##// END OF EJS Templates
Update example notebook.
damianavila -
Show More
@@ -1,1332 +1,1332
1 1 {
2 2 "metadata": {
3 3 "name": "example_nb_tour"
4 4 },
5 5 "nbformat": 3,
6 6 "nbformat_minor": 0,
7 7 "worksheets": [
8 8 {
9 9 "cells": [
10 10 {
11 11 "cell_type": "markdown",
12 12 "metadata": {
13 13 "slideshow": {
14 14 "slide_type": "-"
15 15 }
16 16 },
17 17 "source": [
18 18 "# A brief tour of the IPython notebook"
19 19 ]
20 20 },
21 21 {
22 22 "cell_type": "markdown",
23 23 "metadata": {
24 24 "slideshow": {
25 25 "slide_type": "fragment"
26 26 }
27 27 },
28 28 "source": [
29 29 "Rendered by nbconvert using [Reveal.js](http://lab.hakim.se/reveal-js)!\n",
30 30 "\n",
31 31 "by Dami\u00e1n Avila"
32 32 ]
33 33 },
34 34 {
35 35 "cell_type": "markdown",
36 36 "metadata": {
37 37 "slideshow": {
38 38 "slide_type": "slide"
39 39 }
40 40 },
41 41 "source": [
42 42 "This document will give you a brief tour of the capabilities of the IPython notebook. \n",
43 43 "You can view its contents by scrolling around, or execute each cell by typing `Shift-Enter`.\n",
44 44 "After you conclude this brief high-level tour, you should read the accompanying notebook \n",
45 45 "titled `01_notebook_introduction`, which takes a more step-by-step approach to the features of the\n",
46 46 "system. \n",
47 47 "The rest of the notebooks in this directory illustrate various other aspects and \n",
48 48 "capabilities of the IPython notebook; some of them may require additional libraries to be executed."
49 49 ]
50 50 },
51 51 {
52 52 "cell_type": "markdown",
53 53 "metadata": {
54 54 "slideshow": {
55 55 "slide_type": "notes"
56 56 }
57 57 },
58 58 "source": [
59 59 "**NOTE:** This notebook *must* be run from its own directory, so you must ``cd``\n",
60 60 "to this directory and then start the notebook, but do *not* use the ``--notebook-dir``\n",
61 61 "option to run it from another location.\n",
62 62 "\n",
63 63 "The first thing you need to know is that you are still controlling the same old IPython you're used to,\n",
64 64 "so things like shell aliases and magic commands still work:"
65 65 ]
66 66 },
67 67 {
68 68 "cell_type": "code",
69 69 "collapsed": false,
70 70 "input": [
71 71 "pwd"
72 72 ],
73 73 "language": "python",
74 74 "metadata": {
75 75 "slideshow": {
76 76 "slide_type": "header_slide"
77 77 }
78 78 },
79 79 "outputs": [
80 80 {
81 81 "output_type": "pyout",
82 82 "prompt_number": 1,
83 83 "text": [
84 84 "u'/home/damian/Desarrollos/ipython_mtaui_slide'"
85 85 ]
86 86 }
87 87 ],
88 88 "prompt_number": 1
89 89 },
90 90 {
91 91 "cell_type": "code",
92 92 "collapsed": false,
93 93 "input": [
94 94 "ls"
95 95 ],
96 96 "language": "python",
97 97 "metadata": {
98 98 "slideshow": {
99 99 "slide_type": "slide"
100 100 }
101 101 },
102 102 "outputs": [
103 103 {
104 104 "output_type": "stream",
105 105 "stream": "stdout",
106 106 "text": [
107 107 "COPYING.txt \u001b[0m\u001b[01;34mIPython\u001b[0m/ \u001b[01;35mpython-logo.svg\u001b[0m setupbase.py \u001b[01;32msetup.py\u001b[0m*\r\n",
108 108 "\u001b[01;34mdocs\u001b[0m/ \u001b[01;32mipython.py\u001b[0m* README.rst \u001b[01;32msetupegg.py\u001b[0m* \u001b[01;34mtools\u001b[0m/\r\n",
109 109 "example_nb_tour.ipynb MANIFEST.in \u001b[01;34mscripts\u001b[0m/ \u001b[01;34msetupext\u001b[0m/ tox.ini\r\n"
110 110 ]
111 111 }
112 112 ],
113 113 "prompt_number": 2
114 114 },
115 115 {
116 116 "cell_type": "code",
117 117 "collapsed": false,
118 118 "input": [
119 119 "message = 'The IPython notebook is great!'\n",
120 120 "# note: the echo command does not run on Windows, it's a unix command.\n",
121 121 "!echo $message"
122 122 ],
123 123 "language": "python",
124 124 "metadata": {
125 125 "slideshow": {
126 126 "slide_type": "slide"
127 127 }
128 128 },
129 129 "outputs": [
130 130 {
131 131 "output_type": "stream",
132 132 "stream": "stdout",
133 133 "text": [
134 134 "The IPython notebook is great!\r\n"
135 135 ]
136 136 }
137 137 ],
138 138 "prompt_number": 3
139 139 },
140 140 {
141 141 "cell_type": "heading",
142 142 "level": 2,
143 143 "metadata": {
144 144 "slideshow": {
145 145 "slide_type": "header_slide"
146 146 }
147 147 },
148 148 "source": [
149 149 "Plots with matplotlib"
150 150 ]
151 151 },
152 152 {
153 153 "cell_type": "markdown",
154 154 "metadata": {
155 155 "slideshow": {
156 156 "slide_type": "notes"
157 157 }
158 158 },
159 159 "source": [
160 160 "This is a speaker note in the middle of the slide..."
161 161 ]
162 162 },
163 163 {
164 164 "cell_type": "markdown",
165 165 "metadata": {
166 166 "slideshow": {
167 167 "slide_type": "notes"
168 168 }
169 169 },
170 170 "source": [
171 171 "And also another speaker note..."
172 172 ]
173 173 },
174 174 {
175 175 "cell_type": "markdown",
176 176 "metadata": {},
177 177 "source": [
178 178 "IPython adds an 'inline' matplotlib backend,\n",
179 179 "which embeds any matplotlib figures into the notebook."
180 180 ]
181 181 },
182 182 {
183 183 "cell_type": "code",
184 184 "collapsed": false,
185 185 "input": [
186 186 "%pylab inline"
187 187 ],
188 188 "language": "python",
189 189 "metadata": {
190 190 "slideshow": {
191 191 "slide_type": "-"
192 192 }
193 193 },
194 194 "outputs": [
195 195 {
196 196 "output_type": "stream",
197 197 "stream": "stdout",
198 198 "text": [
199 199 "\n",
200 200 "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
201 201 "For more information, type 'help(pylab)'.\n"
202 202 ]
203 203 }
204 204 ],
205 205 "prompt_number": 4
206 206 },
207 207 {
208 208 "cell_type": "code",
209 209 "collapsed": false,
210 210 "input": [
211 211 "x = linspace(0, 3*pi, 500)\n",
212 212 "plot(x, sin(x**2))\n",
213 213 "title('A simple chirp');"
214 214 ],
215 215 "language": "python",
216 216 "metadata": {
217 217 "slideshow": {
218 218 "slide_type": "slide"
219 219 }
220 220 },
221 221 "outputs": [
222 222 {
223 223 "output_type": "display_data",
224 224 "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEICAYAAACzliQjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfXl0VuWd/+fNwpawJZA9gJgwIS6gYrW0aBTQopi6i2OR\nug3tyNQ6PTPT85szUz0ztXjaHvWMHUXPWMGxSm2rUBdUtFFaRKwiWmVkKdGEQAhkgSyELPf3x+OT\n9+bmLs96732T53NODiS5z/K+ee/n+dzP9/t8n4RlWRYMDAwMDEYE0qKegIGBgYFBeDCkb2BgYDCC\nYEjfwMDAYATBkL6BgYHBCIIhfQMDA4MRBEP6BgYGBiMIhvQNUh5PP/00Lr30Ui19f/vb38a//du/\nKe3znnvuwfLlyz1/f/rpp+Ptt99WOqaBAYUhfYPIUVVVhZycHJw8eVKo/U033YRXX31V8awIEokE\nEomE8j798Je//AUXXHCB0jENDCgM6RtEitraWmzfvh15eXnYuHFj1NNxher9izL99fX1KZyJwUiE\nIX2DSLFu3TosWrQIy5cvx9q1a32vffLJJ3HqqadiwoQJmDlzJn71q18N/HzBggUD16WlpeGRRx5B\neXk5JkyYgH//93/Hvn378NWvfhWTJk3CsmXL0NPTAwCoqalBSUkJfvKTn2Dq1Kk45ZRTBvp1w4sv\nvoi5c+di8uTJ+NrXvoaPP/7Y89pPPvkEixcvRm5uLgoKCvCTn/wEAFH6J0+exIoVKzBhwgScfvrp\neP/99wfazZgxA2+++SYAYgVde+21WL58OSZOnIgnn3xy4GfLli3DhAkTcM455+Cjjz4KeKcNDAgM\n6RtEinXr1uGGG27A9ddfj1dffRWHDx92va6jowN33XUXNm3ahGPHjuGdd97B3LlzPft97bXXsGPH\nDmzbtg33338/7rjjDjzzzDP44osv8PHHH+OZZ54ZuLaxsRFHjx5FQ0MD1q5di7/7u7/Dnj17hvS5\nY8cO3HbbbXj88cfR3NyMlStXorq62tWWOn78OBYtWoTLLrsMBw8exN69e7Fw4UIAROlv3LgRN954\nI9ra2lBdXY1Vq1YNtHXaPxs3bsR1112HtrY23HTTTQM/u/7669HS0oK//du/xZVXXone3l6fd9rA\ngMCQvkFk+OMf/4gDBw6guroa5eXlqKys9FXZaWlp+Pjjj9HV1YX8/HxUVlZ6XvvP//zPyM7ORmVl\nJc444wwsWbIEM2bMwIQJE7BkyRLs2LFj0PX/8R//gczMTFxwwQW4/PLLsX79+oHfURJ+7LHHsHLl\nSpx77rlIJBK4+eabMXr0aGzbtm3I+C+++CKKiopw9913Y9SoUcjOzsZXvvKVgd8vWLAA3/jGN5BI\nJPCtb30LO3fu9Hwt8+fPR3V1NQBgzJgxAIB58+bh6quvRnp6Ov7xH/8RJ06ccJ2HgYEThvQNIsPa\ntWtxySWXYPz48QCA6667ztPiycrKwvr16/Hoo4+iqKgIS5cuxWeffebZd35+/sD/x44dO+j7MWPG\noL29feD7yZMnY+zYsQPfT58+HQcPHhzS5+eff46f//znmDx58sBXfX2967V1dXWYOXMm0/zGjRuH\nEydOoL+/3/XakpIS358lEgmUlJS4zsPAwAlD+gaRoKurC7/+9a/x5ptvorCwEIWFhfj5z3+OnTt3\nevrTl1xyCV577TUcOnQIFRUVuOOOO4TGdtonLS0t6OzsHPj+888/R1FR0ZB206ZNw7/+67+ipaVl\n4Ku9vR033HCD67V//etfmcbnnS9AFhWK/v5+1NfXu87ZwMAJQ/oGkeCFF15ARkYGdu3ahZ07d2Ln\nzp3YtWsXFixYgHXr1g25/vDhw9iwYQM6OjqQmZmJrKwspKenM49nz5hxy5750Y9+hJ6eHmzZsgUv\nvfQSrrvuuoFr6fV33HEHHn30UWzfvh2WZaGjowMvvfTSoKcGiqVLl+LgwYN46KGH0N3djePHj2P7\n9u2e4/Pi/fffx/PPP4/e3l48+OCDGDNmDM4//3zpfg2GPwzpG0SCdevW4dZbb0VJSQny8vKQl5eH\n/Px8rFq1Cr/61a+GWB39/f144IEHUFxcjNzcXGzZsgWPPPIIgKG59G7K2Pl7+/cFBQWYPHkyioqK\nsHz5cqxZswazZs0acu0555yDxx9/HKtWrUJOTg7Ky8tdFygAyM7Oxuuvv47f//73KCwsxKxZs1BT\nU+M6vtec/a795je/ifXr1yMnJwdPP/00fve733EtggYjFwlziIrBSEZNTQ2WL18+yC6JO+69917s\n3bsXTz31VNRTMUhBSCn9W2+9Ffn5+TjjjDM8r/ne976H8vJyzJkzZ0jGhIGBAT+MTjOQgRTp33LL\nLdi0aZPn719++WXs3bsXe/bswWOPPYbvfve7MsMZGGiB6jILuqGjNITByIG0vVNbW4srrrjCdWfi\nd77zHVx00UUD2Q0VFRV46623BqWrGRgYGBiEhwydnR84cAClpaUD35eUlKC+vn4I6RvVYmBgYCAG\nXt2uPXvHOSEvgqepcXH76u21sHSphepqCx99ZGH1agvTplloatIz3o9+9KNQXtcll1i4/HIL558f\nzfv6wAMWcnIs3Hijvveiv98CQL56etTN/dNPSZ+33qqmv6oqC4sXy30uPvuMzGnTJrE5HDxI2m/c\nKP4+r1nD33bRItKWp813vvMjABaOHWNvc/HFfOMcOWLhqacstLezXf/AAxYuukjdZ4z1SwRaSb+4\nuHhQVkR9fT2Ki4t1DqkcDzwAtLUBv/kNcMYZwL/8C3DttcD3vx/1zMTR0gJs3QqsXw98/jmwb1/4\nc9i8mbyXW7fqG2PfPqCwEJg2DaitVdfv//0fMHo0sH+/fF/9/cAHH5D3wbY/jBsbNpB/RefU0ED+\n/e1v+du2tZF/P/iAv+3mzcCUKXxtjhwh/9I5s2DyZL4xfvtbYPly4I9/ZLu+qQlIlQQwraRfXV09\nkMe8bds2TJo0KaX8/KYmYPVq4IkngMzM5M/vvRd44w3Ap8BirPHGG8DXvw5kZQEXXghs2RL+HHbu\nBK65hixAR4/qGWPHDuD884HZswlRq8LevcAVVwCffqqmr5wcID+fj8ScOHAAKCgAXOrEMbcHxP4W\n9fXkX97kPFofLjubr50I6Y8aRf49doztenod6/WU9D0qacQKUqR/4403Yv78+fjss89QWlqKJ554\nAmvWrMGaNWsAAJdddhlmzpyJsrIyrFy5Ev/93/+tZNJh4cc/BpYtA8rKBv88Oxu4807gwQfVj1lV\nVaW+Uwe2bgXoGR1f/zq7mlGF5maiDk85BZg715ssZN+Lujqi8isq1JL+vn1ksezsJK9FBg0NZI55\neUBjo/d1Qe/FkSPAV78qR/qVlWKkX1cHlJYCra187dragIyMJImzIj29CpmZyYWKBU1N5F+fck2D\ncPz44H9Z+u/uTo4TZ0gFcu3lab3w8MMPywwRGY4eBZ580pssbruN3CS/+AXwZeFDJQiD9D/6CPjB\nD8j/zzkH+OUvtQ85CJ9+St67tDRg1ixCoosWDb1OBemXlgJjxwIffijV1SDs2wdceSVQUkJIOydH\nvK8jR4i90dsLeFSVBhD8XjQ1AQsWiNkzACHQM88EbGX9mVFXB5x+Or+909pK/j719cCJE+z30ahR\nVSgr41P6jY1kYW1pYbteROknEsAXX5CntjjDlGHwwJNPkkf4ggL33xcWAnPmAK+9Fuq0pGFZxFqh\npeip9RHmY+kXXwDTp5P/T5tGvtcBqvSLioBDh9T129AAFBcTsuZVqU5Q0s/P9yd9ln7Ky5P+Oi8a\nGsjnWUTpHzxIPke8Sr+1lXjtvO9jRwcRC7ykf8oppC0Ljh8niwSP0p82Tf7zEAYM6bugvx945BFi\n4fjh+uuBX/86nDmpArUQ6GI2cSIwYULSlw0DlIwBovR0BcC++IL0n5/vb53w4uhRIDcXmDpVHenn\n5cmRflMTsSFFSb+pKblo8J7Fcvw4eY/7+4nFwYrWVmDSJP73sb2dPGWxvta+PmLDTZ/OTvrHjpEx\neJT+tGlAVxfb9VHCkL4L3n6bBDnPO8//uquvBl58ERA8zzsS7NlDVJI9c7aiAti1K7w5UNsF0Kv0\n6+vJjStLqHZYFiGQ3Fy1Sl9mjpZFSOfUUwkRimTytbcTAp40id0CsbcdP54ICJ5Fp62NjDdlCp8X\n3t5O3i/WbKfOTpJtNXEin9IvLmZT+pZFFrDiYkP6KYtnngFuumkwMbqhoIDcaO+9F868VGDvXjJn\nO8rKAI/S71oQBulbFiHUvDx568SO48dJJsjo0fxk5QY76Ys+jVDymziRzIuV2Ow4fpwkKEyZwm/x\ntLeTthMn8lk8ra2kzeTJfO3a28nTASvpd3UB48YRIcej9IuL2ZR+dzf5TGRlGdJPSZw8SYJhy5ax\nXV9VBXxZMTclsHfv0Gyk6dNJvn5YoLYLQG6sAwfE1Kkfjh0jgUF6M1oWIQtZUGsHUGvv5OaKp67S\nOSUSRDnzeusAIf3x40lQWoT0x48nY/MofWrvjBvHR5YdHWSRZCXwri4SzOchfR6lT4PQY8ca0k9J\nvP46sTuo5xyEVCP9ffuiJ/1Dh0ggHCA3yqhR7N4pK+zknEioU/vU2gHU2Tu5uYQ0WYOGTrS3k7gM\nwG+x2PsYP56PGCnoUwLv2JT0x45lV+108eaxd0RIn0fpG9JPcWzYQDYNsWLBAmDbNr4AVpTYvx+Y\nMWPwz2bMCI/0+/sJ0U2dmvzZ1Knq85vtpA/I2SfOfmmKpop5HztGiE+W9OkGJ161TUGVvgjpy9o7\n48axE3h3N8ntnziRz9PXqfS7ugzppyz6+0lg9oor2NtMmkQCo6ni69szZyjCVPqtreTmozskgXBI\nPyeHP0AZ1O/EifJPKJRsVZE+L/ECSfWcnS1P+jwLTmcnGY+H9Nvb+dvwevqWRf6uRUVG6Q977NhB\nHpOd9kcQzj8/NUj/5Emisqm1QlFURKwP3lQ9ERw+TFS3HWGQvqjX7URzc1LpT5ighvSzs0lfUSn9\nri6yCGdkEGLkrQFEx8/O5lswqO3CS/rZ2fykzzNOTw/5NyeH7fUY0k9hvPgisHQpf7tzzhHbyRg2\nGhpIxpHzKNX0dOJPq8xl90JT02BrB1CbUklBvXIKVaR/7BhRtABR5zKk399PSCIrixBZe7t4uqWM\n0qdPGwAhRlGlz0t61BbhCeR2dCRJn3WevPZOdzfJgho9ms22PXGC9G9IPwXx+9/zWTsUqUL69lRJ\nJwoLyc5K3YhS6YtuXLLj2LEkQcqoc4AQ0LhxpBxFRoZ8uiVA/uVV6vb2MvaOCOmHpfR57B0R0jdK\nPwXR0EBy1efP529bWUnSEGUIIAzU1ZHNSm4oKgqH9N2U/tSp6pV+S8vgcrqqlL5dFVN1LlrCwt4X\nIL6I2JU+Dxna29N58JL+yZNkx+vo0fykZ1fIvJ4+jQlRK8YPvNk7J04Y0h8ReO01YPHiwSWUWZGZ\nSQpOqSzqpQP2VEknCgvlSvuyoqlpaP30nBz5apVOtLUlbRhAzPZww/HjyfTI9HRyo4uoc9qXvayw\naDDXSfoiKZeipN/RQdomEuEo/Y4OMkeAvR0v6Xd3ExLPyCALel9fcP+G9FMQmze7V3pkRSpYPI2N\n/gXkwlD6ra1Dq1Ly7shkgd17B/QofUDO4nH2JRojkFX6TnuHpz1V3kA4pG+vxsnaTtTTTyTY1L5R\n+ikIyyIHi8iQ/ty5pGRxnHHokHfZ1zBJf9KkwT+bPFlNOqUdbW1JRQ6oDeSqIGpgsK1C+4rC3qGp\nk7Q9j9Lv7CRtgHBInxIyz1ypp89q19jHMKQ/TPHpp+RDccop4n1UVqo5SUknGhu9SV9FSQEWhEX6\nOpW+fTGRSduMi6dvV8+89o69rQzps7Zzkj6PvSNK+idO+F9vsndSEJs3AwsXyvVBSV91DRmVOHTI\n295RUVKABamu9HXaO9nZ0ZA+JUUgXNKnbWXsHValT8t9sFTEtZP+mDFG6Q9LyPr5APGps7L4jnAL\nG35Kf7iRvlPpq9hIRftVZe84A7m8hcco7L56KpE+HZcne4eXkIGkBcWbjQMYe2dYoqeHHAx+8cXy\nfcXZ4unrS5YadkNYpN/SMpT0s7PJjaXyXAJn9g5Nr5SF096R9fSdpM9L2MBQTz4VSN+y5D19VuVu\nV/o9PcEptryePs3eGTMm2AqKA0Y86b//Pik45kwjFEFlJfDJJ/L96MDRo4QEvVJSc3NJ2qTuYxPd\nlL5MSWA3nDhBSIXeuECSzGRen71GDQVv6QE77GQNiJO+nbRFUjZFMmLsbenYPKTf00NSXtPTxe0d\nXuWeSJDPf1Buv2ggly4qcceIJ/233wYuuEBNX3FW+n7WDkBuhqwsNbtWvdDfnzwtyQmVFg+1duyH\n4NCcehFSpejoICSQkZH8mShRA8msEntfIvaAk/RllD6vWhVV+vYxWckb4CdkgDwN8LQRIf2xY8k9\nFPTk0d8f7nnUbhjxpL9lCymPrAJxJ32vIC6FbounvZ2Qkp00KVSSvjOISyFTyRIYqswBsbIF9v4o\n8QFySt+efSNL+jxlwlWQPrVpWJIgROwderIVoI/0WZX+li3kDI4oMaJJv78f+NOf1JH+rFnkDNo4\nwi9Hn0I36btZOxSyhGyH03enkPX17TnpFDJK39mf6JOIrNK3E3dYSt/eLi2NTSUDyd2yAJ/Sp6TP\nslDwWkh0UcnIIJVq/Ravnh6xXf8qMaJJ/5NPiJcdpIBZUVBAbjidFoko4qD0/UhftniZHU7fnUJ2\nYXHaMYC80ldh79h99VS0dwBCmqz+fNzsHUrkiQQhfj+139trSD9SbNmizs8HyB+9rIwcSRg3jCSl\nb6/PYocupS9K+m6evqzSp/YMj29sb5+RQZQq69kKbqTPYtM4SX/0aP4cetY2dqUvQvpBi6BdvQc9\nSfT0uNubYWLEk74qa4eirIwcPh43uJU0diJq0ld1Tq4X6avw9O1EBYh56F79iZB+Xx8haEpqtPAZ\nbwYOJW6AT+3b26ans9s0zjFFdsuyPh04Pf2g+fHuBbCr9yBf3yj9CGFZJHNnpJC+81xaN+gmfbcc\nfYpUVfqq7R1Ra8aeqcSTDWPvg4KH9O1BZJ6x7ZYLTzuRlE2np6/D3qHqPWjRM0o/QuzfT4h/5ky1\n/caV9J2HirghDKVvr3Fvh0rS1+Xpqw7kOu0dkR2dTsIG+DNw3Eiftb2MYrefk6yrGBrAb+/wLiw8\n9o5R+hGCWjt2haQChvS9EVYgV5fS1xHIlbV33EifxYf260PU3gHY0yjtRAyI2zsinj6PvcMyLzuR\nB23+Mko/Qujw8wFD+n6IOpAbN6Wv0t6xg9feUeXp84xtJ1aAncBF7R2eOICMvWOUfoyhi/SLigi5\nqajzogq9vSRI6kW4FFGTvu5ArowqB7wDuSqzd0TsHTvpAvKePs+Tgj1dlGdsFUpfxErSmbIJmOyd\n2KKxkWSznH66+r7T0oDp04HPP1fftyhaWkhZgvR0/+t0nGBlR1hK38vTl1HlQDwDuU7SBdR4+mEr\nfVHS15GyyUPiAJ+9Y5R+RNiyBfja14JJUBQzZsSL9I8eZSsoN3EiWSB0nQnQ2jq48qUdYdg7Okhf\n1t6xk63IebsqPH03e0c0kMuaRimj9Ol4ImOxkLid9FkKtPHYO0bpRwRd1g7F9OlAba2+/nnB4ucD\n5GZKT9dXE9yrPAIQTiBXlvS9ArmdnfwLJSUSu+qjZMvTlwpP36m6eZW+U7HzbrKi7XTsyLWswSTO\nq/QzM4M3qpnsnRSAbtKfMSM1SR9QW+LYCeehIXaoVvq67B0nwdLywLxnAbgtIGlpwdv43fqRIX3L\nkiN9u/LmGTssT5+OQ7P0eLNxWP4eJnsn5jh2DNi9G5g3T98YcfP0eUhfp6/vPB7QDpWBXPtJUnbo\nsHcAQrq8h2e4BWABeT8e4CP93l6y2NitTl7St5M3zy5Zkeydnh4+q8a5uLDaO/bNVirtHaP0I8DW\nrYTw7R8E1Yib0j9yJB5Kv73dn/Tb29XEE/zsHRnryov0x4zh79fphVPI+vF0PjykbSdf3jmIKnaZ\ndjxWjcg4Ip6+yd6JMXRbO0DqBnIBfaRvWd62C0BuhFGj5JQ4RZiePiB2TJ4b2Yr05SxnAIgfSiIy\nB7dyCro8fRF/PgzSd9o7RunHDCpPyvJCfj4hzrgckhwHT5+eOuWXMaUqmKvT01dl73iRvkgQ1vnU\nqoL0edqHpfT7+ogVlZaWbMNr74iQOK+9Yzz9GOHECWDHDuCrX9U7TloaMG1afNR+HEjfz9qhUBXM\n1enpO/1zQMzeUaX0veyZqJS+qKfPq8BZx3KOw0vi9GAU1nkZTz9meO89YPZsb4tBJeKUthkH0vcL\n4lKoCOZSGynugVw/T59H6TuVLBCup69K6fPmz7OOJaL0ddo7RumHjDD8fIpp04C6unDGCkIqkb6s\n0u/uJjeV242li/SHm9JnOeuVIkxP3565A7DV7g+D9HnsHaP0Q0aYpF9SAhw4EM5YQTh6FMjJYbtW\np70T9ISlwtP3CxbznOzkhjACuSJKXwfpx9HTt2fu0HkGEbJu0qenjJnsnRiirw945x3g618PZ7zi\nYqC+PpyxguBXx96JVFf6XtYOQGItvCmRdoQRyBVR+qoDuaw58/39Q5VrmJ4+C4E73x9Wu4Y1T7+v\njyQn0M1fJnsnRvjoI6CwMPj0KFWIi9Lv7iYfTLcApBtSnfS9grgUKmvlUKjO05cpoUDnI+Pp826U\nEjm1S1aBs7aRHScokOtU7iZ7J0YI09oBCOnHQem3tREiZz0sZvJkUnRNNcIK5PrZO4A46ff3Dy05\nQBF1nr5qpc/jy7uNLdI2LNLnzcZhKavgfNIZ9kp/06ZNqKioQHl5Oe6///4hv6+pqcHEiRNx1lln\n4ayzzsJ//ud/yg4phLBJPy72jl85YzdE6elnZ8vVuwf87R1AnPRp2YQ0lztG5JhDlXn6Ojx91pLF\novEAt1RP3uwdXQsFD+nbrSB6fdw9fanh+/r6sGrVKmzevBnFxcU499xzUV1djdmzZw+67sILL8TG\njRulJioDyyKk/7OfhTdmTg5RbEEkpBtxIX0WpZ+VBTQ1yY2jk/Td/HxATOk7q1OK9qUrkCuj9HkP\nNgHYyTiMpwPeAmrO/v2eJFJe6W/fvh1lZWWYMWMGMjMzsWzZMmzYsGHIdZauAu2M2LuXfFimTw9v\nzEQiHr6+Xw17N0ycSNqo/pOxkr6s0tfl6XsFcQHxQK4Kq8iNeMPy9GUWHGdbVqvGTph0d3dfn3cb\nUaXPGsh19h9UlTPllf6BAwdQWlo68H1JSQnefffdQdckEgls3boVc+bMQXFxMX72s5+hsrJySF/3\n3HPPwP+rqqpQVVUlM7VBCNvaoaAWz6xZ4Y9Nwav0R41K1sBR+YTS3g7MnOl/jQrS1+XpewVxAbV5\n+qlk76hU+izpl06CBZKk7FXew6msWVIweQK5bvaOzjz9mpoa1NTUiHcASdJPMEQHzz77bNTV1WHc\nuHF45ZVXcOWVV2L37t1DrrOTvmq8/XY0pB8HpU8DuTyYNIkEc1WSvl8tfYpx4+Lr6fsp/TFj+IPf\nqpS+jkAuj9J3js26scstq4bX06ftenrc30vahoeUnfV9RJQ+T7YPL5yC+N577+XuQ8reKS4uRp1t\n22ldXR1KSkoGXTN+/HiM+/JuWbJkCXp6etDc3CwzLDeiUvpxyODhVfqA2lOsKFjtHdkqm37kDMTH\n3vHy9OOi9EUsGtqWNd1TNijL0o53HN4nA9n+o4AU6c+bNw979uxBbW0tTp48ifXr16O6unrQNY2N\njQOe/vbt22FZFnJYt4cqQEMDIT5HbDkUxCGDR5T0VR1oQsFScE2FveNnwwD6Arki9o4qTz+qPH03\ne4dFsQPutXfiQPq8TwZu9o5Opa8CUsNnZGTg4YcfxqWXXoq+vj7cdtttmD17NtasWQMAWLlyJX7z\nm9/gkUceQUZGBsaNG4dnn31WycRZsWUL2YXrlmqnGyUlwBtvhD+uHa2tQFERXxsdpB9WILery//s\ngLFj1Xv6UZZWjtreEa3b40bGLPaO2yKjmvRlrg8K5MZB6UuvOUuWLMGSJUsG/WzlypUD/7/zzjtx\n5513yg4jjKisHSA+9g5P9g6g9rxaChZPXxXp61L6YQRyoyi45vy7yGzO0mnvOLN3WNqJeO48KZgi\n10et9If9jtwoSd/YO0mEqfR1kL5X2QRAbZ5+2AXXvIKxMkpfxN4R9fRZCpzpVu52Ek8FpT+sSb+l\nBdi/Hzj77GjGz88HmpvZbgJdEMneUXlIOQWLpy9b+hiIhvRTOU9fhrhlPH3e8gVubeh4KgOzbiTe\n1+e9b0U2ZhAFhjXpv/UWMH9+dCtrejpQUAAcPBjN+EA8sncsi60MQ5wDuUFKX2Wefpj2jqzSF2lr\nWYRIeQKmgHggl2cc5xiJhL9657WPjNLXjD/8AbjoomjnELXFEwd758QJ74NN7Bg7NlkVVBR+WTZA\nvJS+l6cfZiBXh73DSt72bT5xSdnkHYN3c5ZR+prx5pvRk35hIXDoUHTji5C+anuHtf5QIiFv8UTl\n6YuUVtal9DMzycLJsnjKkj6vxy7TLorsHdrGS72PuNo7cUZTEzmuMCo/n6KwMDp7p6eHEAjvzlrV\n9g5P0TnZDVqpEsj18/RZVXpfHyn57FSOiYR4XXuAb3OWiKcvotjpeGFvzgL47R2j9CNCTQ3J2on6\nDS4oiE7pt7WRdE3WWvoUUSl9QL4UQyoFcmWVPiVdt7+vDOlTtdrf79/WTXnrUuy0Xdibs4La8G7O\nMkpfI+Jg7QDRBnJFMncAPUo/KIhLIRvM1RXI9VLmgPo8fZmNVRQypJ9IiCtv1nNrRdrF0dM3Sj9G\n+MMfgIsvjnoW0Xr6In4+oD6Qy2vv6FT6IlYMoF7p+x2XyKv03SBD+rQ9izcvqvS9iNWvpLeKlE2a\nXcOaghk0hvH0Y4KGBuLpn3lm1DOJ1t4RJf0o7R0VpO+XvSNyyhXgT/r0RufJOtKt9FkXNy/S103e\nbk8X6elT5zPyAAAgAElEQVTBu1lFArl2ZU0raHr9rdxImcfe8VP6NFXVqwx0WBiWpP+HPwAXXhhN\nvR0nogzkyij94RrI1UH6iYSa8gkAn9LXZe8A7Fk4buQdZHG42Tt0TJXWi0gbN/vFL/eexz6iCwRv\njE01YkCL6vHGG/GwdgAgLw84ckQu91wUInV3gNQN5Pb1ueeO2yFj7wQtJjz9+h2XKJNjTxEG6bsp\nb9qWl4iB4MwfFdk7QW102jtx8POBYUj6lgW8+ipw6aVRz4QgM5Oo7SNHwh9bVOmPG0cIw+9Rmwdh\n2TtUjfspKR1KH+AL5tLTmfxq77AcVxkHpe+l2IPq4biNqZrARdrIbs7iSe+MCsOO9P/yF3IDlpVF\nPZMkovL1RbN3Egm1Fk/QubV2yJB+kLUD6CV9ngCsc0cqRVoaIQ7RHbG88xElbsBf6fMqdkCcwHkK\nrgWNo1PpOxeIqDDsSJ+q/Kh9Mzui8vVFlT6g1uIJy9MPCuICyd2qvE8xQaTPs5j4KXSA3eJxK3hG\noULpB7X3I29eIqZj8rZTHQdwI2ZVKZtG6WvCpk3xsXYoolL6MqSvMm0zLHuHReknEmpTLCl4lL6X\nn0/BGsyN2t6R8fRF7R3e7B3ebBw3YvYL5PJszjJKXwM6OoB3341PEJciqg1asqSvyt4Ji/SDNmZR\n6CB9nj79NnoB7Eo/KJDLWuI4bE9ftb2jcoetzs1ZRulrQE0NcM45wXXbw0ZUG7REs3eA6Owdmewd\nFqUPiBdIUxXIDbJ3VCh9mfLIdA66PH1Re0dV9g5PCmbQGG6k77X5yyh9DXj1VeAb34h6FkNhlH58\n7B1ALJjLQvoqNlXx9OUXyJUpmkbbiyp9Fk8/rtk7spuz/DZ/GaWvAXH084HolL5o9g4wfAO5gPjx\nhn6kz7OpSqWnL2Pv9Pd7q89Uyt7RvTlLlR1klL5i7N1LSGrOnKhnMhSpqvSHYyAX4Ff6lsWmzlV6\n+mHYO5S03TLdZD19kc1ZcdmR63Y9rx3kdr1R+oqxYQNQXR2P0gtORKH0+/oIeYrGN6K0d0SVPk8g\nl4f0/UoYU6i0d2QzbwD2lEu/9iJlGFja+tk7vO3CIH2/4Kybeve63ih9xdiwAfjmN6OehTvGjyck\n3N4e3pjHjpFxRRfBKAO5MvYOayCXt2SCnzIH1NXMAfgOJpdR+rKkr7KcAm2nWumLePS6ngyM0leI\nI0eAnTuBhQujnok7Eonwc/VlMneA6OydMEifV+mzkL7qPH3ZQK5oaWQK3UpfxN4Rzd7h9eh5D1Fh\nfTKIQ1llYJiQ/osvAosWBd+YUSI/Hzh8OLzxZPx8gCj9KOwd2ZRNlkCuLtLnsXeCgsKyO3JV2DtB\n7XVszlJZUkGkjc7Arym4phAbNgBXXhn1LPyRlxcu6ctk7gDqlL5lxU/px93e4SH9KO2dVNmcpSsw\n63W91z4Ao/QVoaODHI142WVRz8QfeXlAY2N448kqfVWkf/IkOTSC9cMuQ/q6Armq7R2VgVxd9k4U\nm7PCKrjGu2s2KJDLuhAZpa8Iv/89MH8+kJsb9Uz8MVLtHZ4Km0CSPIMO5XZDlEqfx95R5enrtnfC\n3pwlkvXjZyXREta6C665XW+UvkY8+yywbFnUswhG2PZOXJQ+j7UDkGwjkdo4QLSBXF57x68/1t20\nUds7op5+WPZOX19yhyxrG50pnkbpK0BrKzkaMe5+PhCNvSOTvaNK6fOSPiBu8UQdyFVp78jUzWHt\nIypPX7W9w2O9BLVRVbbBKH1NeP55UlFThtzCQqrZO1EpfUCc9Fk9/eFk78jU3vEibdo+ioJrKlM2\nvZS16h25rJuzjNJXgGeeAW68MepZsCHVsndGjya+OiuReUGU9EXSNlPJ3tEdyI0ye4dlc1YYKZsi\nTxQ8O2z95mSUvgbU1QF//jOwdGnUM2FDqmXvJBJqLJ6w7Z1Uyd7Rnaev297p6yOB0vR0/rYiZGxZ\nZEzZYmgibVRtzjJKXxK//CUJ4LJ4uHFATg6xS/weX1VClvSB4Uv6Uds7ccnT97JnaHu/OVBy9CrW\nprrgmtd4UZM+z+Yso/Ql0NcH/M//ALffHvVM2JGeTtJKjxwJZzxVpC9bLyiOpB+1vaOyDENUKZs6\n2vrZO6oIHNB7iAq93qv2jlH6gnjjDWDKFODss6OeCR/CtHhks3eA1FP6nZ2pU4ZBd8E13Zuz/IqH\niXjztJ1u1R7URkWBNlN7RwMefzy1VD5FmMHcVLZ3RMsrR23vhO3pRxnIlWkrYu+I5PaLpmy6BXJ5\nsneM0leM/ftJ2YWbbop6JvwIK22zv5+Q9YQJcv2kmtJPFXtHpacflb0TFA8ISr0My95RlbKpYnOW\nUfqCeOABovJlCS0KhGXvtLcT4pRVFdnZ0ZG+zpTNqAO5YeTpq8je8ZuDTI5/nO0dnZuz4qL0YzAF\ndhw9Cvzv/wJ/+UvUMxFDWPaOCmsHSC2l39tLvrxIzA4Rpe9H0kB0Bdd01MOn7YMycFTbO0FkzHuY\nelTZO35KPzvbvZ8wkVJK/5FHyOlYRUVRz0QMYdk7I5H0aQkGvyMNKURIP+gJQmXtnTB35Mp4+qKB\nXJHDV/ziACotIZGCa6lWZTMGU2BDayvw0EPAli1Rz0QcYdk7KjJ3gGhJv7mZrw2rtQPoq6ff3U02\nEQUtPHHK3vF6XTo9/VSzd/wCuV7ZO2ZHrgL89Kfk4POKiqhnIo6RaO/wllYGxJU+K+nrCORmZBCy\n9yIHZ3+pYO+IKn0d9o5I9o5ue8ey+J4MjNLnQG0t8OijwI4dUc9EDmGRvmzdHQpVSp/Xx9RN+mPG\nkOtZVDnARvq03xMngtWcCk/fsvz7SU8nWVx9fe6lEgC92Tui9o7IRitaEsL5t/RS1qo2Z/X2kvfW\nbZewUfqSuOsu4O67gWnTop6JHKi9Y1l6x4mT0g8rT5+H9DMyyM3KWhKDh/RZvXhZT5/Wivci9EQi\n2OKJytP3U+B+/rzbXBMJ/lo3Ip4+D4mb2juSWL8e+Owz4J/+KeqZyGPcOPLBVVGy2A+qSD/KlE1e\n0mfdjUvBY/GwZO8A7MFcFUrfL0efQmaDFQtxh52947fIeJGsKk+fd1ExSl8QtbXAP/wD8PTTbDdd\nKiAMiyfVlb5Inj6P0gf4TufitXdY+lNB+kH3BEuuvS5PXyTdU8TeAfSTvl/e/YhU+ps2bUJFRQXK\ny8tx//33u17zve99D+Xl5ZgzZw52MBrzbW3AFVcA/+//AeecIzvL+CA/X38Gj8rsnVQpuMZL+tTX\nZ4FKeyfIiwfkg7Cs/cgEY3UsGCI7cmm7KJQ+b5mHYaH0+/r6sGrVKmzatAmffvopnnnmGezatWvQ\nNS+//DL27t2LPXv24LHHHsN3v/vdwH5bWkid/Koq4ucPJxilH4wwSJ/X3mEhfRZ7hwb/vLx42o8K\npS/j6VPi8oo/hV1wLSiGoIL0eWv2eyl3r0DxsFD627dvR1lZGWbMmIHMzEwsW7YMGzZsGHTNxo0b\nsWLFCgDAeeedh9bWVjT6SN333gO+9jVg3jzgwQfZsitSCWGQflyyd+iNz7JL1g5RT59X6Udh77CQ\ndWYmIZ/+fu9r/IqtUcjYO2lp/lkuOjJ/olb6vNk4Iv3HQelLrTsHDhxAaWnpwPclJSV49913A6+p\nr69Hfn7+oOuWLr0He/YABw4Ad91VhR//uEpmarFFWPaOStJnTW10QkTlA3I7clnBo/SDsm0oWOwd\nlqBwIpEkbK+FTEUg1y8Ya2/vRlSim7O8ctuD2vmNx0uyvIuEiL2jS+nX1NSgpqZGqg+pKSQYmcBy\nPCO6tSsqugfXXANcey0hm+GKvDzg//5P7xiqSH/UKKL4WEnPibBJPxXsHRalT/sKIn2d9g6QJH23\nv6FoPIASnxt16Mje4bVfVJC4ziqbVVVVqKqqGvj+3nvv5e5DivSLi4tRV1c38H1dXR1KSkp8r6mv\nr0dxcfGQvh57TGYmqYO8POCtt/SOoYr0gWTaZhSkz/OEIRLIZbF3LIs9ZZPV3mFdQEStGQoZe4e2\n582bl2kXdcqmSN592EpfBaQ8/Xnz5mHPnj2ora3FyZMnsX79elRXVw+6prq6GuvWrQMAbNu2DZMm\nTRpi7Ywk5OUBTU36+rcs4umryN4B5Hx9UdJPTyc3DmupYkCf0qc3dhrDnaLK3gGCrRnWlE0VSt+r\nrUggVyQgC4RD+qry7uNeT19q3cnIyMDDDz+MSy+9FH19fbjtttswe/ZsrFmzBgCwcuVKXHbZZXj5\n5ZdRVlaGrKws/PKXv1Qy8VSF7kBuRwe5WVV9uGTSNkVJH0iqfdYnjM5OYPJk9v5ZSZ/V2gH02Dte\nYAnkqrJ33OCn2Gkw1K0EhB95i5ycBaglfRV598O+9s6SJUuwZMmSQT9buXLloO8ffvhh2WGGDXST\nvqrMHYoolD6QJP2cHLbrddk7rMqctU9VpM8ayNVl7/iRsL2t828imuopqvTdFmzebBxax6i/f/AT\nn98iYXbkGgwgJ4cQM2vdF16o9PMBOdIXqbBJwRvM1WXv8Ch9FntHlacftb3DmvnDM2aQvcPbTkS5\nu11P6/s4iVwkOygOSt+QfshITwdyc4EjR/T0HyfSV6H0WaGrDINqe4enjk+c7Z0gpe+l2oNsIYDY\nQm7twgjkepGyWxtTe8eAGTotnpFK+iKbs3Qo/bjZO1EqfTdiZVkseAhcpI3oGE4iH7G1dwz4kUqk\nL1NpM2ylr2Nzlg57RxXp69yRS9vLevpOiNpCUZO+G5Hzbs4ySn8EQzfpq0rXBKLL3snK4qu0qTOQ\nqzp7h6U/WZVO5xNHT19E6avO3uEJ5Hq14d2cZZT+CIZO0h9u2TusiEsgNyxPP+pArg5Pn7bTbe+k\npydP27LDT4m7ETnvomKU/ghGKtk7sqTPe1QiRVxIn6cERZj2jmzBtf5+/8Alba/a3pHx9FVl73id\ntuWnxN3GMCdnGTBjpJB+e3t4pM97claU9k5YgVw/e4eSqF+Zi6C8+aAzAXjJm46pW+l7tQny9Fnt\nnbhX2TSkHwFGCumPRHsnVfL0gxQ3S3sdnn4YgVyvNqquH9a1dwzEoLP+TpxIP0ylr5P0Ve7IVZmn\nL7MjV/bkraD2fp5+1CmbtA3rZive6+Nee8eQfgRIpeyd7Oxoa++wwLJSK3snrIJrfvaObtIX2ZEL\nhJO9A/B7+jzXuy0QbmUcokIMpjDyMFKyd2SVPmvKJr0ZeVRUqufpswZyRVMuaXu/Amgim7PipPR5\n7R2ZzVlU5cfhJEBD+hEgO5ukjPHkobMiTvaObJ4+q9Ln3ZgF6CnDEGY9fdmCa3FV+iIB4LACuTKb\ns+Li5wOG9CNBIqHH17csPZuz4u7p81o7gJ4yDGHW3omDvaM6IAuIxQKiDOSybs4Ket1hwpB+RJg6\nVb3F09VFPEORU668YD8nlxdhefoipD8c7B2dSl22vRd5i3r6YQVy/Tx9VnvHK6ffKP0RDh2+fmsr\n30EiLMjMJB9WFivEDsuKN+nHPZCru/ZOGPZOmJ4+79MBrxrn3ZzFukBEAUP6EUEH6be0qPXzKUQs\nnhMnkguGCHhIn3djFhBtGQYVtXdU5OnLkL5M4bQ4ZO+oCuSybs4ySt8gZZQ+IJa2KePnA+Eo/e5u\nkkbnh1S2d+KaspmKm7N4ngyo0rdbokbpGwx7pR930k8kgokV4Ku9Y+ydJHQUXNOdvaNqc1ZaGvmy\nHwZjlL5BSil9EdKX8fMBvjx9EdIH2Cwenh251Mf2e3pQlbIpm6cfV6UfViCXp5YOvZ63QJu9f6P0\nDYzSDwBPnj7vqVkUrKTPqvQTiWCLR2XKZtztneFUcI1ncxYwdJEwSt/AKP0A8No7vIFcQG3glSLI\n4hkO9o5MWea4KH2dm7Pc+jdK38Ao/QDQG8SrDIAduu0dHtIPWkhU1d6JMk+fqnWRsswyWT+8pM+b\n8cND4nROrHn9RukbYOpUsiM3KHuEBzqVPm/2jqzSB9jVvijp61D6QfZOmKWVddk7MmWZZY5L5Ank\nWpZaEue1d4zSNxiC0aMJKba2qutTl9IXORxdVukD+klfh9IPsnfCPi5Rh73D2jZKT7+3lxyL6FXV\nkncDlYi941T6hvQNlNffUV1sjSIKTx9gJ32RzVlAvO2dINJnmZfsISqipRT8xtbh6bstMCI7f1Vt\nzgKGLhKm4JoBAPW+fktLfAK5qpQ+S9pmqtk7sqTf309ywINIW5e9w1qWWdTTd5JxXx+JH3ipdl4C\nF2kjUrbBKH2DIVBN+iNV6aeKvUN3abIoPj/Sp+maQbXZqVJ3K5YnU8aBZcHwe0rgrbKpmsC92vgF\nW3k2ZwFG6Rt4wCh9f7Dm6seJ9P2eHijRshyk4efHsz4tpKV5H92nm/RVevphkb6I0mddJIzSNwCg\nlvT7+gjRTpigpj874q70RTdnBdk7PMrc3qcsWQP+1oyKflhJnzeTxt5WlacvUo45iPR5A7myi4RR\n+gYA1JJ+WxshfB1ncIqkbIadvaMjkMtTd4fCz94RIWtRa4ZCVq2rbpuqSp/X3nH2b5S+AQC1pK/L\nzwfEUjaHg6fPa+0AwfYOa39paSTl0E1p88zLyyaKq6fvNmaYnr4ue8cofQMAaklfl58PRJu9E+Xm\nLFHS97J3eIq3Ad7B3DDtnZGm9FVtznKrvWOUvkHKKP0oPX2dKZs6lL4qe4f2JUv6XuQrS/osO3J5\nSyMA0ZO+rs1ZRukbAEgtpd/ezndObphKX1cgV4e9EwXpR2HvyByMHgbpiwRyZTZnGaVvAADIySEB\nWJaiYkHQqfQzMsgHluV4QQoVSp8nZVNHIDdqe0dGpVPI2Dteef4sm7NEd/O6PSHoyN5R5ekbpW/A\nhbQ0IDcXOHJEvi+dSh/gz+BJBU8/CnuHZ5467R0WtU7z/J0KV7fSjyqQG+TpyywSRukbDECVxaNT\n6QN8vr5lEdKPe/ZO2IHcri7+3b1ufYWVvUPbO0lYZnNWWKpdh6fPY++4Vdk0St8AgDrS11Vhk4In\nbfPkSaISg4ghCCykb1nxUvp+C8mJE/FR+mGQfliefkYG2ZzIcxC5bKnkoOvd6ukbpW8AQK3S123v\nsJK+CmsHYCP97m5yM6Wn8/fPQvo8Hjzgb++oUvphefqAOOmLevoipJ9IuO+ADVoowtycZZS+wQBU\nlVfWrfR5SF9FEBdgI31RlQ9Ek6cfNulHae+IKH2RzVmAO8mqLLhmau8YKINR+t5gydOXIf242zsq\nsneitHecJElLQvspXpHaO27tdJdhsCz/12Jq7xh4IlU8fZ7snVRR+mHX3lEZyJW1d1iIFBAnfepp\n248DpaQadLYur73j1k735ix6MpfXazFK38ATqki/uZmkf+pCFEqfJU9fdGMWkNr2TtTZO0EElkgM\nVfus+f1hkb7OM2+N0jfwhArSt6xw8vTj6umLbMwCgpV+V5faQG4qZu+4BWRZnxKcbVmPaFRB+kFj\n8ZZVcGbj8D5JGKVvMAAVpH/sGCET2RRJP/CkbIaZvaMzkNvVxb94+fU5XLJ3WBS7W1uWdlEGcnny\n7v2CvoD7ImGUvgEANaR/9Cgp6aATcVX6MmMFKX0R6ygVsnf6+8WJG+CLB/Cob0CtvcOTGtrfT768\nUn/dyiqMOKXf3NyMxYsXY9asWbjkkkvQ2trqet2MGTNw5pln4qyzzsJXvvIV4YkOV2RnkywAlmqS\nXtDt5wP8nr4K0qcqta/P+xoZ0s/MJDe609ul6Ozkt45U2ju6sncoabMe2yiSTeM2tqinH0b2TlCQ\nmXcfwLCsvbN69WosXrwYu3fvxsKFC7F69WrX6xKJBGpqarBjxw5s375deKLDFYmEfK5+3JT+8eNq\njm1MJILVvswCk0gE2zG8pB+GvSObvUMPVmeBjNKP0tPnJeUgJe52fZC9M+yU/saNG7FixQoAwIoV\nK/DCCy94Xmvx1OQdgZC1eI4eDUfps6ZsHjum7qzeINLv6JCLH/hZPCJKPxWyd06eVPOkwNuW1dN3\nI33VSp83u2Y4KX3haTQ2NiI/Px8AkJ+fj8bGRtfrEokEFi1ahPT0dKxcuRJ33HGH63X33HPPwP+r\nqqpQVVUlOrWUgyzpx83eOX4cOOUUNeOykL6MlRRE+ryevursnba2oT+XtXdU2UMsbXk9/fT05MYn\n6q+L2jt+C7YqO8gLupR+TU0NampqpPrwJf3Fixfj0KFDQ37+4x//eND3iUQCCQ8z7E9/+hMKCwvR\n1NSExYsXo6KiAgsWLBhynZ30RxpUKH3d9s6ECUTBs+DYMbJIqEBQrr4s6fvZMaJKP+7ZO2GSPq/S\nB5IEayf9oM9TGCTuVO48gWJVSt8piO+9917uPnyn8frrr3v+Lj8/H4cOHUJBQQEOHjyIvLw81+sK\nCwsBAFOnTsVVV12F7du3u5L+SIYKpa9KWXth4kR31emGsO2dLz9iQlBt71CitqyhQcGosneiIn0R\nT5+26+lJvlfd3cFPsrpJX2QfwLDbkVtdXY21a9cCANauXYsrr7xyyDWdnZ04/qUn0NHRgddeew1n\nnHGG6JDDFqmg9CdOJPV9WKAqkAuEY++oDOSmp5Mvpy8NiGXv6EjZVEH6LAQmq/Tt4+nI3uEJzLp5\n9FEofRUQJv0f/vCHeP311zFr1iy8+eab+OEPfwgAaGhowOWXXw4AOHToEBYsWIC5c+fivPPOw9Kl\nS3HJJZeomfkwQip4+mPHkg+9WwqhEyrtHZ3ZOwBRkyqVPu3TbSERsXfc3u9Uyd4R8fTdxtRB+rKl\nmFkOeOfJ6w8TwmtPTk4ONm/ePOTnRUVFeOmllwAAM2fOxIcffig+uxGCvDzAIw7OhDCydxKJpMUz\ndar/tartHb89DLqzd0RP5JI98QpQl73jRtoySl/njlzA3RZiOc9Xp72Tnp7cwJWWFvxa3BYVnTvm\neWB25MYAhYXAwYPi7Zub9ds7ALuvn0r2jupALuCdwRNV7R0d9o4I6bMq/dGjw7F3nGP4vSf0oBaq\n3nmVPutrDwOG9GMAWdIPQ+kD7KQfpr2jM2VTtJibSnsnlbN3nIqd1eJwLlRhkT7PGEbpG0ghN5eo\nY69NPX7o6yMkq7OWPgUL6ff0kC/RImhOREX6vb3kS+RGdbN3LGvkZe+IevrO1y1yUhdrCibdN8pL\n+kbpG0ghLQ3IzxdT+62txEoROSOWF5MmBWfwUGuHpa4LC6LK06fVO0Veh5u909tL/s48GRzD0d4R\nqezJEnh2q93vR7JpaeSL1nXiXVh4lT7rexYGDOnHBEVFYqR/5Eg41g7ApvRVWjtAdIFcUT8fcF9I\neK0dr34AvieGqLN3nOTNQvqiSt/ehrVeD50fL+mzKH1j7xj4QtTXb2oi2T9hgJX0VQVxAULofjV/\nZFM2dZG+U12LnMLlNTdZpS+bvdPdzb7JSpT0eVM2nW1YSN8eMFat9I29YxAIUdI/fDhepK8ycwfw\nr/ljWXrtHVHSd7N3eDN3vOZGiYTVJnKziHgWDbeTs1hTRkWVvkggV0Tp29uoVvomkGsQiKIioKGB\nv11TU3DevCpEofTHj/eu+dPdTW4umZ2Ofkpf5YlcIvaO29x4CJv24ZyL7JMC61OL02fXae+IKH0n\niRulbxAqUkXpBwVyVXv6EyZ4K30VJ3R5ZQfF1d7hJX23BYinjzFjBpNpb28yZz0IMkqfNwAsovTt\nC4VOpW9Zw6T2joFayHj6cVL6Ydo7Kkg/K8s9UCxD+jrtnShI396epwSE0xpibetU+iyBZ5E4gIy9\nw6P0ad0dVRltsjCkHxMUForZO3Hz9FXbO34lnWUzdwBv0pfx9N2Uvoi9QwON9uMieZ8YKGnbzzHi\nyd5xkr5MCQidgVyn0mcZKyylHyc/HzCkHxuIpmyGqfQnTQo/ZTMVlf6YMUMtIxF7x+04R16ln5Ym\nVsuGwvnUwqP0RT19kUCuc6FgGUu30ufJDAoThvRjgqlTgZYW95K8fjh8eOTaOyoOYPcjfdFAblbW\nUC9exN4Bhvr6PKRLIbNwOJ9aeBYvN6XP0jYspc8byHU+GbDW049TEBcwpB8bpKcT8nY5qMwXwz1P\nn5K+2zHLqpS+2z4AGaXvtqFMxN4BhhK2isPaZTz9MOydsJS+jL3Do/SNvWPgCV6Lp7+fFFubMkXf\nnOyIInsnI4PcnG4ZNnG1d9wygkTsHWCo0o+a9GUCuWHuyNVt7/DU3jFK38ATvBk8LS2EYMP6QI0Z\nkywc5gXVSh/wTtuMayDXi/RV2DsitpOzjzCVvqinT8m1vz/4VCtgsGq3rOiVvgnkGjCBl/TD9PMB\nElgMKrqm4xQvrw1aupW+jKfvJH2V9o5s6qdM9g5vIFdW6VMyDkp3tKt2WtwuqAihUfoGkYM3bTNM\nP58iJ4dYSl5obgYmT1Y7plcwVyXpO2MGqj19VfaOyLycxM2TveNG+mGmbLLO1d6GdVHTuSOXKn3L\nMkrfwAe8pRjCVvoAUfHNzd6/b2lRf4qXl72jInuHqkhnfRnVnr6o0nfz9GWVPk8fMvaOqKfPq8Cd\nbUQXF5VK31662Sh9A0+UlgL19ezXNzaSOvxhIjfXW+n39xPrR/WBLl72jqr0UDeLR8bTd7N3RJ9K\nVNg7Mk8L1EunVkVY9o5dtbMevGJvo2Nx4VH6QDJt0+TpG3hi2jTgiy/Yr29oAIqL9c3HDX6kf+wY\nITaZAmhu8LJ3jh0jGUWycCN91UpfNOisw97hXTjs7cMK5FIyZg2AOwk8aqUPJNM2jb1j4AlK+m45\n6W5oaCCWUJjwI30d1g7gXYpBVaZQdrY76YsGct08fVGlr8Pe4V047Bu0wg7ksr5eUaWvy9MHkqRv\n7B0DT9BjD4Ny4SniRvo6griAt9Jva1Nn7zg3aB0/Lp4O6qX040L6MkqfJ5Ar4+nTdjxlnHk9fZ3Z\nO0BysTRK38AXPBZPHElfl9L3sndUkP748e6kL7rJTKWn77SeROwdZ019EaUvYu846/aIKH1We0dE\n6fiGtdYAAA51SURBVMvaOyy7hE+cMErfIAA8pH/gQLxIX5e94xXIVUX6bvaRDOmrtHecpC+q9GWe\nFpxKn9XeGTdObFOYfTzWrKewlT7LEwh9HUbpG/hi2jSgri74uq4uQgZhHYpOESd7R6XSd/YvQ/r0\n4BF7SeS4kD7NHedRnnbFzmPv2K0py2LPYrG306n0ZTx9lnlRe8cofQNflJayKf2DB4nKD/tghuFo\n7ziVvmURu0eU9BMJQgh2iydKe8duN9FFg+dz47R3eJQ+HZc+IaQxMI69HavSp0HT/n7x1FAe0meZ\nF33fTMqmgS9YlX4Ufj4QH3unr48Qg+zmLNq/fVHp7CQ3qUzqqTMjSDRlU4XSt/chm/LJs3hRxW5Z\nfOM6lT4L6ScSSbtGxN5heV957R27p29I38ATrJ5+lKTf3OyeVqrL3nFT+u3thERZlCNL//ZFRcba\noXAuVKJKPzt7cJBZVOnTPmQ3d/GMn55OFHh3tzjp88yXxhBElD4r6fMEmOliKfKe64Qh/Zhh2jTg\n88+Dr4uK9EePJh9+txr0uuwdt5LOKqt5OpW+CtK3L1TULlJl74St9O3teRcvSuA8T2UiSh/gJ31e\npe/cr8Bi73R3G9I3CEBJCamp41e+GIiO9AFvi0eXvZOTQ/q2o7VVzW5cQJ/Sp6Tf3U2sIhG7yEn6\nIrEGex+y9hAv6VN/nmexccYCWOdL4yispG9PZWVZTGn/dJdx0N/TKH0DJmRkANOnA/v3+19XXx8d\n6XtV2tRl70yePNRSUvlUoUPp2+0dmWqgTtIXmZs9viBrD3V08LWn6ptn3MzMZB19nkJ1dLFgJX2a\nWmtZbMRMXwvr0wf19EXPUtAFQ/oxRFkZsHev/zV//Sswc2Y483HCS+nrsnfGjCH+sD0bRuVYOpS+\n3d6JmvRllb5z0eC1d3iVPs1+4iFYgN/eoYvEyZNsT2L0tbCSuF3pi1RY1QVD+jEEK+mfemo483Fi\nyhTgyJHBP7MsfaQPkH7tJZ1VWkm6lD7tU3Z3LyXc3l5CaDKefNievojSp+06O/kWKUrKrHOkqays\nY9jnxELixtM3YEYQ6R8/Tj7YYZdVpigoGHqAe3s7yaRRkULpBqevr1rp2w98VxEktts7bW3i5abt\nhEszlnj3ZkTp6YsofdpOROnzkD7vwsI7J+PpGzCjrAzYs8f799TaCXtjFoUb6euu7e9U+irjBzoW\nFLu9IxN0thOuaBE4uycvag/JePqypM+bskkXR9a58Sp9Xk/fkL5BIIKU/r590fn5gPtZvocOkcVA\nF2gwl0Kl0ncGilVYR3Z7R0bp05O9urvFbSL7wtHWxr8AyXr6IvYOfUIQCeTqUvr2QC6vp29I38AX\n06eTYmrOI/woovTzgWhIX6enP3bs4ECxigXFbu/IppdOnEj6EiV9Slb9/WLWFV006NF/PEFJUaXP\nmykDJBcYXaRPPfqODmPvGCjGqFGkBs++fe6/j1rpR2HvTJlCDoKnUJ0eal9UVPStSukDpG1Lizjp\np6Uli66Jkn57e9La4bEVZZR+Vxf/jtzOTnZ7Z/RoknN//DjbGIkEeR9bWvgCuSZl04AJZ54JfPSR\n++9GotLPzycLC0VTk9oKo3bSV/EUQYkakFf6kyfLkT6QtGhE7B2q9EVqHcl4+p2dfPPltXcSCdLm\n6FG+DCFW0rd7+iZl0yAQc+cCH37o/ruolX5ubpIEKA4e1Ev6BQWDSf/QIbL4qIJT6cuS/tSpyb0M\nskpfBenTDCURpU8XDJH9BtnZZN6i9g7Pgmm3d1gD3rykP24c+XwYT99AObxIv6uL+P1Rkn5a2tAa\nQZ9/TmIRumC3lHp7yY2al6euf1pIDiAEK2vv2PcyxEHp0w11MkqfN3MHSGZG8ZI+tZR4Fky7vcO6\nOFHS5ykR0dxsPH0DDfAi/U8/BWbNiv5QhhkzBpN+bW14pN/URMhEpvSxE/bSEiqUPiV9yyKkr8LT\nl5kXJX1RpX/8OBmf11KjCxbvecZ0sdBp79A2vPYOK+nTMg+G9A2YUFpKgkDOgOlHHwFnnBHNnOyY\nMYMQPUCyQurqwiP9gwfVWjsAIbOmJnKD9vSIH4pOQQOenZ2EvGTtndZWUohP9OlGRunn5CTHnzKF\nv21zM1kAp07la9fQQD5bIimbOu2dgwfZ3kP69GhI34AJiQRR+zt3Dv75hx+SIG/UsJP+oUPkJtD5\nwZ48ObkxRkfQuLSUFLGrryeVTlVsfKMZR7IVUalalsmQok8yIko/I4P8fXfv5id9OvemJr62ubkk\ndjVpEvvfgu634LV3Dhzgixt8/jnbApabSxbKnh7208bCgCH9GGPePODddwf/bOtWYP78aOZjx6mn\nEhIASDbRjBl6x0skknEEHUq/tJQ8rdTVEdJXgSlTyE1/6JAa0pdV+s3NYkofION+8gmfWgcGK31e\n0v/rX/nmWlBADiBKS2O3P7OyyEZI1s/TuHF8pN/QwJ/mqhuG9GOGmpqagf9fdBHw5pvJ33V0EE//\nnHPCn5cT9pTSjz/WYznZ3wuAxDJ27yZfZWVqx6LHVNbVkQVABaZMIX+vSZPkjsvLzQV27arB4cPi\nSj83l5DbqFFi6YOU9EWU/pEjxB7iiUf4kb7zc0FRUECeDngyjAoKyBMr65NjQQFZOFlIf+JEYk+p\nEhGqIEz6zz33HE477TSkp6fjgw8+8Lxu06ZNqKioQHl5Oe6//37R4UYM7B/oBQuA999PbvJ56y1C\n+HHwB8vLieJubyeW05w56sdwI/3PPiNEWlmpdix6IL1K0i8tBf70J/mbvqwM2L27Bo2Nckr/vffI\nE5qI6szLI++7iKd/+DDJOuIJvOfkEC/cLRbiRfp5eaQNz1MnvZaV9E85hfzLQvppaeR16Ix1iUCY\n9M844ww8//zzuOCCCzyv6evrw6pVq7Bp0yZ8+umneOaZZ7Br1y7RIUccsrOJ2n/+efL9734HXHVV\ntHOiyMgAZs8GduwgpD93rv4xqdLftUs96efkkBIDn3yijvTPPBN45RWguFiun/Jy4se3tIhvSJs6\nlahg0U19eXmkDAOvvUMFCm9+P32dPPbOqFGk3ezZ7G0oiesgfYDMZ9iQfkVFBWbNmuV7zfbt21FW\nVoYZM2YgMzMTy5Ytw4YNG0SHHJH49reBhx4iqvr554Hrr496RklcdhnwX/9FKoKGYTnNmwe89hp5\nL1TvU0gkgPPPB557DjjvPDV9nnkmCRLKWlFjx5LUz6ws8YPg6WsSXTSoNSMam6iv57uezvPCC/na\nFRToJX36uWMl/SlT4kf6sCRRVVVlvf/++66/e+6556zbb7994PunnnrKWrVq1ZDrAJgv82W+zJf5\nEvjiha/LtnjxYhxyJooDuO+++3DFFVf4NQUAJBjNQ8t++KmBgYGBgTb4kv7rr78u1XlxcTHq6uoG\nvq+rq0NJ3ELZBgYGBiMISlI2vZT6vHnzsGfPHtTW1uLkyZNYv349qqurVQxpYGBgYCAAYdJ//vnn\nUVpaim3btuHyyy/HkiVLAAANDQ24/PLLAQAZGRl4+OGHcemll6KyshI33HADZvNEWQwMDAwM1II7\nCqAYr7zyivU3f/M3VllZmbV69eqopxMZvvjiC6uqqsqqrKy0TjvtNOuhhx6KekqRore315o7d661\ndOnSqKcSOVpaWqxrrrnGqqiosGbPnm298847UU8pMtx3331WZWWldfrpp1s33nijdeLEiainFBpu\nueUWKy8vzzr99NMHfnb06FFr0aJFVnl5ubV48WKrpaUlsJ9Id+SaPP4kMjMz8cADD+CTTz7Btm3b\n8Itf/GLEvhcA8NBDD6GyspI5GWA446677sJll12GXbt24aOPPhqxT8u1tbV4/PHH8cEHH+Djjz9G\nX18fnn322ainFRpuueUWbNq0adDPVq9ejcWLF2P37t1YuHAhVq9eHdhPpKRv8viTKCgowNwvdzhl\nZ2dj9uzZaGhoiHhW0aC+vh4vv/wybr/99hGf2dXW1oYtW7bg1ltvBUAs04kyxflTGBMmTEBmZiY6\nOzvR29uLzs5OFMvufEshLFiwAJMdBz1s3LgRK1asAACsWLECL7zwQmA/kZL+gQMHUGrb/lhSUoID\nBw5EOKN4oLa2Fjt27MB5qnYJpRjuvvtu/PSnP0Wa6E6kYYT9+/dj6tSpuOWWW3D22WfjjjvuQKf9\nyLIRhJycHPzgBz/AtGnTUFRUhEmTJmHRokVRTytSNDY2Iv/Lgkz5+flotB8v54FI7yrz6D4U7e3t\nuPbaa/HQQw8hW7aoewrixRdfRF5eHs4666wRr/IBoLe3Fx988AH+/u//Hh988AGysrKYHuGHI/bt\n24cHH3wQtbW1aGhoQHt7O55++umopxUbJBIJJk6NlPRNHv9g9PT04JprrsG3vvUtXHnllVFPJxJs\n3boVGzduxCmnnIIbb7wRb775Jm6++eaopxUZSkpKUFJSgnPPPRcAcO211/oWOBzO+POf/4z58+cj\nNzcXGRkZuPrqq7F169aopxUp8vPzBzbQHjx4EHkMFfkiJX2Tx5+EZVm47bbbUFlZie9///tRTycy\n3Hfffairq8P+/fvx7LPP4uKLL8a6deuinlZkKCgoQGlpKXZ/eXjB5s2bcdppp0U8q2hQUVGBbdu2\noaurC5ZlYfPmzahUXXkvxVBdXY21a9cCANauXcsmFnWlF7Hi5ZdftmbNmmWdeuqp1n333Rf1dCLD\nli1brEQiYc2ZM8eaO3euNXfuXOuVV16JelqRoqamxrriiiuinkbk+PDDD6158+ZZZ555pnXVVVdZ\nra2tUU8pMtx///0DKZs333yzdfLkyainFBqWLVtmFRYWWpmZmVZJSYn1xBNPWEePHrUWLlzIlbKZ\nsCxjnBoYGBiMFJj0CAMDA4MRBEP6BgYGBiMIhvQNDAwMRhAM6RsYGBiMIBjSNzAwMBhBMKRvYGBg\nMILw/wFa1cBzw0Gh4AAAAABJRU5ErkJggg==\n",
