Show More
@@ -1,166 +1,129 | |||
|
1 | 1 | # encoding: utf-8 |
|
2 | 2 | |
|
3 | 3 | """Classes used in scattering and gathering sequences. |
|
4 | 4 | |
|
5 | 5 | Scattering consists of partitioning a sequence and sending the various |
|
6 | 6 | pieces to individual nodes in a cluster. |
|
7 | ||
|
8 | ||
|
9 | Authors: | |
|
10 | ||
|
11 | * Brian Granger | |
|
12 | * MinRK | |
|
13 | ||
|
14 | 7 | """ |
|
15 | 8 | |
|
16 | #------------------------------------------------------------------------------- | |
|
17 | # Copyright (C) 2008-2011 The IPython Development Team | |
|
18 | # | |
|
19 | # Distributed under the terms of the BSD License. The full license is in | |
|
20 | # the file COPYING, distributed as part of this software. | |
|
21 | #------------------------------------------------------------------------------- | |
|
22 | ||
|
23 | #------------------------------------------------------------------------------- | |
|
24 | # Imports | |
|
25 | #------------------------------------------------------------------------------- | |
|
9 | # Copyright (c) IPython Development Team. | |
|
10 | # Distributed under the terms of the Modified BSD License. | |
|
26 | 11 | |
|
27 | 12 | from __future__ import division |
|
28 | 13 | |
|
14 | import sys | |
|
29 | 15 | from itertools import islice |
|
30 | 16 | |
|
31 | 17 | from IPython.utils.data import flatten as utils_flatten |
|
32 | 18 | |
|
33 | #------------------------------------------------------------------------------- | |
|
34 | # Figure out which array packages are present and their array types | |
|
35 | #------------------------------------------------------------------------------- | |
|
36 | ||
|
37 | arrayModules = [] | |
|
38 | try: | |
|
39 | import Numeric | |
|
40 | except ImportError: | |
|
41 | pass | |
|
42 | else: | |
|
43 | arrayModules.append({'module':Numeric, 'type':Numeric.arraytype}) | |
|
44 | try: | |
|
45 | import numpy | |
|
46 | except ImportError: | |
|
47 | pass | |
|
48 | else: | |
|
49 | arrayModules.append({'module':numpy, 'type':numpy.ndarray}) | |
|
50 | try: | |
|
51 | import numarray | |
|
52 | except ImportError: | |
|
53 | pass | |
|
54 | else: | |
|
55 | arrayModules.append({'module':numarray, | |
|
56 | 'type':numarray.numarraycore.NumArray}) | |
|
19 | ||
|
20 | numpy = None | |
|
21 | ||
|
22 | def is_array(obj): | |
|
23 | """Is an object a numpy array? | |
|
24 | ||
|
25 | Avoids importing numpy until it is requested | |
|
26 | """ | |
|
27 | global numpy | |
|
28 | if 'numpy' not in sys.modules: | |
|
29 | return False | |
|
30 | ||
|
31 | if numpy is None: | |
|
32 | import numpy | |
|
33 | return isinstance(obj, numpy.ndarray) | |
|
57 | 34 | |
|
58 | 35 | class Map(object): |
|
59 | 36 | """A class for partitioning a sequence using a map.""" |
|
60 | 37 | |
|
61 | 38 | def getPartition(self, seq, p, q, n=None): |
|
62 | 39 | """Returns the pth partition of q partitions of seq. |
|
63 | 40 | |
|
64 | 41 | The length can be specified as `n`, |
|
65 | 42 | otherwise it is the value of `len(seq)` |
|
66 | 43 | """ |
|
67 | 44 | n = len(seq) if n is None else n |
|
68 | 45 | # Test for error conditions here |
|
69 | 46 | if p<0 or p>=q: |
|
70 | 47 | raise ValueError("must have 0 <= p <= q, but have p=%s,q=%s" % (p, q)) |
|
71 | 48 | |
|
72 | 49 | remainder = n % q |
|
73 | 50 | basesize = n // q |
|
74 | 51 | |
|
75 | 52 | if p < remainder: |
|
76 | 53 | low = p * (basesize + 1) |
|
77 | 54 | high = low + basesize + 1 |
|
78 | 55 | else: |
|
79 | 56 | low = p * basesize + remainder |
|
80 | 57 | high = low + basesize |
|
81 | 58 | |
|
82 | 59 | try: |
|
83 | 60 | result = seq[low:high] |
|
84 | 61 | except TypeError: |
|
