819 if opts.has_key('v'):
2811 2820 print '%s ==\n%s' % (var,pformat(out))
2812 2821 if var:
2813 2822 self.shell.user_ns.update({var:out})
2814 2823 else:
2815 2824 return out
2816 2825
2817 2826 def magic_sx(self, parameter_s=''):
2818 2827 """Shell execute - run a shell command and capture its output.
2819 2828
2820 2829 %sx command
2821 2830
2822 2831 IPython will run the given command using commands.getoutput(), and
2823 2832 return the result formatted as a list (split on '\\n'). Since the
2824 2833 output is _returned_, it will be stored in ipython's regular output
2825 2834 cache Out[N] and in the '_N' automatic variables.
2826 2835
2827 2836 Notes:
2828 2837
2829 2838 1) If an input line begins with '!!', then %sx is automatically
2830 2839 invoked. That is, while:
2831 2840 !ls
2832 2841 causes ipython to simply issue system('ls'), typing
2833 2842 !!ls
2834 2843 is a shorthand equivalent to:
2835 2844 %sx ls
2836 2845
2837 2846 2) %sx differs from %sc in that %sx automatically splits into a list,
2838 2847 like '%sc -l'. The reason for this is to make it as easy as possible
2839 2848 to process line-oriented shell output via further python commands.
2840 2849 %sc is meant to provide much finer control, but requires more
2841 2850 typing.
2842 2851
2843 2852 3) Just like %sc -l, this is a list with special attributes:
2844 2853
2845 2854 .l (or .list) : value as list.
2846 2855 .n (or .nlstr): value as newline-separated string.
2847 2856 .s (or .spstr): value as whitespace-separated string.
2848 2857
2849 2858 This is very useful when trying to use such lists as arguments to
2850 2859 system commands."""
2851 2860
2852 2861 if parameter_s:
2853 2862 out,err = self.shell.getoutputerror(parameter_s)
2854 2863 if err:
2855 2864 print >> Term.cerr,err
2856 2865 return SList(out.split('\n'))
2857 2866
2858 2867 def magic_bg(self, parameter_s=''):
2859 2868 """Run a job in the background, in a separate thread.
2860 2869
2861 2870 For example,
2862 2871
2863 2872 %bg myfunc(x,y,z=1)
2864 2873
2865 2874 will execute 'myfunc(x,y,z=1)' in a background thread. As soon as the
2866 2875 execution starts, a message will be printed indicating the job
2867 2876 number. If your job number is 5, you can use
2868 2877
2869 2878 myvar = jobs.result(5) or myvar = jobs[5].result
2870 2879
2871 2880 to assign this result to variable 'myvar'.
2872 2881
2873 2882 IPython has a job manager, accessible via the 'jobs' object. You can
2874 2883 type jobs? to get more information about it, and use jobs.<TAB> to see
2875 2884 its attributes. All attributes not starting with an underscore are
2876 2885 meant for public use.
2877 2886
2878 2887 In particular, look at the jobs.new() method, which is used to create
2879 2888 new jobs. This magic %bg function is just a convenience wrapper
2880 2889 around jobs.new(), for expression-based jobs. If you want to create a
2881 2890 new job with an explicit function object and arguments, you must call
2882 2891 jobs.new() directly.
2883 2892
2884 2893 The jobs.new docstring also describes in detail several important
2885 2894 caveats associated with a thread-based model for background job
2886 2895 execution. Type jobs.new? for details.
2887 2896
2888 2897 You can check the status of all jobs with jobs.status().
2889 2898
2890 2899 The jobs variable is set by IPython into the Python builtin namespace.
2891 2900 If you ever declare a variable named 'jobs', you will shadow this
2892 2901 name. You can either delete your global jobs variable to regain
2893 2902 access to the job manager, or make a new name and assign it manually
2894 2903 to the manager (stored in IPython's namespace). For example, to
2895 2904 assign the job manager to the Jobs name, use:
2896 2905
2897 2906 Jobs = __builtins__.jobs"""
2898 2907
2899 2908 self.shell.jobs.new(parameter_s,self.shell.user_ns)
2900 2909
2901 2910
2902 2911 def magic_bookmark(self, parameter_s=''):
2903 2912 """Manage IPython's bookmark system.
2904 2913
2905 2914 %bookmark <name> - set bookmark to current dir
2906 2915 %bookmark <name> <dir> - set bookmark to <dir>
2907 2916 %bookmark -l - list all bookmarks
2908 2917 %bookmark -d <name> - remove bookmark
2909 2918 %bookmark -r - remove all bookmarks
2910 2919
2911 2920 You can later on access a bookmarked folder with:
2912 2921 %cd -b <name>
2913 2922 or simply '%cd <name>' if there is no directory called <name> AND
2914 2923 there is such a bookmark defined.
2915 2924
2916 2925 Your bookmarks persist through IPython sessions, but they are
2917 2926 associated with each profile."""