225 225 "text": [
226 226 "<matplotlib.figure.Figure at 0xa70a0cc>"
227 227 ]
228 228 }
229 229 ],
230 230 "prompt_number": 5
231 231 },
232 232 {
233 233 "cell_type": "markdown",
234 234 "metadata": {
235 235 "slideshow": {
236 236 "slide_type": "slide"
237 237 }
238 238 },
239 239 "source": [
240 240 "You can paste blocks of input with prompt markers, such as those from\n",
241 241 "[the official Python tutorial](http://docs.python.org/tutorial/interpreter.html#interactive-mode)"
242 242 ]
243 243 },
244 244 {
245 245 "cell_type": "code",
246 246 "collapsed": false,
247 247 "input": [
248 248 ">>> the_world_is_flat = 1\n",
249 249 ">>> if the_world_is_flat:\n",
250 250 "... print \"Be careful not to fall off!\""
251 251 ],
252 252 "language": "python",
253 253 "metadata": {},
254 254 "outputs": [
255 255 {
256 256 "output_type": "stream",
257 257 "stream": "stdout",
258 258 "text": [
259 259 "Be careful not to fall off!\n"
260 260 ]
261 261 }
262 262 ],
263 263 "prompt_number": 6
264 264 },
265 265 {
266 266 "cell_type": "markdown",
267 267 "metadata": {
268 268 "slideshow": {
269 269 "slide_type": "slide"
270 270 }
271 271 },
272 272 "source": [
273 273 "Errors are shown in informative ways:"
274 274 ]
275 275 },
276 276 {
277 277 "cell_type": "code",
278 278 "collapsed": false,
279 279 "input": [
280 280 "%run non_existent_file"
281 281 ],
282 282 "language": "python",
283 283 "metadata": {
284 284 "slideshow": {
285 285 "slide_type": "fragment"
286 286 }
287 287 },
288 288 "outputs": [
289 289 {
290 290 "output_type": "stream",
291 291 "stream": "stderr",
292 292 "text": [
293 293 "ERROR: File `u'non_existent_file.py'` not found.\n"
294 294 ]
295 295 }
296 296 ],
297 297 "prompt_number": 7
298 298 },
299 299 {
300 300 "cell_type": "code",
301 301 "collapsed": false,
302 302 "input": [
303 303 "x = 1\n",
304 304 "y = 4\n",
305 305 "z = y/(1-x)"
306 306 ],
307 307 "language": "python",
308 308 "metadata": {
309 309 "slideshow": {
310 310 "slide_type": "slide"
311 311 }
312 312 },
313 313 "outputs": [
314 314 {
315 315 "ename": "ZeroDivisionError",
316 316 "evalue": "integer division or modulo by zero",
317 317 "output_type": "pyerr",
318 318 "traceback": [
319 319 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mZeroDivisionError\u001b[0m Traceback (most recent call last)",
320 320 "\u001b[1;32m<ipython-input-8-dc39888fd1d2>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[0mz\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m/\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m-\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
321 321 "\u001b[1;31mZeroDivisionError\u001b[0m: integer division or modulo by zero"
322 322 ]
323 323 }
324 324 ],
325 325 "prompt_number": 8
326 326 },
327 327 {
328 328 "cell_type": "markdown",
329 329 "metadata": {
330 330 "slideshow": {
331 331 "slide_type": "slide"
332 332 }
333 333 },
334 334 "source": [
335 335 "When IPython needs to display additional information (such as providing details on an object via `x?`\n",
336 336 "it will automatically invoke a pager at the bottom of the screen:"
337 337 ]
338 338 },
339 339 {
340 340 "cell_type": "code",
341 341 "collapsed": false,
342 342 "input": [
343 343 "magic"
344 344 ],
345 345 "language": "python",
346 346 "metadata": {
347 347 "slideshow": {
348 348 "slide_type": "fragment"
349 349 }
350 350 },
351 351 "outputs": [],
352 352 "prompt_number": 9
353 353 },
354 354 {
355 355 "cell_type": "markdown",
356 356 "metadata": {
357 357 "slideshow": {
358 358 "slide_type": "header_slide"
359 359 }
360 360 },
361 361 "source": [
362 362 "## Non-blocking output of kernel\n",
363 363 "\n",
364 364 "If you execute the next cell, you will see the output arriving as it is generated, not all at the end."
365 365 ]
366 366 },
367 367 {
368 368 "cell_type": "code",
369 369 "collapsed": false,
370 370 "input": [
371 371 "import time, sys\n",
372 372 "for i in range(8):\n",
373 373 " print i,\n",
374 374 " time.sleep(0.5)"
375 375 ],
376 376 "language": "python",
377 377 "metadata": {},
378 378 "outputs": [
379 379 {
380 380 "output_type": "stream",
381 381 "stream": "stdout",
382 382 "text": [
383 383 "0 "
384 384 ]
385 385 },
386 386 {
387 387 "output_type": "stream",
388 388 "stream": "stdout",
389 389 "text": [
390 390 "1 "
391 391 ]
392 392 },
393 393 {
394 394 "output_type": "stream",
395 395 "stream": "stdout",
396 396 "text": [
397 397 "2 "
398 398 ]
399 399 },
400 400 {
401 401 "output_type": "stream",
402 402 "stream": "stdout",
403 403 "text": [
404 404 "3 "
405 405 ]
406 406 },
407 407 {
408 408 "output_type": "stream",
409 409 "stream": "stdout",
410 410 "text": [
411 411 "4 "
412 412 ]
413 413 },
414 414 {
415 415 "output_type": "stream",
416 416 "stream": "stdout",
417 417 "text": [
418 418 "5 "
419 419 ]
420 420 },
421 421 {
422 422 "output_type": "stream",
423 423 "stream": "stdout",
424 424 "text": [
425 425 "6 "
426 426 ]
427 427 },
428 428 {
429 429 "output_type": "stream",
430 430 "stream": "stdout",
431 431 "text": [
432 432 "7\n"
433 433 ]
434 434 }
435 435 ],
436 436 "prompt_number": 10
437 437 },
438 438 {
439 439 "cell_type": "markdown",
440 440 "metadata": {
441 441 "slideshow": {
442 442 "slide_type": "slide"
443 443 }
444 444 },
445 445 "source": [
446 446 "## Clean crash and restart\n",
447 447 "\n",
448 448 "We call the low-level system libc.time routine with the wrong argument via\n",
449 449 "ctypes to segfault the Python interpreter:"
450 450 ]
451 451 },
452 452 {
453 453 "cell_type": "code",
454 454 "collapsed": false,
455 455 "input": [
456 456 "import sys\n",
457 457 "from ctypes import CDLL\n",
458 458 "# This will crash a Linux or Mac system; equivalent calls can be made on Windows\n",
459 459 "dll = 'dylib' if sys.platform == 'darwin' else '.so.6'\n",
460 460 "libc = CDLL(\"libc.%s\" % dll) \n",
461 461 "libc.time(-1) # BOOM!!"
462 462 ],
463 463 "language": "python",
464 464 "metadata": {},
465 465 "outputs": [],
466 466 "prompt_number": "*"
467 467 },
468 468 {
469 469 "cell_type": "markdown",
470 470 "metadata": {
471 471 "slideshow": {
472 472 "slide_type": "header_slide"
473 473 }
474 474 },
475 475 "source": [
476 476 "## Markdown cells can contain formatted text and code\n",
477 477 "\n",
478 478 "You can *italicize*, **boldface**\n",
479 479 "\n",
480 480 "* build\n",
481 481 "* lists"
482 482 ]
483 483 },
484 484 {
485 485 "cell_type": "markdown",
486 486 "metadata": {
487 487 "slideshow": {
488 488 "slide_type": "slide"
489 489 }
490 490 },
491 491 "source": [
492 492 "and embed code meant for illustration instead of execution in Python:\n",
493 493 "\n",
494 494 " def f(x):\n",
495 495 " \"\"\"a docstring\"\"\"\n",
496 496 " return x**2\n",
497 497 "\n",
498 498 "or other languages:\n",
499 499 "\n",
500 500 " if (i=0; i<n; i++) {\n",
501 501 " printf(\"hello %d\\n\", i);\n",
502 502 " x += 4;\n",
503 503 " }"
504 504 ]
505 505 },
506 506 {
507 507 "cell_type": "markdown",
508 508 "metadata": {
509 509 "slideshow": {
510 510 "slide_type": "slide"
511 511 }
512 512 },
513 513 "source": [
514 514 "Courtesy of MathJax, you can include mathematical expressions both inline: \n",
515 515 "$e^{i\\pi} + 1 = 0$ and displayed:\n",
516 516 "\n",
517 517 "$$e^x=\\sum_{i=0}^\\infty \\frac{1}{i!}x^i$$"
518 518 ]
519 519 },
520 520 {
521 521 "cell_type": "markdown",
522 522 "metadata": {
523 523 "slideshow": {
524 524 "slide_type": "header_slide"
525 525 }
526 526 },
527 527 "source": [
528 528 "## Rich displays: include anyting a browser can show\n",
529 529 "\n",
530 530 "Note that we have an actual protocol for this, see the `display_protocol` notebook for further details."
531 531 ]
532 532 },
533 533 {
534 534 "cell_type": "markdown",
535 535 "metadata": {
536 536 "slideshow": {
537 537 "slide_type": "slide"
538 538 }
539 539 },
540 540 "source": [
541 541 "### Images"
542 542 ]
543 543 },
544 544 {
545 545 "cell_type": "code",
546 546 "collapsed": false,
547 547 "input": [
548 548 "from IPython.display import Image\n",
549 549 "Image(filename='../../source/_static/logo.png')"
550 550 ],
551 551 "language": "python",
552 552 "metadata": {
553 553 "slideshow": {
554 554 "slide_type": "skip"
555 555 }
556 556 },
557 557 "outputs": [
558 558 {
559 559 "ename": "IOError",
560 560 "evalue": "[Errno 2] No such file or directory: u'../../source/_static/logo.png'",
561 561 "output_type": "pyerr",
562 562 "traceback": [
563 563 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mIOError\u001b[0m Traceback (most recent call last)",
564 564 "\u001b[1;32m<ipython-input-11-d52b796e1601>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mImage\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'../../source/_static/logo.png'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
565 565 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, url, filename, format, embed, width, height)\u001b[0m\n\u001b[0;32m 495\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mwidth\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mwidth\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 496\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mheight\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mheight\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 497\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mImage\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0murl\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 498\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 499\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
566 566 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, data, url, filename)\u001b[0m\n\u001b[0;32m 263\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0murl\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0murl\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 264\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mfilename\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m \u001b[1;32melse\u001b[0m \u001b[0municode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 265\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 266\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 267\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
567 567 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36mreload\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 500\u001b[0m \u001b[1;34m\"\"\"Reload the raw data from file or URL.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 501\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0membed\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 502\u001b[1;33m \u001b[0msuper\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mImage\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreload\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 503\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 504\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_repr_html_\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
568 568 "\u001b[1;32m/home/damian/Desarrollos/ipython_mtaui_slide/IPython/core/display.pyc\u001b[0m in \u001b[0;36mreload\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 268\u001b[0m \u001b[1;34m\"\"\"Reload the raw data from file or URL.\"\"\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 269\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 270\u001b[1;33m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfilename\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_read_flags\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 271\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdata\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 272\u001b[0m \u001b[1;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0murl\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
569 569 "\u001b[1;31mIOError\u001b[0m: [Errno 2] No such file or directory: u'../../source/_static/logo.png'"
570 570 ]
571 571 }
572 572 ],
573 573 "prompt_number": 11
574 574 },
575 575 {
576 576 "cell_type": "markdown",
577 577 "metadata": {
578 578 "slideshow": {
579 579 "slide_type": "slide"
580 580 }
581 581 },
582 582 "source": [
583 583 "An image can also be displayed from raw data or a url"
584 584 ]
585 585 },
586 586 {
587 587 "cell_type": "code",
588 588 "collapsed": false,
589 589 "input": [
590 590 "Image(url='http://python.org/images/python-logo.gif')"
591 591 ],
592 592 "language": "python",
593 593 "metadata": {
594 594 "slideshow": {
595 595 "slide_type": "-"
596 596 }
597 597 },
598 598 "outputs": [
599 599 {
600 600 "html": [
601 601 "<img src=\"http://python.org/images/python-logo.gif\"/>"
602 602 ],
603 603 "output_type": "pyout",
604 604 "prompt_number": 12,
605 605 "text": [
606 606 "<IPython.core.display.Image at 0xa7e68ac>"
607 607 ]
608 608 }
609 609 ],
610 610 "prompt_number": 12
611 611 },
612 612 {
613 613 "cell_type": "markdown",
614 614 "metadata": {
615 615 "slideshow": {
616 616 "slide_type": "skip"
617 617 }
618 618 },
619 619 "source": [
620 620 "SVG images are also supported out of the box (since modern browsers do a good job of rendering them):"
621 621 ]
622 622 },
623 623 {
624 624 "cell_type": "code",
625 625 "collapsed": false,
626 626 "input": [
627 627 "from IPython.display import SVG\n",
628 628 "SVG(filename='python-logo.svg')"
629 629 ],
630 630 "language": "python",
631 631 "metadata": {
632 632 "slideshow": {
633 633 "slide_type": "skip"
634 634 }
635 635 },
636 636 "outputs": [
637 637 {
638 638 "output_type": "pyout",
639 639 "prompt_number": 13,
640 640 "svg": [
641 641 "<svg height=\"115.02pt\" id=\"svg2\" inkscape:version=\"0.43\" sodipodi:docbase=\"/home/sdeibel\" sodipodi:docname=\"logo-python-generic.svg\" sodipodi:version=\"0.32\" version=\"1.0\" width=\"388.84pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:cc=\"http://web.resource.org/cc/\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:inkscape=\"http://www.inkscape.org/namespaces/inkscape\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\" xmlns:sodipodi=\"http://inkscape.sourceforge.net/DTD/sodipodi-0.dtd\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
642 642 " <metadata id=\"metadata2193\">\n",
643 643 " <rdf:RDF>\n",
644 644 " <cc:Work rdf:about=\"\">\n",
645 645 " <dc:format>image/svg+xml</dc:format>\n",
646 646 " <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n",
647 647 " </cc:Work>\n",
648 648 " </rdf:RDF>\n",
649 649 " </metadata>\n",
650 650 " <sodipodi:namedview bordercolor=\"#666666\" borderopacity=\"1.0\" id=\"base\" inkscape:current-layer=\"svg2\" inkscape:cx=\"243.02499\" inkscape:cy=\"71.887497\" inkscape:pageopacity=\"0.0\" inkscape:pageshadow=\"2\" inkscape:window-height=\"543\" inkscape:window-width=\"791\" inkscape:window-x=\"0\" inkscape:window-y=\"0\" inkscape:zoom=\"1.4340089\" pagecolor=\"#ffffff\"/>\n",
651 651 " <defs id=\"defs4\">\n",
652 652 " <linearGradient id=\"linearGradient2795\">\n",
653 653 " <stop id=\"stop2797\" offset=\"0\" style=\"stop-color:#b8b8b8;stop-opacity:0.49803922\"/>\n",
654 654 " <stop id=\"stop2799\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n",
655 655 " </linearGradient>\n",
656 656 " <linearGradient id=\"linearGradient2787\">\n",
657 657 " <stop id=\"stop2789\" offset=\"0\" style=\"stop-color:#7f7f7f;stop-opacity:0.5\"/>\n",
658 658 " <stop id=\"stop2791\" offset=\"1\" style=\"stop-color:#7f7f7f;stop-opacity:0\"/>\n",
659 659 " </linearGradient>\n",
660 660 " <linearGradient id=\"linearGradient3676\">\n",
661 661 " <stop id=\"stop3678\" offset=\"0\" style=\"stop-color:#b2b2b2;stop-opacity:0.5\"/>\n",
662 662 " <stop id=\"stop3680\" offset=\"1\" style=\"stop-color:#b3b3b3;stop-opacity:0\"/>\n",
663 663 " </linearGradient>\n",
664 664 " <linearGradient id=\"linearGradient3236\">\n",
665 665 " <stop id=\"stop3244\" offset=\"0\" style=\"stop-color:#f4f4f4;stop-opacity:1\"/>\n",
666 666 " <stop id=\"stop3240\" offset=\"1\" style=\"stop-color:#ffffff;stop-opacity:1\"/>\n",
667 667 " </linearGradient>\n",
668 668 " <linearGradient id=\"linearGradient4671\">\n",
669 669 " <stop id=\"stop4673\" offset=\"0\" style=\"stop-color:#ffd43b;stop-opacity:1\"/>\n",
670 670 " <stop id=\"stop4675\" offset=\"1\" style=\"stop-color:#ffe873;stop-opacity:1\"/>\n",
671 671 " </linearGradient>\n",
672 672 " <linearGradient id=\"linearGradient4689\">\n",
673 673 " <stop id=\"stop4691\" offset=\"0\" style=\"stop-color:#5a9fd4;stop-opacity:1\"/>\n",
674 674 " <stop id=\"stop4693\" offset=\"1\" style=\"stop-color:#306998;stop-opacity:1\"/>\n",
675 675 " </linearGradient>\n",
676 676 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2987\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
677 677 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2990\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
678 678 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2587\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
679 679 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2589\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
680 680 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2248\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"77.475983\" y2=\"76.313133\"/>\n",
681 681 " <linearGradient gradientTransform=\"translate(100.2702,99.61116)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2250\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
682 682 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2255\" x1=\"224.23996\" x2=\"-65.308502\" xlink:href=\"#linearGradient4671\" y1=\"144.75717\" y2=\"144.75717\"/>\n",
683 683 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-11.5974,-7.60954)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient2258\" x1=\"172.94208\" x2=\"26.670298\" xlink:href=\"#linearGradient4689\" y1=\"76.176224\" y2=\"76.313133\"/>\n",
684 684 " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(1,0,0,0.177966,0,108.7434)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient2801\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n",
685 685 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1475\" x1=\"150.96111\" x2=\"112.03144\" xlink:href=\"#linearGradient4671\" y1=\"192.35176\" y2=\"137.27299\"/>\n",
686 686 " <linearGradient gradientTransform=\"matrix(0.562541,0,0,0.567972,-9.399749,-5.305317)\" gradientUnits=\"userSpaceOnUse\" id=\"linearGradient1478\" x1=\"26.648937\" x2=\"135.66525\" xlink:href=\"#linearGradient4689\" y1=\"20.603781\" y2=\"114.39767\"/>\n",
687 687 " <radialGradient cx=\"61.518883\" cy=\"132.28575\" fx=\"61.518883\" fy=\"132.28575\" gradientTransform=\"matrix(2.382716e-8,-0.296405,1.43676,4.683673e-7,-128.544,150.5202)\" gradientUnits=\"userSpaceOnUse\" id=\"radialGradient1480\" r=\"29.036913\" xlink:href=\"#linearGradient2795\"/>\n",
688 688 " </defs>\n",
689 689 " <g id=\"g2303\">\n",
690 690 " <path d=\"M 184.61344,61.929363 C 184.61344,47.367213 180.46118,39.891193 172.15666,39.481813 C 168.85239,39.325863 165.62611,39.852203 162.48754,41.070593 C 159.98254,41.967323 158.2963,42.854313 157.40931,43.751043 L 157.40931,78.509163 C 162.72147,81.842673 167.43907,83.392453 171.55234,83.148783 C 180.25649,82.573703 184.61344,75.507063 184.61344,61.929363 z M 194.85763,62.533683 C 194.85763,69.931723 193.12265,76.072393 189.63319,80.955683 C 185.7441,86.482283 180.35396,89.328433 173.46277,89.484393 C 168.26757,89.650093 162.91642,88.022323 157.40931,84.610843 L 157.40931,116.20116 L 148.50047,113.02361 L 148.50047,42.903043 C 149.96253,41.109583 151.84372,39.569543 154.12454,38.263433 C 159.42696,35.173603 165.86978,33.584823 173.45302,33.506853 L 173.57973,33.633563 C 180.50991,33.545833 185.85132,36.391993 189.60395,42.162263 C 193.10315,47.454933 194.85763,54.238913 194.85763,62.533683 z \" id=\"path46\" style=\"fill:#646464;fill-opacity:1\"/>\n",
691 691 " <path d=\"M 249.30487,83.265743 C 249.30487,93.188283 248.31067,100.05998 246.32227,103.88084 C 244.32411,107.7017 240.52275,110.75254 234.90842,113.02361 C 230.35653,114.81707 225.43425,115.79178 220.15133,115.95748 L 218.67952,110.34316 C 224.05016,109.61213 227.83204,108.88109 230.02513,108.15006 C 234.34309,106.688 237.30621,104.44617 238.93397,101.44406 C 240.24008,98.997543 240.88339,94.328693 240.88339,87.418003 L 240.88339,85.098203 C 234.79146,87.866373 228.40711,89.240713 221.73036,89.240713 C 217.34417,89.240713 213.47457,87.866373 210.14107,85.098203 C 206.39818,82.086343 204.52674,78.265483 204.52674,73.635623 L 204.52674,36.557693 L 213.43558,33.506853 L 213.43558,70.828453 C 213.43558,74.815013 214.7222,77.885353 217.29543,80.039463 C 219.86866,82.193563 223.20217,83.226753 227.2862,83.148783 C 231.37023,83.061053 235.74667,81.482023 240.39603,78.392203 L 240.39603,34.851953 L 249.30487,34.851953 L 249.30487,83.265743 z \" id=\"path48\" style=\"fill:#646464;fill-opacity:1\"/>\n",
692 692 " <path d=\"M 284.08249,88.997033 C 283.02006,89.084753 282.04535,89.123743 281.14862,89.123743 C 276.10937,89.123743 272.18129,87.924853 269.37413,85.517323 C 266.57671,83.109793 265.17314,79.786033 265.17314,75.546053 L 265.17314,40.456523 L 259.07146,40.456523 L 259.07146,34.851953 L 265.17314,34.851953 L 265.17314,19.968143 L 274.07223,16.800333 L 274.07223,34.851953 L 284.08249,34.851953 L 284.08249,40.456523 L 274.07223,40.456523 L 274.07223,75.302373 C 274.07223,78.645623 274.96896,81.014163 276.76243,82.398253 C 278.30247,83.538663 280.74899,84.191723 284.08249,84.357423 L 284.08249,88.997033 z \" id=\"path50\" style=\"fill:#646464;fill-opacity:1\"/>\n",
693 693 " <path d=\"M 338.02288,88.266003 L 329.11404,88.266003 L 329.11404,53.878273 C 329.11404,50.379063 328.29528,47.367213 326.66753,44.852463 C 324.78634,42.006313 322.17411,40.583233 318.82112,40.583233 C 314.73708,40.583233 309.6296,42.737343 303.4987,47.045563 L 303.4987,88.266003 L 294.58985,88.266003 L 294.58985,6.0687929 L 303.4987,3.2616329 L 303.4987,40.700203 C 309.191,36.557693 315.40963,34.481563 322.16436,34.481563 C 326.88196,34.481563 330.70282,36.070333 333.62694,39.238143 C 336.56082,42.405943 338.02288,46.353513 338.02288,51.071103 L 338.02288,88.266003 L 338.02288,88.266003 z \" id=\"path52\" style=\"fill:#646464;fill-opacity:1\"/>\n",
694 694 " <path d=\"M 385.37424,60.525783 C 385.37424,54.930953 384.31182,50.310833 382.19669,46.655673 C 379.68195,42.201253 375.77337,39.852203 370.49044,39.608523 C 360.72386,40.173863 355.85032,47.172273 355.85032,60.584263 C 355.85032,66.734683 356.86401,71.871393 358.91089,75.994413 C 361.52312,81.248093 365.44145,83.840823 370.66589,83.753103 C 380.47146,83.675123 385.37424,75.935933 385.37424,60.525783 z M 395.13109,60.584263 C 395.13109,68.547643 393.09395,75.175663 389.02941,80.468333 C 384.5555,86.394563 378.37584,89.367423 370.49044,89.367423 C 362.67328,89.367423 356.58135,86.394563 352.18541,80.468333 C 348.19885,75.175663 346.21044,68.547643 346.21044,60.584263 C 346.21044,53.098503 348.36455,46.801883 352.67276,41.674913 C 357.22466,36.236033 363.20937,33.506853 370.6074,33.506853 C 378.00545,33.506853 384.02914,36.236033 388.66877,41.674913 C 392.97697,46.801883 395.13109,53.098503 395.13109,60.584263 z \" id=\"path54\" style=\"fill:#646464;fill-opacity:1\"/>\n",
695 695 " <path d=\"M 446.20583,88.266003 L 437.29699,88.266003 L 437.29699,51.928853 C 437.29699,47.942293 436.0981,44.832973 433.70032,42.591133 C 431.30253,40.359053 428.10549,39.277123 424.11893,39.364853 C 419.8887,39.442833 415.86314,40.826913 412.04229,43.507363 L 412.04229,88.266003 L 403.13345,88.266003 L 403.13345,42.405943 C 408.26042,38.672813 412.97801,36.236033 417.28621,35.095623 C 421.35076,34.033193 424.93769,33.506853 428.02752,33.506853 C 430.14264,33.506853 432.13104,33.711543 434.00248,34.120913 C 437.50169,34.929923 440.34783,36.430973 442.54093,38.633823 C 444.98744,41.070593 446.20583,43.994723 446.20583,47.415943 L 446.20583,88.266003 z \" id=\"path56\" style=\"fill:#646464;fill-opacity:1\"/>\n",
696 696 " <path d=\"M 60.510156,6.3979729 C 55.926503,6.4192712 51.549217,6.8101906 47.697656,7.4917229 C 36.35144,9.4962267 34.291407,13.691825 34.291406,21.429223 L 34.291406,31.647973 L 61.103906,31.647973 L 61.103906,35.054223 L 34.291406,35.054223 L 24.228906,35.054223 C 16.436447,35.054223 9.6131468,39.73794 7.4789058,48.647973 C 5.0170858,58.860939 4.9078907,65.233996 7.4789058,75.897973 C 9.3848341,83.835825 13.936449,89.491721 21.728906,89.491723 L 30.947656,89.491723 L 30.947656,77.241723 C 30.947656,68.391821 38.6048,60.585475 47.697656,60.585473 L 74.478906,60.585473 C 81.933857,60.585473 87.885159,54.447309 87.885156,46.960473 L 87.885156,21.429223 C 87.885156,14.162884 81.755176,8.7044455 74.478906,7.4917229 C 69.872919,6.7249976 65.093809,6.3766746 60.510156,6.3979729 z M 46.010156,14.616723 C 48.779703,14.616723 51.041406,16.915369 51.041406,19.741723 C 51.041404,22.558059 48.779703,24.835473 46.010156,24.835473 C 43.23068,24.835472 40.978906,22.558058 40.978906,19.741723 C 40.978905,16.91537 43.23068,14.616723 46.010156,14.616723 z \" id=\"path1948\" style=\"fill:url(#linearGradient1478);fill-opacity:1\"/>\n",
697 697 " <path d=\"M 91.228906,35.054223 L 91.228906,46.960473 C 91.228906,56.191228 83.403011,63.960472 74.478906,63.960473 L 47.697656,63.960473 C 40.361823,63.960473 34.291407,70.238956 34.291406,77.585473 L 34.291406,103.11672 C 34.291406,110.38306 40.609994,114.65704 47.697656,116.74172 C 56.184987,119.23733 64.323893,119.68835 74.478906,116.74172 C 81.229061,114.78733 87.885159,110.85411 87.885156,103.11672 L 87.885156,92.897973 L 61.103906,92.897973 L 61.103906,89.491723 L 87.885156,89.491723 L 101.29141,89.491723 C 109.08387,89.491723 111.98766,84.056315 114.69765,75.897973 C 117.49698,67.499087 117.37787,59.422197 114.69765,48.647973 C 112.77187,40.890532 109.09378,35.054223 101.29141,35.054223 L 91.228906,35.054223 z M 76.166406,99.710473 C 78.945884,99.710476 81.197656,101.98789 81.197656,104.80422 C 81.197654,107.63057 78.945881,109.92922 76.166406,109.92922 C 73.396856,109.92922 71.135156,107.63057 71.135156,104.80422 C 71.135158,101.98789 73.396853,99.710473 76.166406,99.710473 z \" id=\"path1950\" style=\"fill:url(#linearGradient1475);fill-opacity:1\"/>\n",
698 698 " <path d=\"M 463.5544,26.909383 L 465.11635,26.909383 L 465.11635,17.113143 L 468.81648,17.113143 L 468.81648,15.945483 L 459.85427,15.945483 L 459.85427,17.113143 L 463.5544,17.113143 L 463.5544,26.909383 M 470.20142,26.909383 L 471.53589,26.909383 L 471.53589,17.962353 L 474.4323,26.908259 L 475.91799,26.908259 L 478.93615,17.992683 L 478.93615,26.909383 L 480.39194,26.909383 L 480.39194,15.945483 L 478.46605,15.945483 L 475.16774,25.33834 L 472.35477,15.945483 L 470.20142,15.945483 L 470.20142,26.909383\" id=\"text3004\" style=\"font-size:15.16445827px;font-style:normal;font-weight:normal;line-height:125%;fill:#646464;fill-opacity:1;stroke:none;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1;font-family:Bitstream Vera Sans\"/>\n",
699 699 " <path d=\"M 110.46717 132.28575 A 48.948284 8.6066771 0 1 1 12.570599,132.28575 A 48.948284 8.6066771 0 1 1 110.46717 132.28575 z\" id=\"path1894\" style=\"opacity:0.44382019;fill:url(#radialGradient1480);fill-opacity:1;fill-rule:nonzero;stroke:none;stroke-width:20;stroke-miterlimit:4;stroke-dasharray:none;stroke-opacity:1\" transform=\"matrix(0.73406,0,0,0.809524,16.24958,27.00935)\"/>\n",
700 700 " </g>\n",
701 701 "</svg>"
702 702 ],
703 703 "text": [
704 704 "<IPython.core.display.SVG at 0xa7e6e6c>"
705 705 ]
706 706 }
707 707 ],
708 708 "prompt_number": 13
709 709 },
710 710 {
711 711 "cell_type": "markdown",
712 712 "metadata": {
713 713 "slideshow": {
714 714 "slide_type": "header_slide"
715 715 }
716 716 },
717 717 "source": [
718 718 "#### Embedded vs Non-embedded Images"
719 719 ]
720 720 },
721 721 {
722 722 "cell_type": "markdown",
723 723 "metadata": {},
724 724 "source": [
725 725 "As of IPython 0.13, images are embedded by default for compatibility with QtConsole, and the ability to still be displayed offline.\n",
726 726 "\n",
727 727 "Let's look at the differences:"
728 728 ]
729 729 },
730 730 {
731 731 "cell_type": "code",
732 732 "collapsed": false,
733 733 "input": [
734 734 "# by default Image data are embedded\n",
735 735 "Embed = Image( 'http://scienceview.berkeley.edu/view/images/newview.jpg')\n",
736 736 "\n",
737 737 "# if kwarg `url` is given, the embedding is assumed to be false\n",
738 738 "SoftLinked = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg')\n",
739 739 "\n",
740 740 "# In each case, embed can be specified explicitly with the `embed` kwarg\n",
741 741 "# ForceEmbed = Image(url='http://scienceview.berkeley.edu/view/images/newview.jpg', embed=True)"
742 742 ],
743 743 "language": "python",
744 744 "metadata": {
745 745 "slideshow": {
746 746 "slide_type": "slide"
747 747 }
748 748 },
749 749 "outputs": [],
750 750 "prompt_number": 14
751 751 },
752 752 {
753 753 "cell_type": "markdown",
754 754 "metadata": {
755 755 "slideshow": {
756 756 "slide_type": "skip"
757 757 }
758 758 },
759 759 "source": [
760 760 "Today's image from a webcam at Berkeley, (at the time I created this notebook). This should also work in the Qtconsole.\n",
761 761 "Drawback is that the saved notebook will be larger, but the image will still be present offline."