85 | 62 | # some objects (iterators) can't be sliced, |
|
86 | 63 | # use islice: |
|
87 | 64 | result = list(islice(seq, low, high)) |
|
88 | 65 | |
|
89 | 66 | return result |
|
90 | 67 | |
|
91 | 68 | def joinPartitions(self, listOfPartitions): |
|
92 | 69 | return self.concatenate(listOfPartitions) |
|
93 | ||
|
70 | ||
|
94 | 71 | def concatenate(self, listOfPartitions): |
|
95 | 72 | testObject = listOfPartitions[0] |
|
96 | 73 | # First see if we have a known array type |
|
97 |
f |
|
|
98 | #print m | |
|
99 | if isinstance(testObject, m['type']): | |
|
100 | return m['module'].concatenate(listOfPartitions) | |
|
74 | if is_array(testObject): | |
|
75 | return numpy.concatenate(listOfPartitions) | |
|
101 | 76 | # Next try for Python sequence types |
|
102 | 77 | if isinstance(testObject, (list, tuple)): |
|
103 | 78 | return utils_flatten(listOfPartitions) |
|
104 | 79 | # If we have scalars, just return listOfPartitions |
|
105 | 80 | return listOfPartitions |
|
106 | 81 | |
|
107 | 82 | class RoundRobinMap(Map): |
|
108 | 83 | """Partitions a sequence in a round robin fashion. |
|
109 | 84 | |
|
110 | 85 | This currently does not work! |
|
111 | 86 | """ |
|
112 | 87 | |
|
113 | 88 | def getPartition(self, seq, p, q, n=None): |
|
114 | 89 | n = len(seq) if n is None else n |
|
115 | 90 | return seq[p:n:q] |
|
116 | 91 | |
|
117 | 92 | def joinPartitions(self, listOfPartitions): |
|
118 | 93 | testObject = listOfPartitions[0] |
|
119 | 94 | # First see if we have a known array type |
|
120 |
f |
|
|
121 | #print m | |
|
122 | if isinstance(testObject, m['type']): | |
|
123 | return self.flatten_array(m['type'], listOfPartitions) | |
|
95 | if is_array(testObject): | |
|
96 | return self.flatten_array(listOfPartitions) | |
|
124 | 97 | if isinstance(testObject, (list, tuple)): |
|
125 | 98 | return self.flatten_list(listOfPartitions) |
|
126 | 99 | return listOfPartitions |
|
127 | 100 | |
|
128 |
def flatten_array(self, |
|
|
101 | def flatten_array(self, listOfPartitions): | |
|
129 | 102 | test = listOfPartitions[0] |
|
130 | 103 | shape = list(test.shape) |
|
131 | 104 | shape[0] = sum([ p.shape[0] for p in listOfPartitions]) |
|
132 |
A = |
|
|
105 | A = numpy.ndarray(shape) | |
|
133 | 106 | N = shape[0] |
|
134 | 107 | q = len(listOfPartitions) |
|
135 | 108 | for p,part in enumerate(listOfPartitions): |
|
136 | 109 | A[p:N:q] = part |
|
137 | 110 | return A |
|
138 | 111 | |
|
139 | 112 | def flatten_list(self, listOfPartitions): |
|
140 | 113 | flat = [] |
|
141 | 114 | for i in range(len(listOfPartitions[0])): |
|
142 | 115 | flat.extend([ part[i] for part in listOfPartitions if len(part) > i ]) |
|
143 | 116 | return flat |
|
144 | #lengths = [len(x) for x in listOfPartitions] | |
|
145 | #maxPartitionLength = len(listOfPartitions[0]) | |
|
146 | #numberOfPartitions = len(listOfPartitions) | |
|
147 | #concat = self.concatenate(listOfPartitions) | |
|
148 | #totalLength = len(concat) | |
|
149 | #result = [] | |
|
150 | #for i in range(maxPartitionLength): | |
|
151 | # result.append(concat[i:totalLength:maxPartitionLength]) | |
|
152 | # return self.concatenate(listOfPartitions) | |
|
153 | 117 | |
|
154 | 118 | def mappable(obj): |
|
155 | 119 | """return whether an object is mappable or not.""" |
|
156 | 120 | if isinstance(obj, (tuple,list)): |
|
157 | 121 | return True |
|
158 | for m in arrayModules: | |
|
159 | if isinstance(obj,m['type']): | |
|
160 | return True | |
|
122 | if is_array(obj): | |
|
123 | return True | |
|
161 | 124 | return False |
|
162 | 125 | |
|
163 | 126 | dists = {'b':Map,'r':RoundRobinMap} |
|
164 | 127 | |
|
165 | 128 | |
|
166 | 129 |
General Comments 0
You need to be logged in to leave comments.
Login now