2918 2927
2919 2928 opts,args = self.parse_options(parameter_s,'drl',mode='list')
2920 2929 if len(args) > 2:
2921 2930 error('You can only give at most two arguments')
2922 2931 return
2923 2932
2924 2933 bkms = self.db.get('bookmarks',{})
2925 2934
2926 2935 if opts.has_key('d'):
2927 2936 try:
2928 2937 todel = args[0]
2929 2938 except IndexError:
2930 2939 error('You must provide a bookmark to delete')
2931 2940 else:
2932 2941 try:
2933 2942 del bkms[todel]
2934 2943 except:
2935 2944 error("Can't delete bookmark '%s'" % todel)
2936 2945 elif opts.has_key('r'):
2937 2946 bkms = {}
2938 2947 elif opts.has_key('l'):
2939 2948 bks = bkms.keys()
2940 2949 bks.sort()
2941 2950 if bks:
2942 2951 size = max(map(len,bks))
2943 2952 else:
2944 2953 size = 0
2945 2954 fmt = '%-'+str(size)+'s -> %s'
2946 2955 print 'Current bookmarks:'
2947 2956 for bk in bks:
2948 2957 print fmt % (bk,bkms[bk])
2949 2958 else:
2950 2959 if not args:
2951 2960 error("You must specify the bookmark name")
2952 2961 elif len(args)==1:
2953 2962 bkms[args[0]] = os.getcwd()
2954 2963 elif len(args)==2:
2955 2964 bkms[args[0]] = args[1]
2956 2965 self.db['bookmarks'] = bkms
2957 2966
2958 2967 def magic_pycat(self, parameter_s=''):
2959 2968 """Show a syntax-highlighted file through a pager.
2960 2969
2961 2970 This magic is similar to the cat utility, but it will assume the file
2962 2971 to be Python source and will show it with syntax highlighting. """
2963 2972
2964 2973 try:
2965 2974 filename = get_py_filename(parameter_s)
2966 2975 cont = file_read(filename)
2967 2976 except IOError:
2968 2977 try:
2969 2978 cont = eval(parameter_s,self.user_ns)
2970 2979 except NameError:
2971 2980 cont = None
2972 2981 if cont is None:
2973 2982 print "Error: no such file or variable"
2974 2983 return
2975 2984
2976 2985 page(self.shell.pycolorize(cont),
2977 2986 screen_lines=self.shell.rc.screen_length)
2978 2987
2979 2988 def magic_cpaste(self, parameter_s=''):
2980 2989 """Allows you to paste & execute a pre-formatted code block from clipboard
2981 2990
2982 2991 You must terminate the block with '--' (two minus-signs) alone on the
2983 2992 line. You can also provide your own sentinel with '%paste -s %%' ('%%'
2984 2993 is the new sentinel for this operation)
2985 2994
2986 2995 The block is dedented prior to execution to enable execution of
2987 2996 method definitions. '>' characters at the beginning of a line is
2988 2997 ignored, to allow pasting directly from e-mails. The executed block
2989 2998 is also assigned to variable named 'pasted_block' for later editing
2990 2999 with '%edit pasted_block'.
2991 3000
2992 3001 You can also pass a variable name as an argument, e.g. '%cpaste foo'.
2993 3002 This assigns the pasted block to variable 'foo' as string, without
2994 3003 dedenting or executing it.
2995 3004
2996 3005 Do not be alarmed by garbled output on Windows (it's a readline bug).
2997 3006 Just press enter and type -- (and press enter again) and the block
2998 3007 will be what was just pasted.
2999 3008
3000 3009 IPython statements (magics, shell escapes) are not supported (yet).
3001 3010 """
3002 3011 opts,args = self.parse_options(parameter_s,'s:',mode='string')
3003 3012 par = args.strip()
3004 3013 sentinel = opts.get('s','--')
3005 3014
3006 3015 from IPython import iplib
3007 3016 lines = []
3008 3017 print "Pasting code; enter '%s' alone on the line to stop." % sentinel
3009 3018 while 1:
3010 3019 l = iplib.raw_input_original(':')
3011 3020 if l ==sentinel:
3012 3021 break
3013 3022 lines.append(l.lstrip('>'))
3014 3023 block = "\n".join(lines) + '\n'
3015 3024 #print "block:\n",block
3016 3025 if not par:
3017 3026 b = textwrap.dedent(block)
3018 3027 exec b in self.user_ns
3019 3028 self.user_ns['pasted_block'] = b
3020 3029 else:
3021 3030 self.user_ns[par] = block
3022 3031 print "Block assigned to '%s'" % par
3023 3032
3024 3033 def magic_quickref(self,arg):
3025 3034 """ Show a quick reference sheet """
3026 3035 import IPython.usage
3027 3036 qr = IPython.usage.quick_reference + self.magic_magic('-brief')
3028 3037
3029 3038 page(qr)
3030 3039
3031 3040 def magic_upgrade(self,arg):
3032 3041 """ Upgrade your IPython installation
3033 3042
3034 3043 This will copy the config files that don't yet exist in your
3035 3044 ipython dir from the system config dir. Use this after upgrading
3036 3045 IPython if you don't wish to delete your .ipython dir.
3037 3046
3038 3047 Call with -nolegacy to get rid of ipythonrc* files (recommended for
3039 3048 new users)
3040 3049
3041 3050 """
3042 3051 ip = self.getapi()
3043 3052 ipinstallation = path(IPython.__file__).dirname()
3044 3053 upgrade_script = '%s "%s"' % (sys.executable,ipinstallation / 'upgrade_dir.py')
3045 3054 src_config = ipinstallation / 'UserConfig'
3046 3055 userdir = path(ip.options.ipythondir)
3047 3056 cmd = '%s "%s" "%s"' % (upgrade_script, src_config, userdir)
3048 3057 print ">",cmd
3049 3058 shell(cmd)
3050 3059 if arg == '-nolegacy':
3051 3060 legacy = userdir.files('ipythonrc*')
3052 3061 print "Nuking legacy files:",legacy
3053 3062
3054 3063 [p.remove() for p in legacy]
3055 3064 suffix = (sys.platform == 'win32' and '.ini' or '')
3056 3065 (userdir / ('ipythonrc' + suffix)).write_text('# Empty, see ipy_user_conf.py\n')
3057 3066
3058 3067
3059 3068 # end Magic
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now