762 762 ]
763 763 },
764 764 {
765 765 "cell_type": "code",
766 766 "collapsed": false,
767 767 "input": [
768 768 "Embed"
769 769 ],
770 770 "language": "python",
771 771 "metadata": {
772 772 "slideshow": {
773 773 "slide_type": "slide"
774 774 }
775 775 },
776 776 "outputs": [
777 777 {
778 778 "jpeg": "/9j/4AAQSkZJRgABAQEAtAC0AAD//gAdQ29weXJpZ2h0IDIwMTIgVS5DLiBSZWdlbnRz/+Ef/kV4\naWYAAElJKgAIAAAACgAOAQIAIAAAAIYAAAAPAQIABgAAAKYAAAAQAQIAFAAAAKwAAAASAQMAAQAA\nAAEAAAAaAQUAAQAAAMwAAAAbAQUAAQAAANQAAAAoAQMAAQAAAAIAAAAyAQIAFAAAANwAAAATAgMA\nAQAAAAIAAABphwQAAQAAAPAAAADuDAAAICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIABD\nYW5vbgBDYW5vbiBQb3dlclNob3QgRzEwAAAAAAAAAAAAAAAAALQAAAABAAAAtAAAAAEAAAAyMDEy\nOjEyOjE4IDA4OjAxOjQ0ACAAmoIFAAEAAAB2AgAAnYIFAAEAAAB+AgAAJ4gDAAEAAACQAQAAAJAH\nAAQAAAAwMjIxA5ACABQAAACGAgAABJACABQAAACaAgAAAZEHAAQAAAABAgMAApEFAAEAAACuAgAA\nAZIKAAEAAAC2AgAAApIFAAEAAAC+AgAABJIKAAEAAADGAgAABZIFAAEAAADOAgAAB5IDAAEAAAAF\nAAAACZIDAAEAAAAQAAAACpIFAAEAAADWAgAAfJIHALoIAADeAgAAhpIHAAgBAACYCwAAAKAHAAQA\nAAAwMTAwAaADAAEAAAABAAAAAqADAAEAAAAgCgAAA6ADAAEAAACYBwAABaAEAAEAAACgDAAADqIF\nAAEAAADWDAAAD6IFAAEAAADeDAAAEKIDAAEAAAACAAAAF6IDAAEAAAACAAAAAKMHAAEAAAADAAAA\nAaQDAAEAAAAAAAAAAqQDAAEAAAAAAAAAA6QDAAEAAAAAAAAABKQFAAEAAADmDAAABqQDAAEAAAAA\nAAAAAAAAAAoAAAAKAAAAIAAAAAoAAAAyMDEyOjEyOjE4IDA4OjAxOjQ0ADIwMTI6MTI6MTggMDg6\nMDE6NDQABQAAAAEAAAAAAAAAIAAAAGsAAAAgAAAAAAAAAAMAAABrAAAAIAAAADgmAADoAwAAGQAB\nAAMAMAAAABwEAAACAAMABAAAAHwEAAADAAMABAAAAIQEAAAEAAMAIgAAAIwEAAAAAAMABgAAANAE\nAAAGAAIAFwAAANwEAAAHAAIAFgAAAPwEAAAIAAQAAQAAAKBZEQAJAAIAIAAAABQFAAANAAQAogAA\nADQFAAAQAAQAAQAAAAAASQImAAMAMAAAALwHAAATAAMABAAAABwIAAAYAAEAAAEAACQIAAAZAAMA\nAQAAAAEAAAAcAAMAAQAAAAAAAAAdAAMAEAAAACQJAAAeAAQAAQAAAAABAgEfAAMARQAAAEQJAAAi\nAAMA0AAAAM4JAAAjAAQAAgAAAG4LAAAnAAMABQAAAHYLAAAoAAEAEAAAAIALAADQAAQAAQAAAAAA\nAAAtAAQAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAACAAAABQAAAAAAAAAEAP//AQAGAAEAAAAA\nAAAAAAAPAAMAAQABQAEA/3///yR31BfoA2sAwAAAAAAAAAAAAAAAAAAAAAAAQBFAEQAAAAD//wAA\n/3//fwAAAAD//zIAAgA4JisB4AAAAAAAAAAAAEQAQACgAD3/awAAAAAAAAAAAAAABQAAAAAAAAAA\nAAAAAAAAAAMAmRkAAGsAAAAAAAAA/v/6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASU1HOlBv\nd2VyU2hvdCBHMTAgSlBFRwAAAAAAAAAAAABGaXJtd2FyZSBWZXJzaW9uIDEuMDIAAABTY2llbmNl\nVmlldwAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAAABbAgAAmwEAAAAAAAAAAAAAAAAAAEMBAAAAAAAA\nwAAAAAAAAAAAAAAAAAAAAC7///9DAQAAIAEAAAUBAAAAAAAAAAAAAEv///+g////oP///+v////5\n////AAAAAAAAAAAJAAAACgAAALb9//8W/v//5v3//0MBAADaAQAABQEAAAAAAAAAAAAAFv7//+b9\n//8AAAAAAAAAAAEAAAACAAAABQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nABQAAAAoAAAAKAAAAFQEAABJAgAAJgUAAEcDAACaAwAAgwIAAAcEAABHAwAABAAAACkAAADYAwAA\nnQIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGYEAACaAwAAzAQAAP8FAAAAAAAA2AMAAJ0CAADn\n////YgQAAHQEAAC9CgAAYgQAAAAAAAAAAAAAAAAAAAEAAABDAQAA4AEAALb9//+TAgAABQEAAAIA\nAABAAAAAaAEAAJcAAAAAAAAADgQAAAAAAAAAAAAAXwQAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAA\nAFT+//8MBAAAFQQAABUEAAARBAAADgQAAAwEAAAHBAAABwQAABIEAAAOBAAA//8AAAAAAADABQAA\nKAIAAFQBAACAAAAAbwQAAKkBAAAJAQAAYwAAAAAAAAAAAAAAAwAAAAMAAAADAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA//8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkAAAANAAAAG+uB52AABAAJAAkAIAqY\nB2QAZAASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgASABIAEgDu/wAAEgDu/wAAEgDu/wAA\nEgDu/+7/7v8AAAAAAAASABIAEgAIAAAAAAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAACAAAQAAAAIAAgACAAIAAAAAAAAAAAAAAAAAAAAAAAAAigABAAAABAAIAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAoAEAAAAAEAAIAAEAAQCAAuABAAAAAAAAAAAAAAgAgAEAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAoAAQAAAAAAAACIXEK3L+FUJVCJsJVgaq7+\nSUkqAN4CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAEAAgAEAAAAUjk4\nAAIABwAEAAAAMDEwMAEQAwABAAAAIAoAAAIQAwABAAAAmAcAAAAAAAAAjScAJAEAAMCpHQDbAAAA\nQBEAAEARAAAGAAMBAwABAAAABgAAABoBBQABAAAAPA0AABsBBQABAAAARA0AACgBAwABAAAAAgAA\nAAECBAABAAAA9BMAAAICBAABAAAAEgoAAAAAAAC0AAAAAQAAALQAAAABAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/9j/2wCEAAkGBggGBQkIBwgK\nCQkLDRYPDQwMDRwTFRAWIR0jIiEcIB8kKTQsJCcxJx4fLT0tMTY3Ojo6Iio/RD44QjM3OTYBCQkJ\nDAoMFAwMFA8KCgoPGhoKChoaTxoaGhoaT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09P\nT09PT//AABEIAHgAoAMBIQACEQEDEQH/xAGiAAABBQEBAQEBAQAAAAAAAAAAAQIDBAUGBwgJCgsB\nAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKCxAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEG\nE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVW\nV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLD\nxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6EQACAQIEBAMEBwUEBAABAncAAQID\nEQQFITEGEkFRB2FxEyIygQgUQpGhscEJIzNS8BVictEKFiQ04SXxFxgZGiYnKCkqNTY3ODk6Q0RF\nRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqCg4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqy\ns7S1tre4ubrCw8TFxsfIycrS09TV1tfY2dri4+Tl5ufo6ery8/T19vf4+fr/2gAMAwEAAhEDEQA/\nAPFyKYRQAnQ5pMUAJijFABijFABijFABikxQAYoxQAYoxQAYoxQAYoxQBYNMNACEUlABRQAlGKAC\nigApKAFpKACigAooAKKAJ2ppoAbRQAlFABRQAUlABRQAUUAFFABRQAUUATGmmgBKKAExRQAUlABR\nQAUUAGKKAEooAKKACigCYimkUABFJigAxRQAmKMUAFFACUUAFFABRQAUUAFJQBYIpuKADFJigBMU\nYoATFGKAEooAKKACkoAKKACigAoxQB0C+H5JFVlmgwRkZkXnnHHNV5NFmS1a4JAiXqzAjuBx69az\nU7u3UpqxX+xFwTG4k6fd5/lTXs3jzuOCB0wc0+YViP7M5UNxg981I+mXSRGQwsFBwSfWndILEC27\nt0AHGfmYD+dMMZB5x+dO4h0cDy8IAx5OAeeBmmFcdxRcACknGR+dGw4zx+dMBpowaAAj3FFABRtP\npQAEEUYoAv8AnXXIEk+RyQAagd25Bd+eoxSskF7kQypypI9xUjTzugRpZCo6KWJFGgCedLuz5j7v\nXcaBPMowJHA/3jRZANeWSTh3ZuMcmmYpgHNP8ps4yvTP3hQA5LcvGWDLkH7vc/T86e9hcIATGeRk\nAdaVx2IzayhlUxsC3TPenLZTtnETdCeRii6EQlSpwRgjtSmNggcqdpJAPY/5zTAbilGcYzQAuKXa\naANqHXGj3NvO84zjI3AYPJz9fzqF9VkLOZBFuYd4+hz1GOhqLPrrbYrT0vuN/tNk2RqsTLk8MvQ5\nPXP1px1gNL5nlxK6sCrYJJx+PHSjl1v+AX6DDqShy+yHeWJBxyM857+tWBrt1tKokAV23FvIXr9c\nVPJd3dx83QpvcxyyCVo0J5yDjH5VJK0JjUxrFs3DOeDn86dmu9haMrtIjAKyr8ucBdv86tWMEl9K\nsNrA7ORgBAGbOfYe9Nuyu9EgWrsjbgsrawkVrxol8oNutflklPrnjA/E8Y6VR1vXE1TUHuIrWKGI\nEBQIlIVR0HT0rKN5O+0Vt53Ldlp16kFuwvGmmNlH5PzH5Ivun2xj1FJBbyeR9ra0PkhwDthJGOM5\nIPA5/WqV7tJ3a6XF2bViG6aG3faY1bcSVZouQMkeopyXlq9t5C20anduJKlmGeDj5sen+NaJvfR6\nENLbVCSfZJIY1ijQuD8x2sCfrzj8qaktrCVYQglQQRtyD74JNLWw7IvQanp6zZltUkAbeAIkXcOv\nIwePbNag8QaGdOYJpNr9qPCZiyAPX68459KLW1106XC/p62OVN3FvRmXKgAEKoXt+tKTayW5Ik2t\nu4Tbz9c/0ofMttfINCWRLV8CMeU55yzkkfkv+c1Zh0+xdXL3kAcPtCyhkDjn5g2PYdcdaTk0nZNt\nbIEv+HKxk0/y2TLZ+UZXJz156irE+hT2QDTKvzKCvlyq2RxyME55NJOUV73V6A1d6DYbGxVFEtzu\nZuNqhhsb345H0NNGnq9wsKq2X6FiFX/9VNyaElct3ehmwkQSSw3DbQSkTbgPYsOM/QnH4VLLqd5H\nYvaWkawKR8yQKBuHYk9T1Pes3abV+n2TTWK069SidOeOMSXpaCLPK/xt7gf41VlPnR+XCnlW6fMW\nYYLfU9z7e9XGSlqvhT0fclq2j3ZXyZCEGVUHAUmlmdyojQsUHAweo+laEgwleKM7XPGAfTmpLkXQ\nZZZ1kRxgZIwenH6UrxvbS76BqJ5hn3OZisvXH94/4/4VGjuuME+39aACSWSTBkdiQAoLEnjFO3+Y\nTwq/KehAqrCKpoH1oAnRiXDBmaQnqM5H0pZ5JLmUvNI8pHGXYk4pWV79Vsw8vwInMWz5C27PQjtU\n0OoTQRqsDFCpyGHUHOeD2/8ArUNXVmGwxbmRWB8xuDkc96mi1LyxJut4ZC/98H5fpg0WQXEEs08q\nqmBnptHrWlGLvRbYyS2jIzEqplyM8c4Ht/WplDmVldL7TGpqLV938KKNzqdxfXM091JveTrvz/Sk\naS5ktFXOIhl9ojxzxyTjmjljFJbJbId223u3uNFzLbDKOrhlIOQDjPY/5/Wo47uaMymJ9u9cMAMY\n5HT0p2TFccLuRYwC2GXkNk5//X71HLdy3Fw007tI7feJNCit+vcLv/gAZ5U2KHGFGRt6VdbVnaxS\nJshkYbcY2gDJ5GPUmk4318xp2K0t3LKMSuGA4AwOKhL5AUYwPYVSSQm29yI0lMQquyMGUkEdxSEk\nnJOaACjpQAUUAWLK/uNPm822k2P64Bx789/eprjVZ7iXfI5cDJCtjAJABIAAA6UdLdHuLlV79Vsy\nH7URwFGM5wefwp82oSSN8qpEpAG1FAH+eKhwTd3d+XQtSsrfiMluPMUkooZvQdB+dRNIW7AfTvVJ\nWEwYlzk80DGKYi9ZX0NnC4+ywyuw+/KpJQ+3IHPvmq1xcPcTNI2FzxhRgAelIBscTSSBVGSegp00\nEltM0UylHU4ZfQ0XV7dew7aX6EBpKYgooAKKACigAooAKKAFwaOlAChiM4OM1J5JKF15UAZP1pN2\nAaqkgkdB15pUfbzjIpgPa4bzFdcKy45FBkEjbpGLMeppWsBCRTTTAKKACigAooAKKACigApaAEpQ\nSOKAAnnil3ADHWgBCc0oNAAaaTQAUUAFFABRQAUUAFFAB1pxQgZI4oAbRQAUUALRQB//2ch9rbjh\ndvOPXPp7U3zLz8haErpayY8r90xycs5JH5L/AJzVmHTrJ43Zr2AMH2hZQybxz8wbHt3x1pOTS6tr\nZAl93cr+Zp/lMmWz8o+UE59+oqxcaBPZIrSqMuMr5cisCOOQQTnk0ryive6vcHq9BkVlYrGvmXG9\n2HCoGGxv9rjkfQ0xdOElyIUV8yH5SSFX9e1U5NCSuXbrQzYSqJJYbh9u4pESwHcgsOM/QnH4VJLq\nd7HZPZ2kawKc5jt1AyPUnqep71k/eav0+yafCvXqUpNMlgXdqG+2jB+ZCD5jdeg/x9aqykyx+XFH\n5VunzFmGC319T7e/1q1JS1Xwp/eS1bfdlbJlIQZVQcBCcUszuVEaFig4GD1H0/OtCRGErxRna7DG\nAR25p86XUZWSVZEYYGW4PtSur20v2DXz9Rd5nLSGYrL1xj7x/wAf8KjV2GME57f1oBhLJJIVMjsx\nA25Yk4GKXcZCeFX5SeCBTArGgfWmInjJLAgkyZ6gHIx6UTSPPIWlkaTGRljzilZXv1WzC/T8CNzE\nF+Qtuz0I7VNDqE8MarAxQqchh1BBzwe3/wBahq6sw2GLcyIwPmNwcjnvU8WqtFHMvkQOZf4nTJT/\nAHfSiyHcaJp55VVCBk8bRjrWpEbrRrHfJZusjMVVpSRn/9j/2wBDAAMCAgICAgMCAgIDAwMDBAYE\nBAQEBAgGBgUGCQgKCgkICQkKDA8MCgsOCwkJDRENDg8QEBEQCgwSExIQEw8QEBD/2wBDAQMDAwQD\nBAgEBAgQCwkLEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQ\nEBD/wAARCAHgAoADASEAAhEBAxEB/8QAHQAAAgIDAQEBAAAAAAAAAAAAAAECBQMEBgcICf/EAEUQ\nAAEDAwMCBQIEBQMCBgAEBwECAxEABCEFEjEGQQcTIlFhcYEIFDKRFSNCobFSwdHh8BYkM2Jy8QkX\nGCVDNEWSorK1/8QAGgEBAQEBAQEBAAAAAAAAAAAAAAEDAgQFBv/EADURAAICAQMCAwcEAgICAwEA\nAAABAhEDBCExEkETUWEFInGBkaHwFLHB0TLhI/EVQgYkUjP/2gAMAwEAAhEDEQA/APzIweJHFRVI\nSOOKAiEiIUI+1Y1JkkgxQEVJGBBIHeoREQnM4oBKGeKjOCOT80AwRGIPv2qEdzxHNANUq9RI+1bu\njWdjqOqW1jqOqs6ZbPLCF3byHFtspPK1BtKlkD4ST8VYpN0yN0rRoqyr4n96FAAQBUKHAkHHGagY\nAx296gHAiSJzwKBHJqgI95oAg/WfmgCIgAH60cqz7c0AoMc/tQYAB70AwPifpRtHbMd+1AChMA8Y\nOKikCP8AFAMgREUYAgJme9AIADmmR9OKAX0oAE0ADmY/apHEYoCJicCKIkwaAAI4oMmZ7d5oBcHH\neaZJJoAJIBImJpwOe9ALntj3oGcfegD680SYzNAKIxBpwZymTQCJIImjIAHINAAExEUEZnvzQDjE\nZ/al7pFAPnHelJ96AZ744pAEdooB98jHcUoMdqAZJBilIHvHvQBiaBEZNAAGO3NEE/4oAjMRQQRz\nQEx5QQoEKKyRt4gJzM/2/vWPJoA5xFBigGQDxSjgf4oBkyIPNA4zmKAWDQO5FAXJyCT2PtUSDiAJ\niqCBSrcIPAqBg8JIPzUAiMYlNRUIIJVzigIqSQCY49hUVYERMnGKAAghMwZ7mKR4McfNAIDHz7Cg\nAkEd470AjI9WPpSJnB5OaAZA7DvSKZPEUAwCZkECogQSVDPxQBtKQaCnuBQCAEd+KBE8UAwIyI96\nUAnHtQDIO2lHp4HvJNABHPsKEhIMyBQAe8E/FEAjHNAAHbj60gBGe3xQARJ+uKcAcY9s0AhIIimQ\nTgD70AEEif2o2kD3NALkZ5+lIAHAyTQEoEccfFI9sk/agCCP6cDvRjv3oBxOKXJjnuKAOOTQJ5oA\nAPJHxSIMjmR2oBjJk5zQRACgYNAASYkAYoKR9T9KAWeSB9TRBEe9AP1JjB+tCQoEEgY+KgFChEd6\nD7TIqgcnEj7UvkDmgA+80yZEyIoCInuMVIgAQO3xQAJyADJpCZgn5oAIIEmf3oBmKAIkyeKUGTia\nAYHtzRwoEe3vQBGCeR7Uu8xigDsSRNPgYkj2oAgTEZ96IJSSSZoC7PBO6P8ASP8AasZAgqjMf9iq\nwQ2wRCj81FW6SRPHFQEVDOKjtkErVEdxQCKTAzxkyagQds8/SgEoARjHNBEI++KAiYgJJnHaiDv9\n8cUAH9YgGPrSIVA7TQAI5xzwaQIJ2kRFAH6ZAH7ikrBAPegCCBgSRmjbngkd4oBpn7DFAEqj4qAC\ngDE4peo4/aqAgzAiKRyQeI96AIxunnt80AAnigAJB9/inB/SB80AhlXGBQBIn2oBbRj57U5GT34o\nBGCYHtQCqRAoBgbvagiJG7PvUAbQB6p/ehQ7bY+ntVAv0/qyCKDJMkYoA5OTQEwSInsaAAJM5Ao2\nyOYoBQAM/WaIJgUBIg7ex/4pKHBMyaANvMx+9BMCPfvQBAOATmlyZ7/NAMj1ff2xRBI+B7UADtBp\nYgkz/wAUADJkn/mngEyZHegDaZMyPvSKR/TzHbNAOADnilAmAaAZ5ImTNIA5EjFAMZACpogAfPxQ\nEc8e1PB/pg0AZByc/FGZg0Atsk9z70AK5PagGQcpAijPB4+tAIjgkdqcSrjmgCTzNIzERQFzykpG\nCB/ekciVKBoCO4lUGD9OKicFWSCaoMcEgGYIqISNoJmZqAJOyQIPBPxUFQoyBzjmgFIIBSIjFL1R\nATjvNAM9pEkUifuPagEE8gRQQqYOY4qAX0kkY4oATwJn3iqBQSYPP1ogg4x3qAQBJkR9zTVhWIPG\nKoDdKQCOaIHE0AiBkgYImmBgHnFALdk+w9qN3/tiB70AwnHpiQaUQMiTP71ABE4UfmjE4P8AeqAJ\nkAmRHzSzHNQCHeZpkd+xqgQEmYxUp2q+SPeoCMfWO9PCucfWgEc5nFHPMVQMZ7T96JITzn60AjzB\n7mjHIHxQB9gaPigGDAkgQPikVD2J+h4oAJMZH96CnEjIFAAk5M4xFChu9gTQAR2FIEEEESf2oAgi\nKZ9pA+aAQEEzwakQO+QKAR4AkZoJk5GRQBt4MCfrT9IkiPpFAI95H2ig5zOY/egAJTyOxonvP2oB\nHHb5oMzjNAERJImKIM5MCgHHY9ucUuJjk0A0yOO/akZBmBx2oB88Yx+9REZMUBJIk/FKCIIwKANu\nASDz3oMHlPNAXChyBmTFBCCBuAJHx3qggfSoCJOeMVBSSFcgSM/FQCICsjg1FQKeeDQEckcf/dQ9\nUA7c/FAG4zOB9aid5GASBmgH3KlD6VCJIIHxQEiCkApgHvSylOf3OJoBEmIiSaQCQN2cYqAABJE9\n6OxP/WaoDP6gMxSiCJH/AFoBpEGCkwMxFLEwMzQBieaCSZHtQCMEzHGKAB8g96gHA/04FG7+qIIz\nzVAHgCKUE4AOO9ABFBjOTMUAoERP2pn/AEjtUAwDEbZzURgxBP1qgIAxAB/xQobRMCTQBk5OTFBJ\nUYgmcZoAUIz7YpAmCoSM/wB6AkIHYzz9aUEgAxnIoAIHuePpQrnakfaKAIMxGPmmAJ/270BHaSI7\n/wB6kQAefpigI/7U5kTMe00AZAmZpqQ4glC0lJHII4oCG0jmcVIgARJoACZExxUSPVx8/egHAJ9J\nHvFKDyPpQEu05M0iAPv7UA0gAnaZHJogK4HGJoBE7TM/SiSUmBk0AkieZM/NMkyEq/4oBGBieTTk\nKGUyR29qAEER3AGMURnJ5/xQCIEY96BIExkjFABEGIg0doIPNACgAqJ7c0DIj5oAPsfbFOZGBECg\nLc8HmJOfmngJgDnAkTVBCEmFHgD2rGpIkgn71AIwBt7JzJFRQNwlWIoBbT7Tg4isZzgdu1ABBEmR\nnEcU4iAeYJzQEVSEiFGZ9qiQCf1ZiTioBpncSoCgiBJwJxVAiAZEGDSERlUUAYk7RQQRkRjPFABy\nCScntQc5OP8AaoBJiaAkhQj/AD2qgCI7c0HCcjt7UAgAOBz3p54JA7UAxPOMfFRHJIPOKAcJPImM\nk0oImARxUABP/t+KZgDdPPsKoADbkfePagpAwcA0BEcx+2KcHngH2oAKSFESJAmkYJMTFAI8CCfk\nU0gTxQBknGaRnPegDng/WpYz7n+1ARMz2xTEck/3oBEGSSTEUQMGDntQC2kmU8zTEiYPagGCIgij\nb9JoBbYPqE01LUrctSiVHJnM0AiO6uO2eamEEtKc3pABA2lWTM5A+3+KAiDHeSaFCYAHP9qAiTBn\n29qe4GQOeaAOwjnuKFTmSZoACRH+RRJAnbH0oB8fHvmojHq70AzBwBx80+RPYUAsHJSSKQGZkYoB\nwIJT/fvS745jmaAMnj/FB9PJ4oAG05Ko7ZoIIJAODQAEmYE++afHEg0BEgiPjvTAkSE8fFAXBBAI\nChmZPtQSqP1DiBVBASlOEg4ioKB95GMTUAoCfSCCZqO8gyJPIMCgEcEZINQXCRMxiPqagECDMYgc\n+9RBMyJH07GgGCrBmTSKSM5TVAEj6/EUZIVKsjgRQCBx8AxxQoczGMUAGMZyB2FIBUyAQCO5oBAb\nh3BHtQASv1KIP0oASJkTSzwRMigGkkCJx7e1A+exxQCSSeAIHuKFerJk/SgBJCRwD7UgEq/4qAcZ\nxweaWczBHYmgGJOI5+KUA95A4oAwmMSP801HcSDJjtyKoIhXZWRPamoEz7HNAI8c4PNMAng0Asxj\nEn2qRChnigAnsftUTJhP70AGOPnEU1cmE0BGZI/UakB7gxQACCMiZxikYk4EUAK+owSKCY5OKACI\n/p+Jokk5wOZoAIBTz9KNxxMRQDSkEgkDIqMnigHERiicYkigG4ouKBITwB6QBSgJiCM4oBDgzxRA\njbJz2oByc84pbiRjg/NAMxO4EntmkAkkRQBhJ94oPFAGQZJ7e9PBxH70Agmc/wD1SGP3oCU8mMe1\nLAEg4OKAWR9KIB5NAPIgA/egY4iPk0AgSTsAig9hNAXEgTCSfc0p7QBPM1QRIxPHesZ2qO4Yn2ow\nCgqACCr49qxkjkK49u1QCICIUoyRkZpA4JIx9KAQJGJzQCDKomgFKTG0n5pRIImPigBIKSJHf3oU\nAMBUjsaAjtgxmO9MqEwFR9BUAuBBA+tGEkRMGqBAkHBxT5zI47VAR5HPIyAKaiTAGKoAZOcSKDEy\nOBiaARJKSRkDmlMfqEiaAkcccHil7EjPegHGNpOT8UoEQY94qAIgTk0Scg/5qgAncBz759qQ7pkT\nUAgVRt7jPEzTMcTz8YqgB2kEihM5nBoAPIGY7UgARkcfvQDIM/HNASFcCaACCBtzP+1MbcJ5+aAi\nUwRifqKYAKSPnNARiR/g+1M7gTAwaAEmVFJH2mjaDmRFAIwD6RyDNODgczQBEiSYj5pcdxQDWCIj\n2ogbQAPk4oBCPemJ4x9DQBlP9IP3pjk4GDEVAIBR4SfpNB9h+9UAAkiJz8VEwMA80BIBKhBB4gUg\nQFYJoAgmVTgfNBGAdtABjiI+lIR780AyCk/2ikROSDE4xQABnjvRxxunjFANIjM8dqMlJUD/AGoB\nSO4iKfEgqkc8UAjjIPbijaZkn9+1AXJHIHcz9KS4VgcD3NVgxk7SNojjg1AfqkkzP2qAe2IPBMmK\nxECZEc5JFABSZV3+AOaXYhIBPsKAUHuM/SgzuExmKgAgkHPxE1HnJiKoEJyQeOIHNIoEAnHxQCUY\nOQQJmhOQf96gGClIyRI+KRBAJJGfYUA4MHagHHFRwFcETzVAzkgACfimUgJk57/SoCI9ozj7UwMZ\nEmqBEZx/mkU5AjP1oCRSCJB+tREn74FAAmOCIxQVGTiJ5EVANQ3AH7UYA9Q+04NUCIAGOT8Usntx\nnmoAIIkbYn4k0x6hMmU/FUCJnjHtTxtlUD4oAMciTNEj9Md5zQClPGftRCpAM5FABA5P2NPgggwR\nQC94UCRQQQMA/wCKAB3nEUH5xQAQmRt7CkcZEH6UADaBJxSyCDPegGcK4570CEkTz2oCW0e0R80l\ndtvagEYAI+9PODwfaoBcGDz9KfCoB7zFUCicxA9qQJPYT9KAZgYV2oSJ+vegERCiScfSnKckfagE\nrIA21IEYxkVEBqyP1CPmoBIJBNUDASZjNBJOQBj3oBbpIIx70CAI4PIoB+k4BMmlI5JGBQDkK9ya\nMwAO+JoAhMc/34qIE5OYNAXSSQcjM8VFRBkqn4ANW9gYlkCR75E9qipJA/T9CKgF3BPHese6RtiZ\nn9qAUgDJgxGO1EgHHbmoByZkZI4qIKhJJgH4oBQSZBIH+aRgATxxVAbhG1IIxmmSQIECT2qAh7A/\nbvTkI7k/bNAMwcgyScg09iwjzChQQDtJ7AmYE/Y/tVBEwJKeZpSMKIEe1AMj0gjt/aoGdvpP96Ae\n4EkAY7UKEYIJ+lQDCSk7QQDUVLUqSU96Ae48D/FAIJ9WfpQCAiTER3oGTgSYzRAaVAEmKWCDPPMV\nQBzgCZoEkH6RzUAJMyVD6D3pHk4NUDGTgxS5UZMfWoAlPMf3on3BkVQBEjPagY7j/mgDODGKCrkc\nExQAYgCOPagAEkAd8UAA5JIEHFEAKMiaAUqGR+9GIPaKAE+8AfemBGT/AIoBGQQZ+aCRiQM0AyPg\nR3oSJwBj5oBQDEcUQcGDj3oAJnMyDxTkiVEf3oBAmMH70CTnmgAmSIBzTgEwAcZkdqAjKlEmPrTC\nQYBERjFAEwQIBpEmAI+aAYAHajbOYigEcGYNBJ2iIAoBe0CAKkNqjO4xQC9MjAJ+vzTI5BBBPuKA\nWZmDj5pjiOM0AyBtx9qjHcHmgLgzBCcfFRkn9QyDFXcGNZhJlM5ieaj+qDjPeagF+gxEzniokhKi\nQr/pQBgZBBNRnsE8cCKARMQP+zQogCec8GgFmIT9jFIEknGYzQCgmVD2HNAAIJHbEzmoBkiSRzzU\nYODOe4qgZKc7sfSg5GcUAEEAhKQaW7ICQMRM1AIkbs0YiBOf2oB9hvMkcUAnM8TQCO4Az9aO5iRP\nzVA/TBkcfFIqAjgn39qgIkBMpUJPajHPf96oHCUgAk4NA9wKAQgiRM8E0ZwmagGqYyIjHNJPqx3j\nkcUA4zCz9qjETKs0A9wAiAZwaAYyT3mKoCYM/bFIR/Uo/eoA9Qiexj60QRMAVQLvBEFVSCZyKAWJ\nknnipYVgEH75oBE7Qecd6ScJAEYM0AHaTI+9GVcnigDmJGKRA5/YUAxMke4zQkEiKADCYJGKN39M\nEigCROUwY70biRGCfeKAckfpERzUf1GTOagGByYxQPUPjjiqBwCTBEVD524oBxgHNBIHBHvQDBI4\n5+aR5kj9qAJzkj29oojjMUAZGDjNG0QZoBcDgmeKcGIUR+9ABiMzjv8AFR3EHIxQEiAoyTA70EQY\nAmgLiSUkA9+/aomUzwZ7VQY9smdpAPzxUBtOSMewqAiUpMAAwRSKABBkkdqAQ9IJTnAme1KVdjio\nCMyDAI70wPSQo8f3qgaSMGBPEc1HbKoAx71AG0JSraSe4xUdpVyaoBXAkwB8c0CRERNQDKSE+nvx\nSkCAMfIqgIAMGD7mkBC5zHE1AELBEg/akDJwOaAAFSZMz80ZxETQD27VSMxyKM8kwfY1QAMTJH+1\nKcAASfYUASSmCnPNEDmMfFQBE5ImO4okp7Ae+aoFG4Ax/amfgEj3qARjdjI5pggGIwIkUApxJPOZ\nownKh/eqCJ7QkEEySKkhG8kSkGCeYqAW0iQKAkj/AGg1QM8hJNIk/BqAWCMiTTAyCCZFUBicKHq7\nRQPUT/sKAIlYSSB3k0/UEkAYNQESok+xoTEz7e1UBtkEyAT2FCU5yY+poBHJJI+Jpng/vQApJMd/\nieKkSDj6UBGQsk8UCCOTzNACp3QB9BT243QYoBGOAfrmjgbSYigDmDIj5pCBByKAIJ7RQBj5oAxt\nBgmKIxPtmKAUSZMfOKcAmRH3oBpIJ+KjIM/I70A5MxIikBtOQcd4oB++foKAk54oBYH6Z+9SIgTk\nn4oC2MKBE4+e9QXERJHb61WCKjIwJge/eowRJAPHHsagFIxMcQKgskjdH/WgDAB3SSRUTCvkGoCP\nCSB7YNSEgGTxHFUCgkdiJinhXb5oCJUZAHv2zSJzIE0AyT2n6UgmMlQ9/eoAJkAEZHvSIiSOO/xQ\nAIIjjkR2oGFAn+/FUAoxwokfFIhMQJEDioATBUJwfipJHoJmCO9ARTkyoz25pmT6VAYqgCeEpEFN\nL0hRMZJqAiSZxNP0jttwRVBL3zHxFRgAAHmZ4oABEkqIA4gZpmACoSVexNQEYMkxkf8ANMCARAk8\nE0ASIEwPpQRiSR9IoBY4Vx2E01AckYj2qgQUACkJJJ7k8UpH6VYPNAB5jsMcU4CYkcZFQCJ7BPxT\nMggifqO1UCJGIFAISqORQAeAQYzQNpyo8/2oAJEnGDSPvHNASIP9I7TUTJJnmgH6SIxPPNL0HgTF\nAAPpApgZiQfaTUARGeZoG5R5iDzVAgYOeRwKcA54BE0AbSSY/cDvQpXOOcUAsTiR7UKG4xmTHzQC\n2wMgUAED2FAPckSDPxmmZgxH2oBKiBtBml7YFAOTHImKNoSII/tQC9IwInuSaCSDJ9sfFAEE5/vR\nB9wZoBmDgilyYmIoC2Ue/Gf3pEQmduI7mgMYJKCkyJ/eoqKP9J+KAiuUwCPUfbGKSdxE8J5J96AQ\nKiY5B5peYOBH19qAYMxKcATio9yP0wOxmaAJURIIxg4pSZPz71ANSYGZBNRVg8gmKoGr0jKpxFEQ\nZBCTPPagIhWCdxj3+aYlJA7dqiAE4B4I+KACM7iD80AQMTEfNBAjAIx2oBQVCQc80uORMftQDCUn\nChSJ3EJgj4mqAIyUiTifilMHkQc/SoB4Bg+3FEQACMT2FABI9+KYV2yfpQCOBu4z7VGE5g/370BJ\nQmIUZFNJV3OaoIpSkkTge1BHKjiePmgACIkikQJxz71KAT3MD3o2gQR/agEYGAMe9A+J+s1QPIMz\nM4MGlBA25igAlIEj9qDyBiDzUAEiB7RmjakcGfqaoHu9XYmIpSIAMD5qANp2zz3pCM+/tVAwQCIE\n0omI+mKgApg4P/SmU7v6jiqBAwZIkTipYEkd6AiJHYH5qXwRHzUAiVYSDS2kDckZJxVA5JIUcT7C\npCD+n7mgIp9SxlMnGaRJJMH4NAIATkmmNycUApzHvx8UzyCD+woBHAH0zROQZkmgAyDBAFA4GMUA\nDOSftRIAzP0oBjcIHbkiggZTt9ooC1SUmZnHEUl7eeMGl7AxmBxkR2NKUqkAAY5oBEEEZEjmonaB\nEgjk4qAW0bY7HnNI8FIkn4OaAEkklSuR2pEkKgEiRxQARkgDcD7U8AYgyIIoCBCSYnj71IJAIBMk\n5gGgI4JKo+KIG6SRE0AADPaeI70ts55PINAHJMn/AK0ZOAP2qgUDBIH/ABT2z6gZqAUQYP0qRkD2\nJ70ApAB/wKiAcKJ/vFAMqSBxwf70EZ54ExQAUAepIJn5oKsbT3oBSoAEiaP1GM4oAg7YBz9OaDgY\nAz70AjBIV7dqZ9OQcHIoBQlOTEgU9uD7D2HFUBiJVwKRjaQO/wDaoBAEjkED4mjsAYoBiADB+aWA\ncGaABkSQSfiiNwOKoFAUCDyBFOAP1nHfE1ACk4HHOaICpEx3zQC7HnNMImYH/SqBEHBM5qZ2jIjN\nQEVRxEUAEfAAwKADM7sTSCZVAB+TVAY78CiCSNuZ+aAcH6CiQTk4NAMAEHjHGaRSSOSe9AIc5yAc\niaR90mfpxQAER7THNPnPE+1AA28ASe5oj5wMUAhHvNKO4OY9qAkTIgT/AM0injGKABzM/FGUiAff\ntQAnBB2/XFHHPegEruQfrUogyczwc1AWcH3/AE/tSJJTuiUgRHxQESBtA4nE/FQVtJkYkftQASog\nKjJ7+1R2kTJBnEntQCISMAAFXzQBwpJwPtQBAGT80jA2yQo+0UAQU+kEEe3tSgAkJScUAidwkDH1\no2gAlUEjigDG4EiRxT9x78GgFv8AiYxSx3TiYyaADCsA8YoSIgETQDiAATioFRPbH+1AMjhEyKCR\nBwSDQATwT+88UQJMzI96AUmRtEmKkRBlSo96oIzEqSJT2nFBhQzj5qAAQcA4FBKTnkgUASSNoUB/\nvSVIOAZI+lANISADPPNRwSQmc+/egGDsGUif8UoyZBIJ4oAA3eozialgYwJPaqCIxk9570EYPzUA\nJSdxwY5mgR/SfVVAAoBG7EUEYEzUApAMic0JMjbxVAz8kRRjCpJ+JoAESJUO1ECSAMxk81AISTM/\ntTnP6SJ5oBKCYJnjH/WgE7hmfiKAkkZAkZMRUQDJG0xVAAzk4PeaBtM4Ajg1AAmM8H3o4OINAEDs\nftSIBIAOKAP0wfsKDt/1R9qoCIwkT/tTyfVJJ4oA/TJ4/vRIBOT8moBJiZgDGZoiQSPTVAAExBkj\nmM0YIkgxQCJyeJpjI45yTQCiQSOKOePjNAP425oAGCOxoC0BG2eB796ir18ce/tQEFKEjECf3qOS\nAR2NQAIgREnMVFRxJ4J4A4oAJST8x37UEwnufvzQBCSZJ+1JRVuAgj2M4oBFXYnnk0u5HAPc8mgA\nhOO88RQUk/8AfagCQDxR/UYBkUAt0TAwr3FCQQc7iI96ADEQQc96WIEZ/wAUAyRkHj68Up3ek5x2\noBz6cE/X2pZBiTPeKAUg4B+xoyCZEJ7UACDERGORSUORk96AUY9Mx9eaCCRIyOMdqAACkwnuIoPx\nmOKABhQ9PHFSjck5OKAXsOPrQoGZHJFAR2mSDye0U07pAiftQAEmIB/akDBmTgRQBlI2n6igTMzQ\nBmZPahSiIkYPeKAEyTtkRQQSRnPAmlgNoyN2ffiKJT7k/NUBKZjbM0gTIAj5EUAT8Gkcdvg0BIkA\nSkx8UDOIyfagEIySO2KYSoeoqAniaADESAZpeqYj6iOagAyTER9aBBPBE4PegACYO6BM8UDABJie\n9UCIIEzPc09gHftjNQAQn0kTA5pFJ9qACFGMfSmmTgdjP3qgUZgEmaB29M1ABTP9M++aFKPIGPkU\nAAbZJE/akcjcAR71QMAFQO3gf3oVCTEZ/wAUAZgiT+1IEJnaJFQDxBgT2oJ3RtMVQWpgCJz7RzSE\nbSr34ipYMalBXJPxUQNw2kHMmJoBKAByrj4pEjIIn4/6UsCM7fSIA+KUKJAj2oAk+4Ex96e0YMGg\nIkRyDIpBRBMcc84oCUQDNREcD6g0A/TyTBzmgQBBFAInsB25oE7hIwTQDicwIjilA3ScjtmgAEhM\ngd84xUUqCjkQfrSwBITgH6mKNyTPBj2FAAiYGO80ogbwc1QCZ3wr2xTOeADFQCASMkgHGJoIjCf7\nUAp2ZiMd6JkgYzmgATG0q78HvRG2IUc4xQDO7gwO00ioTPP1qgDBPpzjM0vkCCagD7nPP/SjaBmZ\nJNABIA2kQSOaSTIgc9/mgHkjPOO/ekR/VznmgHIjGaUiPSmM0sEQYEgmTnFS2A5FAMzwT2xA5oSC\nZhPHvVAjhRxSAgnsKADgzE00wiZjPc0AEyfb70QCMj+9QC2mTIEdqP0K5nPtxQDgf3+9EpA5+1AR\nxxnjHxUlAAAiYH96AiU855pkgT6Zx7UATInv7zRIVGPtRAJ2mYJpGCsDI+1UAT2TMnmntIzI+lQA\nAAmFH6UCMAjB5qgIIxEjnilIIndxH2oBlO4DjiaU7vTgZ7UABJPJJApA5wkEUAzG4GT8UEQZBNQF\nqImZ4/4pAwQkfcVQRI4BJJmahuIPOBnioBLgztAjtNIpJIjNUCgn6dzQqCAAcEZkZmoAAjJ4oA3G\nck/WgGfSTAk/7VH3Mc/GKARG0SpIA7UgCBIj3moA27vamCkGFQI9s1ewADlROOADUYmMRQDlIByZ\n+KjC1KJxEcUA9hkTOaDAGM9jNOAIjtHOeYokyEgdu1AOdyZ7xBg1FPJ3AwMGgGE7pPtQSUgJnnig\nEpBjBxNE54AJ4HzQBO1XqieOKiYInbQDg5iMyRQEKOSZMYigCUycYPFLAlMme00AzAAk/aaJkEyK\nAiEyTHb96BuBExGe9UDMzJmPg0oE+rHagEcEAiB2zUoTux24qARgnHBpARM4AqgUCJE0yFGMCPmo\nAjaJ7cUyDHxzQBABG76/NBUMgJoBciAnE8xQATHvPNUBEkqHIHFGQn5oAExj70ogwe3vUAQcxIEc\nU8p5wKAQgiBEHk0FJABjn4qgAMcZ/ekJnI96gH6SIMn27UyIMj5oCIBAgnEYmnEYiT2oBfpn3+Ke\nFjGPfNAM4zzUPT2EigJACJJ5xzSImRt+4oA9ORAB7GgDO0/9mqBwqCCCYpRA3KBEUABJOQM0AnKe\nDQFspMzHPbvUYJ9Qk98ioCOSqeO5pJEmUAR3oCKgpKgf7e1RG4kwIJMmKlgRnb9MfWnwP0kSZmqg\nHcLAED4qMiZHbvSwODMSDI5PNLKQATmoAMATJI+lKFAZSZ947VQOBAEmR/ekEnaQRxUAA4zmRNEA\nYAGcmqBRB5mMRQoDd6YOKAYJiTPeolMplWJpyBFMdz6RRBjHMR80AFMCIGTQBwB98UAEyANs/M0i\nCRn3oBlOMTH9qiIOQc+0U4Ayr0hGJPf2oBHJH3oCMqJI4+lAG6ACZNAPaTAwORQMCVD/AO6AR9Rm\nfnNBBEEjt/agECriOBOe9MqkCIJniqAghJKe1IEcBUjuaAJCTAAnmaZJVxB71ALjMcU1JUQDIPvN\nARkgGfoABTBAG2BnIFABjcR8TxRwSSCAf++KoCCcg/GaRzzzQDSSRB7jOaNuNu75FAKY5I570DEj\nAx71APMEEc+x4pf+3d+/agApAEEj5FACknAIzn4oAkAyQDQTMwZntQCEpPNSIE+0ZBmgEQo8xn+1\nPuPUeMjtVBFRySScHHfFOZ4P1xQCGSCKAQFcYJ71AClCRAFEDkfvVBIGJkTPNRJMgjMYgZoAVJj2\npEDmT9qAaSSmCckTTHwJA96gA+nAEYpYAIk++BVBbgAGYOO4PNRVATjmOalgx7RtkkTxSCUgCD+3\n17VAIklQORPf3qIEnINANIHZP70hAIJMj2pYACeOf2oMScCD2BoAUDGFYAzNJQIg4PPFUCiRA5FB\nCYxknv7VAIiZBA9PtimoZkREUBHnIEfepAgyTGMAkUBFQEzG6KQVKiQY+lVsACB+kzHf/mpYKYMD\n2FECEQf0n4il3iM0AQMkYM4mn8GOP3qICwTMGf7UBUmJHOKoCCD+oGDSMZJH1zQCkCTA+JpgJ3Sr\nioCIGePoae3PMHgVQBkEbVT7AUREFUiacgAInilJg5JoBQc96ZhXwPYUAwQMBUe0UlHBmAR7UAGC\nckewxSiBOIAxmgGD84FLcFJjBIOaIDJJJxJFGSQBH3FAEcgk5HagpgTxOM0AtuIgR80DGQmZHvQC\niM4wKIEgEgH94ogSIT3IPFRAhRxE4FAPmAT96BtAhQzQAkCcnHekDHJ/+qAAkdqPTt55oAUP9PM0\nkqIBx9aAYEjcM570wEqBOOaoFJ2kkTHFMHIkYHeoBKVIJFG0cTjiqBAbjHIE/SgxnI+agGAORJHe\niUwZkEnFUCJJgnOOBTkgBOeD9qgIlJSZnmgSBPfv/wA0A1GYkSPkVIgKA4wOaAtcq4zHxijACvY8\nioCJAGAJn+9Y0IEz/wDVABBKt0c0gkg9z2NANKQmRA+KiltJ/URHJjtRgW3BgSmPemoRI3cUoAkT\nBBweaWQYiQJgGqCORGMUECDx8CoBEQf0wBiZp7ZV3BTg4pyBSTxjPFRCQOVGSKUB44KojmklsFWc\nweKAlEDakCkEn+k5jJntQEVCRBPzJFMwZI4jNARMR6uRx3qRTtAx9qIACoxI55ioq/UTGMniqCJI\niYODmKckxj6CgDaMgZj3qKkkc0BJIBExwKRSUgknJ4ogIxMgCn+qSYgVACkkmTBg4iiAVZODniqA\nxzP1FJQ3xBxQAEjsf70KHdYAn3HNAAAAjb9qZBUJwM0SBFIOQRiohRHGQe1KBICfifikd3scUA4g\n8wfihKd0EESOJFUCIVtgAe4ppKfK4JVmR2+tQCgkQBHvNOArkgwe9ARiSRAEd6eDkE44oAEHmPrR\ngq25/wCaoHnkxmo5Menvj3oBj33RiRSBIB9XInNQABGAZo2/c55oBDiOP96kESJ3fSgInBKTHv8A\nWiMZ4+aAl6sgH25FCSCNsgGeTQCCBuwAAPepEiY5x78UBApEgn/FMJifvFUAFZ2EZmRTMQOR7/NA\nNIB7ftS/p9WO1AIAnA+1G2ARg/WoC5KVbhgj55pQUiFeqPcVAQUBwDgewpK9IwRB4x/vQETtJBMf\nU+9BTz6gP+KAPVA25+aUHcM8ZgZqARGYVMdqFlM+kEk+3aqCHqAHqJSDkfNPaJJHA4xUsB6QMT70\nLABkdsmqBKBAI4mIIFIn24+s0AAAAbTnk0QoHgSMfagFtTn0kg5j4ojulIHfvNAKN2CPsOaRSUqw\niRzRgfAmTiKWCJMfaqgE7TKoOeagIPfIM5qWCXcyr6ClBUmBn3oAAyeCAajJkRA7VQMkD09hmBQp\nOODI5NAIiTAIM8CgJxHBHagAyCSJP3pJEjEAice9ABBAkzg+1IQPf70Ax8j98UhznHxQDCIJClZ+\naWRB5+tAIkzP7xUhke0f3oBkwqO5qIEk9h7RQCiU4gwcYoBElJOSPagHABwSZoMQEjvk0BEEgSBA\nIwRUsJHtPB9qAQlWEkimlKSOADPNEA2omQD+1QzNAMmRGwD6CmQFD9PHeqCISRndFOYBPJHvUAJC\nlAiP3pg4KoE0AgQRng0JiSJzQCVBPODmTigAJEAiRgGgHHyDFISMnk1QACgQqg7gcnPtUAQYEgYF\nGMd8R81QBGMGfpTgGABUARCu3Pc0EZmP27UAAkElFAz2Of2BoAk7pHzk9qIPGB96AvFJgbVA57xW\nJTeCYBBqMCLeciT3kVEk7gmJA4zUAwnBHBjE5qCvQDu5GI5o0BgHgHIz70jO4lKTP7RV7AgQkjMF\nXY5ppABkIPAyKgF/Udw+BigAxE1UAUDIxPHaowAiJE8GgApBJicDM0ifjioAAH37z7UJTGZxVAoB\nkHH/ABQJ9xJ+M0BESMkmJo+SSP8AeiAFI7GO80BPowJng0oEfYpzQBKcn7RQCn34FBIBkjAxFABM\nj0Y/tUcA8iZqgCDODMczT/8AiQfrzRAjBmRAPOaalEgIBzzjigEJnmZ4ppnJMj4qAW4ZViaRJOFA\ngjiqB5gmZ9jUgBEhUke9ARSBuAg/NChJPBigDZIBnGBFOAnAHFEBLwYUDn/NRI3wSeMxQDV25A5m\noye2aoGCAqVA880EkjBigATxH+1KDJOB7CoAOUhRERiaMZEfQigGTtMEziKSioqzED/FAAIkpCSZ\n7UyFSMkZ7UAJSDgwB2mkIBJ5oCQKoAUeO3zUCeSYI+KAcg/PaiNonmgAEk5GO/tQUwYPM4zQDAkS\nOPmolYAiMjNUAMGZP7UziMznNQAfj96JxHM0AEpInIPPxQQmOfVVBEA8dge9SkySRx/aoBxtzuAn\nigAZhOKAAruJEmlBJ54+aA6A5yUwaxlMSdpmIgVGCBRMSYVxnimgQtPp35GAP1fHvUsq5G+3Dykh\nrywFfozj4zWIoIMmAeZPJoHyLaYkGZ9hxUQkzIn96EGsHBIgd8VEAGCkRHelgDBGMScz3qJQg5AO\nPmgGJTJxE8TQY/TIg9xVAkpk880lbgZUD8UABO7tk8z2qKtvsTJ5oAKJE547U9pknHtPMRRAiUhI\ngj9qCITgx25oCEH2Hem3tE8gUAAA+kZ9jUf6QeAeaAWySTzTCTykAAHk0oGMgAFO6MA/enhQBI9+\nOaAiASkwYPcTTkHOI4zVAyVkYTTwJkfv2ogRUAM8kHigQqcZPvQCAIBBBBNS2zt3EY9zQAIn0f5x\nRkHIxGJoCImcH9WeJzQduZORRAP1gmD96AAYE57mgFA4AE/PvTAmQDx2ijBEE4AUR2M0ygk8x7/N\nAM5xu+ue1BQVDBwPc1QRKScJA2jgUx+nJ2Y/tUAjH6dpH0+tLG4A+80AzkzPeTFA9M7efkZoBSYE\nrx8UwRg8zxQBt/pnHc+1InI7D396oDGZzGJmgfsPigCSZxMH3qQIORmgEfY/5pqUSQAOMiagIg+k\n4xQY7cKH7UAxHJOT96NoAxmeM1QI5OOfagQTxPvAzUAwFzPsOJpCMyPrVAJBmQZj5pgndJPPPx96\nAOOFTA7Ux/q2zjNARCQJgEe80yIOIyIqA6i3srq7dLDNu4tZIgBOeRWN21dZcKFsrQoQYV2BHP0z\nXHUrq9zpxdWY1thK9oUFkgH0yeRMfbimi3cSUrxEiYIn9j9KWEiDm3cqEwSZ9zWNSSSlOzngj2o2\nRidQULLZ2mP9KgR+4qChuJUIIoiDLSm20rKVBKsgkc/SgNFRCQlSt2Oai3K01yY1NyQQJ780bYEd\nzzFVEEG1SNxM01JkbgcfXtVBEJxITPzQoGNwkD596AikE8H6VHbMSQVcxNAPYeQgKnJ+KFbQMR7i\ngDZjKTt9hUdpWAJkAxMUAhA/qie9Hzn7CqBBQKM45iltJA3AwMGfegIqChPGc0D3Jk9vmgIFRJk+\n37UQZOcD/NOQIQCc9sGgyACSB8zQASdp9+SRQFZPMR3qgZTAAOJGMUgqVcARgUAzII9UR2qKsiYn\nOPmgHumODAj2mkYmQMHtQDE7SahESqKAnkqBKufmiMCPt80AipKjMxH9qRGJjn+9EBkkDgyO9A57\nn6GgAiRPf6UAqJBg+n2oCJVAgTPuRQZ5jtigAiE4UI/vQCRBjkcHvQBuBPASfigxzE/XNABUJB2g\ngCkTujvHFUDIPBnjil/VKif2qAJKyDEZHNBMn7e9AA24ncD/AIoggQJ47CqAIVuAKY96YKp4nHvQ\nEQYBB5mpAbZG0GPaoBEKURiB8UyexJB+lABgmAM9z7UyBGNpn5zNALIOZ+tBIOPY+1UDyB/ekSkK\n94oAAONszRuIOMg1AAxgwPmmQCRIkwDxVB7PoNjcas5c21tp1ou6cStS3VOKZbKPSUoAEEKJBAJM\nEn4mrFHSDlw+20nQjpziw642m5cVtW2FBO2N5KiXErSExkk5MY+VPJKEnFN/Q9keh05dyPSvhprv\nU94xpXTnTz9w+7dLsVWiLpr8wpWwYLZ9QH6lb/0xifSZxq6N0rTXr9F+3c26rNpxflrcbV5u0xBy\nkgEqCScESSAVDYeZZskpeHj577NfRhRxpdUirt9N1FLLRVoNrdIuwssOqYcS6hJAbBSElPbaUjMk\njGYNx014baX1J1BZtapqz9zo4QhVzcKT5DzTQgKHqCgmFApTkgxwJitXkhhud2cuXWkunjy7lBpv\nhe9qTuruNuFFnoySu5ug24pCUFwIbJKEqCdylJAmBnmeahOgv2ukFFxbsrfeVuSp0EFKEjaAkz7q\nJOI9KYJyK9EpSSTfcwVPY27i/Zb063YGg2TzjHdtP6gBkH/Ukkg4zg8ZrDdaPZnTra8Zs20u3kNr\nPnIhCxyQmJ7dpAgisoLwuZcs6dPejZsui27i8e065tFfmhZrdt21PIaV5qGw6S4HFp2o2BR3YmRE\n4FcoNPCnww4tTQJhaynclAmO3NaQyuW5XFIyrtLNxxthxZbLILSVNoSd5lR3LIV7mAc+kD6VZ6h0\n1olvpf5pjXlG5TcONONLt4SG0oTCwokSSokbQJAEzzF6pJ1QajJ+Q9P6Y0UJW9revOItlsOeSuyt\nw6S+lEhKwtSChElMrg8naFRVBdWK7d9bRQ4jbulDghaSCRCh7iM0hklJ01Rw4pcGNmxdcTIWieIJ\niZ7Acmtx7QXyyl63umLhSlrT5TQWV7UpSd2UgEHcQACTKTIAgnVyS5IominT7vyg75C/LJCd0enc\nRIE/SsqdKvACpTUtgEhcjbIEkAnBPwM1OpEUWzG7ZXCCgFtSyUlQ2HdCZI7fQ1BLW1BClFJSraUg\nequkxQxZNuoStN02VkrltRKVJgAySfTnMQZkHHE6pCkJSOJEiDJ5/wClEQCFlRJHGZmokbNpUFAK\nG4E5ntiqwR25ION3f3FSuA02vaw4paOylJ2k/aT/AJoCCGlPLLbKVLwTtAzHcx9M1DaozAmO1dAm\nu3faShbjZCXU7kmOQTWQ2N22wX12i0tSE7ygwCeBPvg/tUtFowZOO/05qSWXMqQ0ZjmDS6ICW1mA\nEmTkk0Lt3EqlSCD7xQAm2dUyXtsJSoJIPMmf+Kyu2zibNpw22zctXrgyr9OPaBn9zUtcHSRg2LwA\nlUxOAcUFhwKyFAgTkVbRKYilSU/pgzQEqkAAgfShBBAEifmsmwlsq28EQZ45xFUGNQEEwJ4GaexR\nAgd6gIzKgYI7U9pSeeOYoCMEHiYOKAmSVRE1QC4GTEe3agCRg0BFQJMEEECRNBG5Mq/xQAZAAiCK\nz/lnfy/5r0BtShELTu7/ANMz2OY/yKlgFWjoQp3a2AkifWmfsJz9qgpstOqQUoXBIMKBTPEgg5oA\nLDiWkvyjapRQBuEyPjmmlh0gGEAKBUJUAcCT9MfvSwTsLdi4vbe2u71Fow64lty4WlSkspJAKyEg\nqIAJMAE4wKxONoQtYS5uCTAPEiuqVAhCpCjP+cU1GYgRH+agD9SvY/WjPA/xFAAkcnnP1o3QqTEz\nNAHBgJMURBCT70AbdqiTg/tQRuIhQyJMUAwCfTM+4igYTMT2wKAABknHH2FExkZ780QCCO5g9hTE\ndgCY9qoIwAScEH2qQ5M57UB9HNfiDvry8ShvRukdLYD7VykWvTNg2UKSqY3KZWYCSrbJPzMmfSOp\nvHO71S5srHpvrux6jWy1as2we6Ms1LUUfoZiCHF7lrgbexyeT8DJ7PVKMk5bq7b/AH/PPseyLi6p\n8Gjb/iOYR1Dq9vqnSXTmqNJsAyLlroxizunlhG1bai2kls4jd7yJAisumdbr6x1O00q8/C9a2xbC\nzY34u7yz2252kbw4sIeSAUH+n9ZI2zXnyaaOCSnky9Fce9fbjc6T8VdMY2/meYW/S3jT1La39+9+\nVt9Ks7hbb7yX7dDTTm1xwMhwkgeltZSJiECP0prrelfCPWNOtTb3njH0ho98Hm0rsL55TVwgqQl1\nKlr2lCYEfpUT6u4Jr3Ty4+noxY3JP0/lmUdPLGuptJ+rO+0bp9vw86T6i8IOotVtdX1TxEtVajom\ntaYy3dNKdQv/AMkBcSkoQ46l0LTtKso3JSZA+PHNf1c/mnXNUbQpXqLamxKyTkJhMAZ+McV9jJjg\n1HanSTXkzwYW3lnvt2f2/gvOmvFrU9C1NGpP6dbXSg0WoV/LIBAiFASkggEKGcZJk1qXnWdtqT+4\nW6m1qO/eQJSSIMkc9zMSZM189aJY59cX2PX4l7M6nUunulNO1dVnpXiZpGoshsi51HTbXUPJabU3\nClLC7dC9p3JbMA/q7g0kaZ0Iq/u48RNL2MFHkC6027bauAoJJICG1KQAMZzMQIMjOMs0n/8Az+6/\nPU1Ucdf5G5d6b0aHmdRset+nXQVspfbWLrDqkhQWpPkypCCVBW2SSg59SRXLaxb6Zot262z1rp+q\nNBa4csbNwocIlJjzEtrDahEAjg8AiK1g5t7xfzr/AGZyUVumRZudLvG7S6u+p9Pt3C6GylVtcTbA\nlW53alJT/pV6T3gDAisuG9OebfY/8U6eAClRcLT5LygFCQfLknP9X+r9tPeUv8H9v7OXTXJit9VZ\nsLa40+3vUqCl7g822ApRAIBkp3BJByARzkGAK6zR09E6nplnaOeIytEuEtqTci7tHXWgpO9Q2ONI\nK9p/lgJ2/qU5O0AFWvQ57s4c3BbKzntWf0bzlptdeTcpQ4RvbYWlCkAjaUIUBEjsrMjMd841rQH1\noYeU4gHc48/6tzqlHdCvTO4EASmEnaMZJrjw3WxopRO5v9N8IdGYQnT/ABSt9UZWkANp0l9hY/mq\n3eYFNq3DasEHeSNqwAfTNnonTHgV/DWLzW/HCxXdoX/Osf8Aw/dqQncqP5RKAIhKSVHaYMAGM+aP\n6hreNP4mrljbSstPEzSPwsNum98OPFC8YQu1DDlqjR7lwG4b2gup80ghLgBwVGCVYAICfJfJ6M/K\nXS3eprX82lklparB9SluJUCNpBAkj0ypIEAyATuq4JahK8kd9u6M59HCZz9laaFcOpRd65+X8x1K\nFKVaqUlCFGCs7TPpGYAPxmp6ojp6zvru2sLhN2xbwLe58paQ/tIG7aogpCh6sz9BOPZ77ddjPajo\nnOvehb+xtbHUfDe3tixtLjunXRaW9G4QVOpcMEK7HsPYVLWusvCu+aTbaV4f6tatKuvNeW5q7S3V\ntwQG0lNshKYJmdpPI9o8sNPng6WS1be/Pp5bL4G0ssJJVHfYodX17pjWNUedsek7PSbVxJS0hLzr\nnlHaoBRIMnKkk4/pGIkGsDVmx5xGp2T5ZIU3/LdPmwf0iUjn/wB0cdq9cYyS952YNq9kYbrVU3H6\nLFi3EJlLRWASkn1QVGDn/iM1iTeI2K3NesD0kLWZM8H1Yxj7D610kOTH+YeW8p8EJWoqMgADPOBj\nvV3p3XfWui2Lml6X1bq9paPILbluzeLQ2pJ/p2gxFcZMUMq6ZpNep1DJPG7g6GrqHXNdVY2F1qK1\nhnc2lTriUghSiTuUYnmPUTjHGK9E8WuktS07UANd1bpmyudi20jStQt30r8tLbexabZ1aUEwTuKQ\nVkrUoq5rDLlWKcYqNt+SLGDyXNy4PKrm4vdPvH7YXvnBsuMqUlze2rsVD3GAQfhJ7CncdRaxc2LO\nnv6vqDlvbkltty5WpCef0pJgfqP7n3r0dEZ02jhNx4NQ3d0ZJunjIhX8wzER/jFJd1cLCkquXlSO\nCsnvJ/vn6110pbBtvkyHVNRUhKHL65KELLiAXDCVEAEjPJAA+grEbp8hIFy5CRgbuBgwP2H7UpBt\nvkPzFySALhz0ggSo95x//kf3Nb7HUOrNae9p/wCfdDLh3bClKgTIPfIyBx7VJQUuQpNcGqu+UtwL\ncbaUQkIjykgGBHbvHfmc81uW2rNK2299bteS0HVpDVsjeXFIgEqOSncEmCYEmB2o42thF09yL19p\n6rb+QwUXCVpISphsoUNvqJVyMgQmCMkz74ndZvHrUWamrINhfmBSbNpK5j/WE7o+JipGD/8AYrdm\nn5i1KCoSCAAISBUVOLKCkrO3B/b4+9aKjkgCdp9IGOaaFFOcyBzPFABUkkKc3D3UM/2x/mtoq0zE\npuIJMw4MDcMfpzAn6kjiIqbg1yLeRt3qAEqmP1e1SQ3bltW55CSUyJB59hHvTdgG3kJQW3E8iZCA\nok9hJOOTxUfMSEKba3lO7cmQKoMUlRkqn2pqKiolazuJmTxQCTO4g5FHuPeqAlWSQM8TxSgCQcH3\nNQDkgyCPmg4IBORkUA0ZJ3SPaBxTSlJP64BnJxQEyypJJKk7JiZBFZmrJb6lNsOJWpICgBPqMgQJ\nHOe9ARetyNoeWUqXJJMQPUR2n2psstKQkquWAVGNqkmRzk4/39qj4BnCNORbrRLi3iUgEEBJ5kyR\njtj+9aa/JIHloWD8r/2iisAWv5ZJMKEekiJB4ioETkkmKoHPBjkc/FEJ3T7e9UC5j1cfFNfIAyfe\nIqA9QV1L0VbOuGz8ObZaQobBdXb6ymF7oMKAOITxwPcmsJ8Qm9OuUv6D0zpdkGkw15jCXXAfLSgq\n3QPV6SoKiUlSiCDXlWOb5m/kehZIx/xj9S+1b8Qfi1rNijSl9QWNhaoST5dla29tvkz61ISFKySc\nkwSTiqp/xk661TR16Jrmu2l/p6Njqbe9Y8wBSAUp2ECQYUe4EV58eg0+J9ShcvN7v6sstRkk9nSf\nZcHLv9RLvA+05+XtLd9Yc8thg7AoAxtBOOY+9aTmopWhtCitRQI3JSEmJJIxzk8n/Ar3K6owtXZb\nI6xUzoWo6Pa2qNt68wtD74S5cMpb3SlDm3ckK3ZCYmBM1zDr58nyZSQlRVO0bpwOYmMcVo5uaV9k\nZqKi3Xc1yB247049IIB9qiOjI1crYCg2TK0woAmY9sVbM9V37a0uXCTchLCLYIcdcCS2naQg7VAk\nelOJjH0rlxT5Le1FhZeIWsWU+SxYDzPPS5vtkO7kOghaZcCjyVEGZSVEiDmuwf8AGTpNxLaG/B7p\n5gflHmXPJfuUBTy2Q0HAA5gApSvbkFW6fSQkZzxdUJRjs33L1W05djmeouv9I16zatx0Npdm5bMi\n2tlWxUhLaPMS4SQDK1T5g3LKjDhEwlMc2dStiq3UrSrZJZdWtam5l5JIISQolICYMQO5mcRMeKUI\n9Lk2WUk3dHTaP4k2+nFa7voTpfUFK89QL1htKXHP6htIEJ5SiNg/0xiufXrVqt1p3+CWQCGS0tKQ\nqFmSd+T+qCB7Y4qrC421Jlc00lRlv9d0S51U3+ndMW9nbeW2j8n5rjjZUlKQpRUo7vUUkkTgqMQI\nAvbPxIsdM1qy1rTfDvpZn8mylo27ls5dMvkBQK3EXC3AVEKzAAlKTHMnic4dMpP9jm0pWkUDmv2i\ntQdu2enrBppbxdbZ9a0tiZCcqkgCBmZHNWjXV3TTNi7bK6FsF3Ljail9y5dlDxU2QsJBggBCxsMi\nHD3AivG2lUi9S7o27TrXpBN4m51Hwy0y5alwqYRdXDbY3NlIghe4bVELEqP6QOCZlqvVfhxe3DBt\nPDtdk22y404hrU3FFxRdWtDhKwfUlCktnsQgGEkk1HCbaakWMorlGPS+pfDdOq6vear0Dcv2bzDg\n062Z1NSPyz5A2qcVtlxAM+kbTkCe9Ydf6o6GunV/wLw9asrcsqQ2Hb951xKyuQsmQDA9Mbe5PsRj\n4Wd5Orr93yo66sfTVblINS0AafetOdPKN1cNoTbvC6WBbKCgSrb/AFSncmCcSDyM0xIOBj7160mu\nTJhgYk/HeKUqBjvXRBgpOADIpDCicEUBIJzzH1FRJGJJM844oCRWQoQeDmpLeUTBUVQeTUBEkAT2\n9qiJJPJn25qgZTKoJMUAEHBNQATA29/eaDmIPPf3oAIjgc/5oExkHjigHyP0n2FNIJEAQU0BGBng\nnig7jgn7VQKJIEUkqOSSJHzUAApAhQOaiQQeRHtVAKRJHqPyZp7QYBOZoBlKkmMyDEiBUVBJIhUg\nf2pQAjvMEdiakQdszMzz2+aAiP05A+9Ig5HvzQEgkJOAc0picRHxzVAEngjntRtKgOYnNQEjgZP2\n71BIEyB96AkTJzEDtUYJEknntQEmypCgpBUFjit271e/vVJXcujclCEAhCU+lIgDA9v371KV2CDo\ndYtrZ4OsLCwVJSkgrRCj+rEj6dxHxWJ15151Ty9u5Uk7UgCT8UQF5rsKJzvEEkZHHHtxSkQNoEVQ\nCpUr1Zgcz7UBKCFUA0oK1elJJH96SkExAj3oAKVExMg4mmQ0GzO/fICc4jM/7UBYF1yf1kT2moqK\ngNwXKqlFsxneDlR+napMuobdQt1HmISQVIJgKA7YzUCdO2SvXWH7p24YtU27S1qKGUrKg2knCQTJ\nIAxnOK19oGAR3AJFEtiyabbSoSlpmIn2onKiIyOKHJApPJjI5pECQdx9qtgCR34+KlIwcekUQAmP\nVHyaApQ5PPFAIkgSAYo5AkwRkUApk9h3xQAEkzPHvmgHMDAPPHNJJSDgf/dASmYM98UpElUTHvQE\ntwKRJkntUY2yUp7zkUApKYEc5NBBPqkRx9KAjCR6jkzimuIxiM81QRIVzxnNOIx/2KAREAcDHM09\np2CTnkVAIDdMkfen8wPvVAAhOEnB4oTnG0nM1ARhWU559qmnelW6fUIM+1AEHZunJpAcqCpnk0Aw\nFKIIIn2qQTMkDvk0AFCoKR75pgKjKR8k5oAxuESZ/wAVElSlRA70sCSmABHPzNTJj0pElIxEVUDG\nrjcRJPY0lBOQEgkdqAEAyeZ+lIgkxHbmgABOQYHxNCTjANAGFEQJ+lESZj7HNAMc5+tRO2YSk55o\nAgQCfalBzAoCSh8gg0o5yY5+KABKZKSBPb3oE/qgz2oCQTHIPq+aUmYHc5zQCgjIVjuKSdscTJoA\nmFbeJ7VIiDEx/egGFpVhQkTNIJzgH3oCYz6Nw2n3pqSlRmc8CKoFtO0zwOcUEcbJk44wKgHtj3k8\n0RtAKjInFAIDcMJn3+aCc5TwKAuFXKS2lAtmw4mUzHKe3/3W4/rwc8oN6LpbSm0bNyLed3pIJIUS\nCck8cwRkVxKLlTs6TrsTPVZJtCrQ9IKrQK9QtUpL07v1jhX6vb+ke1VtteWTD25y0JbK90SFbR9x\nn745xR8UiJ07M93qzN44m4/I29u80iAGG0pQolalEkfRUD4AocvtHXpztmLBCXitC0XG1RXAC5T+\nqACVJ7E+kfM3p25K5Ju6NZy40ktEM6UtLimygrcuNwCoHqACRGQcEkZpW91pjdk81c6Yp+63JU08\nHihKUzlKkx6v3BE96b+ZNr2NV19p1ltDdslpadwUoKUSuTiQTGOMVhg7sTPxVXBGMpmQTgUKAGMG\nKAWyAQkHimJUZGRFUEYjEwR+1P0kekf3qAMZ2895pkFPqJiB+9AEnhJJJ5pFMqkCAP3oAIEcHHBq\nSQNvYT3oBAHenEpHPxQZCgOQcge9ARORtWIHE0uVYBxinIEkbZAHNS2kwOKAQ2hfMA+9IhP6Qk/J\nBqgcBMgJn70J/SZTB9u9QCiJxE80D05IpQAAGSJAPOaZISkbSD9RVAyFTx+rinG0bSn3qAaUOOAh\nKTgTMZohTc8iccUA0pABk88Eiavek7PpS8unbTq7UNQsW1o/k3Fowh7YvJ9aFKTuBwMKBHOeK4yO\nai3DdnUUm9zodR8JNXGm3Gu9Mapp3UenWja3nXbB/wDnNNpJ3LXbr2uhIAkqCSkf6q4UoUPSDkcj\nvXOLKsi8n3R1kxvHXkxpSZE8cUBhUblDHY1pZmYikBQIURNRUIglPHaqBEJVkjnnM0lpXJ4ntFUD\nVuAE47fNLbOPvNAIpJMgCD7ChKSe/wBZ9qgCCFYFEZOYE1QBBkwT/wAUsE5V7CaAiEiCZP71Kc4z\n7ZoAUmTgYppQsyUjj2oBgAjHtSUkScRH+aAQMJjmeKDBM7ckd6AjITmDzimkQBgT3oAEdzxUkDEE\nA/270AEYwODnjin7DiKAAQlJAEk4qQE54E/SgGmMerMTNNWOBRAEQe5SB/igpAICRx2oAUhSTkSD\n3pBGZI5/xQHbJ8NOtLq6sLGy6Y1W4d1ZCl2CEWTpN2EglXlDbK42qBif0muZdtnWnAl23Wk/07hz\n8104Si6aOYzjLhnR6X4X9ba42LjSenL19JEnayqR/b6f2rHeeGvXOnLm56YvEKTzKOPtWUmociOS\nEnUXuU99pGsW6Rd32mvMJdUopUpralWcx+/atHyFkDbBJOPc0U1JWjq7Mam3P0rSoGfal5SwASDB\nBIgciqtwCUrUSNsRP2oKSYSEwOJoCRt3ERuSUk5EjmeKTjK2lqStCgoCSCIIoWmSDD6my75aggmC\nuMCagll11zYhtRXzAzOKWKb2ElC1cN5A7AzW1p2japqtymw07T7i5ulkhDLLSlrVGcJEk1UrdLkj\ndK2YHbZ23d8pxtSFtkhSSIIPcH2NYylQMbYBxRAQQZjtHEVNKFKkJEn2qWAUytPII+aCJAEiOxom\nALKhyDtVn3pFqAIQT3+lARLZAKRGe9RKYBCZGIroESlUDEmnEg7SRQDAJkf1R3ppSVGB78E1ARIS\nIkAUAkEknnNUAUqO08T3plKTKuTBmaAeIyD+9RA9zEcHsaUDqNH631HSdVsNVRb2zy7BsNttvtB1\nG0dtqpFVVxrV1cXLlyShClwVBCQkHM8fUT9a46UdOTZn0bqC70h11VqltsXTC7V4pElTaxtV37if\nit7qHXLK9TpI09opFhbuNkOISU7vzLziYGcbVowZyDzWLxPxFJHSn7tFC4tTrpdMFSzuJCQP7Crb\nSLLTntO1V67bdW5b2yFslOA2svNpnEzIKhBgZnkAHSbcVsSO73Lbo676Ys7i9utZ6bvNXbRZXAat\nvzfkoQ8pBS24tSYUoIJ37RG4pAOCar9O09q+aDyGmGgyseYt1avXuMJBjAGD/wA1nBT65W9tqOpO\nPSqR6B4b9EaT1L1SnUtZ0Ynpo3YTqCbRxO62YUrhresnf/SkKOe6h+qnrF7orGh2/h1do0+yYsNQ\ncfL6m2VPBagAQ482lTigBCSncEjZIBJM55MfV023tv8AQkMiV0ilu9O6X1PVUP3WqaE3c3BfS9sU\npu2Lh3KCyEBIQJUAkIhPoEgCSa/R+i9Cd1R221fqXSG2mkFTSk3AUh1yJQCdwhMwFGZAJMGIq+JK\nEG6fwo1jGGWSTdWTZ6Z6SWLzTLbVbQ3BSyGLm5uEstlRPrA9cAgwJUSCkE4xD1Pw905jRv4vpfUW\nmOL/AC6VO27uoW3mFZc2kNhKyo8E5AITnuJ1lkcd3fbsceGm6TOKtrEPvFhV4w36SrcpRiQJCZjk\nkQDxPJjNdtpWldFs6dquhXz1rf376mk2erN3Cm2bMJ9ThKF7VObk44mR6ZkVo59D3VmfTa2ZoK8N\ndRf0S216y1TSnmLp55ryzqlql5sNpBKltlzcgGcFQAPYnIG/a9A9O2Gk3txr2rXK9TZZbLVo0hlT\nRUtSSiXQ9O0t7iSlB2kgETXMpPpUkI1e5n6a07obS7N+71bR7nVL+HbZLSrhtNmlS23E+ZuSrcS2\nS2tOYUU5BBit/q7ofw30Irs27+9VcJadG9u7ZfZW4VuKacQpKRubLPlAhQSoLKuP0jzzz5U+lJPf\n7bGuOGN7yf8A2cDq/SmpaTpFlrbyWxbX5Wlr1er0x274IyJGc5xVEAFEQOK9iexgnYFMGFA59qaQ\nd+QIEVQTSOBGBXfdD9HdH690z1JquvdYt6Rf6VZoe060VbLc/PuqcSkthSRCISSqTzEVlllKMbgd\n44qUqkcS+yhsqSlSVAExHetZaVD1RgD2mtLOBBBgKmfiKWMAR9DVAECYmOwEUgDxiaAkIHqIP096\nChUgiJ5Ao0CSUED1QcUwIVgiRmZpwCQbIIITA5OKYTKt0GPbvQCSkzhPb71l2ykiPT70BFLZiBHO\nal5ZUZA+RigJBmMEYoU0N0AEHv8AFAfRjOq6FedLaNprmg65ePaYCy/qFzqryLLa7+haWfJC2W2l\nOp3ELIUsjBCk1Rap091T1g02/wCS3ZW2kqVb6dau3Plt26Ny3lBttaVLSmCVmTxkkyK8v/kptSlb\na28nuq9TeWnxpR92v9novQvjTcdLdaaTpnWHUOmIsbFDburX/mXF8NRX5LSW2wpkpW35TSW0bUKS\nnc36iqABoaX4teKXXusPX3T91otitAcSpLjyUhTGApyLxakFQHcGR6iYwa9Wvngz4kvO759Ph6ng\n0+n8LN4qia3XvT/hcz1RpWna7rGsO3ltsTrrLGqWKrcvuFwqNu8khtCCgNkbQ4gbpJExXH3HTHTI\nXqujWGlaI5q+orP5B5i+datLNhpR3vJU+PUle3ClOAbQ5iSgj5uLHnbWJNeXaq7cnuvFBKSjsbXQ\nPg2nxIvNK07UfEDRtOZ1e4NvZfmnVpLqk+WNhAKltg+YgBSkbSASCQhUUWqp8LNE6av+mr7R37/q\naw1BLTOo2l/ssnLNJUVny1I3LWo7QlUgbTwTFa4HljmyYMuNxikuidxab91tUna2fdc/AzyPqjGU\nPPdVWxz2qJ6O0XU3rfp97UH9Lukza3V3ZtlSpQUqTnHpUojcIykGAQK9Pd6a/Dh09bM2fVfW3Ues\nOjcm9RpOm2jSGbkNJ8sNr85RcQMhSgmCQCJJNevCsbT8Z79qvf8Ao4yddLw/nZz+qax4a+Iaen9F\nVptt03/A9OTZLcs9PP8A+4KSVKL7qgSrzFSkGZEAkbRArYuvA/p+0ub68b1Q6nZ6PaIurwsut2qF\nILoZ/luLKkuAuKbG5G7BUogATXzs+oyYW4wjzbXevzsevFjWTfI9lRdLHgLYdM340fpy6s7pDT7D\nydUvvzy1L9RbW2i3CU4TA3LlO9aSCAlQrzbTV9Lv2Nw2jpm4u7a3uVOvXqGlNONtmEtJUuHEoCjO\nNv6jG41nosWpUW88rk/LZfJf7LncE0sa2Mmo+H11aN6dfXTjWjaZqV65btXdyyvYhbW3eFbQVEJ8\nxMlKTJBjIIr0HwTuuqb2/OtdNabqWqahpDbvm3GmtLbcZC9qUuKdSFnarzHN25AG1MbjICfZPJm0\n76oqpR7nnhGGZdMuHycf4t2Nrb9W3xtOitN0byXiLhs3dw+XXQo7yVOFPJVlKUpiBAA5w3/hde6d\npmj3Tl/oz99qaw4m2tvzL1yw04lJaK0oBCQAklIHqwuZgVzDP4kVJ9/Kvz9zpRS2jwVI6M0VrW12\nN71DbIYS55f5sWlw20TEzK07kiZGUgyOIzXd6boX4e2W0aXqXUq23rgKC9QTZuO/lwCcpSHUhajC\nQJEQSTXzfaOb2gq/Rxtd919OP6+J69LHBTeZ78f7O06h8LPwtXVnp7HQ/ilfrvLhhxF23qzaWkpd\nRnc2pkOSkgHC45GSZjF0f4CeEeu6eNdY6utdQaZuWG27JS3m/wAwkGHPMWEEsyrYEGCkhZkpIisN\nFqtdPN4eqXTF8Ot9+2zkvPf596O9TiwKHVi3fx/6O+8QvAXwL07wkvbvpgW1z1J02+49f3FvdO7X\n7VVwltCtjkgSA4UCE+kZKlAiuNvPCHww6G0/UV3jGj6vq2qMm40vSL/Ui69aWy1rQA4LRSd1yDsI\nTKQEhSlJgiNYarV45uDXUm3T4pUvNb72edYlkVrb0+Z5zddD+HOuW+mu2IsbJ5p66Z1NLOq7WkqA\nR5ZHmg7W0lRlQWsqAXEbRu896t6W0zpu/ct7PXtPvlBYWhu2JeS3n/01LUEyRjgEGe1e3TarLOax\nzi36tfu9l9BkwKMXK1d+Zz6LJt9L1xcv+QpJ2JbQ2CSsRgiRAiTPumKvleHGvFTN0zY3T+n3QQtq\n7ZShxCUKUnDqwrY2oBSdyVKG0kAxM17Z5446UnyYRxuS2NQ9IuM3DSbq6S4kFJuDaAPllspKiqAo\nBRCQSQDAiCQcVm6Y0vp3UurdLseob1dho79401e3TLcllhSgFOQTyEyYntXWLIpy34/OxJwcI33J\ndZ9P9L2Wthno3qFOq2F2t1Vv5ramnWG/NWhCH9wCQ4UJSs7SUgLTmZA0NO6XuL5bduFIQ47tWnzD\ntSW5IUueSEkGQkE4Psa66q27nEU2rZl0Do/W+qPzD2i6S64xZJQq7eSkhm2QpYQlbi1HagFSkiVE\nDNdrdeF/Q+lWly1qXiZp93qLmlW93p9vptu4425dOqANq+655YZWhJ3KMKRggKrCWaprHHn9tr3+\nJqsdwc/I84f0h5lO9amwgkgHeM9+3/fFZXNBvba3Re3dqEWyykAqdSlTgO71IByR6SNwBAMTyJ28\nRHCi2ZXNFRuukh1lr8mjesLu0ku+sABshI3H1A47Aniuh1Pwl6p0bRP/ABHq2mnTtKcbZcbvH3Qt\nt7zUb2wgoSd5UkKOONqgSCIrjJmWOurudwxvJbjwjMxoPQ+v6K0iy1JjStR09gm4RcPOuqvjvJUt\nADYSlQQoAI3Dd5ajMkBWCzv+gmOn1aPddNvPaiX1rTqX5wohJSlIQWwIgEKIM/1ZGKinOTaqqEox\nSTTKtFnpa1rQ9bJSlC9pWi4SSVEEJgGMTkxXrOn+EvQug+FFx4h9SdUu/mb+5NhpmkItUrcuv5Sl\nedKblBDaFBvMKyRIIwfNqtU8TjCKtydcfM00+JZOqT4W5zmieHDmqWltqKPy9npl1/KXeIumi8U7\n1Bc25dKlKkDAiEpCuCTXoVl+HnovSrJmx618QFaNrD6be4RYCyQ884hYJKRtfAbKQQSHggzgRBB2\nyTcaUeX8e3yMJdST6Y386+p9T+EP4VrXovoG+e1jWdTvV6tcWtxoGkW1vsc1htRCm1PFtTqNn+hM\nn1CeAJ+SvE/wg0jS7y7u9U1JzTdTuEvXCbFxtJcS6X8NPeoeX/KJIKQrcQnA3en4eL2pknqZRiri\nuednva+lP5n1P0kPATfP8bfzZzVz4H6W9p2mXlp4h9PtvXml3F88zcuLaU2+0pX/AJdI2krUtIQU\nqwCVwYiar+hfAvVerep9H0Z/UrS3t9Tu2bdy5bdS4W0q2lRCSRKkpPEiSInvX09T7SxaTA80358J\nnkxaTJmyeHFeRY+IP4Y+vOitV1xl22YuLDRdQesnH03bIWvy9pJDe/ccLRxOSRMgxzeleBXiJrrf\n5vSenr24tFvC3bcSws717d0AbZ4iTEZHvXOH2vpsuNT6v+zTJoMsXSX/AEYEeC/XNwbRVvornl3z\nqmGHHT5aCtJAIUpUBMTkqgCCexqmuvDfrOxYVc3Gh3gbSCpRDKjCQJ3cfpjvxWq9qaVunNJ/FGb0\nOerUW0Z7rw91Ra13GiC6u7D/APhPvWi2S4ABPp9QmTwFHAmlo/hj1T1DqlnoehWDl/qF24GW2EpI\nK1mYCSoAEQOf+z6J6vFBNt7I88cbk0u7M914YeIenaXqV1ddOagzYaSpk3jq2lJbZLv/AKe4kQNw\n4rb17p7qPqRem3iX7V38zYBxJN4lRbbQpTUOnAaI2CEqIMFJ4UCeY5MWVRzwdrs/jR24yx9UJLcq\n+pOmOptNa07TdR1GyvEeSXWEW2pNXCWAVlJSrYohKvRO3mNp71uaz4P9YaH0tadXXTFm9ZXanBts\n71q4dZ2L2EuobUVNgqwCoCTxXrg/E3vt39DztqLSXcpbbovqC5s7C6tbVt7+JXDltbMpfQXlOI2y\nC3O4TuATIG4yEyQa2NS8OOstJfNtqGiutFLoYVKkkeaSobMH9UpUI5lKhyDUk+hJs7ScuCputH1L\nTbkW1/ZPWzpShwIcTtKkKAUlQB5BSQQe4INek+H9vq73Q3VnTum6RcXT+smyQA0UEpDTinCSid5G\nBlIIHeJE+XV4/Fgor/8AUfPtJPt+eZ1Caxvqfk/2OfvvDTrC2t7i9X01fli3UhLzv5dWxornYFKi\nBMGJOYMVrX3hh1fY2Vjfvac2Uak2t5ppFy2p5CULKD5rYVuaJKTAWASCCBBBPrmvDvq7cnGP/lrp\n78FRa9K9QX96dOsdGu7i6Slay0y0patqUlSjCZwEgknsAamvozqcOptk6BqBeOA1+WXuOP8ATE1z\n1qursVxabTNG+0TUrF9VrdWjiXUYUAk4gTB9j/1rWFjdKQpxFu4UAwopQTBM4P7H9q6bS2IZWdL1\nF9aWmLC4cUsgJShskk1m/hGpJYVcqsnUspX5RcKFBIVzE9j8UScuA3XJkt9Ev3mk3AZKWPM8suqw\ngKidsnEwJr1TWfw6arpXTWg6mnqXQ7rVdeV5jenW+o2yy3bqVtbWpwOFIUpSVygwUgJJ/UBXlz5/\nCa2Ztiw+Je5Ydf8A4Uuv/D7Tul7zUlae451OwHGmkXrRLai44lIwoykhE7x6ZMTIrF07+ErxS6ht\n7XUrZnSv4Rc3501OqI1NhxgXG0qDY2qKlLIHpSASoqSBkislrVKKai7fajeWilF7tUVf/wCnPryy\nRqVxrlmmwtdPFy1+YStDzS7hlwtrbUtCilvIJ3KMEAETuE3PRP4U/ETryy29MpsL3VnNrjGmt3bR\nW6wUslTm/dsBSbhlJQTunzJA8tUdLWQkrimyLRTb5N3R/wAIniXr+g2fUGi2iFWztq/c3Tt7/wCU\naYLbqmyhK3CPNmBCkykqJSCVCD0ulfgZ8TtX1m1t7MN/wu5W0EXTm1t8trQhQc/LKWHAj1gFSoCT\n+opOK4euguxVpG+5zKfwjeLy9bRov8AYQ4tldx5rl8yhkNoVtMulWyd0JiZkgc4q7e/Bt1pYdU6z\noGsOlq00e3vlJv2GhcN3NzbNBRtm/LUoKXuUkKCSdiSVn0pJGy1UHB5P/VdzNaaTn0Hlehda9Yar\nfXCtR6nvrxTbRLdo7fuNt3HYNJCCCc7SEiP0xjEWuidWWDydfbca1lSryzBtWRf+apu6SgFy4cBQ\ndyAlLkp2jalQ9Upk+ZaTDhTWKCXwSXqdrNkddUmzf6A8RV9POnV33bdCtJ0+5YtGWFJO69dbX5d0\nptSSCUkNlRSnPlJ3GSSZ+G/V/U3Tl9qut3LS1W+taNf6e0q38poXTjg2JEr/APUSHFtlaUyraCMA\nSM3p8fvUmrVf2bRzykoxu0jk9F6h6QvdS1C46zbdcecYuHLe5sglJRc+S4WRsKdu3zvK3H/SFACS\nCK97qRfVV7e611XrDHnrOyGrFAdcUUKhYCQhGChKVSZhcgEivStPFTjl3tKlu+HV/Hhcnm8ROPRd\nJ7v5F1094v3HTWhu9OWWmsLsb0fmbtNwyl//AM0hLyG1ISQAlIDiML3wQSCAoprRvvE9q903StMP\nS2m2Z095p9N201DzqgB5m9SYUpKlBJCQRtAjJgivSQcutNre9m93xvvxXbgzWRpv6Go/1XfM/wAI\n2Oade2unuOXNpbmxltK3FArbXuSN4lKTEkZwRJre6113Vuq+qka9r2m2ANy4ygmwtxZ2z6wlPmDc\nvCVcSeAZgAQK5WGPXHJbTV7Xtv5rz8jR5PdrbsZte69Vruuam/ZaFo+ltXzaHbi3WoKQotIEbVzO\n4mSAmASqIjFZf/FjusXhbXrumuOOo/Jht5ha2Sy2olB3uepHpShKY9RiDEyeI6NdKxtt7c3v9SeM\n4y6l9Dpx44dQ9OIau9P0DQkKt3G9MuEL022QtbVvG1DlsreCrCSXFJJ3AgElM1h1Lxk6YR0S9oej\n9DaP52r3Nuu7uXt63UBhuNqWx6W07nISpCwo+WZCQoprHTezlghKKnJt97W29+XyNZ6lzknS27Ua\nGseLeo9UvWHSL7NnqujsNN2Wlac6461a2SnQjzVNb1hLSypOVGQSSSTEmu6R8Rer/Da9sdf0jSv4\nZcaM4lxx63ccYef3/p8xQXJHpUBtAxNepQyqaySyy6tvLsq8vm/VHnqFNKCrf7uyPU3jj1j1f5yd\nRtdMuVXVwHW1KsULcajakNplO0AhCJgSdokmTM7K51B1TOr6h0Fcvi6cuEllAebSlFqynz/LVuML\nSCtavTDc4gekMmKMcfRGXT9P6NIT96+ks7bV9E6e6Cb6U1jpHQLbWLm7cumuok6o46sttt7vJWwj\nzG1oUVJSk7QN6CCfSrbS6hq3RzdqhLWs27iXA3doaas/OdSooO5hxxaEBJC0BOErTDm4ExB8uPT5\nVJtyck3a7UvL1S/k38THFdMlv9RXt54eP6whVnoF7bvPPLQzZuulu0Q2fK8hbiipbh3J81TkKGVJ\n2kARWDRvEROiWtu1p/SVgpDTqv8AzS7VD7ryslKVFYUmQFR6QmRG4GBWy0+WcejLK+PT69t/kZeL\nCErijMrrTRdSeZ1vWLNK9PZDNo/pKLkofvthUtTri0JEQVASYMHaknaSKPpu+1ld40nRUXSNT1Fz\n8paXouywlCVDa4kKJCcpVBJVACjPYjqGGWJO3sq7fXv349K7nM8viS25fr9Dp3P/AATqTenXGlpX\noirO2Fypy9vPzC7taXQlY/kolBAG8BQBgKyRsB0ndL6SutMuuoLJ/ULlLrULYaSFP2V5nYXFKgrb\nXtUqUcTB4TvnVqIxe6v1VLd/iL0429kzmtZbDOqWxuVhF8AfzqC0ppTTwWpJQsKAAUIBJGM+813P\nWPiBf61qzWu9Ratfl5Tyb9rT0uOlpJdUolaFFUowhk+mSoEHcCMd5sTm4tdrJiydKa4J3PVHRfR1\nxfI6BttQ1C9u2Et299fONLQm3eYIeQ42AZXCiAZSUmcSAanp3VrvT9jbavrjNu/d26f4clp5hlxZ\nZSNyHG0bQpsoB/Wo+oLCU+kKjzYsWVxU8qXW+29UayyY7qN9JxV31J0/Za8u76YsdQs7NF61cWy3\nLlP5thDZMALSAkqO6SrZykQAJBsLLXOjLi1urm+fvf4u5bqm4umPzCXHi5MoAUnZKYBKwv8Aqx6h\nHpliy7SVdXftt6fMyhkgrT47Gnq2odOs6k/Y6Dr2qr051guKeNmGllwoStTZaSvaEeYI5gQDBitO\n0t9GcsLt+/6ndZvbbY5YstsF0PKUBJUsH0QAPczAgZI66s6xp9Ccttr9d+3ZfU5axuW0tvgY16Mk\ns2WzUWX7i+Ura0hKlONbVACQAZ3EqERPp4ggnct9AuNX1d3RLXXrfYNxS4+TbtrxJhKojPwD8Unm\ncU5OD2v7enqSOPqaSfJbaL0LZ61rA6U03qrSV3j8EXTtwG2CoQPLSVAEqJUYzkDitXqPSHtK6juu\njl9V6VqFpplx5H55D6jbupTiUFQCikQYx3gc1FllJ28b8+30/NjueOOKTgpp9tuPj8DetbS9ZurN\njT9d6XcRp1yVpunSzsK1oCiVeYnc42lLcAEKAVMZXnn/AMipd41btO29tcNrQPMcdKEvFSipLoKg\nAE7SnJ7Qe+Liz9fMWtr3/b4/AxeFY26d/M9V07wWZbWjWNd1HQDZ/wAKRqlpbWmpo3aiF3IZQ3O5\nXlkLUUqB2naieTuOl4geG/V3STLWv9ROaLavPEpYsV6iw+6i32JDQSwVKVsCTAVkwAcESfl/+TjP\nLFOMleyVO/xfY+j+jlGDaa8+Tn7bRbvpe70K9uU6TqrT6W71VvbXyllSSvLLgQqUKITtIHZXM8fT\nXgr0vqPi31BoNn0TasdMdWK1C8untUuH3d/kHy0hCVLKQoNIUr0p3LUJxiT6M/tHow+JjW74vZ7f\nHn4dzxrRTnkVy2XNbnr/AOJX8QPiH4T9IaP0P0jq+jaJZWV2rTLa3SWri+uGWAlKL1Y4bUpSFgiA\nY/8Aln5G6vuOsertUIZv3brXb+3W1c2MpufLkN+pKjIZJTtG1JKkBJBImB8v2VqIS0/6nWLpck3v\n2S9O3O97n0NTjnGShh7bfU8rubHqBx/UOmr2/slK0xVwHNqm7hSy0glQQ4iSpMMwFJO0CMwc6PR+\nt6/091Hp2saBePNXlrcoWyptRCtxxAj3Ej7kV96ePFmwyhJXGS+zR8+M548iae6/g9H8c+u+u9V8\nU9c1a1uFNJ1W/eu7X8jcuOoWlxSglYVjeuOVlIWSnMGuB1y78RLG9ea1zVNRTdvOhl9tTpKlqQIg\njvACfrjmvLodPpcWKOycq71Ztmz55ylJbK+3B13SHiX4uM/wXU2ntQu9K6VfVcIQVLS2UKclaF7V\nJ3JUpUEbphUAiuo8Uur+petLHTdS1a71Kyudd0+Lq4eQQ9dXSWwC3Df6rdaUwiEAEqhRO1Shnk0+\nh8eLio9V0/33o1x5dQ4tNuqOBHU/XSei1aBc6dqaNP0138sw6HXW0W7srX5cZG4jzTGD8wmDzVvr\nfVFsm3Kbl0ofLdyncwVElvekZUPUP1SASkyAZIge7HDFFPe7fp33PI5S2pU0bOqa3rF9evWCdFbs\nHGEtMFgIdSUutpCVSlRPrWpJKgeFTAAxXoXgj47dQ+HD9y03ord/+bZSCzcMFTBSlSlqc2ISFJcE\nNlLqSFoLczGK5yYksaUJbqjXFl9+8i23RzPVfTukKQ91P0jrJ1OyuUqdctVpUzd2JKlAhaYIWnBh\nSFHBG7bxVBoHWtz05fIS3bNvW11bG3vrW9Cyw8lYwpQSZO07Vj2UkGDxWsZSzRab37/3/JlkjHHN\nSjx2O313xtttS0pnpTpvonSbPQLRxK2m3bBp+9U4oALP5kJDhlQKgncAngQK4wda2ytVN61pTDVu\nEJSsONeaVKCEgqKSdplSSqDj1EVtkUp1TqlXz8zOMox7d7PQtI6l8MOrNI0bStN0hjpzX9OSl1pa\nwXWL++3JA3LguoQUJT6CVJCwohSAoiui6A8c/FLwh6/X1Ki30n+IPuXC3nnLC2dNyh8KC1JWlMOp\nIUSCkkcdjnLRajNgm4Z9/eteq7XVDWabFqcfVjtOqfoLxV/GH4h+J7L1hrA0tiycumr1y2t7JLaX\n3Gmg0hLm2CpIQnjifrXl2r+II1Xabd670lX5YsPotVqfbeUlpISsBwyjctMq9RicARB+prtZPVzW\nRJKlVL0+O54tHpIaXH4Sdq739S28P+qeofDrq5GsdNjS9dNqLpFr+cskPthYalTqrd2CgJCpClp2\ngpODBr0TQPxI+J2o9UM63quiaX1C7d2CLA2WotWzdu4lpSRKYSnygA0kQCCohUqIJSfl5f8A7Gny\nYOOpLfuvge+CcJxnzX3PKdR69vNYTbWwu7fT3dOfdes0q022dTBWHf5lwlAW6dxXG8KwEpGDAxdK\n9Z3Oga1Y9Q2XS+ka89ptrdM3TN7ZJuLN5LoWjzlNgApKQ6kpJyFISr4DBjWGr+fO/wDQzf8ANHZ1\n8OxvdOeKOsdPsAXGouMKGoW907aoaCHHdijuV553FCkBCEgFJELVjndfdTeJ3WfUrV1daRrGuXtg\n9qLOpq8qzT+UZ1d7aUp27SAoBDiAQZX5YMASB6o5ciXTCkv+/wCzJ48b3fJQOaF1ZaXWq3l1ZPai\ny3c/lXG3Hw2+HHHFoCywr1pBWk/qSNqlIB5E21nrdg+z/E9Utbg37wetdq0IFvuDYQgpQhSYUncp\nRJTEpQTgqnyTlHK9ue52oShvZhu9X1HT7S2vrpKL3T7dg2rVtqbaNyFuIWZShKwvaF7iFwQDE5gV\n2PRfVHSmiDU9PsOtOq+nL1KlrQtu6QWVGEhCVtbErK0tKuUmMFRTkAknbD/x5ISh2fx+gyLxL8Tv\nRvWPhQNd6kfs9P8AFa1b0VzUm7NjUNUX+WurjeAoOBhxQOEqJUN+1JTkztJ9P6J6S8YPDbxSu3tJ\n6J07rMOrRpdv/GdN/wDLv2G1Fqy6HfM2soPnNJ/UCmU+1canRYs2CUsk+mTaqu/e/Lt+4w6nIptQ\n4XL+BfdUdT2l51Q8vUehOhtOXotxZ2t0m4ubsaewkLK1MtMMuKV5ZcQ7uDaFJXJWYUUivQeqtf0T\nxJ1rSL/pLrDTOmLXSdQY05STePuWb9xd3C3lXKLa4Hot5bZUoEjaQkEE5rOXsLPjhPFky3KF+W9d\nTf7Vx3Rvi9qQlJOKe9fel+zO91/xu8OvD+5ttK8U+jumtQv0t3rY162sZavHlFCkugIXtMg7idyc\nuJwncSPlPxd8fb/qPqhrr/w6sNH6RtUX/k21tYXpYcDyW0o85aUrB2wowuADuUMwa+j4uB+zf0ku\npNUlVVzzxfwv5nl8HNj1bzJpp/H+9vU+U7xOiaRc3dtrlkpajapXY/w+5SpClrSFIUpZ3SgAyRzI\n2+kyRm6Y6m6XGsC56sb1J6yCwXbWxDbarhHpQtG44bJb3jeEqMxgySPD0TlG0zRSi3uqLzXda8Pv\nJuha9K9TaPqDN6m2Xcm/ChbWwQpItlNlIKlkI/VuQML9MQBzevXfQ63mXemHNcty0lwFVx5aytQc\nJbUnZt2HZsCh6vUlSp9W1OeNZ696n8/9Gk3i7Wvz4lbplpZ3wcevrG8aZKHfy5s2CsOuoSCRKjEJ\nCkqVnA+orZv7LpW9s23dAd1FldrZJcvvzhZAU75hTLQSQophTePUqd6jgSNnKaexkop8lpYK6N1I\nM2WuX+oquUsqR59vbouFPEMkMgFSk7UpUltO2JAKju9KUCutU9JWFjbvfxrU2NVFy4l8MsNlpNqW\nwElKwuS4SVgoIAAA9WYrldduL4O2oPds2tQ1Poh3V73TtMF45oSEn8iq4bLLoX5YT5hQla0pKiAp\nSQo/pABAqfVOl9J2Tbdt0xrzF+HbZNy++5brY8pahuLDZUpW8JgDcQlRVIEpgnmcsikttvQJY+lu\n9zjW1NoK1JdJI/Soe881aaDYao7fWD1vatpF3ceRbu3aUJt1rG0EKU7DYCd6SSrACgTArd8bmKW+\nxs6+jpm2ubdfS713eh62Dly1cNbfyj+5XoSsE+akJCfWQmSojbiTWNazeW9ovTkqb/LOOh1TKkJV\n6x3k5Htg8fWuYJte+V0nsdb1EPD61Om3ugaqi+ur1zzr1gMqQzbJcbQSyEuJAlKy4AoLMCPbcaG/\n1HTNTvdR1BaW7UuXHntNILiiEKUf5SCZEAKH6uyOex4xeLKKc1T/AD85O2oR91O/Us9d6ga1vT72\n8sbyx0y1Rc2/laUyhba3FJb2fmAlI8sK9MrIIO5Z2iJiu0bS3+oWtWvn+pbG0csbb8yE3jqw5eLU\n4lBaaASdzh3lRmBtSok1F/xwdpuvvwWXvtJMVvo1ym+Ro1zasWV6XnmVvag55TaFBMFCt8JSpJnn\nIJHxUdI6cOo2p1Z3UbC2smLlpm6UXUl5pK9x8xLMhTiQEknaDHpBjcJ0eRRXV2OYwcnRu6fo2lt9\nOXPUetvpdDxdt9PYt7xoLLqQiS43laUAOJUCUgL2qSFSDFUzrVrp7u/TdNQj0NlC3HlFxtwNlJWh\nSSmJWd4HaEjMGZHqm35B1FLzNZ3UbjUHD5/lpJQE5EYSkBIkfAj7596uLXprV77ppfUGm6de3Flp\nywb+6DCgzbKWoJQndMEqweAc94rqUo417xEnN7FbcpZ07UVfw+5dUygJ2l1ISpaVJEpIQpQzJBE8\nc+1Xug3/AFFpWgamzo2rPWVvrbLlretLHltXTDSm3tgWTCiFpQdozITEzFcTUXH31yWFp7HPWtlq\nOr3ItbG0uLm4cUSlttsrWqASYAzgCrpl3pNre7c6bfuNiyLaCm5QhQvCgQogpMthYV6QASCBuBzV\nm23UHv8AlCFLeR2nQ/WHRVt1Lp9x1/YJv9EefQvULHSrRm3UbZbhcdbDu2UrBQjbAICSQCBINT1t\n1FbP3N70909p7aNMcvV31gVhDt0y04iEteejKgUFO5JwCDgHcD4o4JeP1N+7XF9/y738j0+Injar\nco76x6eubbTNJ6be1C4v7lA/O+fbIQj8zJCW2SJVtggSYlWYAApWLWlp0q/0q9dQ061DwK7dAdFw\nkhvYleVbIWpRSOdgMYmvU3k6eN7+1mCUb9CnfudOCW1RcXFy6Vm6WsBMndgJmcwJKu+6IxJy6XqT\nNsHLbUGLd5q4YFv5jjRUq3T5gXvbAIhQgjOIUR3rWStUjNNJkz1BdWF/du6E+9asvlaQUHary1IU\ngpJ5goWpKhwZNYtb1FrU7lty109i2Q2w00UW++FqQhIUs7iTuUQVHtJMAJgCxSXK3I22+djWYvXL\nK5Rd6c49butub2loXC2yMpIUI9QMGRFWFwzp5AcsLy5fbMJWt23CPLWSeYKpwntzn2qv0IjNao3/\nAMi7tJbXcNpW8pHl+WiSIUdpKZ55P6Tg13F9/wDk6u0tbjR9L1r815KTcWbl8khLgWZhwM+tJQM4\nTBI/VXnyudJYj0Y1B31mE3dneOs3mhaNcaUu1tiSti5WpAX+gqTuAWhKp4JVlXIGK9Z8O/wodY9d\n2TGva5bp0jp++UhbGuXqvLYXLgSpKSo+peT6UhSjtgDM183V67HoIrxHu9rr9z0Qwzz7Q4XY9G6Z\n8I/BrwovF3us9Z6Zrd5pF/fafqVpeKQtg+Vyq2ZG1x5SU7iPMLKSspSkq5rlfFP8X3iAm+Y0bRbO\nz09GlPODTnU6QmydQ2pYI8tAI8g7Q2JQAo7RJyZ+Zg0eb2jnc86qKXbv8Hv9qvZ+SXvllx6TFHpf\nvPt3+a/P78m638ceteuBu1Boli0tlouGGm1qabKnlqClLUtS1QVo9RVJIG6ck+aK1a00y7U8xcPX\nZUp5t5bbimkOpIISUmAoAzJBGeK/TYodFRTtLY+POW7lwVd3erffTc2DTrJU0ErhwqKlbf5ipjAJ\nkx2Biul07qC06P0Eu9P3pd127XC71LRSLJkAgoaUTJUrckle1JTsASck13ki5JRXz+Bzjl0PqKC4\nU3avpu2Bc3jbjAQt15tTWx5TfrA2qM7SVQSfUBJAkgZbW0t/4zZ3r+kX69LDzYeQqSpW3b5qQUgH\nvjuARnvVtRW+xyrbOm6Y6Q6k6vTZMNa+5abXSNl95yWbO2bTm4UuClLaZjHqkgAEkT1XWni4jSks\n9H9MB5/QNNtFWrD90hly9U7tV/NLjjSiiXDu2pghEI3SN1fL1enx6/LHFJbR3tefbdU99733Pdgy\nS0sXlT3ex5bpfVmv6Gu5XpfUV7aG9Qtm4LC1bnELQpCgriQUOLSROQSDg1b9Aafr3WfVGhdH2+vu\nMC7uW7VnzrtbTTIUvdG6FBsSVGYIBJJ719PJHGoe9FNLft5V+2x4oSk5JJ0dp4jeILekdba/b9ML\nWxp7TI0yxXbIQj840gpQX7kKBK3XEBSlL/VvUTiSK0ujfGC83iw6i6p17TkKWzY29/ZeW67ZaepS\nk3DYBCVrBbUQEBaEmVA4Vj5n/jsWbHHL0+9s9/rXw7HslqZQyON7LYtutOr7FnXtP1vpDrTUX3r6\n5P55m3sbbTWVJSEyEt2q4SmXHUQYBCdwMLKUVniZrfT6epdZsre0btrnTtcXZ2yru3BUmyQ4vbvC\nEj1JgBW4LKgoBO0IhXpUHPJG1T70cScYxaTtdjkNQ67Qp7VLrQtJsdJGoPJQba3bDjIYBCtiQ6lS\nh60JJ9eZjbE1m0/ru7GhXXSul9Naa21qGx2/uAyp15xLQ3Agk7UJT6lQlImTuKoEb5NNGa5aVp8+\nXx/0ZLO72S/7Kx3X7bUbNFu7piFXyFIat1NgNobaCidgQkepRUo+pRJ49q6a+8SLe3uH22+kGLG8\nubcW96pm5KUrcKoWpKEgIRubJBTBCVKUU7RCE9SxOS6bJHJT6mifWz/T9zco1PQuhRpVjpxRp1xZ\nu3brzv5hAClKfXjKzvA2hAIQYAKVVZ6Z4leGmjX1xqV34U2OspfaYXZWtzdvNNWi0+h5KkoMOBSR\nAVO4BKFEle4nJY8mTGk5+93a/hO/5NMuTH1uUY0uyFZdfdFaBot1Zu9A6Fd3+quhSvNW48bO1UEr\nSGn0vHa5JhQKJABSSSSK6xd4/pum2et3Wi9H9T6JaMll42BWVlu4LoS9cKCUvpKXnFCHOSlAKVJ2\nT55aeeO8jyPd7cUvol9zWGWLioKK259Tj+seofDZ8ITb6CTd2qVM3ItFpRaXDqFJS3sCUoUlPlhe\n5ZSVKWrI5NUOi6QhN4nVVdE37unr8pjb5rkJdfbKmzvbTM7ZWBBkJ4Ir0Y4TxxTlLnzMssoZJe5E\nydRdT6WlzUdIHSbDLV4+XGb64W49dJaUoLSvetKVKKk7TuKUyCcCavr7rDoJXR+kaHd9LXTOqaba\nsli8s3/Javtzri3S8hSZKxvCA4kwPLIIV+oPCyKumfrv8CKcLblE53TupOn9E6htdT1zp7TuprZb\nO563Fy+0glaMJJEKCm5iRiU8qGTgsOt7exF8bS2uLNx2Py7rF2sKbSD+gzyNpiY7CuHp885ubye6\n0vdaW1Pd36rYiy44pLp3879D0zT/ABz6bvdCsbPqvw4ZdZ05parV7SnmbN9SngGnnHnEoJXATLaC\nAlJ53A5886b1rQrC7u9Udtbt9pLTzCW1XxaWkPIU3vSUxO3dkHCuCCJFaL9RG+mS2VLbh+fO/wDo\nOWKSScd/jyvI66/1nXNP6faVd2esaxo2oJub/p4u6glT9klt2VvqCAqCQFBSFQMlREFKqw9NeIzv\nSPTSHV2/UVs/r7Ttsq9TdOMtm0TDcMwQlwGHG17gQIxmaq8V5OtyXalXCXz7vfg5ksag4qPN9+bH\n051r0k2XG+qUOuapbutqYuFtpetHCkhCUvwZLIBKyUpUVcEHBHo/gx4m+D3Ttt1Sjr/oK81dDlk8\nxbarpj7hbsrlRR5C0oWQEiUOCVZO/AG2us3Vkh0yfe/9eZcPSsik/wA9S4648bvCbrjQek9Osuib\nuwXoenqttWNvfLSq7eWpUXC3FJXsbSpSCoc+ogRyPIOvF9KpvVWvTa7htqxskKL5u0vi+eUUhKkB\nAIaJSSrYpRKdqhg+mvLpoS09Y3uqr57fZ7nozyhmfUn+f6PJNxW2dy5Uk/6e0e//AHzUUqMlQBkC\nK+kfPGsrCFbCJUIUVEHvyD/2a2n9Wcf0210s21oym2dW4H0MgOq3hIIUsZUBtkA8SY5NTbktljrh\nuNQZ3M3em3LGlhNk1cWqG7fz05IV5ZSlxxRkytQKuAeBVXrFj/CtUudOS9cq8lWwl9hTKpxyg5H3\n7e3FOpye4qjVbKylSUBKVI9XmFW0gDsM/P1xTTe3Is12guVpYccStxkKIClJBCVEcSApQB+TSr5F\nm7daQ4jRWtYtLZ5LLZQxcPOOJKS+srUkIGDGxInmCDJEgVjtLq/ubRzQbK181V1cNOBKEFTilpC0\npCQPfee08fM8xqS3LTTNDcUpIQNwUmM8+/24q807UNZ6ctFXSNLCU6navW9vcPsE/wAtQLbhbn0k\nwVpmDBMiFAEdWo0QoVqUYAMYnBrZv32X0MeRp6LXY2ApaVqPmq4KjJMZB4gUadohrbyDtj/cVvC9\ns7lTz1/arccUyUoFuEMJbcAASogJgiBnAJJme5rVlXqbNs5bN9PuIZsQ5ev3GxTylpUG20hJhKIl\nBJ/q3ZEiOZwDWdQRbuWRWEWq3g/+XClbA6ElIWBPICj+9cdKb3K/Q0nrm4uXlXD7i3VuEqUpRlRU\ne5n5pJdWgrCVwHE7VY+f+grujkm4zcWq0h0AEoS4ACDhQBB/YiukuekHhoDvUepahbsvrvGEJt20\npKNrzZdC5R6UwAPRyJiBEVxObitlZ3GLka6laLZa2zp2r3q9S0uweLJesP5anmQsk+WVplO6VEFQ\nMSJGIqCn7W6fb0XRdQuGbZ4oKnLxflpDkHcYSSAmY5k4GRMVzVpNrbn5lcl25Ks3RDyFrCPRCY2j\ngY/7/erDUuoXNZ1l3Urq0ZaS/cecq3s0hhpIJyltCRtQPaBj5rpwTdnPVtRn07qy+0pN6LBjynHU\n+W3cea4HrcbwolKkqAKiPSZBwpWATNUzrqQltaXCtQyRtwkz88/tRQUXa7hzbSRYJ1HV9TLbKVFZ\nZac8tKGwNjYBUoCBwBuPxmr/AKN6rvumdStdZsNbuLG90p1N3Yu2dukvfmEmU+rEJGcyeRg9sp4Y\nuPQka48jjJSZv9XeJbutua2NF0K30rStXuEPLtW2wUtLClLCQqAeSqCcwAOE1yOmdRX+k3Iu2GbQ\nnOHrdDiTiOFAg/8AOe1cYdIsWLw5Nvzfyo7zap5MnWklXp62bT/VnUOodTHq4FhWpm8N8XkWre3z\nt+/ds27I3f0xHaIrCNYRp2oWV5Y6Y2l6yUhxSLttD6XXUwVb0KTtKSoH0kHBgzydViUUku2xl4rb\nbZoB7e6p3yWUkq3BATgZ4+lb2ravda1qd1rD2nWlsu5cUtxFpbJZZBJJIShMJQPhIAHaK66afJym\n3sYlWa73UE2tiwgF1SA2kOAzIESZiff2M8cVZdPh2zunX1aJb6iyGXNyHCQEykgKBSRkEhWD/SO0\nzzO3GrplhtJOrR3fhDo9jf8AV9qevhq69Cv9lre/lNzi3GpTAKUqClJG0GAf6E19GeCn4JW+t9dT\nqHVVy703oVy24tkPrB1ByNwAatRLiiSNsEAZ/f4ms9oLDmjGM1TpV3W/P+u74Po4dL1QuUXfJueM\nLX4cvBxLLnh50a/e6tZJZZuH9cCnii7bfTvhgQ3BCVKhRUCBtEZJ8t66/GT4n610onpRd1bo8osr\nsL5CFsXdgWlKhbBQQGSsGVBMg4zIkeL2fp4+1Lz5G3G9k64Vc/PdV6Hp1Ob9Iljju65+Jwnh/wCL\nn8K6uX1deXVjp7rNupG1bTyk3C1MKbUo7SVFZ3KOcSvMACNDrXTunv4zcdQW2rXOo6e84y7bK1A+\nSu4Sqd4Ugr8zYChYBHYDIJFfbUs+nksMd4fLn9+Pkj5yhiy3lf8Al/B57faiXLVywttReNq075qL\ncyGytQAUoJkgHAE8kAfY02w0a4tbxV7rS7Z5LaPy7YY3JeUVDcFK3DaAJMwciMc17fejHZbnn2nL\ndl5f2Oh6Z07a3uhas2p3Ukqsb1i4QhS2iNqvMSsiUpUpJHpAIT6So7jXLXriLJLNpbamLtpBS9CU\nHYhxSUlQAVg5EExnYORXOGU5bzVMuSMY/wCLNRLN1cIUplpxaEn1FKSQME/bAP7V6L4UeF934h6/\nfaQu/TbPafpF7qC21KIcBZZWpLQTtUSorCBAH9USJkTVZ/0+NzStoYMXizUfM9R6e6b0qw6Q1zpX\npLrizZtml21/fr1BlTL2rLCFAJaQoQENKWoJSpSVK37yE4Sji+uPDronTV3WuNdV2xZTcWyHbVtS\nQQXEbnC2UlcoCgpMZUJRuJO6vh4ddl/UqMcd9XNcLivT7n082mh4STlSSOLToOidQeWenrhpl2zt\ngLlCt+19Qj1jccE7oIwBGOa+g/CHwY601LoR/rjSG9FvtReuLrTdOuHdRSzcWv8A5JG4g4AAaUlC\nCtcNrP6Rkj6cpzzt4Gqkv2/3weCLhgrJyjHof4C/HvVdadHUHS7abW3U2HgdVtkLJdXsbO4qVtzK\n/WAChCoPBrwW+6Bu9O6ittH1bW9L0/8AO71i6U6VstbSoQvyQopMoICQmcjsZr6KxZIYuuSpeXc8\nviRnPp7+Zd6n0Xq7Gh6T1JplghWmtPIsHr1xweY7eLT5i0bTCiAkQPSQB3MisXjHoNxZ9Tualqdr\nqD1xq5RqJuwSGX0PsNO7UlQKtyStW4lRyQIBBJ8WKdzjLzT/AHPY4XjbrijzRTahJ8tYSBMkVm2M\nG3O1D6XQRtONp5n/AG/vXtuzyE39Lu7VLC3ktq/MtecjYsKO3cUwocpMpODBiDwQa1CCkrBQQsHB\nnHeRH/fFWLUlsGqLzpnXf4ZcGyv7go0+8WlF4lTXnDbP6giU+pMkiCD2mCa3tN0bRta0Rdhp9s45\nriLnzWFNuj+eztgtFCiPUFAFO2SrcRGBWM7hLqXzNIe/7rKq6ubJvR2dNRp5bu0uqcuLhZCiYwlK\nIHpTBMiTJg44p2t4nTdTtn9CvbhYQhtxanbZMh3YCtGzcpK0btyc/qTkgTtrtJ1Ujm6exY2+lsK1\njVT1WGtKftGXFizdt1t+Y/IAZCUiW1ZJ9WBtg81buWeg3D0dLs6mm/8AIsxat2DxeZF05G/epaUK\nSRIRtE+smFFMVn717cGiqrfJT9Q3mj6iG3tPeuLV2ztbe2cbvHS68+8EBLqkqCQlKARCUk4TtEkg\n1ouWag5eIRd2F6GmEvF1t3ywkEokISraVqBVtKQDwojA3V3FuKVnEkm9jdv7jS9QTaXGk9OKRb6d\naMsv79yvOeMlbji0bclZISIHpSkEqIJVX3tlcaZetOKVbOq8tu42oQFoG5IVsUkiARwRxSO2zJV7\nmxpLibWyvbm96e8+3vGFWtu9vcbSy8lTayoEGFKCRBSqRDkwDtIrFh5srZS9AWdpEwkgZE9jkCu0\n1fJHwjE05cMuIWhawpKpG1UEfI/aul6kFkxZIRa6bqSmby5curC/vkFpx+1kowgKKDK0rkiYUkiT\nmpJboLh2c9+cUVgvblmACSo7oHYH6Yq/u9Z0e/sm2bG0/hTlvbwva6pf51QdJSVY2hSUKSMAA+WS\nfUrMlFvgsZJbM1LZ3VW7W5u7JL35aUMPOJwPVKkpP12KMf8AtntW6226+44mwccsxaFNykvFDbiF\nFSU/+pgmCUxx74ya5dJsqtovvD/orozXdI1+/wCr+vWenH9NtS5YWqrJ24cv38w2nZhAxlSjjGDm\ntfqnpLpDR9Dt7rQfEFvUtRUFfxHT/wAi9b+TlGzatYAdkqMiEkFBiRBOeTLkjkUVC157bfI1jjxy\nx9XVv5HL3TenvXVqmwQtSEtNpeClAhbn9RTAEA9pk/NXnUnTV7a6nqrlp063Yacblttve8pbdr5q\nlKbQHVRP6Fp3H/SriK0baScn8jGrdJHP3+lvWepnSn9QsC4wstF1l9LjWCfUHEyFCZyCau9A6P1r\nr/UmtM0JrztVcDirp++1BllhagCoQ66UpBKRwVEkjHtSU1GPW+F+wUG30ooda0C80DV7vRNUNs3d\n2Ly7d8NPpeTvRIMLbJSoSOQSPbFaSfMacbfCkAnIKSCRB9v+a7jJSVo54e5vamq6Nk0hm+de0pNy\n/wDlA6pIUD6CpRbCjsJBRPYkQCdpiDOmJds2r1OpWwcX5ss+rekICSCfTHqkgAGZSZgQTFUVshuz\nGiwuFWdxdGzeU20pKS8lB8tJVPpJ7EwY/wDice2fR9Yu9Lu0XLLFu+UNuNBu5ZS+3tWkpV6VggGF\nGCMgwQQQDVdSCtGPVXHby/WV6U1ZuuKO5plKkJ3Ek4SSY5iBiAMVlY6c1G4cvLZ1tNq/p7Ti7hu6\ndSysbOUhK4JX22CVEzirGnsmR7bmrZaW/dvKYS6yna2tyXXQhMJSVESTlRAwOSYAyahcW6W3y1br\ncdED1FEE4ziT3q2De0u41du1udHa1RdlZXP899ClLDbym0LKAQkGVepQTI5X2EmtJJabaSoAblgp\nc3EKHPYRjFc13Rbb2Z02ovs32mBrQ+nNlvp9sFm5aaBdUkuI/mXJEpIB9Awn9SZkkzzF3e3Fzdu3\nbiW0uvuKdUGm0tpCiSfSlIASJOAAAO1E1JhqibVlfrD1zbMPQwgLcWhJKW0qIAUT2BJA+pHvWvve\nAUA8pSVRuAPNdckM1hdCzvre9DCH1MrS4WnUSlRCp2nOQYE8d6sGdY1ND95fWCWbJTpD58qG1Njz\nAQlon1CFEYTmBPYmuXFN2W9qKraqCsjBM1YsWbaNJevrq28wOrDbLgfSNi0wVSiJMpPwPrEVW6QS\nNZ11NuXGdPu3lMOJQXCU7AqACQUgmQFTH0BxxSDi0pWtFukIdG31ICiIIOCRg47e/wAxVXqQ2LnT\nlm1Zvmrk3LjoJfQltY/LrKlhKFEiCSlO4bZEH3BAwMWF882t9Fo64hsBaiOEp949vmo2lyDKdQDX\nms+Wlxh1JQEOSQjPI49Q9/k+9a7rCkb3E7jblZQhZBAURmPrBGPmoubBcuXVv/DdN0Vi4t9m5T77\n7TCkvJU5tSWlkxvCQgFPaVq9zU7/AEJek3jrzbX52yccfYt3Xh5alBGN6mwrcg5Bg9/eDXDl0uvM\n1rq97yNZ1uytn7xi1bFy2uW7d12ULT6wQ5tCiASkRBKh6j3gib7us3SG9NunHdje3Y0pW1Ixgxxw\nefY0tf8AtyTdL3Tq+jvCDq3rK9GnaBpxvrnaVlu1V5uxIElSigEAAAySQB3ivqLp78LHh90P0/pW\nteNPXOlaV516izOnaXqbL9+46pKVeoKIQhKfMSFSfSUqkpgT+c9pe1JyyLS6VNz77Ljvy+a+B9PR\n6VKsmTg9V8Q+rdL8POn2NM/Db0podnpxR+Yv9TW6nUL1hhKEO/zHgdueSEHaAmASCSflbxb8XvE6\n3GlaZq+tr0xVnYF20Fvbm2eeQ4dpUpaYWvckH9ZIEKAiYPn9leyVkl+qy4pK7dyW3Lp7rlrl/TY1\n1WseNeHCSfw+B4k7rb2rXrTWo6l5CXnAh19YUpKAT+oxKiOSYBP1ms+kMPXd3+Yt9QQ3b2zqd19d\np3MpQlxsBXlkErgqBKAFEpP6cGv0/SsK2Wx8lvxHuzT1LWjdXC32dO09KW7Ji3IS3sCS2ltHmJG7\nK1FJKjmd6jA7U97qF/fOebeXTj7m1KZdWVGAIGT7AQK1jH/2Zw5diLTTakJ2qJWV7SI7V6d4eeD2\nu9Y6RfdTaqsWGhaEypZeukFtt9aCVqtkL4DikB1SZwSjbIJFeXX6yGiwvLP5GunwvNLpiVXiR1T0\nneWdj0p0dpzTWlaU84tm7WygXVyVobStbiwN20qb3pbJPl+YoAnk+duEJMpUTWukjkhiXicvdnGa\nUZS93gyW9zdNNqtm3Vhla0qW3u9KlJnaSO5Eqj6mu1Z1t/pCzt7y0fcRrbzDts8hbQT+Xt1JTtKV\npIJK0LcCpn0kA8mus+NZV0Ph8/AYpdPveRyepam7cvFxrzGgUJK0lwncuBuV9yJrSTcrylZWUEyo\nBRANbqKSpGbk3uzZsG1uqdSw2VqKJG0nGRJxjiecRXoPVPW2t9PWFp0dpGtrTb2DQbdASiVuKTDh\nJ2AkSSEkqVAAhUAGvNnxRzSjGS4dmuOXQmzln+vurHll1HUOphwj1bLhYTGewOAAo/vVEq9u1LDh\nfcKgZkq4P+1epty/yZj8Dat9XuUuWp895QYcS4ELO9MiIwTB4rsvErq7WbzU2QdSum7d6xsblpDS\nFtISs26QogKzAJcTiR7EiK8mXTwnljOSur+HbsejHmnCElF+Rwf8UvS06yu4Km3glCtxmUpyBWa2\n1nUmW/LRcEN7doSQNsfT716PDjVUY9cj3XozqDw2f8NLOdTvrDxCRqKGLUt2zSrV1lO1bTiysZWH\nABtO1ISkEk5B8V1PUAfzdtdWFsXlOCHhIU2U4ISAdpBOeOeIrHHp/D2Um3z9+P4N8mXrinX55le5\nduOpb81tmGkhsKS2lCiBJzAEnPJzXU6L1jbadot/pmnaSwxcXamXEXTh8x9otqOGlQCid0kz/QK6\nzYnOqexxiyRg25Kzt+q9Q6E6i0HT9dsdO0i2c05gs3VtbWZt3lvKUfLDm55QWFArJcQDt2JBSJBP\nlllqX8KdOo2inGblRcS2WnNpQkpI5mQMxEZEiaw00Mij05H/ACa6meOUlKCo29GvtP1K+CtbdaSU\noeedfunnD5ywlSkp9CVHcogJEiJUJIEkZdG6rt9FS4t3SLTUEuh5vyrnftSVo2pcQEkQpBkpJkSe\nK3nilLZOv4MlkSptblXY3Fldao2rVFKYtluJDi207lNpJyoJJ9UZMSJiJFWib7phF3dJuLBd4hQU\nGXwC3KpO0lAMBJBBiZBHMYLJDI1WN0/MkJQTuaNS3Vp5F8pvUHmAlCSwyWifOXuAIJBhMAqMmePm\nrV7qXT3um7jTNSsLpzVnrhtxV2p3cFtttqSgEKBUCN3ZQTESkkA1XByavb+RGUV6o6Tw/wDFrQ+l\nbPqCy1fw60PVUa3ow0xpTiVBdk+kJi6ZUSdrhKBv99yo2yI57qnq3R9fbtGbPRzp7No03bt26XVO\nNtjaPMcTuMgrc3LKZIlRAgQKz/TyU1K7XPz45+Bs88Xi6K3/AOjmVhktLW3dpUUuFtKFAhW2P1e0\ndomfitu6XrSLVoO3b79lbLctLV7cpTIg71pbJwMrCoEfqB716L80eVehdXXQmtPdMN9bWHT9/b6C\ntTNmLq4UlQduij1hJG07SoLIwYGCSQTWhqegs6S8qwutSadu2wtDqLfa40h1LpQU+YFbVDaN29JK\nTIHuRzGb2XL+2x049zDZaojTrO4TbtvN37iglq7auCjYyULS62UjneFgc4AUIO7Gm8p+5Sq/uLzz\nHFEfrXKlc5P7f4rpRp2Rvajp2kWRfvbx6ydu2C26i3t3bkpdbUoENrJQmFbCUkiBu4x2rW3f4Yyi\n5ZbRdLvLR1tSbi3Q4lvcVoJTJPqAAIUQCDwMAnhy3o62XBm6bTca3f6Z01f6i/b2H5lRYgoSlp53\nakqlZCUyUIBUSAAmZxXa6f070F1FqupHrrxOvLdWnuraL9wpV0q4CZP8opCiqTuAP6ZUCcGa8HtD\nNqsEHLS41N9l6t/jPRghimv+aTSKPWNE8LA3c2/TWu6vdXn5sC1L7KW2vywSorW4SAdxOzaAIACp\n7VVu27ltZq061uVIbccQtzY96XiAdsgKKfT6iJz6jW2DLneOPjqpNK0uE/KzLJHHFvw3aNV1pV0x\nZ2L9s2G29/lLSyhtStyhJUsCV8Y3ExmIqOsdLtaXaabqA1G0dZ1IOehDgW4yUK2kOAcTgj398Gt4\ny3pGbjas9hs/DLwMv9C0rWLLxAu9Pd8tQ1D+J2hQ276W0+ZapS0sLQl1ZSobi5Cd2wCYw2XQPhJb\nM3lzpfjNZs3FrboUhNxp6gh1xbSFKQgqQMpIdSSQM+VE7lFHNOSal+fcdXTwjldf0fQ9EstV0m28\nQby6DV95CrZu2SWXrdE7HStDikbgSobcgSYUqTXD/wDkrfcu1urh1lKwCv8AKgCewnd8f5qQt3sV\nqt2yzddbvQdR1a7ur25c9StiUrX+qPUveTOPbuPeoM3Op6hd3KbG1ccVqH/quuqWtTqt27K453cn\n35q9NK3wiKTsvOmdd6x6OvHNP6adTbuaqyqyuR6HErQ4naUKKpAG0xJ4mcGDXQ2Gg9XWj2p6lrfS\nl/qa7q1TaNXC7dhbbC1qTEBe8QEBYRt2mY7SD5c+r0+GS8SVNp1dm8MWTIvdRh6W0Hpp3UHU9Y6h\nqNotCihKG7RDW5UYbATuJUVYgD9u2/1NpHQNvNtZ9NXNo0HUI/PXrDzaUQJUFpidxBERODXx5Zdf\nk1qjFqOOrVO3L6/vR9Dp0sdPcrc78tkS1TqrpNywGlNKbTZoaFuhCUFtp1ICCQBAnKEkmPUobjkz\nXHLsNOu3nv4Z0u7dhgBbymbdSg2DMEwMA19fDGWnxKWaVPl792fPyNZcj8Nbdiitbly1sryxtbi9\ntW71hLVy0wrai4CXQsJcE5SClKo43JSYxIrmGbUuxcId8kyCGxKiYxE/Mf8AeK+jbaPKqOpXpHST\ndp+fafQy6ox+UW44X25UoQr0bSQEyYP9SfkDDrdhol7pVlcaQhw3X8xu6bWokYV6ChO1ISIJn1Kk\ngn08HCEpp+8d0uxzRtHmlFpyzcUViUGYAM98Qe/euhsrJsWduwtr8u6Eq3OEhck+4I+v9q7nLyZE\nrZ6F4cfh3R11aq1N3qzTLZkNvOt2wuGVXDobQ4tct+YFogIGdpwoKiBVVqPR3T/RGqXNtf3dq42y\nt5pK1tquN6FBSVbT5WwqSIIUYIJBEEY41PiQxKUFbfZP/aLicfEqRyuq6bo93rKrSwuwzZtjeh24\nBCClKSSDCZ3EgR9R9oNdPXl47b6PpDL+qapeOhtDLTKluJAHoQ3CiVhQUP6f6RBOaQydEOrL2Vv+\nTrp6nUS2Z6A013Y51Zrlp0+4vSXb+3QGnHjcrQFJQgwTtW44kj1QBkwBE19zpnThtLS5unG1fk3k\nMPWlsotu3LMqUp0uqK0oXwgAJjAMGCTlizzyLZbdmazwKD9579/6NNHSV8LRzVFL/KtpQldslSFk\nukrA2hQG2QCVSYEA98Vq6gvXLm+dur6/cdurknevcSp2f1Ex+qe571rHJDI77rb+zOUZR4NvSenb\n1N7Zfnby301m9cDari4UpLbQkSpwpSSAAZwCfivR+hurfCe31Wz1XxT03X+ofJKGXiw6lPmMNhKW\nwHHCSAEjaAEjCEiYMDy51k1KrA6839tvXyNsXThvxPodbr34j/IN9aeGlmx01oV/b+UuysbZTSWU\nqd8xbCnQrzHh2lZVCFkCK5xWudW+K+raQrWNct02qrpNoHW7dm0YQFESFqSEpHBMq7k9yZ+RH2dj\n0lZc0eqa7/nmfQepeoXh43SOP1CyurzXbawu+qGLVN0Ap10ONpS0iShRUncAkwknaSCQQRyK5XWL\nN3TNqNRKnFvshy3UFxCTwo8yK+7hz2owqrR8zJj3ck7MtmNJ0+0sn3W2769cL6XbO4aKW0IU2kNO\nBxKwpSpUpUEAAoT+oKIGvqml67oiLVzUNJ/LtXTKbljc2drjSkhSVA9wQQfvW8U23JmMmo0kaV1d\njUrlLiLFpg+WApLLcJ9P9QHbAEz3k12OleDHXmtdC6h4kafoFw707pbqLe71BKR5TTi/0oJ/1GRj\n5rqUlijbKl4ktjpOgOhdB6X1Z608WuldeZF/pJ1DSH22nEBIIOx8p2ytuRO7ghKh33Jo+vPFLqrr\na91TWbu6sWmFlFuqyaCUNQpG0KbanJ2tjcuCZgqO4yfk9EdbqW57xSVfFv69uf6PdJvTYVFKpN7n\nm92+h18LbtUMAISkpRugkJAKvUSZJEntJwAIFZEOaZ/C3m3LW5N+XkKadDoDSWtqt6SjbJUTsIO4\nAAEQZBH2HdbM+dabOstEWnh/Y2WvKukOdSuO72LbalxNkztUkqdSpJh4qIUiCCjZu5UkjkLi5/MS\nSVJWpRkwAIxH35/tWeOLlJ5H+I7muioGtK1KBUsgERJ4irSw0mxvQoN3zMl1llBfeSwAXEqlRmfS\nlQEqkY+sjZ2uDhFhodtc6Qh/qBPlPM2kNKS6wh5tRdSuNyFGDhKiDBgpnGJWg2ej6um7d1IL8zb5\nbJF6xbDzFDa0T5nKAsgqjhIJkc1nTcrXoddkmU12jTUXT3kF9Nvs3MytK1kkSAoiB3zGR7VppV6s\nd/jitTgypC/1qWAqcSDP1q8f0640fV7Fer2drftKaYuPJD5dbdbcSFJSpTa5SSDlO5KgcGCCK4b3\no6inyYbPT+lHrx9q76gubZgWj7jTgs/MJuE7vLaI3iErhI3iY3cYNU8swsbFLVHogwAZ7jvirFyf\nKI6NjTw6t4KCXVNs/wAxzYJISCJPx2q56i1yz143F9d2rzmpqdQFXKVIQ2tpLe31NpT/AOoSAVL3\nZO4kEma5km5Jo6TXTRzYBMpE44qZQtKACDH3itDgt7RWjW+jKuhqNydTccW0m1S0EtoRCIWpc+rc\nC6naAIgGTMVk1K20rULJrUdNSwxeXF2+lWn27bqkstekoIWtSirlQA5ASCSSaytpp1+eZ2kmqKZT\naxACSAcTFRIQEhO47wqNsYj6+9aHBt6Pp7GqXRtn9TtdPSGnHPOuN+w7EKUEehKjuUQEjESoSQJI\n11o2r270mPbNL3otbWbr7mnuMMIsrZ5laUw846+FJW5/qACRtHxntms1zrTd7bXTdzprDt0+tpz8\n4p11TqAhJCkiV7SFkgmQSNo2lIkGz6XK47IkW0qZrWblr5Fwy7YOP3DiU+S4lwjyYMqO0fq9M+0c\n1m0+wvdeurbTdOt3r7Ubl5FuzbttlSlgABKUwZJ7RHYVy9t2XnZGk8tKS4j8sltSlyCCfSM4E9sj\nnOKglCyjd2MgSOff/auiF+7q7GiXWmah0nql9a3dqhq4K23jLNyMyhUJOD8YMgFQ9Rw6lp17Zafp\nt/d3dq8jU2l3LKGrlDq0AOKbIcSkktqJbJ2qg7dqoggniKezktzt+SextdPXI1jWUMaja6a4w21d\nOlt1SLRs/wApSiUqTt9YgFCTIKglMEHaae+/Im5f/KIeQxvV5AWsFQTJjdAgmI4gVI2p9Pavzcj3\nVnR+HvUPSujX11cdYaPcaiyLdX5ZLNz5Km3zGxZIB3BJztOD7jmsF91E9aKdFpc2bgeUHUuLbS64\nUmfSZEAjuB/evLk08smZuf8AjSqv7N45lDHUeSmveoNQvg24+40dgIAbZSjv3gCa3umep16RrFlr\nD+nWN/8AkHUOi0vGd9u8EkHY4n+pJiCPavVHHGCSXYxc25dTHeawm+fuLoWmnsee4XChDKShBJmE\nAiQnsB2r0jwp1Dw013qHStB6l0i20dh5aGr7Ul37jTW0ASspSkxJE9+fvXg1WnzOKlgydLXO12vL\n0+R6tNkx9dZY2n8qLTxct/w/aF1pq1h0lfX+u6HbE/kbu2ccSHB5kBsBZmAM7icxxJrzNy701q3L\n1v07eNNvEC23ajGJGVIgkg59vqYrz+z/ANdOPXqWknwq3+Z1nlpo7Qi2/O9jX17VbR+zt7a2sFWd\n00lKHUhxTiVj1ErJVkH9IgYxXZ33hmi6sOn3F9fdKovuoGkOptlXIbVbFZIAuFGENZ9yAAZMDNer\nUZpaaClGDlv25MsWOOVtWl8Tnr7pdjRernej3etrV/TWndtxf6e6XbYK2EkgpJSrumQTwa7K/wDC\nLo/Tktqs/GnQrkFQU2yl5tYJ5ynfHbMj4rP9Vm6I5I4X7yTa7p+T+BnKCU+jquu/Y6bxY8P+lvA7\nUNE0B+5s+oDr1ra68vqCyeaWEMub0qaaZbVsEEEwpXISIAkGw8Lr/wADOpvF/p3StY0jqS/6Nt1F\nVxpdzdsKcec8sKcUhyGktpKkbtoKTtSEzPPog3nipyhT4ruq2+pFBQdM9e/FX+G/wm029s9V8Ger\n9P6et9RbSw302LtGo3ztybhSf5ZadcUBAGJA9OCSYHi2t+AHiv0tpjy9T6u1FhrT3i/dNP8AntpY\ncbBgkTIKQT9JxXwNd7Uw+zcuPT6rFcpfB78Vv8vie3DgyZIucZVRxlpoPTZ05nWuq/FNGqWjKXXR\nYtvuFxSgVKAQCoHcXHJyBlSj7muTf610C/vCNSsry7SWkMJuLpYddQB/Vk5/+MgcV9HDHPqm5xh4\nfTsrW/rx24PO5LHOpPqTPVvETxR/D9o/QGmdJ+E/Sx1K+eUo6xqOqaZ+XdUEqbW35YQ6qJIUCCTg\ndpri7Xxb0u7TZ272lsaallpxlTunW6G1raWFbkLSAlC/1HKwqBgVfZGgz4ISnr5dU3KT5tJX7tL4\nJc8b0Y66bye7p3SpfPz3/opdJtb5u1c1ZtKi0w5C0pWpKylUiCocJIURg8qGO42elNBvkXp1p/Rl\nXtqw2tS2Uvhta5G1KkyCVQtQPpBPpVxBI988sMdylscKEpqo8mtqVqL+3RfWtgpl1qRfLVcpV5zy\n3FqCkIgKCQjakj1QQSSNwAxLUm30u2SoNSFlUyDkxzPcT+9RO6o7px5O68J1dBazeX9p1fqVlpy2\nbcOsLecS2lwj9SSTzgcTXsbPgp+EjW7WyttO/EVbM6q5bW7jrN7ZFq3QtSUl1PnB4AbfVGDJgfNb\nwwSy30tJ+p5nKSnxseWg6F4e9VXeo9JOJfVplw9bW13+bK27lrepCllvI2uNKiATySDxHRNdKP8A\njEnqzr6z1LR7DQ27lDV60u5bZIDjocDdqy5udBlIggcSJiRWUE3fX2NJNqpUcLa3Hgb0tfafcazp\nGuasuzg3dl5Ytk3MOfpU8VkgFPO1IUJwcVx+reISrLrZ/qnoBu56babuzcae21cb37RIJ2JD8BRI\nBiZ/xXk02LVTn155Jx3pL1e322PXLJHHHpitzT0vX25vr1y8H5p+3lALAdBXvSSCSQE+nfmFe0Z3\nC96e0Swv9Kv9QuUh11m2W4hCWEqJc2koA+CrB+OK2y//AF49UV5IkbyvzPRPDzwD8RfEyzULbp24\ns7PTgyxcO3WGkrcc2pWUkAo78AyU4zg+g+Jf4RNH8L9DtNfT4g2moNtF20vH/NQm2F82la1MtLKi\nVekNjKQSpZEYmvi5faWWWfwtNByjvuk3a247ctJv8XsjgioqWR02eR9Sr0G0vre+0J9m6Km/KKHr\ndClNqLaQ4tSVEpIJUoDaf6ZhOBXF65o4eLa7xFvZrBSssJtgypYVBCRAiSkyJxH2n6Gkk8UUpvcy\n1CUpbC1Tpy80J0abf6b5bb4t30gPI3FpxIcQN2QCUKB++R2rd6Tc0VrT9Qt7nTrp555v8zZsfxAM\n2nnMKKlC6SuPM/lpcASkpUSsQc7T6HJzg2n9jJQ6JU0VOvap02xo6LXQPOdvLkD888/bpKFSlC1e\nWVEqQUr3JJH6gJkBW0crdvNvKDjNq2wkJSgJSVGSAAVEknJ5PaTgAQB6NPCUY++9zHLJOVR4Nvyr\nBkWN4tpq4Q4Fedb71SmDGSMieRn+1WWjdP6p1bqdvpGnKdcCypLKXFKUG0gSe2BAplzxwYpZZ8JN\n/QmLG8s1Fcs9Q6o/DHr3RhavLjqrQH7Ndgm8dvLV9xxq3K2ypDDsI3IcWUlCSobVEghW07qs7zxk\n0rw08P2PDfo69R1Lp2qp/Pa1barbhLKboKIaLIadMKDcbjumVFMenPyMWuy+014eG4Jrd96a2qz6\nU9OvZ87ypNrseV9X+InUvW1xp7VwUKTY2ibK1bQ2JbZBUUo3n1LACoG4kgADgADjrpxsMt+Xv80y\nHJEAZwB+3PzEYk/W0+GOCCxp3R4tTnlqZvJIx2yXbi5ACVuLUoCMkk/712us9KXfhu/a3er3FqrV\nFJcK9OWHEvWCigeWtcbYcBUSEyYKPUIIB6yZEpLH3Znjg2nPyOGunQ68VBRM4k1uaIjSnLlSNbuH\nmLYW1wpCmUBS/ODSyymD/SXAgE9gSa3XBny9ybOvO2+h3GgotLR1i6ebuHHHLVBfQpAWAEOxvSkh\nZlIIBIEgwDWGzsbm8v2tIdi0WVkQ62oFKyMJIAJyQAMcn61KUd7Fto6Prq4t2EW2gNafa2lxpW9i\n78lxDyrm6k+a6XUehSSrCQn0hKU8mVK49t9bJJSlJJSU+pIVgiO/B+azwp9G53krq2RAiTITmJM1\nIqwkBtPpwSO/ya2MwCjtydxJzVzqzVtZ2+lXWm3j5uHLbzXgVJhp3zFgBBSSR6Qk+qDJMCIJ5lyk\ndJbMpvLUQHSFAKJAxgkc5+9TacbDRa8glav693A9oiujkiG1qdQ23kqUAJ+tWB1nU7XTbzp9NyU2\n10+26+ymNq3GwsJUT3jzFd+9RpPYqbXBoslkpX5pcC9v8vaBEz3+1SfuXbpafNUglCEtpCUBOEiB\nxGfnk8nNO+5CVhduaddN3aWGFqRPofaS4kiIykgg4NdX4ZXPTFt1NbXnVfUmqaHZMkrXc6Wz5lyJ\nBBDcqSATxJUBB78VlqHkWKTxK5VsuDTHTklJ0jrdN0Hofrjp/Vl6Xd3v/iLTn7JrS9MatgLe8YUQ\n04s+sq84rLRIAg7lnERXn3VBtLnWr29tbJixbeeU4i1t0KS0xJktp3qUqE/pEknGSax00pN9E+Vz\n9j0ajHCMIzg9n/DoqLe1evHxb2jS1uLO1KUglRPwBUijy1hp307J3GOTXrtcHjLS7trHUUNq6dsb\nhlFvbNm6FxcoWVPYC1IASk7SchOSByTzVc03Y/l7lFw2/wDmYT5BbUAgGfVvkSccQeakX2fJWu5l\nbGpaQ23qFtcO2yrpp1ttTL21Sm1AtuJVtO4BQKgQeQTyDWK1QpSlABzzlx5JCwkBUjJn4nuM1btW\nKpmS90jUdMbs7zUbF1tm+QH7cuJKfOa3FO5J7iUqE/BrK3pZesfzaGbhC37gM2bSWysPf6wFe6Zb\nxBnd279ZlLC0pKm6++/7bnMJRmri/wAX+zQbt7i5dDbDTjq4J2oSSYH0+KakuMny323ErBkpOD+1\nS+xa7mxpyrdl0m6sy8lafT6inP8AvWxroBvFBrSDp4ASSyVKMHaJI3ZgnIn35PNcpPqu9i7UVB2k\n7UGUzMnGKz2X5JZcRePLZQEEpKUb5X2HIj610/QhrOKiSDIV34qIUoeqeRmaoDzNxkn5jtW1+ZQt\npCUNJQpCSFKEyozgx2rlqwZ2Lu2Fo9b3FmHVuwW3fMILcdgOCD3kVktNU/KNnap5LmUBaXCPQUlK\nkx8gx9Md6nSwdFpDY/gV5qDVgHVstBTKwqQlQUCreNpJG3dABGYM4g1Or6szcs29ym+fubt5BN0h\n1gIQyrcYS2QolSdu3JCYJIgxJzUblZ0pbUY9Lu7c2V9av2TTvmoSUqUpSQ0oKwsAGCqCRmRBOK3L\nPQG37RNw2TvLgSBJIOYxUnLoOoxUjO9p2r3qQtT4CAsMoTCiocwOOMGtpzp57p9wP6w65ZvBAWlL\nsoWoHghPJkVi862jHlnaxu7ZkX4l6tpL+n3nTzv5O60x8XDNyUy6FzMwqRAI4iuotvxaeNKNO1bR\nNY6l/jGm62q7dvre8bA8559tTZcLje1yU7tyUhW3cASk8V58/sfSayUZ6mHVKPD8vgdrV5IJxg9m\neO/mXPMS6mPSZA7VO8u13l49eLbbbU64XChtO1KZMwB2FfU6d7PLZFawsnaPT7DtWxYG2F01+cCw\n0FDd5YBVHxODVB+hXhP+KP8ACPovhrb2/VHgHZalf6ayi3fv3Glee8t131pUtGJ2Kd25STsmEyYq\nOtep/Cvw80e8Y8Oeuel7ZrVW9z1s3at3Lyrd5G5KF7N43QRPrKkmQdvf4ntfSvVab/jj73Uk1fMe\nP5vjbdns07jiy9V7V9zxHpzqPpd7TNff6v6a6dRdWds1e6e1ZqVNzvLRLKnG3/5f8pxSj6FQsFBA\nMgcVo2h9Oa71Rdaq8tqy09i6LlvY7vNISFbkpUpW3cIMEwCR2rpyyaZzik30pJerrm+51GEcrj5s\npeodWvdSvnVtW7Fk2Fq2tstYA9pUSY+9VFtZXLCVXltfFC0kJO3cFQocyDEdua9+JxhFI8uRNs2D\nd9QK8kO6xcLDQV5PmOKIQkqkgSYEnJitvTNLdu3FNsn8qhPlrcS0+4rzFAHMTE8/ScVJzjC5IsYt\n7M6tHTvSL+l2pt7fU13qhLyLlwKYnO4pETMjEnj3paz0d0vp/SWt63eH8zeoebYtv5/lqTBQSlCY\ngkAmRHAxHfz+LNSST5r9ztQtNyON0O20W7uLVpWnoSpwhKwtLytgnKiEpz3Mewr6H8LPEHwQ8K+o\nbb/xd0m9qOnjTUqacRbFfmXiltr3qStYEISkelSVJO9QjIVWGs0ubV5Fic6ju3x8kb6bLjwrrrf8\ns9utfx1eGnQjLK+mtAtOsHdQY/MXFs/pv5G1trlbilONqSJLyBuG2SYKZEcV82a/a6L4qdUaYzpG\ntaPaX3WGqXDrumIfuwzpBWsEFwrRGwgn9ClkBBkzArrDifszSuFr3U91t7tLb6rft3GSUNVlXSuf\n3vscunRtM6Wau7UWwcvXmbhgtPaeVhJKSgLSXRHCllKhkKAIyBGa/wCkNY0TRtP63uL15I8xDK21\nvFy4GxKFturQR/LRtU2lMk5QR8V43r4tRcmn1vbf6fiPV+ma92n7puJHWXi9quoW62i2/dTqCLGx\naYtLQvNNgLecTKEI/lIWTtAJVwPUa5LW73qx0u6Y3ooU1fOuXLDYY9KSopKlMg4H6AkqGYSQTE1v\ngeGWbwLprf8APp9DPN4kIeLWzNnpTpFrUX1jUdOuXHngQ2jzQEpUCCshIyoBMjJAH6jIBBsutfDP\nRkdY32k9M6XqDDDD3ksWF0v/AMyCd0lS/LAVtISFSEGVpAEAkezNqIYXfVWzf0PFjxSy20jptL/D\nz1Dq2vPaw5oWn6SyHPzKLEPEW5bQVFTaVOFQWf5avQFqUewzXZP2/SXh3o+i3nSui9RaV1QnQLtm\n/wDy1s67+euHC6lQQUmEMltQQqT+kKO0yJ/H6v25/wCT1ENJpZUm6dtK1W7re68tmfe0+h/S43my\nrdfFnkPWvU/ix1JpqVa5pf8AC9Mcbbt0hvR02zS0NlYSd6GwVEFpySSSfLVMwa82vLVtttTYvEHa\nf1pBhQzkSAY+1frtFpsOjh4eBbd97PjanNk1EuvIzUttPeurhphm6bKnFBtAJIzV7a+GXU171uvw\n+sWWbrVk3arJQtn0PNFaVbVKDqSUFsQTvB27czGa90sijbZ5VBvg6XpQaR0FY6hrGpMqf6k0m8SL\nFkwG7cpwp1ZiVn/RsUChSQozIrida1/Ueqbtx7ULsh15e9aniohxefUT3PyeTNeTFCU8sss+Oy/O\n9m85KGNQj35K/UdA1XSlMJ1K1XbKumEXDQdQUFba/wBCxIEpUMhQkEd61FNOtbVrblJ7xgn/AJr3\nXZ5S5udXtb63v0WfTdtbuXVwy+241JNulCFhTaR7KKgT/wDEVu9H6jZaZqL2s6kb/wDiDDJc01y1\nuPJcavUqSWnSraokJMmBBMYUKznF9LSe5qpJyTapFWxe3bmsDUHLNu6dL28NKbBC1bpgpjIPtW5q\n1wxrhLqenGbG8duXHnV26whsIUBCEtYSgJUFHH+qOwrrqUFRxvLcprmxcYeWhBlIEgBW6AexMc1Z\nO9OdRt9NsdROaNdo0h65ctmLxVsQy4+EoLiEuHBUlJbJAmNw4nKWWMUup1YUW9kaFvp1w66EbEhR\nBIkjgDNdxbaQ91J09pmltazp5btGrh55ly0Qy/bpSoqP8wpHmFW9SgAomEZ/SIyzzqpJXW/55mmO\nN2m6s5+50DSQkbNaCcwR5Y9vlVNrpe1duPKRqiCQAf0pG4GOPV81x+pmo3KH59CvFG6Uj0rQvw9M\n630i9rzOvOm/acUfIFvDTduAJdU4CTO47Y2gZB3dq5y86b0Do03Jfv8ATtWdtrlgodtXnG3Fs70q\nU4yFISoGBG5QwDxXydF7bj7RzT08INdLps3yaTwYeI2ir8Rem9B03qBi56aefZ0bWWxf2JvEje1b\nrURtXtkqKFBaCqJVsJAyK5K1Vp9pqIRfJN3apUUqLRKSpPumRg+0j7V92LlKG2zPLNKMjFeO2arh\nStPaeQzPpS4sKVHyQBNRRuUggIUpSuABWiutzh87GeyubyyfS7ardZe/pLRIP9qvXdURr2nPN9Qa\npeNPabbhOmNJa8xtUugqbUoqBbSApxYICpUIgTuHOy3XJU3VPgpEldu4h6zu3A4kTvRKSCfYzPFZ\n16PqIa89TKtkBW9RA5+uaXFPfkJN8GFK7hhotNKhDikrPY4BAzzwo/FZ29Hvltfmrm3WhpaZbUQo\nBzJHpMZyCPsaSko7vuEm9kRFmhbbq3QohqG0p80BYJmPScqGDMDEj3Eq00m8vrlliztnHFOrDaEo\nSVFSzwkAZJJ7VVJUSjBcC52BD7q1BglsJUT6MnAB471iRCVJJBMD/V3rrqct2Sq2Mjd08gjydyVg\nGFJkGIyMVt6jcaVchhen2b7S0sJS+HXw4Vvf1LHpEJJ4TmPc81Gndot7UZNOec0nVtNuta0t25tG\nFNXBtXVKbD7G7cUpPISoTkDvNWPiB1teda9Zan1bcuXPm39yu4SX7hbziQT6QXFGVbRAkntW0Zw8\nJxrdtb+m9r88jipKV3tXByZ9uATNJaVpiZTiQCO3vWZ0Q5yTNIkkADmgATkAfWpFWwQDk80BLcqQ\nqME0bjOYxmpQOwtOtVt6OrRLa3bbbFopCz3cUcT+1cfu3KISOa5jFR4IlRJKXCpKUzJ7V2PRXXg6\nTUhq/wBM/NNMu/mWdrpQtt4AQoYIMEA8TIGay1OGWbH0xdPs+aNcU1CVtWj0S48dfDRcoa8JylKm\nlBO6/AWw6XQrzEKSgSdsphYUM8GvPvEzxEX4gata3yrG2sW7awt7MtsIjzFNoALiyANy1GSSc9u1\nfK9ney8+lyLJny9dX28/i39D16jVY8kXHHGjiQ77gVHkQe1fdPAMSJIBE8VJwtmC2lQAA5M57nig\nFMSR3qSVEH1GKgMiXNqYnk4r1HRepbS20HTNFsNYYsXlNrXc6gorKrUq9QAKZyf04Eg981nkuk0K\ntpF9p2g9IaNr+ha30b1AjqFD+mqudUTe2zbCLW42q8xBSrzN6EQDu2gqPA4re8GvHXpjwt1rqbrD\nUenbHV9RuWnWLDTLqyZdYlxC0FZWAAkIlJhABMggiM/Fy4suvwTxtJTezvdV1fyj3Q6dNlU7uPp8\nDyS76vNxceamwZCsmUEjJOSf3+KsLbVrZLVvdakEMrf9YUrIMGCSOea+i9P0QUYuzDxFOVs1L3qX\nSf5TdrbOqcS6pTz0jatBgAJSRg85+RxGbvozqzRBe3bN4VsG5QlDG4eneAf1EfJ9q5yaebxOuSxy\nRUvQ1r646z0t3dvct21NFKFIQS24kK/WknCskwfmq680bqx+7avLy0vHHb8B9oLbA89KjAKADkY7\nDtFeiEccfeXLMZzf+LO70/wU8R9RZsra06U1N25vARcIVpVykWYJASVq2ZGTkAxsPOK5i96L6o0l\nou6xot7YstLLbjlxaLQlCwY2mUYNcxyQltf3OV6EdKs1pLrjyTapbZcKi6koGEkwRjuBVtZ9M9R6\n/ouq67a6O4rT9AaZVc3ikqAt2Vr2IVMgEKWpIBzWGacYvqb/AD85N8SlP3UcxZXdmdVS3dagtpoK\nAL5ecABznBJj+9bd51JqujfmrLTNcsdTZvWAlbiULIbG79O1YA3ekGYOFczIrrLpoZvcnHb0OoZp\nY/eT3Oab1LWW7g3lvfuNvTJUhzbHuMcVfaNrnUeqakzc32s3ZXZI2tOJnc2CchJGRyf71pkxYk/E\n6Va4ZlHJOui9mek9Naje3j1vpzeq3QesCbphveoi33K5SCYTJjjOQa9G6p6b8TNJ1hvT9R0u18/q\nS0Y1R3U79AL5aU7uC0uElSd2wSZ3ESO5n8xrtTjx5bzLam/lyfc0mNvHUOWes+OH4gbXQvDXTunV\nWKv/ABQblp1WmtWfl6ZbpSyhAudiVjete0CDwdyjzB+JerevPEjq7WL/AF3qDX9Quru/eL9ysuKG\n5cRMDAwAI4gVn/8AF9DGWN6zUU+r/BJUowXCrzu7fce1dTOElgxvjnzbfqZen+uutdNsVqOvPPWP\nku2xtbpIuUJQ4laFlKHAUpMOrIUIIKiQQc1z2tWGo6Si2vNQZ/8A5zzFNpUMQlZSTI5ykj7Gv1qc\nFKkuT40pTyR958Fs10c45ruiaY3fBs62xbPNF91pAT5oG4zuCUgK3RuIwBMTXsvhT0bbeElxceLH\nWvXLOkXGnXl7pVrp+nravbh24bQkOJdRu8s25Q4pBBWd+QAUyawz5JuDhGNtrvx9fxmmPGk1NvZM\n8u8VOqehNT1J1zoxnUVouDuW5dpbaCTOEhtuREd5GTxXIpS3Ya0qz1cWZaYbUlYbdS6nKJBSptUK\nUCQRmN2DiRXPs/HqceljHVV11v03X35OdRLHLI3ivp9R6xrtunW7w6JcP32npWpuxVqDKQ8GEq/l\nyASEmAMAkCSK6Xpu61LxHtNM8PtV16y0fSrC4vdRaU4nagPutJ3kkCVFQYbQmcDHGTXpzS8GDyVb\nSMUuuVI3+k9dvOgLC7a0u10vVGdZafs71m7tkPJBLTraVoVG5CkJd3ApI9UEzArqvFzw50bo/pPR\nlXPWdnqfUWtoZv0MJW28tvT/AMqgtFbqFKCDO5AaMKhAJCZArzLrnNSguXbfoq2+Ztsk4+R5h1p0\nT1D4daynReqrE2N25ZW9+lqZ/lPsJeaUCCeULT+9VCdR05xNubu0fJbCt7nnql07pHMxiBivZTmk\n1sYf4umev+Clux1yzqfTOidIaffai2yX2bRNil65dtkfzbhwPKBKS2lAUCoxAUDKSpJ5zxG8Q9UL\nt70m5b9Ovo822Nw7a6LasFDtshTQS2tpIBQU5UUwHCApQkTXzNLjb1mXHlbdU1d9127c9vRHqlKs\nKcTlL3qxOsam/duaZaWDdy4pwtWLCGW21qA/SEjCZAgcAFXE12+o3un+HunW2qpvNC6rc1/S3rVd\nvcteYdPWo5UkTKXEiNqj3UrGJrfUvpy48XS31bWu1K7fldfUmB+7Kd8b15nDNu2b9s9qA0O3H5Z1\noKT+bCcq3EQhWSn0mYwJExIrq9M6v8PdH1YXQ026v3rS83sONwy262kYx+pIJHaDCjwaajTZssHG\nM92q3Wxni1GNT3jx+fyet+L/AIs6fpim+lrfrBu+0HU0o1Vu20JzcxY+clLgtyp1AdV5ZOwpUpUE\ncmM/M2udQX2u3rt7qF4t9x0iVrQndAEJyPiK50PsSPsXLkxQUadPbfdq3vbvsthPXfrcUZ00/Jmk\nwtaXUF1Sij2+Ks+obnp29ct16HpjtgG7Rpt5tx7zPMfSkBbgMCApUq29pjPNfQ3u+xkmqdmPprTb\nLVL9FrePKQ15bjjqwpKfLCRIPqPq+gz7TXd+f0N4datd2VwpWu37L6Qi7sX2nbFy3KQSjatsK3TH\nqBHcR3rPPhyajFkjBpVXPrf9dnsaYpwxTjKSff7V/ZxY6lurTUzqtldraL7ocdZQhIASFSAJkH9q\n6DpHWeitZKLPxMv9VZtW7svhem2jCnVBwjzJWYUTAwDIBniTXl1GnyKHXp0utVVt15b16dvM0hlj\nKXTkfussOneidE6w6y/h3TNw+3oy7soTd36D/IaKvSt3ywY9IkwD3gYr3Hxm1j8KltoWkaF0z051\nKb6xddF/eNuMN/mVEJgJSkFLYBCsernvmvDrMubJnWLTy99L5b//AK7/AA9T26bFihCWTJ/i/r8v\n5OJ8Sz+HC36b0K+8M+les7R64t1qvnNcu2nELWMJDJaQmRuSoFRHxAg1yPhhovhv1jdX7PX/AFkO\nm0W9i7eNXSwp7846laUpYSlKSULO6ZONqVHmAfoQx5Zf4Tv4r68GE5YIuNx7dnX72bl5c+BOk9NW\nytMf1TUdfduXk3yLplAYbYSElvyliVFalBQOABjME1s9V9V+EFx4R9OaN0rpWp23UwuLl/XC49uZ\neVui3LSZxCDB+T3rPFp9V4nXln8lx+fyazy6SMXHGvPc4q+6c6Zs7VvVH79829wwVoabdbU+l4oO\n1K2yQQkLgKMcZE4nl7izWhKlMq/MJCoKmwogH2yBXq02aWSNzVdvLj4/Y8WfHGD9x33MNnZOXilI\nQ802oCf5roRP0JxXUad4bajqXTKuprbWNFLab78h+UVqLQuVL2FW5LRVuKIEboiSkAkmrn1McCuS\nfyVnGPE8rpHLvh1pZaDqVwNkggwPioutokONJWGzAyZO4ATx8n9q9CM2ajTbj7qWWUFbi1BKQDyT\nUVp2Sk4g595qkIkBIg0iCT9PagFMmTFGeYB+ooCXbBxTmcrkA1AZGipO1SI3A4JFSt1oS6FuNpWO\n4VOaoOqserdL6e1vSte6Q0EN3NghClp1BSbltx8BMrCdqdo3AkCSRIzjPN3t1dag6p+6QC4tW5Sy\nDKldySe5OTSSi59UTiEWt5Pcd+9av+ULTTfyykJhwpWVBZ9xPFYmHLRLTn5hlTjhTDcHaEnGTjPf\nGK4SaVWdmJISZT5ck/3qzYttLQ2kXjaw5Ki4UuwFJ2jakDaYMg5mMjiJNldbAz6v0zc6faG+DK27\naGVJUvdkOthxIBKRMA5+o7ZrDo2hXuuXQtLGyuLpwtuO7GGy6oJbQVrUQMhISFKJ7AE9jXPiLptl\nSb2NfVbL8lcBiBhIiB/etTfEggcV0nashmtWXn3AGmfM8tJcWB2SkSo/SBXV6/c2Fpqb2oadY2zD\nDyi8y2LRQZDav0hAdUpRERG4k/JpJKUaJdNFRqXU2odQau7qVyLS2euG0NRa26LdsBCAlIShsJSJ\nCRJAyZJkkmqcq2KU24gSJGTxUjFR2R03ZnNsw4yHUPAcyknKfb6jjOK1iFBsq9RQTAJ4+RNdENm0\nsdQuWH7i1srh5u2CC8ptoqS2FKCUlRA9IKiAPckCt231XUNEdT5KHLZ8tAArRBDawFAgHsQZB4IV\nNTnYFl1X4jdYda2+nW3UfUV3fM6RbC0smlq/l27M7tiEiAkEkkxySSc1h6Wd0vUOqdMZ6k1650zT\nXbhpu8vbdjznLW3KocWhvckKKUyQncJOJE11zVnU5OcnJ8s9U6Z/F94/eHFkxo/QnjP1CjT7YktN\nOLPoO8wIWVYgAxMZiqzr78Wnj54n9Pv9LdceJWrappV1dC+etHnQG3HgZBUlIAIBEgcAiYqub7nP\nJw/WniR1h1/qDmr9Vam5d3tzsD1wUBKnQhISkGABhIAqnc6m1921Ni7rN65b+WlrylvqKNif0pgm\nIECB2rHwoc13s6UnHhlf5izlZVzWZDjJGHFpjuRNaUclvoum6A9cNr1zULtm0dbuAn8s2lTheS3L\nQO4gBJcKQo8hMkAmK7Twouel/wDxEzZ9cO3g0NtN3CLYpSoXBZPlFaiMJLiWweTExXi1jn4M3Dmn\nXxNcCTyR6uLO16B1q2Hi1f22l2Fhotlf2YeYd1V9Pl2yG2ifNQ8psqyZUlSQJgSDGKPqbxm61Fxf\nanpz7bekarauaQy3crRcrS2kI3FJVJSsSmFpggGEnmviYtBjz6vrze9UIp7bN29/Ltuj6ktTPFg/\n49vedfDb+zh+oOqtcdsWdM1Jz/zNqfLedfcUt9Z3Eg7j/SkBKeTx+3KOalcAONfmFFLhyZz9K+/p\n9PjwxqC2/OD5mXNLI7Z0nSHW2ndNaRrNledN2OrXGpWi7W3cugVCz3xLrYmN/pABIMSYg5rXR1Ro\n19ojGj67oe9Vom4Wxd2joafcdXs2+aVJUFoRtMJASfUfVWksdu1scqaqqKdrXdQQtLrrwuShHloD\n6fM2JBmBPGT29zWJd9dvIDblwpSRyAa6UEnZz1OqMbKWXFKLihgSBmVfAIH+ajC3F+SyzuKjgbZV\nXRyZfyqE2f5pFyA6lYQpgyFSZO4fGAPqai+15bbCvziHCtBUUgKBbO4iDIGYAOJEEd5Aid8orSRd\ndPaew49blTjbrrj5QbcE7ggbSFfQyR9qhddQMtvXDatOQpRVtS4FqG1IwIB496jVvk5vejQu9SvN\nbuFuXtw484oIQHHVlRQhICUifYAAfQCKrlelUJVIHtXaK3ZY6DrV1oV07dMXF4z5rDrClWj/AJSy\nFoIAKoMpkjcnuJEiZGmu584qdf3LcV3+Z5rnpSbaLbqhNXDjLgdaJ9HqE5EzXVaZc/x63dRd2TF9\nduXLFtaJ81KHQ4vdEJn1plIBxyU+ocKzyQX+Xc6g62LTWOoOkx0i/wBIXXh9ZWPUlveNpVqrT7oX\ntQp4ONKbKiiVFxsFQAgMpjlRPBwu3cVtKZBIwZ+K7xqopXZJcidecfMLMnj6VAkARlJGZrQ5JpVb\nqbErWHBJJUfSRiI+ea6bVWOiU6aLnQ7m6dc/L2vmouwEuJfKP5wSEmCjfO0nO2JgzWUutNUdLpp3\nycwstqSlTTYSUiFKk+oyTP8Agfap3V49evqeuA2FKMnY2lCfsEgAftWhyYEgCd2BWRpSAoHmIMe9\nUHT9M9Z6x0lffxrp/UVWNyU+SvyCAdh+O/8A9V3HRlneeKl/dadrXXatLsrlxzUbt3UCssuvstLU\nICAQXVJKkpmJKoJE18vPpsWLK9ZGK62km/RPb7nswZJ5EtPe12bviX0R05ozbo0Pr13XNItkpVpS\nLp8W7zloSfUGZWGz5hWSjdOZg5NeQOKtFJBQlbUSJ3bgf+K20eV5VKlST8qv1X5yNZhWCajdjtbi\n3b81bqFrHlqQkhOErPBP7Gtdp3e8gblIb3ZIMkfNetJ3Z5DKlS3XF7VqWkKISpRgkdqyFTqWi2ha\ngk52zya6rzIYfy5cKUNyVqgJSOT7UPMuWpcadQttbatq0nBSocgjmRxFPQGDcpQOM8U07txPMCgM\nTCZcT/MSmSBuPA+agslRJLkk5k1QKFASCKQwCAJJoACQQTkYpAEkZqAzIaK9sAGe0wTUrm3ctHVM\nKKd6VFJ2qChg+4wfrVBkYaUtshStqDBweSK6XSNQ6UYuP/33pZm5YNs60Sy+42tLikObHY3QVJWp\nB2/pIbAIyTWORSkvcdM6g4p+8rRSXGnLtkB9DDrba8oU4RkSQP8AFbukalpdpaXFvqWitXzj23yn\nfzCm1sQSVbQMHdgZBjtnNdK2tzkeoXelXdmyxYaMiydbdWpx4vqdU6hQTtSRASAnaoyAJ354FUy2\nQYlyeOK7QNlPksNg7VKUY45/eo3RbdLZQuFHIgiB7z+1T1BaudRP3miv6VqTjru5xhba/MWogNNL\nQlMFe2AFJH6SQBggYO50n1zc9LWz9nsYfs70PNusLRuKQtsJJBOROASIMAic1lmwxzx6ZGuLK8Uu\npFfrWraZqF8xeFsuhNr5TraR5SfMEhJSZJgDafrI4zXPSZkT71pGPTFIyu9wJMSCcd/imHFqwSVA\nD612Bgz6T34PAFKY470Blau1NoLCkJcbVkpI/bPNJLjikeUt0htJKwicSfYfYVKBlduFeSEIegKj\nckGMj3rZ/ONXjDj18+fzDTaENJKNxc4Tkn9ICR89gBEkKBoKenG0AewEUlKSVEoTA9uaoEFEHCiM\nRUkqkjbHtmoC3sdHv9Vsbi6tUspRYNF93z7hDaQjA9O4jconG0So9gYNVSmXElJJSd4kbVAxmMxw\nccHNOCJ3sNJIUElPHJq8temNTUwxqN1p9zb6fcSW7txhQaIBgkKiFQcYPNcykoq2dJN8Gvr2iv8A\nTmqLsLi4trhaEtuJUw8h1BStAWk7kEgGFCUzKTIMEEVsWWrJ2uENqS4twrCECUnHvMj9qzdZYWdL\n3Jblj1lZ9U3tvY9Wa1oz9naasXfyD2xaWFobISW2gcbUHEDiYrlCVYClqI+BxTC49CUeBk6uq5ES\n4oYVkRA+BWZmzQ9bu3C32mko/SlW6XDIkJgHgGcwMGtW6OC9sOhX9S6Ud6tY1jSm2Wbs2irVy5Cb\nknZv3hHOzhO7uogVpK0ezTYm5TqDZU0wHlpAUqJUEwYGDJ7kDPORNmnCrXJmp9TpJlUnyVrCG0gy\nYkiCa7EdG9Pf/l2erf8AxVa/xUah+SOkFtYe8rYSH90bSmQRAzWGbJLHXSrtpHpxQU7t1SKHRrLR\n7hwtag9cpWSYDLRWdoEzA9s/tWDXNJvdA1e40u7sL2zftlbHGbthTT7Z/wDcg5Sc8Gu1NufSzPYv\ndDurjUWTpugaFaNXUhSrsJUt9OGxhSiQgbkFW4AEbyJjFR6+6A1LofUWrO71LTr9TtqxdebY3AeQ\nkOthexRHC0zCh2IIrJ54wyrE+WbdDnBzSpI5bc+0sLQ4W1RjaYIqBSuD6snNenYwLfpS60Oz1lNx\n1Czeu2Pkuhbdo+GXCstqDcKIMAL2kiMgEYmRUrQlSz5YwM/auVfU32LtXqbyEWidHU2m0Uu7ceCg\n8HsIbCSCnYO5JBknsI71XqScAGf810iGwy1auMOKeU8lwfoShuU/cyI/vWPatpW/7gg1L8wXGhdO\nXXUn8Su7a8sLZOn2yrxxNzcpa8xIUkbWwoytUqHpEmAT2rU1RjRrf8qjSbu5fc8gG8LzSUJS/JlL\ncKO5EbYUYJk4FcLJ1TcEuOTtwqPU+5XAQSR35qbyGAy2pt1SnSDvSUQE5xBnNaHBiMRnvWRJ3+gQ\nmI+lUFxY6R1DqGg397Y6W5cabZ3DJu7hu3Cg04oLDYK4lO4BcJmDtJ7VSlKkqgp2yeIrhNNtIrTS\nTYJB3FKU9oxTBIPH/NdkGCQSoDHv7Vc9La9rHTurM6no+5bzIV/L2lSVpKSFbh3EEzWWbHDLjeOf\nDVHeOUoSUo8oy9S63ddRao/rD1uxbKdcKiy0RsbmTCU9k+wrQYtbjU2bt9LlsgWyPPWFKQ2VAqCY\nQnG4yoHansCYgGucWNYMcYLhKizm8s3LzMa3lPMM21wEpbYbWlBbYSFKMlQ3EQVZMSokgccAUrRm\nDBEE8bj2rUzNkMlKCqOMyPatR64Sp1IAgJ5jvVBsHyUtpKfSv2n9q1XVqcWSolROSSTk0AkjgjHu\nYqRVAxkf5qg1jITHIBqPb4nmgHPoKSMEzPtUR/7jigETkROO1NK9pEgY+KAFq3KJEwO3xWRt8JUN\n6YAPY5qAyO3SlqWhtZ2TgkQSPkdqkVLKACsCeRHFOAIJddWGGN7ilYAGZNdEnw06+S2H1dI6psUM\nKNuqOSP9j+xp6HMpxjs2U+o297p9w5Y3dou0eQAlTbgIUPSOZ9+fvU9J1RjSjc/mbNm5D9q5bpC0\nBWxSkwFpnhQMQaIvKMe+1KG1N3boWpxSVpKfShECDPvk4+PmtnqG5sLR1WiaTc2l7bWNw8W9Rat1\nNLuknaASFerbCAUggEble9VcblKMuLP6pIFKTEzxQBumMR/vS3GcmaAJ9qmFA+3zQEgdpmCZ5mtx\n/TFMaPa6qq8tVJuXXWgwh0F5vYEnctPZJ3+k99qvalWDDp7lk3f27up27txZodQp9pl0NrW3PqSl\nRCgkkSAYMex4p3bli5cvrsm1tsqcUWULVuUlEnaCe5AioDXSAc+w/vQomQFRFUCTtB5GO1BUFZ2x\n2oBzBOTSSoSBIFQG5ZuMLcQxe3S0W4XKilO4gfAnJra1VjQ2Lu9b0i+urphFzts3XbdLRdY9XrWk\nKVsUfR6QSMnOMy3ZdqJI0DWRp7esuadcpsXHCyi4LSvLWtIBKQriQCCRM5FehdF6P1P1BqjHRuha\ndrL2j6w8w7c6ZaXcuOtt+okkp2giVKClJhMyRArBtZXUGn2+YlkWGLnPZLdv0PWbr8KWjdI2ur2H\nWnVVmb5hm2uEtWoDj6itUBDRCwFJIWglRSDjGMnq+gfwu+HGm9HXXiP1Fcag2iwT+YtGl3bSvzRC\nSoNoQWiFqIAHMCZIivsx9lqacM0623o/Kaj2/milk00eWqvufO3ir1vpHXXV911I2ytm0urpy4Gm\nMtJYZtytaiUNJbSlCUwE/pA/VwYri7+xtLpbbOjMlXktJQ6pO4qeWSTuz7SEwI/TxyT8fDiWCHRF\n7LZH6yU5ZHc92yrNjcpC1uMrQ02vy1qjCVmYB+cGj8suCncEpGCSY/74rW01aOSLbSispkhIHNLe\n4UFsEgqORMSB71bsG/YdN3V5p9xqjFzbBNqEqWgvJDkEgYTyea6+y8HOtL3oFXiIEWydGbuU2hdN\n0jcHVpUpKdk7pISTxXz9R7RxadpSTvq6eHzV/T1PXh0c83DXF8mt4d9Far1b1ejpC18ta3ApboL6\nWQEpEk71kAQM54EnGaoeprHVbHXbxGqG4dukvHc447vUrJkqVJmfeaQ1kJ6uWmXKipceba5+Qlpp\nRwLN2toVrrNxpuov32lo8tLifL2OJSv0YhJMZ4GYzRZavbJvvzmpNm4cQsKCFpSts4Mgp9pI+leh\n4buUX7zRj1/+r4MF7aeZ5j1rarDbSfMWoSoITIAKj2EkDPc1VKCisEd62g9qM5cimDCgoH5pk7Z2\nrgkRFdkL7o+90i21I2uthtFvcNuNm4LSnC0SkgHaDnP3EzmINI4Qp0q/QlSsAcAGr2OVfU/IslsW\nKbNp6x1B0PqcUly32GEpAEKCu8ycR2rCblm3sHbdTbTq31pIX6gtoJnGMEK3d5PpHHfNW+UabLg1\nEXSktlCCUg9+awlSiok574Fd8HJNOADtqBUR6cUBINlSDE/vxUQhWT3FAXvSfWvUfQ+qDV+mNTes\nbxKVth1uJAWlSFYOMpUR96qbq5evrly7eO9xxRUoxFZrFBZHlXL2O3kk4qD4RiZecaVuQEE5HqSF\nc/BoQFhZMSR8TWlb2cGZDQWsBIj3ntW/petav05duXehanc2TjrDtqtxlwoK2XUFtxBjlKkqUkjg\ngkVJRUk4y4Km4u0aDhK0laj65JINQQvb6kHM+9UhuX2s3V68m4d8lKkstsAMMpaG1CQkYQAN0JBK\nuSZJJJJMLbUHWVLbLyihUSCTBjIn3qKKSpFbsxOXSitW1ZgiPrWKQOYIHcV0QcHBCueKEk/6ZJNA\nZE5JEjkd8U14V/SCAIoDUkEbe9CuOJ96AU/sKQEQAM8UAHGDSORwMUACSJ4jmj0wSRH3oAgiQOKY\ncUFSpI/agJtOFDgUhSkxwQc12Om+JPiDpjDbGm9da5ZMNJCUNsai8kISN2AAoAf+ov8A/vV7mqpO\nL2ZGk+Tnde1vVde1J3V9d1O41G+udvnXFy8p1xe1ISmVKJJhIAGeABVYVqUDPv71Lvdl4FvPBJ+l\nBzlI+1AHJj/PNBgH0jAoBDnjFPB4j6UAhM8UxzyDQElKEiE/OKFLO0ST7UAt3uRUftFAOY70Ezz7\n0A/SIz9IpYgj9qAME4j/AIpgwYgZoA3EcTxFZmVpCpPaoD2Porqa+626csvDrVdfZsNK0ZT1202s\npSlW9Ki4slRgFKQrgFRkBIJMV9NWWpeFngMzeaF4W9faD1FrDrQYOpM7Up85DiZUlS8pbKVODaCQ\nqAok4AexPZ+DT5MjeytyW/MpO2/v9j43/wAgyanPihgwq06U/SO/H03OM8Q+muqum/DPWPF7qTqz\nR9TubxDWnWyG7oPOeYsbACkAFO1sE7pwQn3rh/CT8RGn6boVl034gXX5jS9DZU0wxucSt1sknYhS\nTAVBj1ECAn2r6eoaWXpm9mtzx6fT/qdO3jj0uLXT8l6/FnhNu2rVdT/I6PZP3jry1eShCCpxYGf0\niewn9663WuhrnQumk65qFhcsu2jrdtfpfUhpbLznmKQjyyorVuQgK3bUgQQQcE/FlNRl03uz9Mt0\ncQ9faetktBD4M7pkEH7H/vmumauuibbpzVba3t9Qury6u2Pya7hpDaRbI3lSjtUYWZQIyI3ZqyU1\nVF2ZpW2n9OI0S+/OnUG9XW60bJCUpLHkwvzFOEiZny9sf+6e1Z2OiFvMsOXqrpvzlRPklIP0MGcV\n482senTlKt3tvzsenHp1laSv1Oo0vwXutRuFadpRffdDYdWkrZBSjalSlEKhQCRJOOBUbbpbQOjr\nl6+1vUX9Rs7VtwflGX0tlbqkKS2oKE/pWUq4zEYr5mP23+oyLDGNt87Pb5tU/ke1+zlii8nVVfDc\nnothofQOkXWuavqFpc3+s6Sv+FNW9wh5TJdK2lqdSk/y1BIXCVZEgxkGuVVqN1rNv+Vt7dN0ttsJ\n8zJVBgCZr1YYZMmbJqM3uq0l8Ev5bf2PPkqEI4oO3y/z4Ft09ob1pY6hqOqdLWl6GbdQSLlt7alS\nvSlUtrABCiCJxP7VxVzpN1bvoReOgGcSSYE5r16bURyZJ9Mr8uPL85Ms2JwhG1RvO6e+1YOXnnOt\nNPqCUogjzkyfUJwUgpI+v0MUkJaXKkghJwCa9eOXVZ5pKjbvEF21aDLDm4qJMpx9jWJsNW90Hkqa\n2nltRVgx7xXaZyRv7/z3UeS2lsNDb6DM/eBWBVwtxaNxgIAAhPt/muuSJUXGndSa3p98/q2nXSLa\n4fLhWtppDZAcSpK0pgDakpWoFKYEGIxVS49vHqAnOZqJVsdN2YVHEYiOajtnIxmeK6IZQAo88Z4o\n8vO7k+1QE9pCCBIMcE81j/mFJ24jmPaiAIkqCgkGCDmCK27bTr2/Sp63t1FtKglSkjAJmJ9uD+1B\nweg6F4OeLD9lb37fReqLsrpWy2dDCgi4JBgNqiFTBgd4rrm/ADrwMJuP4fdsOpbDq2FK2vNAgH1p\nmR+oc+9VcWzPxIvg2umvDjp/SrHXNT68s/ztvYWyUpbNyplxpbiVeW4kyN0KSkFJn0rUeQK8O1W8\ntHdReNh535RK1flw6sFYR/SFEYMD2rzxWXx5Nv3KVLun3+XBqq6V5hbXoabSogBQMkKQMgGRzzkC\nsN7eechtDSUBWSYSP+K3IaJBJ3buTUoP9RJByaoGNoSQRzxRIAAPB5oBkASR9p7VIHBIMyewoCQT\nBkfWKHCSUwfgGKA1fUQSCKU4FAImeO4zSPxmgDvEUQRMnJ5BoCImTFM9sQTQBJ5/tSwZJ70AxiKz\nou3EoLazuB/egMCzKjQSPYTxQCgn3pgDMjigAAnI7cUsHIPNAPiRH1+KWAZBNAHfOKBgcUAoMxUg\neIzjFABM8kUoE4JPagHieDx/ejcYjtQCPuKZiRgn3+tABAxBxQJIgCfvQDgAYGf7UTjmIoCaHFIM\ngzOIrN5zjipcKue1Adv4e+Fet+JNh1DeaVr+i2DfT1g5qD7ep36bdVwlDa1lDIP/AKiyGyAn3KR3\nrh1JU3KSoHE5HFKdWyJ26MjLrls6h5tz1IO5MV0HWvXfUfXnUD3UHVepu3l++lpDrzhJUoIQEJk/\nCUgD4FL2oVvZk62uOj7y8sP/AAeHW7dGnsIuVP24ZUq6gl0wFrlIUYCpEpSPSKrP4iwkIt0voWht\nI9QSUjj55jiaw6JUk9zVyXVaM3U3VlxrzWn2X5ezba0u3Nu241bIacdSVqXLigJWoFZAKiTAAmAA\nJaXrG5pKL/qPUrcoUNgQSpCRCs8yDwMDucjvmtPGONRa6q8/UryycupOvgeisfiN8VumNNXoHTvi\n1rR0u6tDbPW4QlSdixCk+pPcYJGSCRMGvKtX1i/v7gm41S5uUpjap1R/aJrx+z/ZGj9nuU8GJRct\n3Xn/AB8jXPqsuZKMpXX58zQ/MvQFBwmDICsgGtjTtVvtMeNxZvONqPJSoiQDxivqyhGSqStHmTa3\nR1HUnin1T1HcXrqTb2DGovF962smg0zMztSgYSgESEjArTc6x1HXddVrPVFo3rK12v5UIWS2EBLP\nltKT5cZbASQMglIkESDh+lwwnLJij0t29uFf9drNfHyOKhN2lS352NlvqzU7DRFaZ+atXbbASh1k\nLWggqP8ALUcpHqJIEZVXHukqWXCf1GaafDHHKUo93+UczyOaSfYtNM112xurW4Q035ls4lxKljcC\nQZ9STII9xGRT6m6juuptcvdcumLW3fvn3LhaLZhLLSVLJJCUIASkZwkAADAFaLGlLqOer3ekqiRt\nxHz8mmkQpKomtTk2rvULi6YbYcX6GydoHGeTWoYgEd+aiVAiBMCYipSQc4kZIoDIgJwTwOZqSEk4\nJkHtQGS6VDaUAfGOwrEG1rAInOPeT7UQM6LN4Ml5KJRO0/Bz/wAGu30/Tbrw7btNS6idvrK51Kza\n1PSvyVy2fSV+hxZBJQfScEbscZrPIpyi/D5LFRbqXB9Rs/8A4mHj11D0fpnQFtpdhd32nMKbavEs\nF24eSlCkha55UEnKu5EnNfPd7459Ti4tdY6d0220S+tmyhV7piSy64N24+YR+vMTPI5mulN30t7l\ncItbIoPEHxY6i8RFHUNcQlTzjYaW6gbAraQRIGD3rgU5hJhPvXSJ6ETuTEKx9KRThQ4PPFUgRIGC\nZqSJ4MER7UAlwREx81sWRtU3TRvQ4pgLBdDcbymcxMiYnmowReeD7yndqWx2CUgAfbiolUqnuaAn\ntUVESQPenBUQlJJAMiKoNQmIOcYikP07QP8ApQETGR8RTP6sE5FAIzM0jI+9AEEEHj5+KPqZigAE\n574peqeaAYwdsH70jINAAzTEftQCIzIOKP7g8mgDsT+0UgTwO9ANPJBOO1B5jH/FAZnGFtNtuOFE\nOpKkgKBIgxkAyn71hIJIEUAHmTxQBmY+1APJEYg0AJCiIIzxQBJPf6UTOOKADBGBzmlicn7UA4JM\nTIoGMDH0oBEjvmKcexoBgn+0VkbE5UTEdqgNhNyAgJSozOYOKwrWVHdHxQEFOLJ5omTJgmgAqgwB\n+1ZHXGChpLDa0rCClxSlghatxykQNo27RBnIJnMACCVpAKSgGRg+1MQrBjnkcVQSYcZQtKnWw4B/\nSSYP7EGsbhSVkpJ+9TuBFYPCAIEGsjbyPLCVMpMGZJzFALc2EiEEqJPJx8f71e9NdT6r0f1Fb9Qd\nPKYZurRW5kuMoeRO3aSUOApPJ5FcZILJFxlwzqEnCSkuUVWrXV1d3q3bx0LcUSokREnOAMd+1aZJ\nOJn2rqEVGKUeCSbk7YpPCqI4J+9dEJY/1AxUioCFJwY/vUAgqFblc+0045MYOQJqgFRHApAQQTg+\n/vUBMTM9prKJ2lUSB7CajA0tuXJI3BKECSSeKi88s7AkJHlpgbf80BsK1N91xC3DO1IBE4MYk/NX\nWp9R2Ov29zedRG+u9XPkt2z/AOYBbQwhO0NlG2TCQkAyIjg1z0LqUu4NCz1Viz01bVtZXH5lx0Fb\nwehBbggo2xOcZngH3xs6zr+lXllbW2k6IvTXkpIuSHypLpJnAgQIMRWMsWSWSMlKknuq5VbfQ2jk\ngotNb9vQo1KKwIASn2mRUdqh6sZxXp4MRpSVEITJUSAAO9Laudo/eKAkFqbQlopQQkyT7zGKjG5c\nxHx2HxQDbIK07wdvcAwTW2NOvFtpKbdewgkQCZHNRtLkqTfBr+T5ZUlSVKSJGBUggKADalbhzPtV\nsgbiPQVDtAOae71gACqDUCSJPNLBBzB96AX9MhIxUQBHMEUAbtxJ980t0cCaAfMjMClx89yaABGe\n3eg8wMZ+1AKZIAOPmiJxHNAMfpOKJHEn96AM9+KMQCQPmgCDAEUZIGI+lAG0xBOKYEHOKAyPhr0B\nDqlqj1yMAzwM5/tWKMEkZ+KAifkk1IZMCf2oAEjO74zQe5/waAcmeIMe9RMGIwKAZE/amU++B8UB\nEfX+1M7hjifagBJEwTiO9HBkEGBFAERn35qSVYJ+1AMkDIEj3NAURkfsKAUp7Hn4oJAwAKACqYHH\nviknB7wKAZxPeKX0oCQkYxj3pEwYk49qAODtGTTBAEGgAEe1WF5qFo/ZWVra2CLdy2QoPvpWoquF\nFRVJBJAgEJ9MSEgnJNRoFcSd0kx7UHaRB96oAE+/1oBjtNAPg4NOACJz2xQCEkg1lTJTgCfrzUBs\ntWO+1XceYz6VBOwqIUZBMj4wP3Fai0kE+nAPaonZWqIBU4Eic/Wp+e6lMFRIPuK6IZCsbQGwIPv7\n1Ax+kj781APsBOSM4rJZJt1XLSbpxbbJUN60ICylPeEkgE/Eio7rYq5M77iGQlDao9JCVJx3ifmt\nMrWoyc0iGS9ODuGe3tU0JC4SVwU8H3FUghKTuBiDj3qKlnjb/agNiw9F0287at3KGVBbjbm7YpIO\nQopIUAeMEUBtx242qVlxUTNS97LVmZgIt73YEJeDayIUTC4J7j3r0voTTm9Q1+xK0PKbUha1W26f\nSEmRBx35r5ntTI8enlNeT+W3J7NFFPMk/Nfueg+N/QHh3oOqs33hygu6LeJebcXqrzSbkPBACill\nB3ISFrVBjICcnNfO76WDdFKGy2sqIIJ9I+Kx9iaiepw9c22/VVdNrb5c9jT2jiWLJSSRpr2hwFKu\n/PzNMJBUoFEJE5/77V9s+cakn9MzBqJk8igEqRyk/WiOTFAICRP7fSg8zuPFAKfTE0cZ4oAIIE49\noml3jv7zxQDBlQjMUEyJwDQAO6QeaEmDkcCgCDOc0EZgmgAnETRtPYUAD3JjtQeYAigARz2pnsQY\nIoAAT3JppbK5jsCSPpQEcZ/2oPxgcUAuDk80ETwmfc0AxkZMRxQT2Ij/AHoAHPfPFMnckSAI+M0A\nCD9BQREiRFAJIRMyYpgRjmc0AzJEdvpSM4IMj6UA8nIj5pYMx2oBRMkUYnOPmgCI7TTMDJ+xoABJ\n70E/80AAgZ7mgTEniaAe4xAMTimNuU5oBTPBjvQRnJ5oAORAHOINA+tAAPtgT7U5I5P2oBznvU0k\n7gR9agLGwvjZpJU0041IUptaQQSOPp3rDrF5b6herubK1btW1gfy0D0gxn7TNZqDU+pP5HfUumqN\nEJG31AzTATtIUea1OCQgduBQlBncR8/WoA3GCSYk0inO2YFUEgmREnGK2bxdg88g2Fqu3QGkBaVu\n+ZKwIUoGBAJkgdpiTXNO7XBU1W5rhKZmZ7cVIBO8EgpA5zVIWTlpbKtR5LaVOb1bXN+Vgeye3Iyf\napCxfZSzdPacplsw0hwAlBWkZkKnJ9v7Vk5Ncs0UXJ+6jp9E0FzVdLv9P0w27F8E3Fy5+Zfbt2yw\ny0XFBKnFjcopBhsDcTAEkgDkWfPaufM8lJ2iYIkRtrjHLquzvJHpSaNZvd5kKO31TIwImvROgNR6\neXeNq1zVBaptmSkvf1RPb5gn/itJwUqsx6pRT6eTW6p6p0R7Vby10DzrizdcDjT7qQlxCtoKxIIm\nTuH7VyV5pi22l3jd00sBUEeYN2eBHJrqMVDZHKcmve5K9KCpJx6v7Vk2zzJkAccV2U045kZFAI2k\nSR2iKAiJCimf2FIkk4HzNAIkDjk0pBHIoBHI5pkQOTNAIyBMZFB5Gee9AORMAmkfYUAAyOKf1Jk0\nAoyMU+ACZmgCRMmgSe+KACSBnvUTPsJFASEEZGOKR45FAMicbhB70cHAM+00AAzjII9qO8zJNALl\nXJondCcUAu5jNPB4HHzQAAc9ozUoESOxoBAg4pmM5P7UAfpzH0NIHtQDOCAc/FGBkY70AgCRMCiZ\nIBx2oAGP9qQHByT9KAZMyAIpj3zQCxwKZE5FAL9IH+Kcgd5FAAnlJ/6U+e5oA+BEUpPuaANwH1p7\niAAPeaARyP8AimKAMg4+0mpg7YAzQDV6jzSITACTn5qAmlJWNoBNZF2vkPqZuHAkIkEj1Z+KX2BA\nACSMzQSj6n4oCPpUncOeKU8CY+tATICQFSM81EbZgYPagGBJkYUKZB3ert3oDMglbwU24pKwUkbc\nZ+KtlXOrWdnc6XqKVpbc8q68tyNyiZ2qE5MhZ/c1nNRlSZpjco20T0N+0VfNqvAWrUKlZmTtPIE9\n/mtjqzXNCutUvnNF0hNq2+UeWCskohABPYEkgnjk1g8eV51JOopcebtftX3O1OCxtNb2cwvMAgie\naAoAA/717DAmCtY4EDE++ayAOI/lr3QeIFQG3Z2lk8Hw9d+WR+gkYP1mtmw6f1DUdrto15jYuW7Y\nuE7UBxZO0bjwMc1nPKsabnwdRj1cFAUqACTzwaW0CZitTkXIhMEz3zSPOcjiBQEcTjHagkdqAQz7\nUyqRjmgA44OMcUsTH/c0AZIiMUjM5NAOCIz9qBFABp8nt9aAXfOaBGJNABxEEx80/Tx3oAMfFB78\niKACIwDJ4oxHf39qAM/qgx70GD/zQAPc8UiAaAPmMe/tRn7c0ARmP2p+xkUAE9/fgUSBk/eKAWd3\nc0+e8AUAGZwJ+3FLkxFASO2OeKUnCu9AEz/vROKAIx8UADhJ/tQBmZg++KYwO1AKMU4PfM96AXGT\n+1MwTO0UAET27e1MDBIoBkGRI4GZoIzJiOKAQJKp+1CjzA4oATlWalIScpJoAztgwe9SCxzAxQHT\n9Ko6VuWLqz11dzbXDiN9pdIcAbQtMn1Agkg7Qkf/ACPxVC8lpTq0he/JyDz8154PJ4klLjav6NJK\nPSmue5FDUqCUEq3HAisTiFNuLbWCFIJSUxkH/mtk96MxIHpA7VIglcJBJGMCaoI7Z5TGa2F2N4xb\nNXbto6lh8q8p1SCEr24O094kT9qWkDCFKzHvTVs2gboOPp9KAFBTTiYwYBEGn5sKKlEqPAJpyCZu\nCEbQfn96xOObyg5JGCYogNcFIJJArGNpVkk5H0qg27S4ZTKVpkgzJPArcTqdt+hbO8EEEwK4km2d\nJ0ZbD+HOb03balYTB47Ca1ytLLRVbvLQsLCk7VREHHH2rndtp8DatiqM9u54owRnFanIsZgSKiRI\n9poCJKQTgGBTmaAioZk96aRjM/FAET2ge9KAPmgD2nFAPsKAODPzRIAwBQBiZ96cZkUAhjA5okfv\nQDBPtNBwPrQCIEf7UbiPegAcE0Z+nxQBBJOPk0SY5oB8mIikcg9qABgHNEgY5xmgGZHqH7mkfc8U\nA5JHejjnBoAMz70hPtQDzn3og7ZmgAcAEH2oyDOD3+lAAgnmiBHegADBmf3p7oOOJoBTzijgbo+K\nAP6aP6dpzQEkJK1hKR6jgVuPac81ZquR6kpX5ayMgHt++a5cqBpyO9TEKkTAroEnWFISmOV5Aq+6\nH8O+uPEjUbnR+g+mb7W7yytV3r7FojetthJAU4R7AqSPqoDvUTsFjrPgz4p6Ho+hdQX3ReoK03qS\n1Xe6Xc2gTdIuWUbd6gWSrbt3pkKggmCJmuOdtL1i3ZunrR5ti5Ciy4pshLm0wraeDBwY4qgxk8Ad\nqFGgATEbvijI4FAZUOhLexSEkyDM5+lWty5aG2t2re1baBQCtQWVKWZOT7fQewrOSdqmVV3PSL6z\n6J6N8O9M1e00xd91FcuOt3D7r6VsJSYLexsAKSoIJJkqyUnFeTtKDj25RkqJJ+a8OglPKp5Zt7tp\nJ9kj2ayEcXTjiu1v1bMSFq3DHJip29q7cOlsFKSBMqUEgD719HhWeI6S81PSL3pnTtPcSWb+yu3E\nO+W2CnyChoBX/wAtyVkiYJM4qm1LW7/UmrS1u7tTzVg1+Xt07QlKG5JgAe5JJ7mvPp8coJqfm6+D\nexrkkm/d8kaBSTE5n3FM5POeMV6TIzXghaJmdiR/asGCI/eouANYAKT3IH+KEmJkcjueaoG6UkJA\nMADj2qJJEE8/egBJ5mCKeSZAGPY96AyIWpBwpQxkTQHVckkn60oECFHBiKiMHgAUBGMmRiowCTB4\n/agAkmQeZoHH09qAXfj96UHiBPzQAqYzRkYOfagCcdopT2/zQEhjtmkefrQBJn6Ubu4oAkH/ACaD\nB7xQDJkYJM0ADOMigEckBM/AoiRigHE9oj3pEiIOfoKAIJHf6U5B95jigF8zk0x9TQCOefuafeR2\noCI4px3GMdzQDGccn2pGaAZBB4iiO0igCTzzNEwcHE0As/q/enIiJ5oAmc+9MicAAJ9zQC+nb3ow\nBBPzQBJ5+KATPM9qABjKoo3AgCPoaAEqKVBSTBGayKfeUCnzCQSMSYmKgID+/IFOSE89qoPrb8Lv\n4e9L6m6MV4q22gdLeLV02h9jUOhP4u5Y6jYMTtTcIUDCnCNxShSQIIKVFeE/TvhL+Kb8HXhj0890\nzbdNX/h7qvSts8hzSta0VSNSKkypbYdAUVuKJwFrSoyJA7QHzl4G/js0nwG6o6z0HSundW1vw41T\nVbnUenLB1aLe50vzHSrywJWkNlKspB/UkKEFSp9J6F8bOjfxi/ib6f6HuemtO07wx6f0/UNTtunt\nVZYR/E9ReaU2t1xoEoW6F3K1ICSSNq3JkmKD59/Eb+CzxY8I+sFo6f6cvOqtF1Ft/ULd/QNNuX0W\nLKF+pt5ICy0EBSYUpRBTmZBA+cPjj2oBgEjFfV/4O+qehtfsOoOheqvA/oPXV9M9K6x1G1quoacX\nby5dYhxDTqiYLY37cAGAM0AvDXpDp/8AEz0H4z65p/SPh50Lqtu70wnS1uKFhp+mpLlwH/LdXuLZ\ndDQ3f6lQK9C6d8AOkOjXPw5dOdSad0d1Fea71PrDGtX2lOt3ttqLIKVNNrdAAcCAYg8EEUBxn4nm\ntd0fw9vbe86Z/DnbWb+otW7bvRTq3NYZIUVAx5pCUkNhKzt4Md6858Nul+nL78K/i11de6JZXGta\nRqugtWF8toF+2Q68sOJQvlIUAJjmuYxjBVFFlJydsr/wo+FNt4s+MmnWGtWLt109oTLuv66htsul\ndlbAKU1sTlRcX5bcDP8AMxxXv2q+GXhno34lfD/qDVPDRnSPD3xr0dVgjR9RsPLXomqLbDK2kIWB\n5bjdx5CguBh5UYqkNbS/wv8AT2j/AIbuqujOpdLZX4uXJ1nX9HIZl9Nho921bvMonMO/z1ISP1hQ\nInbV90b4V+H2m+O9r4LWfhp0xrmr9EeFb1zqTOoWrSmtQ6kWhl7c8pRSClPmNoBKhtCljcOaoNHr\nfww0JrproS98Y/BboTw/651HrzS7HT9M6cuW1s6xpC3UB9Ttu288jYJjeVkkwMBUKl+J3pRPRmld\nesaH0D+Gm00ayW9aWgsiodSMNKcDaFJbDsJuE7gT6YEExigLDxn/AA1+HHVt90rfeE+jWlt1N0pp\n2hXnVXTjDASNQ0u4DajfNIH6ygqUl3H6cmITv5frTonwr8FNN8V/Gu48MND6nubfxIuuiunNEvkk\n6XpiUsqfLrrDak7xt9IQSIhJEbpqLcFV+HnWfDPx68d9Lae8Cuh9CXZ9K6m5fWqUrOk3l4hG5p5T\nDiiGEIwDCif1EqOI5P8AFExf6P01o2m3/SXgDZfnL5T6bvw5Wty8T5TZSW31F1QDSvNBiMqbGcZo\nPm0+xogcGM8YoAGSYjFTYb3FRPA/zQExEknOeP8ArQlQC0rUgwDkc0BBSffM1FXpMbQPoaADJGDG\nZikqYz96AiUxHfvSAOcfeKARgyT2FBgRBP7UAQYntRyc9uKAX17UHk+1AA+PpSA7CgJDEE5FH9UA\njNAKRgTFKTxQDkDn3oPJIOBQDkgmIBmkME4maAcZGKODB5H9qAABEgmaSTB7UAyAZpQPmKAOOBNA\ng8xQB8xNAEz7e1ABMGcUzgY4+tAInPppwYzQD4Gc+xpYAknvQBPeOKIIwDNAHbbye1APtQDHwZNR\nnuKAkFROPj6Uv0jjg0ACTmMij4oAyBPbinJIA7/5oBERzzwa3NG0q813V7LRLBKDc6hctWrO9QSn\nzHFBKZUcASRmgP1m/Cp0Gj8IHhJf2Pjrq/QnTj97frvU6ijUwHn0FCQGXS4hG5SCn0htSwd+ADM/\nJH/4hPjn4ReNPUvTLnhZqlvqq9JZuWtRv0aWphThUW/KSHnEpcdSIchMbQZIJ3UB8ixke/xWaxvr\nzTL631LT7p22u7R1D7D7SilbTiVApUkjIIIBB+KA/R78HXTXi7+JDpNfiV1v+KPr9qzsdQd0x3SN\nJeNorzG0oX6rggpUClxBhKJAMbgePjP8U/S3THRfjr1L0v0n0rrPTlnpzzbarDVroXLwcLaVF0Ob\n1lSHQpLolaj/ADOYgADycggERBruvCvxO6h8Ib3Wde0fR7a6T1FoN908pV2hflhq4SlLi0FJErTt\nEcj3FAYtC8Qde6S8O+r/AAxb0dn8n1wvS7i5efQsPtizdccaLQkAhRdIMg8CIrsekPxF9b9EWnht\n0/a9L6e654Z6te6npyH23Q7cvXagVIdSFDAxASAc96AweIHjZ031poWp9O234e+g+m9TvnUTqWms\n3Sb1hxLqVq2+Y6pMq2lBBTwpXfNQ8JvHq+8IumOp+gNS8Oenup9K6kuLS4vrPXG34Qu3Ki3AbWgj\nKpz7CgOmH4m9VstB6i03wm6T6b8NL/qC1smrm56cVesXixb3ClpbYc8xRQtZdO4gjchsJnseZ1/8\nQvix1B0A34ZdeXmpa7eWuuNa7per6vdXL+qWD4QEeW04tRPlqGdpBAUZGagOt178Vvjdq3jton4h\n9Q6caY1bp2xTYs2ibR9FkbcIcS4lYKt0LLzij6sEiOBXG9L+PnXGn+JXWviEzpVrqmtdfWGq6fet\nLQ4pLaL4y4poJUCNgEJBkADjFUEtM/EH1bp3RfSnQOtaBp2rK6C6gb1nQb29Q6LywKXErXZhQUJY\nUpElBEgxBG1IHT+JX4hbfxAc1tOufht6HseoepA6tzVWra8F6HnZ/nthTpBXukj0kT2oDA/+JDxX\nvPGTQ/GbpzRxYaz05p9npBZtGHV277LDQbU08kkkhaZChIjkQQCN3S/xRdd6X1T1xqHUvQGh6/0/\n1xfnVtd6Z1exccs0PKVKXmiTvaWDgLk8CZISRKorM1n+LDXNF6z0zrvp3wg6I0nSNE0q70G20iy0\n5xq1LN1l3znUqDjqzk+pUZUQAVKJ4bxM8TNF656ZtbbR/AfpLo1IvEvjVNFYuUuPBKHEFkqccUkp\nJVuIAmUDPNUh56jQdcebS61o1+6hxIUlSLZZSQRggxkVoqQ42tSVpKVAwUnkR2NABEGBxNZ1Etth\nHBMg0BjbEmJ71MoUZhMDNAQMA8nPPtSJ/wBMgxwaASTzMxQQPaPvQCmBE4iozBiM0BEgjPf+1IT/\nAFAZoAJTxQIIxkUAuMyTig8THHvQDMkGCY5NERkigAEE/emZ7g0Auf8AenAiMx/igFAHbmhMntMd\n6AYIGI70CQZHIzFAKZ4ETQTIigAcY5owTzHYUA8kRxHtSVJ4oAmM4+9AMcCaABI5xijP2oAwBQeM\npj2xQDAAmTS3EnOfaaAZM5maIE+4JoA5zzPejKlRzJigEcY+c08R896ARMCAARTwMzjjmgA/SKJJ\nEAwKAACQfbmgHHHH96AQmQR9KMHGBQDn3+1Zba5ftHm7q2fcZfZWHG3G1FKkKBkKSRkEGIIoD7q6\nI6o/AB13rPR9j1H0R1l1Z1z1Y9p2n3buo6nfPpt7+4KG1B15y4bC0JcWZUEqwJA7V9Y9Vfgg/Dlr\n3RWqdJaN4caRoNxf23ksara2/mXdo4I2OIWslRIIEifUJB5oD8jNf8PdSt/EXXfD7olN51c7o99e\nWrL+m2K1rumrdSgt9LSNygjagqOSAnMxVKjp7XF3un2D2mPWruqKQm0N0nyG3tytgUFuQnbuwVTA\ngycUB+jXhB+EH8U/4f8AQdO6m8KfFfSBq1y0l/W+j9WQtWmuvd0pdQVAr2hI3hKDIjftNeE/jn6Z\n09xdn4j9VeGnVfQ3iPruoBnV7S8vP4hpV+2hmPPtLpO5Mp2tJ8vcnalQARAmgPkj2j3r69V0t4X9\nT/g58IUeJnitcdEN2+r9QKtHGenndV/NKNynekhtxHl7QE5Mzu+KA9T1Pwn0nrb8Vfh9qKrhOqdJ\n9BeGuh669d3CU2jd6lgLFmhXmna0XXfLJStX6QsE4Jqp8XuhNd1Px68AfxA6rpuk22p9S9VaJpHV\nTOkXjV3asavb3bIQoONKUn+awEqCdxIDcHNAfNXiKQPxi9UDmfEy9/8A+qun+Mcj/wDU/wCI2P8A\n+sr/AP8ARNAd5+Fd2+6Q8FPGDxc8P9NYvvEPptrTrfTXl2qbl7S7J9xSbi6ZbIPq2gyqDtCJPpKg\nfRvC7rDqzxt8GbTrnxtSNS1TpTxC6Zt+j+orq3Si6u1P37abuzDiUjzEIblzM5OT6RAE/wAXvjTf\n21z4j9Iab+LDVr143r+nK6IPRoaYS0t4Nu2358kyENqWd8SrZAgmR5N+EPxQ0Hw30jxCTrj3UnTf\n8as7Czt+uNE0lN8vp9aXVqKHNwO1D+EmPUfLxkBSQPoix0vxB6X1nxC8aD1do/iX1rb+HOm6t0Nq\n7ehoZdf09x9xDt6u0UkEXLSUBUncYWkEn9I8S8IPHDx18W/FTwlZ8Sb261vQrLru0VaatdaW2FJu\nSpJVbpuktjASd3lBXcEiEpiUD0/pjqlvpDwx8VtTf8a9T8L0u+NN8wNX0/R16k4/Nu8fyxaQpJSl\nW3funBaAjNU/gx4s6TY9ReOXXnVfVl14v6BZdNaVaXV7qOnmxc1KxcuWm3m/IWpRQUB51KZOSgGQ\nDig73pzwL6B6e8NOnunkazbdQeG/XHizo2q6NcrcB/NWDtqtKbZ7uFh1BZWME/BMDwvxX/EV+KS6\n6/8AEXwxTZXH8Faa1DTH+l0aE2/a6dpbe5KXEths7UobCVh7iIVMRQHsPiH4ko6N6D8IbAfit1/w\n1eX4WaBcI0Sw6Zd1Bq6JZWA+XkuJCFKKdm0gwGwe9fn1e3l3qN6/qF68p65uXVPPOKypa1GVKPyS\nSaAxkifRyPjNImTyc0BIKwcYPagLIxmgJLO4BRB98VEwBxkZoASBtiM1GSkcc0AxgniKjjbuzB+K\nAhnucUjkSYoABJHHAoHvANAGIPvRPqEfXNAAz2/an7Y/Y0Ah7YgZoweTQASJPagiZxQB8ZgdqYB5\nP2FALHfmjt9aADj9WKJIGftQADn45oVGcSZ70ARIniPmjJxPHagGQDwP70iIUJIPzQCMz9KIMExx\nQDBEiAaZjgEwfegAwcRSgAQZoB9p7DvR7jmgETIgJ+kUDjk4+aAcE896WAfmgHE/f/FIR3OaAZAi\nRP7UxJAyPrQEUg8x2/tQBMzgUAD/ALxTPHHzFABMHIkfFPIH+1AZGLh63ebuLZ5bTrSgttaFFKkK\nBkEEZBBGDX6g+Avjb1709+Cvq3xx8Q/E4dTauyxcp0xt59pxdgtP/l7Vp4oG7zVvKSs7yVFKkd5k\nDL+AXwP0fwW6Hs/FXxGuLex6q8RXGrPSk3awhbVs4kuMsJn/APivbC4RzCWxAIIPp/4x/wAPujfi\nH8PD07ZXFoz1vpLL+qdO73EpdeCNgeZIJnyllTSSrhK1NEnsQOL6N/FP1ho34PrfxUa6GX1N1F0S\n5/AOq9OuL1VncWjtufKVcLltalKgsrWiEwHFmRsNfmH1l4o+IPiDY6bpXWPVmpatZaOt9WnMXVwp\n1Np5xSVpbKySE+hAAJIASAIoDljujBwMV2C9S8UOqel+nvD5Nvq+paNppfvtEsGbEr2i4f8AKccb\nKUblhb6fLmSN42iDigOl1XxB/ET1V0zedLX7vUV7o+oWVpp92wjSgEvWunKX5DSlIbCillQcxOCF\nTkGtbonV/wAQHTfTK2ehrDqZGgW+oWnU5UxpCn7dm6tjvZvAstqCNvln1AgEIIMgEUB33VHjB+OH\nra0e6J6oX1zftuIa1NzT19N7Vlu3eQ6h4pSwFbEOttnd+mQAfasWt+NX41/FDpO+6f1W76z13QNV\nZQxdNtdPBTTzbiUOIG9tifUlbahBylaSMESB5l4c634w+G3Vumaz4anqHSdf1ELYsDZ2yy5ep3lC\n20tlJD6d6IKYUNyYiRjtvEDr/wDFz4h6+1q3XiOtb2/6GuW7ryVaIq3Z0h9tIcS4u3baS00oJAVK\n0AlPOKA891+w8SutmNW8XNe0PXNSs769U5qWv/w5YtFXS1SoKeQgNJUSf0yOeKvehvEfx38AbzU1\n9H6nr/Sy0us22qWz9nLAccQpTSH2H0Kb3qQlZSFpkpCoxNAXt/15+KzUutmvGm8ueuRr1otOnN6y\njTnWm2Zc8sWyQlsNJSXF7PKAgqVG0k1c9XeKn4zuteq7BfVSutbjW+jH2tWt7JHT35f+Hu5Ldwu1\naZSgHCoWtGRuzE0BT9FeOP4n/D1OsHojXuoNNGu3X8e1Hy9KQvz3bhsui4O5owFtoUsEQkpSVDAJ\nqm648afHfqQ3mq9edRao6nrLSGbN5+6sW2U6lpzNwpTewhtIUhLyF+tH9SVAnBFAQtF/iAuPDzTP\nDuy0nq5/pLU9QGqaVZI0x5bNxdhpS/Mt1bJJ8sLXCDEBSo5Nd31B41/jc1boq56M6h1XrxehjZpl\n0peiqbeWVEJSw7dBkPKKvMCdq3CVbwCDOQMvSHj/APjZ0/pvT9D6M1nrFWj6Np7FvaN2nT6Hm2LR\nsKab9XkE7R5K0BROS2rMg141b9JeIXWWvagiz6T13VNWCzd37dtpzrryFOHdvWhCZSFFU8AZxQFb\nqHTXUuktPv6noGpWjdsplD6n7RxsNKeQXGQokDaVoBUmf1JBIkVWjI+vvQDHaASKmnPAgfFAMk8E\ng/WkruBwaAUhXJk8RSKjO0GgIkH6TmCKUhMnmgESSYAMVEhIyTNAAJFGMermgFJjjHtTmcx8UATH\nJoHHMUA8jvSH/tOfrQARmc0Az/0oAB7e9PgwB8CgEQJgmKMcA4oAMGZp5JEAAUAsn5AoOMjP1oBi\nDmCfcUs+85oA4PzR9fY0AAwaWc0A4BEg0do70AERgmaDJMn3zQASDgcUSZmaAOfrRMjIyTigCRji\nnyMj7UAjBHpEUEGJFABxHJimJPA/agCMH1ZoNANPBFKQTzQBGZJ4+KOOSZ96AlsE/TkxW3YatqWm\nJcasrx1tp5TanmQqWntityA4gylYChICgRQHqPjF+Kfxi8ddF6f0LxB1q1fa6eecuWHbO2TbLeeU\nEgOuBEI3JAISUpTG9XvVP0B+IDxT8PPEfSfFKz6ovNX1nR0KYbGsXL1227brSUrZXK9xbIUTAUIM\nEQQDQGDxE8cfEPxL1jqHU9Y1b8hb9VXbV/qumaYFW1jcPtoCULUyFEKUAJlUknJJOa4EgRgyZ4FA\nKAeTntXuPhl+JDSvDqz6VuleHz2pa50s1b6ezefxkM272nt62NWU2WPIUQ8XfMbDvmFIQsfy1FIN\nAXmsfjN6h1ZjR7xPRlja61pjzNy9fNPgNXrrd8q5Wt1gNhJLoUUOQYWVLVHqKar7z8T2i6pp/Umk\n3/hilNpqF0y7oTDF3ZOI0a2t7VNtbW4N1YvLIQhCCpxldu4o7juSVSAOpu/xuWmr9R3Gtaz4VlVh\nc3F+/caRa6uwm0uxcXwuk+eHrN1SnE7G0KcbLaj5aVNllW7d5jrXj9qOpdMa109p2kXOmK1VHSiW\nn2NSX/5U6LpqrKUDaCfOlLn6gUbAmV/qoDd1D8SGpax40ueLGq6Ap1i40p7RnNNbvQytq2fsl2z6\nmH0NgMuqU688Fhsw44SQvO7f6r/FA/qnh674a9N9GJsdN8q2s2bnVbxGqXaLVq3eaILi2EfziX1K\nDqA3sSlKEpAE0BV6L429KtdP9JaX1b0Dqus3HSDLdky2z1F+W028tE6gb3y7i0NusrUpalIUoOBJ\nSEnZuSFVc9efiS6a8VtK1hnr/wAL7pGqa0vTLq7vNC6iVbIcu7Bu/aYdWm7YunFDyb5Lakl2T+XR\ntUkHaAN27/GJrbnUmja1YdD6Y1aaZf3V69bvLQ7cPB+5deKW7oNpcYKUu7QpMwpIXH9NbfS34vbP\nodOkaZ074ZuPaTof5MWY1XWk3l835Nzd3Cl/mPy6EeZ5l3LR8rY35eUOblSBge/GFqF50610/qvQ\nbF0bPTbDSrK9N/Fy1b2+jO6eptaw1/MQp55y6SkgFCnHUgq37hT+Inj30T4q9Kt9N9Q+GX8F/wDD\nNmq16Sf0rUFuKYbDbLSGLsPSHEhLKVlTQaBcLivL3OrUAOn6a/GHo+gdN6H0894Ti8GnWDFheum+\nsUi6S3pN3pwWAdPUVkovFK2XZumwE7EoSlRrW0L8Xlh002mw0bwwaasmn1XLKhe2rNy2VXtvcqbS\nbeyat0Nq8hSFJbYQYckFJB3AFx+LTQ9a03qRjqbwmbeu+qLbTGLtdleWQtmjYJu27csW15YXTbH8\nm5Qg+XtIU0VIKN6hWDS/xM9AaZqHUWpjwl1R9/q2ytLbVkXWuadesBy3U0W1ss3elPNIH8tUhxLp\n9QKVJKZIHmfWXi3r3WHQPSfh9eKfGn9J/mUslx8LL6XFjyguEJJLTf8ALSSTCcJ2jFcKYkyQIoAE\niYiptPLYVKVkH3oCRA5T/ftUVQTIAOaAiqTUcR80AGTnOKMDjMcUBEknjsaRyZoAUDEYijA/SDmg\nCAPej5M4oBRz2p5+kUAf1Z7UcEiDigAzMzxSg4PHagHIHNM94kUAuCIok5P35oBgT6hiog+/2FAP\nng8dqJj24oA5/wB6QEZigGQPfFHGCM0ARjHfNMgA5oBJGAZNKBEgmaAZ57H70Z+vvQDED6x2pgA8\nA80BE+0HFA5igHGMkUEAExQCGMA0Ce/egHnJHtmgYke/zQEeMTUhzgkUAEjAHvP1oEfT/mgHtmAA\nZJigBU88+9APkYP96cEEAyaAIIxAV9KiAIMCScUAtvIn/rTTCjGfaaACkDO44zSwCIoBx7j+1Ke4\n+lABkED5oPsfegHGe32oSeP+aAiIn6d6kDMkf/dAAymDB7cUgSMnHzQEonMz3o24/wAUAoj4HfNM\nFUCD9KAYM5GDRMmD9OKAiSQOCJ9qkM5OB7UAhHPtUlBQIAOOeaAyQQMyJM0oBVHzmgIKgCJ+DUYA\nMzP+9AJZ9X1E0p7zQCJnAoJI4EzigCe5GDRnmgDcEn27YoySQKAM8EfFLHegBJn60TNAMiTHFAPa\nKAX0ozk5+aAlO4cwIxSHIzigAATMz96JBoBGIkU+eKAMqEhMRijcR3/vQCxyKcn270ACe4pEgniJ\noB4gZoOeeaAJAP1+aZUfkfSgEdscGaAOwI+9APjvPao5AmYoBjGMz80R7/egDjGccUAk59+RQDJ7\nzzQZIBkQaAJGccZ+lBBHBxQBj2inMe2KAMdgJ+KkIiD3oCSErJ3ESB3pqSCYAg/71AR2wcg0oKRI\nxNAJRJk9hSCucCqAJjmRNIEDBoBztnk/WicQRP3oAJE98e1IkGgAQDFOPbPaaAIMQRA5mlJ45+BQ\nDkc5xT3Ddxj2oBSQCB3oSQDPb6UACPfHNMDkESD84oAJG2Rj2oBPtQATtIzJ7UwRnJn60AJyCT8U\nBXZNAZVLk5Pt9airJg+/vQESTEHBNQJMUAjnAEmlweMUAEwc8D4omDQCIwMcUAx/1NAAE96MjvQD\nBB5HxNA28c0Ao5+KBOaAYoj70ATjiPqKBnn6CgAgfftQYH6s/SgBUftSH6TKf2oBke4pA0ATFOMm\nDwKARmKY7cfBoBboPv8AWnuEZH0oBTGYpnsKAAeQBz70QY45oB8fM0k/NAA4xxQdvE8UASaQBHE/\nFAPnMc5oIzxFAGI+tEE0AAEAzFAwmSKACR7UwBMTOaAkBkSOfapAEnjn9qgN9q0ccT6USMSJrYTp\nNyqCGTP0rKWRR5O4wb4NZ+wcYXC0RAnIrSUgp/prSMupWctVsyOYzUSDxFdEIgExj6UzA7GIyKAJ\nBEUSeeKAkfYDjNQGcj2mgJEgg0oyFESBigAnsDj3oMnBJ/egA5/+qBFAAJ4AHFMAH6UAo7ZimEki\nAI/3oAgjjIoAgcxNAHbj6RQDHOaAfaJinHMjg0B//9k=\n",
779 779 "output_type": "pyout",
780 780 "prompt_number": 15,
781 781 "text": [
782 782 "<IPython.core.display.Image at 0xa81892c>"
783 783 ]
784 784 }
785 785 ],
786 786 "prompt_number": 15
787 787 },
788 788 {
789 789 "cell_type": "markdown",
790 790 "metadata": {
791 791 "slideshow": {
792 792 "slide_type": "skip"
793 793 }
794 794 },
795 795 "source": [
796 796 "Today's image from same webcam at Berkeley, (refreshed every minutes, if you reload the notebook), visible only with an active internet connexion, that should be different from the previous one. This will not work on Qtconsole.\n",
797 797 "Notebook saved with this kind of image will be lighter and always reflect the current version of the source, but the image won't display offline."
798 798 ]
799 799 },
800 800 {
801 801 "cell_type": "code",
802 802 "collapsed": false,
803 803 "input": [
804 804 "SoftLinked"
805 805 ],
806 806 "language": "python",
807 807 "metadata": {
808 808 "slideshow": {
809 809 "slide_type": "slide"
810 810 }
811 811 },
812 812 "outputs": [
813 813 {
814 814 "html": [
815 815 "<img src=\"http://scienceview.berkeley.edu/view/images/newview.jpg\"/>"
816 816 ],
817 817 "output_type": "pyout",
818 818 "prompt_number": 16,
819 819 "text": [
820 820 "<IPython.core.display.Image at 0xa818b4c>"
821 821 ]
822 822 }
823 823 ],
824 824 "prompt_number": 16
825 825 },
826 826 {
827 827 "cell_type": "markdown",
828 828 "metadata": {
829 829 "slideshow": {
830 830 "slide_type": "skip"
831 831 }
832 832 },
833 833 "source": [
834 834 "Of course, if you re-run the all notebook, the two images will be the same again."
835 835 ]
836 836 },
837 837 {
838 838 "cell_type": "markdown",
839 839 "metadata": {
840 840 "slideshow": {
841 841 "slide_type": "header_slide"
842 842 }
843 843 },
844 844 "source": [
845 845 "### Video"
846 846 ]
847 847 },
848 848 {
849 849 "cell_type": "markdown",
850 850 "metadata": {
851 851 "slideshow": {
852 852 "slide_type": "-"
853 853 }
854 854 },
855 855 "source": [
856 856 "And more exotic objects can also be displayed, as long as their representation supports \n",
857 857 "the IPython display protocol.\n",
858 858 "\n",
859 859 "For example, videos hosted externally on YouTube are easy to load (and writing a similar wrapper for other\n",
860 860 "hosted content is trivial):"
861 861 ]
862 862 },
863 863 {
864 864 "cell_type": "code",
865 865 "collapsed": false,
866 866 "input": [
867 867 "from IPython.display import YouTubeVideo\n",
868 868 "# a talk about IPython at Sage Days at U. Washington, Seattle.\n",
869 869 "# Video credit: William Stein.\n",
870 870 "YouTubeVideo('1j_HxD4iLn8')"
871 871 ],
872 872 "language": "python",
873 873 "metadata": {
874 874 "slideshow": {
875 875 "slide_type": "slide"
876 876 }
877 877 },
878 878 "outputs": [
879 879 {
880 880 "html": [
881 881 "\n",
882 882 " <iframe\n",
883 883 " width=\"400\"\n",
884 884 " height=\"300\"\n",
885 885 " src=\"http://www.youtube.com/embed/1j_HxD4iLn8\"\n",
886 886 " frameborder=\"0\"\n",
887 887 " allowfullscreen\n",
888 888 " ></iframe>\n",
889 889 " "
890 890 ],
891 891 "output_type": "pyout",
892 892 "prompt_number": 17,
893 893 "text": [
894 894 "<IPython.lib.display.YouTubeVideo at 0xa81856c>"
895 895 ]
896 896 }
897 897 ],
898 898 "prompt_number": 17
899 899 },
900 900 {
901 901 "cell_type": "markdown",
902 902 "metadata": {
903 903 "slideshow": {
904 904 "slide_type": "skip"
905 905 }
906 906 },
907 907 "source": [
908 908 "Using the nascent video capabilities of modern browsers, you may also be able to display local\n",
909 909 "videos. At the moment this doesn't work very well in all browsers, so it may or may not work for you;\n",
910 910 "we will continue testing this and looking for ways to make it more robust. \n",
911 911 "\n",
912 912 "The following cell loads a local file called `animation.m4v`, encodes the raw video as base64 for http\n",
913 913 "transport, and uses the HTML5 video tag to load it. On Chrome 15 it works correctly, displaying a control\n",
914 914 "bar at the bottom with a play/pause button and a location slider."
915 915 ]
916 916 },
917 917 {
918 918 "cell_type": "code",
919 919 "collapsed": false,
920 920 "input": [
921 921 "from IPython.display import HTML\n",
922 922 "video = open(\"animation.m4v\", \"rb\").read()\n",
923 923 "video_encoded = video.encode(\"base64\")\n",
924 924 "video_tag = '<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'.format(video_encoded)\n",
925 925 "HTML(data=video_tag)"
926 926 ],
927 927 "language": "python",
928 928 "metadata": {
929 929 "slideshow": {
930 930 "slide_type": "skip"
931 931 }
932 932 },
933 933 "outputs": [
934 934 {
935 935 "ename": "IOError",
936 936 "evalue": "[Errno 2] No such file or directory: 'animation.m4v'",
937 937 "output_type": "pyerr",
938 938 "traceback": [
939 939 "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mIOError\u001b[0m Traceback (most recent call last)",
940 940 "\u001b[1;32m<ipython-input-18-8b8f5414a141>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mHTML\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mvideo\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"animation.m4v\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m\"rb\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mread\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mvideo_encoded\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mvideo\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mencode\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"base64\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mvideo_tag\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m'<video controls alt=\"test\" src=\"data:video/x-m4v;base64,{0}\">'\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvideo_encoded\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mHTML\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mvideo_tag\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
941 941 "\u001b[1;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'animation.m4v'"
942 942 ]
943 943 }
944 944 ],
945 945 "prompt_number": 18
946 946 },
947 947 {
948 948 "cell_type": "markdown",
949 949 "metadata": {
950 950 "slideshow": {
951 951 "slide_type": "header_slide"
952 952 }
953 953 },
954 954 "source": [
955 955 "## Local Files\n",
956 956 "\n",
957 957 "The above examples embed images and video from the notebook filesystem in the output\n",
958 958 "areas of code cells. It is also possible to request these files directly in markdown cells\n",
959 959 "if they reside in the notebook directory via relative urls prefixed with `files/`:\n",
960 960 "\n",
961 961 " files/[subdirectory/]<filename>"
962 962 ]
963 963 },
964 964 {
965 965 "cell_type": "markdown",
966 966 "metadata": {
967 967 "slideshow": {
968 "slide_type": "slide"
968 "slide_type": "skip"
969 969 }
970 970 },
971 971 "source": [
972 972 "For example, in the example notebook folder, we have the Python logo, addressed as:\n",
973 973 "\n",
974 974 " <img src=\"files/python-logo.svg\" />\n",
975 975 "\n",
976 976 "<img src=\"/files/python-logo.svg\" />"
977 977 ]
978 978 },
979 979 {
980 980 "cell_type": "markdown",
981 981 "metadata": {
982 982 "slideshow": {
983 983 "slide_type": "skip"
984 984 }
985 985 },
986 986 "source": [
987 987 "and a video with the HTML5 video tag:\n",
988 988 "\n",
989 989 " <video controls src=\"files/animation.m4v\" />\n",
990 990 "\n",
991 991 "<video controls src=\"/files/animation.m4v\" />\n",
992 992 "\n",
993 993 "These do not embed the data into the notebook file,\n",
994 994 "and require that the files exist when you are viewing the notebook.\n",
995 995 "\n",
996 996 "### Security of local files\n",
997 997 "\n",
998 998 "Note that this means that the IPython notebook server also acts as a generic file server\n",
999 999 "for files inside the same tree as your notebooks. Access is not granted outside the\n",
1000 1000 "notebook folder so you have strict control over what files are visible, but for this\n",
1001 1001 "reason it is highly recommended that you do not run the notebook server with a notebook\n",
1002 1002 "directory at a high level in your filesystem (e.g. your home directory).\n",
1003 1003 "\n",
1004 1004 "When you run the notebook in a password-protected manner, local file access is restricted\n",
1005 1005 "to authenticated users unless read-only views are active."
1006 1006 ]
1007 1007 },
1008 1008 {
1009 1009 "cell_type": "markdown",
1010 1010 "metadata": {
1011 1011 "slideshow": {
1012 1012 "slide_type": "header_slide"
1013 1013 }
1014 1014 },
1015 1015 "source": [
1016 1016 "### External sites\n",
1017 1017 "\n",
1018 1018 "You can even embed an entire page from another site in an iframe; for example this is today's Wikipedia\n",
1019 1019 "page for mobile users:"
1020 1020 ]
1021 1021 },
1022 1022 {
1023 1023 "cell_type": "code",
1024 1024 "collapsed": false,
1025 1025 "input": [
1026 1026 "HTML('<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>')"
1027 1027 ],
1028 1028 "language": "python",
1029 1029 "metadata": {
1030 1030 "slideshow": {
1031 1031 "slide_type": "slide"
1032 1032 }
1033 1033 },
1034 1034 "outputs": [
1035 1035 {
1036 1036 "html": [
1037 1037 "<iframe src=http://en.mobile.wikipedia.org/?useformat=mobile width=700 height=350></iframe>"
1038 1038 ],
1039 1039 "output_type": "pyout",
1040 1040 "prompt_number": 19,
1041 1041 "text": [
1042 1042 "<IPython.core.display.HTML at 0xa71412c>"
1043 1043 ]
1044 1044 }
1045 1045 ],
1046 1046 "prompt_number": 19
1047 1047 },
1048 1048 {
1049 1049 "cell_type": "markdown",
1050 1050 "metadata": {
1051 1051 "slideshow": {
1052 1052 "slide_type": "header_slide"
1053 1053 }
1054 1054 },
1055 1055 "source": [
1056 1056 "### Mathematics\n",
1057 1057 "\n",
1058 1058 "And we also support the display of mathematical expressions typeset in LaTeX, which is rendered\n",
1059 1059 "in the browser thanks to the [MathJax library](http://mathjax.org). \n",
1060 1060 "\n",
1061 1061 "Note that this is *different* from the above examples. Above we were typing mathematical expressions\n",
1062 1062 "in Markdown cells (along with normal text) and letting the browser render them; now we are displaying\n",
1063 1063 "the output of a Python computation as a LaTeX expression wrapped by the `Math()` object so the browser\n",
1064 1064 "renders it. The `Math` object will add the needed LaTeX delimiters (`$$`) if they are not provided:"
1065 1065 ]
1066 1066 },
1067 1067 {
1068 1068 "cell_type": "code",
1069 1069 "collapsed": false,
1070 1070 "input": [
1071 1071 "from IPython.display import Math\n",
1072 1072 "Math(r'F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx')"
1073 1073 ],
1074 1074 "language": "python",
1075 1075 "metadata": {
1076 1076 "slideshow": {
1077 1077 "slide_type": "slide"
1078 1078 }
1079 1079 },
1080 1080 "outputs": [
1081 1081 {
1082 1082 "latex": [
1083 1083 "$$F(k) = \\int_{-\\infty}^{\\infty} f(x) e^{2\\pi i k} dx$$"
1084 1084 ],
1085 1085 "output_type": "pyout",
1086 1086 "prompt_number": 20,
1087 1087 "text": [
1088 1088 "<IPython.core.display.Math at 0xa71406c>"
1089 1089 ]
1090 1090 }
1091 1091 ],
1092 1092 "prompt_number": 20
1093 1093 },
1094 1094 {
1095 1095 "cell_type": "markdown",
1096 1096 "metadata": {
1097 1097 "slideshow": {
1098 1098 "slide_type": "slide"
1099 1099 }
1100 1100 },
1101 1101 "source": [
1102 1102 "With the `Latex` class, you have to include the delimiters yourself. This allows you to use other LaTeX modes such as `eqnarray`:"
1103 1103 ]
1104 1104 },
1105 1105 {
1106 1106 "cell_type": "code",
1107 1107 "collapsed": false,
1108 1108 "input": [
1109 1109 "from IPython.display import Latex\n",
1110 1110 "Latex(r\"\"\"\\begin{eqnarray}\n",
1111 1111 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1112 1112 "\\end{eqnarray}\"\"\")"
1113 1113 ],
1114 1114 "language": "python",
1115 1115 "metadata": {},
1116 1116 "outputs": [
1117 1117 {
1118 1118 "latex": [
1119 1119 "\\begin{eqnarray}\n",
1120 1120 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1121 1121 "\\end{eqnarray}"
1122 1122 ],
1123 1123 "output_type": "pyout",
1124 1124 "prompt_number": 21,
1125 1125 "text": [
1126 1126 "<IPython.core.display.Latex at 0xa71404c>"
1127 1127 ]
1128 1128 }
1129 1129 ],
1130 1130 "prompt_number": 21
1131 1131 },
1132 1132 {
1133 1133 "cell_type": "markdown",
1134 1134 "metadata": {
1135 1135 "slideshow": {
1136 1136 "slide_type": "slide"
1137 1137 }
1138 1138 },
1139 1139 "source": [
1140 1140 "Or you can enter latex directly with the `%%latex` cell magic:"
1141 1141 ]
1142 1142 },
1143 1143 {
1144 1144 "cell_type": "code",
1145 1145 "collapsed": false,
1146 1146 "input": [
1147 1147 "%%latex\n",
1148 1148 "\\begin{aligned}\n",
1149 1149 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1150 1150 "\\end{aligned}"
1151 1151 ],
1152 1152 "language": "python",
1153 1153 "metadata": {},
1154 1154 "outputs": [
1155 1155 {
1156 1156 "latex": [
1157 1157 "\\begin{aligned}\n",
1158 1158 "\\nabla \\times \\vec{\\mathbf{B}} -\\, \\frac1c\\, \\frac{\\partial\\vec{\\mathbf{E}}}{\\partial t} & = \\frac{4\\pi}{c}\\vec{\\mathbf{j}} \\\\\n",
1159 1159 "\\end{aligned}"
1160 1160 ],
1161 1161 "output_type": "display_data",
1162 1162 "text": [
1163 1163 "<IPython.core.display.Latex at 0xa71472c>"
1164 1164 ]
1165 1165 }
1166 1166 ],
1167 1167 "prompt_number": 22
1168 1168 },
1169 1169 {
1170 1170 "cell_type": "markdown",
1171 1171 "metadata": {
1172 1172 "slideshow": {
1173 1173 "slide_type": "skip"
1174 1174 }
1175 1175 },
1176 1176 "source": [
1177 1177 "There is also a `%%javascript` cell magic for running javascript directly,\n",
1178 1178 "and `%%svg` for manually entering SVG content."
1179 1179 ]
1180 1180 },
1181 1181 {
1182 1182 "cell_type": "markdown",
1183 1183 "metadata": {
1184 1184 "slideshow": {
1185 1185 "slide_type": "header_slide"
1186 1186 }
1187 1187 },
1188 1188 "source": [
1189 1189 "# Loading external codes\n",
1190 1190 "* Drag and drop a ``.py`` in the dashboard\n",
1191 1191 "* Use ``%load`` with any local or remote url: [the Matplotlib Gallery!](http://matplotlib.sourceforge.net/gallery.html)\n",
1192 1192 "\n",
1193 1193 "In this notebook we've kept the output saved so you can see the result, but you should run the next\n",
1194 1194 "cell yourself (with an active internet connection)."
1195 1195 ]
1196 1196 },
1197 1197 {
1198 1198 "cell_type": "markdown",
1199 1199 "metadata": {
1200 1200 "slideshow": {
1201 1201 "slide_type": "slide"
1202 1202 }
1203 1203 },
1204 1204 "source": [
1205 1205 "Let's make sure we have pylab again, in case we have restarted the kernel due to the crash demo above"
1206 1206 ]
1207 1207 },
1208 1208 {
1209 1209 "cell_type": "code",
1210 1210 "collapsed": false,
1211 1211 "input": [
1212 1212 "%pylab inline"
1213 1213 ],
1214 1214 "language": "python",
1215 1215 "metadata": {},
1216 1216 "outputs": [
1217 1217 {
1218 1218 "output_type": "stream",
1219 1219 "stream": "stdout",
1220 1220 "text": [
1221 1221 "\n",
1222 1222 "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
1223 1223 "For more information, type 'help(pylab)'.\n"
1224 1224 ]
1225 1225 }
1226 1226 ],
1227 1227 "prompt_number": 23
1228 1228 },
1229 1229 {
1230 1230 "cell_type": "code",
1231 1231 "collapsed": false,
1232 1232 "input": [
1233 1233 "%load http://matplotlib.sourceforge.net/mpl_examples/pylab_examples/integral_demo.py"
1234 1234 ],
1235 1235 "language": "python",
1236 1236 "metadata": {},
1237 1237 "outputs": [],
1238 1238 "prompt_number": 24
1239 1239 },
1240 1240 {
1241 1241 "cell_type": "code",
1242 1242 "collapsed": false,
1243 1243 "input": [
1244 1244 "#!/usr/bin/env python\n",
1245 1245 "\n",
1246 1246 "# implement the example graphs/integral from pyx\n",
1247 1247 "from pylab import *\n",
1248 1248 "from matplotlib.patches import Polygon\n",
1249 1249 "\n",
1250 1250 "def func(x):\n",
1251 1251 " return (x-3)*(x-5)*(x-7)+85\n",
1252 1252 "\n",
1253 1253 "ax = subplot(111)\n",
1254 1254 "\n",
1255 1255 "a, b = 2, 9 # integral area\n",
1256 1256 "x = arange(0, 10, 0.01)\n",
1257 1257 "y = func(x)\n",
1258 1258 "plot(x, y, linewidth=1)\n",
1259 1259 "\n",
1260 1260 "# make the shaded region\n",
1261 1261 "ix = arange(a, b, 0.01)\n",
1262 1262 "iy = func(ix)\n",
1263 1263 "verts = [(a,0)] + list(zip(ix,iy)) + [(b,0)]\n",
1264 1264 "poly = Polygon(verts, facecolor='0.8', edgecolor='k')\n",
1265 1265 "ax.add_patch(poly)\n",
1266 1266 "\n",
1267 1267 "text(0.5 * (a + b), 30,\n",
1268 1268 " r\"$\\int_a^b f(x)\\mathrm{d}x$\", horizontalalignment='center',\n",
1269 1269 " fontsize=20)\n",
1270 1270 "\n",
1271 1271 "axis([0,10, 0, 180])\n",
1272 1272 "figtext(0.9, 0.05, 'x')\n",
1273 1273 "figtext(0.1, 0.9, 'y')\n",
1274 1274 "ax.set_xticks((a,b))\n",
1275 1275 "ax.set_xticklabels(('a','b'))\n",
1276 1276 "ax.set_yticks([])\n",
1277 1277 "show()\n"
1278 1278 ],
1279 1279 "language": "python",
1280 1280 "metadata": {
1281 1281 "slideshow": {
1282 1282 "slide_type": "skip"
1283 1283 }
1284 1284 },
1285 1285 "outputs": [
1286 1286 {
1287 1287 "output_type": "display_data",
1288 1288 "png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEJCAYAAABfZHZuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0VPX5x/H3ZJssJCbIEjbZwlICyhYWN1BUlmJFUbQS\n2+JWCwjaWij+RFERRHtoDYK1Kggqim1Ri1K3AlWEsAkBQoAQSEgQQhBCyD7b748BFAkhy8zcuZPP\n6xxOD8nMfJ9jycOH537v91pcLpcLERExhSCjCxARkZpT0xYRMRE1bRERE1HTFhExETVtERETUdMW\nETGRapv2U089xUsvvXT29//3f/9HSkqK14sSEZGqWarbp52Tk8Ntt93Gli1bcDqddO7cmU2bNhEX\nF+fLGkVE5LSQ6r7Ztm1bLr30UrZt28aRI0fo3bu3GraIiIGqbdoA999/P4sWLSI/P597773XFzWJ\niMgFVDseAbDZbHTv3h2Hw0FmZiYWi8VXtYmIyE9cNGmHhoZy/fXXExcXd8GGrUYuIlI3tT3+6aJN\n2+l0kpqayj//+U+PLhyoZsyYwYwZM4wuQ0Sq4eufU5cLevaEuXNhyJAfvl6XwFvtlr9du3bRqVMn\nbrjhBjp27FjrDxcREUhNhZISuO66+n9WtUm7W7duZGVl1X8VEZEGbP58GD8egjxwO6PuiPSwwYMH\nG12CiFyEL39O8/Phk09g3DjPfN5Fd4/U6EMsFs20RUSq8NxzcOAAvP76+d+rS+9U0xYR8RK7HTp0\ngI8+gl69zv9+XXqnxiMiIl6yYgW0aVN1w64rNW0RES+ZPx8mTPDsZ2o8IiLiBRkZ7i1+OTlgtVb9\nGo1HRET8xIIF8MADF27YdaWkLSLiYadOQdu2sH07tG594dcpaYuI+IElS9yjkeoadl0paYuIeJDT\nCV27whtvwDXXVP9aJW0REYN98glccglcfbV3Pl9NW0TEg+bOhUcfBW+dWK2mLSLiIVu3wr59cMcd\n3ltDTVtExEP+8hd4+GEIDfXeGroQKSLiAd99B4mJsH8/1PT557oQKSJikPnzITm55g27rpS0RUTq\nqbTUfTPN+vWQkFDz9ylpi4gYYPFiuPLK2jXsulLSFhGpB7sdOneGt992N+7aUNIWEfGxf/zDfbt6\nbRt2Xalpi4jUkcsFzz8Pf/qT79ZU0xYRqaNPP3U37uHDfbemmraISB2dSdneumW9KmraIiJ1sG4d\nHDwIY8b4dl01bRGROpgzB/74RwgJ8e262vInIlJL6ekwZAgcOAAREXX/HG35ExHxgVmzYNKk+jXs\nulLSFhGphT173A84yMqCmJj6fZaStoiIl82cCZMn179h15WStohIDe3dC1dd5X7QwSWX1P/zlLRF\nRLxo5kz3LNsTDbuulLRFRGogM9N9voinUjYoaYuIeM1zz8HEicambAAfbwsXETGfrCz4+GN3yjaa\nkraIyEU884w7ZcfGGl2JkraISLXS092n+WVmGl2Jm5K2iEg1nngCpkwxbl/2T2n3iIjIBWzYALff\n7t6f7Y1b1rV7RETEgx5/HJ580pgzRi5ETVtEpApffgm5uTBunNGVnEtNW0TkJ1wud8p+9lnfn5d9\nMWraIiI/8cEHYLPBHXcYXcn5dCFSRORHKishMRHmz4ebbvLuWroQKSJST6+8AgkJ3m/YdaWkLSJy\n2vHj0LUrrF7tTtveVpfeqaYtInLa738PpaXwt7/5Zj01bRGROtq3DwYMcN+23ry5b9bUTFtEpI6m\nToU//MF3Dbuu/GwHooiI7331FWzeDG+/bXQlF6ekLSINmt3ufoTYnDn+dbv6hahpi0iD9re/uc/J\nvvNOoyupGV2IFJEG6+hR99a+1auhe3ffr6/dIyIitXDvve6UPXeuMevXpXfqQqSINEjr17ufSLN7\nt9GV1I5m2iLS4Dgc7mc+vvCC/zyRpqbUtEWkwbn33vXY7YWMHWt0JbWnpi0iDcq2bQUsWZJA69az\nsViMrqb2NNMWkQZl5Mj9wGcMGNDI6FLqRElbRBqMJ57YQn7+pdx11wGjS6kzNW0RaRDy8op5/vmW\nTJy4naioYNNuU1bTFpEGYdiwrbRunUZyclssZhxmn6aZtogEvPnzt5ORkcAHH2Se/ZqStoiIHzp2\nrIxHH40hOXkDrVpFAShpi4j4qyFDttC0aTmTJrU55+tmTdpq2iISsObO3cHOne1ZvnzfOV83c9LW\neEREAlJu7immTGnM/fen0rr1+XuylbRFRPzI9ddvp02bIh58sJ3RpXiUmraIBJzHH99AdnYrVqxw\nXvA1Zk3aGo+ISEDZsiWf559vz2OP7aBp08gqX2PmmbaStogEDJvNyQ03HKFPn/3cfvtl1b7WrElb\nTVtEAsaIEeuw28N46aWW1b7OzElb4xERCQivvJLOf//biZdfPonVevE8atakraYtIqa3b98JHn44\njvvu+4bu3Rtf9PVmTtoaj4iIqdntTq68MpNOnQp46KG2NX6fWZO2mraImNrQod9QWhrJ8uVNjC7F\nJzQeERHTevbZraxZ04FXXz1BRETtMqjTeeE93P5MTVtETGn16jyeeqo1jz22ia5d42r1XovFovGI\niIivHD1ayogRZVx/fSpjxrSv9ft1IVJExEccDhe9e6fRtGkxs2e3q/PnKGmLiPjAddd9zYkT0Xzy\nCQQF1S0xmzlpa6YtIqYxfnwq69ZdxsKFJ4iODqvXZ5k1aatpi4gpLFiQzt/+1pE5c3aRkHBJvT5L\nSVtExIu++CKbhx9uyu9+t5bBg5t75DOVtEVEvCAtrYARI4IZPvwb7r23+pP7GgJdiBQRv3Xw4CkG\nDCikd+8dPP10zW9RrwmzJm01bRHxSydOlHP55Qdo0yaHl1/2bMI280xbTVtE/E5pqY2f/SyNyMhi\nlixpXuetfdVR0hYR8YDycgddumzBZnPw0UeNCA0N9vgaStoiIh5QUeGga9dNFBc7+OCDoFofAlUb\nStoiIvXgbtgbOXECPvjAUu+bZ6pj5qStLX8iYriyMjtduqRy/HgQy5e7uOQSq9fXVNIWEamDoqJK\nunTZRkUFfPCB0ycN28xHsyppi4hhjhwpoX37XTidxXz0UTCXXOK9kchPqWmLiNRCZuZxEhKyiY4+\nwgcfRBEZGWp0Saagpi0iPrdqVS6JiUW0b7+ff/yjCVar7ye1etyYiEgN/P3vu7jxRivXXbeZN99s\n6ZUbZy7GzLtHdCFSRHxm8uT1zJuXwP33f8Vvf1v7x4R5klln2mraIuJ1NpuTwYPXsmFDe2bN2sSN\nN7YztB4lbRGRC8jKOsmAAVlUVFhZunQfHTt65jzs+jJr0tZMW0S8ZunS3XTtWkSTJnmsXOmiY8cY\no0sCtE9bROQcDoeL0aPXkpzchNtv38Tbb7ciIsJ/tvRpPCIiclp6+vdcd102p05FM3/+Fvr18+zD\nCzxFSVtEGrzp0zdx+eV24uMP8fnnZfTr18TokgKOkraI1FtmZiE33bSb3Nx4Hn10A7/8ZSujS7oo\nJW0RaXCcTheTJ6+ja9dKrNYC/vOfQ6Zo2Jppi0iDs3JlDvfcc5zi4sZMm7aeW29tbXRJtaKkLSIN\nQk5OEX36rGXkyEiuuCKLVatOmq5hK2mLSMArKqrkN7/ZwIcfdqFt22Lee28HHTsaeyt6fZg1aatp\ni0i1ysrsPPTQRt55px2XXOI6fRt6vNFl1YuStogEnMLCCiZO3MSyZW2IjAxiypSNjB7dBogyujSP\nUNKWgONwOMnK+p7du0+Sm1tMfn4Zx4/bKCx0UlQEFRUubDYnTqcLpxNcrmCCgiAszInV6iIiwkJU\nVDBRUSE0bhxKs2ahtGoVQdu20bRvH0tcXJSpE0+g2rPnOOPHp7NmTVdiY108+mgad97ZCmhjdGke\nY+Y/d2raDdyhQ0V8+WU2qaknSE+3kZMTxvHjl1BWFovD0QywEhpqISwMrNZgrFY7VqsDq9VGWJiD\n4GALFgsEBYHF4sDptGC3B2GzhWCzWbDZLFRWOqioCKGiIhSbzYrdHo7TaQVKCA4uxGo9TnR0EZde\nWkF8vIu2bUNJSIike/c4+vVrTnx8tNH/mQKe0+ni9dd388ILx8nKSqRt21JeeGEDgwe3ACKNLs8r\nlLTF7+XlneSddzJZtaqQHTusFBS0xm5vRni4ldjYYFq0KKFPn2I6dSqiY8fv6dQpn5iY4B99QjDu\nH+C6/hBXnv51ApcLjh+v5ODBErKzK8nNdXD4MOTnB5OZGczy5VBaasFmC8FiOUpExBHi4gpp1aqS\nhIRgevRoRL9+TRkwoJUeU1UPaWkFPPnkLj77rA0ORwj9+x/h+edttG+vOxn9lZp2ADt8+BSvvprO\nihXFZGQ0o6ysPY0aBdOmjZ2rry7jqqvK6d//GKGhQUDE6V++YbHApZeGcemlYfTqdaFXFeJwnODA\ngVJ27CghM9NOTk4Q33wTwccfB1FSEozD4SQkJJeYmALi40tJSIAePaLo378JV1/dgrg4/RH/qZ07\njzFr1m5Wrozm5MnLaNPGxsSJ2xkzphXBwe2MLs9nlLTFL3zzzUHmzs1k9epGnDjRjZiYMLp0qWDS\npDyGDy+jUaMQoKnRZdZYcLCFhIQoEhKquvh1lNLS70hLO8GOHWVkZjrZvTuMr792MmdOOHZ7BcHB\nJ4mOPkqLFqV06AA9ekTSv39T+vW7lBYt3KOdQGezOVm6NJMlS46ycWMcxcWtaNGiglGjjvDrX5cQ\nExMHxBldpk9ppi2G2rLlEE8/vZsvv4ynvDye1q2Dufnmo9x9t5MmTcIAc2/Pqk5kZAgDBzZl4MCf\nfqeUsrJt7Nx5jO3bS9i7186+fVbWrYvhz38uwW53YrE0Ijq6gObNi2nf3km3buH07RtHUlJj2rcP\nItSkU5dTp2y8/34W//53AZs2hXLkSGdCQ5106HCC3/ymgNGjTxEdHQvEGl2qoZS0xaeKisqZNm0z\n770XyokTXWnTJogHHjjAmDHFhIdHA7p4FxERTlJSa5KSzv9ecXEGe/YcZseOYvbudZCba+Xbb6OZ\nP78JdntboCXh4d/TuHEhrVtX0LGjhcREd1Pv1+9SYmODz/9QH3O5YO/e43z66SHWrSti+3YXubmx\nlJS0x2q10bp1EVddVc7NNxeTmBgH+P+ZIL6ipC0+s25dLr///R42buxBTEw4Q4ce4sEHXcTGxgD+\n8VQQM2jUqBF9+nSiT5/zv1dWlkdOzibS090N/eDBENaubcTHHzempMSBwxFFUFAZ4eH5REWVEhtb\nSdOmTpo2tdCyZTCtWoXRokUEzZtHEh8fRfPmUTRrFkFY2MUbhcsFFRVOCgqKOXiwmJycEg4eLCUv\nr4y8vApycy0cPhxOYWEsZWXxQBCRkXaaNTtFhw4ljBx5nBtuKKRJkwgC+V9YnqCkLV61ZMlOpk0r\n4vDhn9G5s4uUlJ0MHBgLmOvMBzOIiIiga9cOdO1a1XfLqKzcQWbmKTIzKzh0qIL8fBfHjgWRkRHG\nxo0RlJYGUVlpx2634XBU4nSGAmGAHajAYnEBjrP/Cy5crjBcLisQDjgBC0FBDkJDy7FaS4mKKiU6\nuoJmzSoYPNhBp06H6dEjj7ZtYwgKsuC+TmGeaxVGU9IWr5k371tmzKiksLAt1167n4ULM2jSpLHR\nZTVoYWGhJCY2JjGxulfZTv8qAsBud1BcbKe4uBKbzYHN5sThAJfLgssF4eFBREYGER0dSmRkGEFB\nPz7LLez0L/EkJW3xqDfe2M5jj9k4daoZw4ZtZerUICIjNZM0q5CQYGJjg4mNtRpdiqCkLR70+edZ\njBt3iCNHOjF8+EamTXMQHq5mLeJpStpSLzk5Jxg1aitpaT3p3z+DJUtyiI3VvFpEzqWHIBjM6XQx\nfvwaOnQo58QJF8uW7eDll1sQG2vSTcIiJuF0Oo0uoU6UtA305ZfZjBlzlNLSljz+eBqjRunqv4gv\nmHmmraRtAJvNwS23/Jebboqme/cjrFp1Ug1bxIfM3LSVtH3s669zGDmyAIejGfPnb6VfP11kFDGC\nWS9EKmn7iMvl4sEHv2LQoCh69Mjniy/K6devYR3SI+IvlLSlWvn5pxg48Fvy8loxe/YWbrhBtxeL\nGE1JW6q0YsVeLrvsEHY7fPJJATfcoMPlRYxm5qStpu1Fkyev5ZZb4hg6dB/LlzeicWPdiiziL8ya\ntDUe8QKbzcG1165m06bOzJy5maFDWxhdkogECDVtD8vPP0XPntsoLm7Ce+9l0759M6NLEpEq6OYa\n4dAhSEoqwuUqYeVKK5GRVT0iS0SMppm2kJ4OAwdCQkIad9yxkshI459sIiIXZtaZtpq2B6xfD9df\nD7NnQ//+qxvEw2JFzExJuwH77DO45RZ4800YO9boakSkppS0G6Bly+BXv4IPP4Thw42uRkRqysxJ\nWxci6+jtt2HqVPjyS+jRw+hqRKS2zJq01bTr4McN+2c/M7oaEaktJe0G5J13YMoUNWwRszNr0tZM\nuxaWLoU//tHdsLt1M7oaEWmIlLRr6KOP4A9/UMMWCRRmTdpq2jXw1VfwwAOwciUkJhpdjYjUl5ln\n2hqPXERaGtxxB7z7LvTta3Q1IuIpZk3aatrVyMqCESNg/nwYMsToakTEU5S0A1BBAQwdCk8+Cbff\nbnQ1IuJpStoBpKICbr0VxoyB3/7W6GpExNMsFouadqBwueD++6FFC5g50+hqRMQbNB4JILNmwe7d\nsHgxBOm/jim8//77DBo0iJ07dxpdipiIknYAeP99ePVV+Pe/ITLS6Gqkpn7+859jtVpJ1H5MaQC0\nT/u0bdtgwgT44gv3aETMY/PmzfTq1cvU/+QV31PSNrHjx2H0aJg3D3r2NLoaqa0NGzZgsVj49NNP\nmTVrFvv27TO6JPFzZv4LvsE3bacTkpPhF7+Au+4yuhq5mPfee48hQ4aQnJxMTk4O4G7aY8eOZdiw\nYVx77bUsWLDA4CrFDJS0TeqZZ6C4GF54wehK5GI2b97MX/7yF/76179SUlLCs88+y5EjR3C5XPQ4\nfaj5999/T2FhocGVir8zc9Ju0DPtTz6B11+HzZshNNToauRi5s2bx8CBA+ncuTMul4vmzZuTkZFB\nzx/NtFJTU7nyyisNrFLMQknbZHJyYNw49yPD4uONrkYuZufOnezatYsbb7wRq9XKhx9+yHPPPUdU\nVBTR0dEAHDx4kH379pGcnGxwteLvzJy0G2TTttvh7rvhscfgqquMrkZqYuXKlQDnpeikpCSCgoL4\n+OOPeffdd3nllVcIDw83okQxGbMm7QY5Hnn6aYiKcjdtMYf//e9/dOjQgbi4uHO+brFYmDx5MgAj\nR440ojQxITMn7QbXtNesgTfegG+/1R2PZnHw4EGOHj3K1VdfbXQpEkDMmrQbVNs6dgzuuQcWLtQc\n20w2bdoEQPfu3Q2uRMR4DaZpu1xw331w550wbJjR1UhtbNmyBYCf6UnK4kFmTdoNZjyycCEcPAj/\n+IfRlUhtbdmyhbCwMNq3b290KRIgNNP2c9nZ8Kc/wapVEBZmdDVSGzk5ORw/fpxu3boRHBxsdDkS\nQMyatAN+POJ0wr33uneKnL5pTkxk69atAHTu3NngSiSQmDlpB3zTXrAAysq0vc+svv32WwASEhIM\nrkQCjVmTdkCPRzIz3Xuyv/kG9C9rc9qxYwfgH03b4XDUeURjt9sJCQnoHzdTUdL2Qw4H/OY37gfz\n6l/W5nTixAny8vKwWCx07NjR0FpWrVp19q7Muli0aBFpaWkerEjqy6xJO2Cb9oIF7nQ9YYLRlUhd\nbd++HYC4uDhiY2O9vl5ubi6PPPIIKSkpzJ49++wP9ZYtW9i6dSs333xznT973LhxLFy4kAMHDtTo\n9Y899hhjx47VXZ5eoqTtZ3Jz3WORv/9ddz2a2Zmm7YvRiM1mY+LEiQwZMoTvv/+ejz76iJKSEoqL\ni0lJSWHixIn1+vyQkBCmTZvGU089hd1uv+jr58yZQ+/evcnPz6/XunJhStp+wuVyp+tJk6BrV6Or\nkfo486DeTp06eX2t9evX891339G7d2/GjBlDSkoKjRo1YtGiRQwfPhyr1VrvNeLj4+nYsSMff/zx\nRV8bHBysHTNSpYBr2suXw759MHWq0ZVIfTgcDnbt2gX4pmlv2bKFuLg4WrVqRWJiIv369aOsrIwP\nP/yQESNGeGydO++8k8WLF3vs86TulLT9QGGhO2G/9hp4IBiJgbKzsykvL8disfikaaenp9OtW7dz\nvrZ27VpatmxJTEyMx9bp3LkzJ0+eZPfu3R77TKk9i8Vi2qYdUHuQ/vQn97MedUa2+Z1J2cHBwXTo\n0MFr68yYMYPjx4+TlpZGu3btmDRpEq1atWLq1Kls2LCByy+//ILvzcjIYOXKlQQFBXH48GGeeOIJ\nli9fzqlTpygoKODBBx+kdevW57wnKCiInj17kpqaStcfze+ysrJYtGgRMTExhIeHExoaet4xtPVd\nW35g5guRAdO0U1Ph3/+G0z/rYnJnmnaHDh28ur95xowZHDp0iFGjRjFhwgQGDx589nt79+7l1ltv\nrfJ9eXl5rFixgilTppz9nHHjxjFjxgycTicPPPAAXbp0YezYsee997LLLmPv3r1nf5+WlsbkyZOZ\nO3cuvXv3BqC0tJTx48dX2Vzqs7b8wKxJOyDGIw4HTJzofjivD3aGiQ+cadpdunTx+lp79uwBzr9V\n/rvvvjv7KLOfeuedd3j44YfP/r6srIyYmBh69OhBfHw8ycnJF9wiGB0dzXfffQeA0+lkxowZJCUl\nnW3YAJGRkdx0001VNpb6rC1uZk7aAdG033gDIiJAwSIwOBwO9u3bB/jmONa9e/fSqFEjWrZsec7X\ni4uLL9i077nnHiIiIs7+fseOHfTr1w+A5s2bM2nSpAvOwmNjYykuLgbc2xrz8vK44ooralxvfdaW\nH5g1aZt+PPL99zB9Onz+OZj4L0/5kezsbCorK7FYLD5r2lVtr7NYLDidzirf8+MGn52dTUFBAX37\n9q3Rek6n82zDOLMPuzZNtj5ri5uStoGmT4cxY6AWQUX83Jl5b0hIiE/GI3v37q1ynejoaIqKii76\n/s2bNxMaGnrORcu8vLwLvr6oqOhsgm/evDkA5eXltS27TmvLD8yatE3dtL/91r0v+5lnjK5EPCkz\nMxNw3wkZGhrq1bVOnjxJfn5+ldsKW7ZsSWFh4XlfLy8vJyUl5ewIZ8OGDXTq1OnsDThOp5O33nqr\n2jVbtWoFcHYOfeZGoh9zOBweX1vMz7RN2+WChx+G556DanZGiQmdaUi+eCbkmYuQVTXtnj17VnlW\nyDfffMNbb73F/v37yc7OJjc3l7AfPV1j4cKF1V4IPHDgwNmxT3BwME8++SRr1649+5cVwLFjx1ix\nYgUAhw4d8tja8gOzJm3TzrTfew8qKmDcOKMrEU8707QTExO9vtbu3buJjo6ucqY9cOBA5s6de97X\n+/Tpw80338zu3bvZs2cPb775Js8//zyzZs0iNDSUQYMGXfAvHLvdzvbt25k0adLZryUlJZGSksJr\nr71GixYtiIyMJCQkhJ///OcsXryYRx55hLFjxzJq1Kh6rS0/MPNM25RNu7wcpk2DJUt0IFSgOXNz\niMVi8VnTTkpKIqiKP0i9evXi2LFjFBQU0LRp07Nfj42N5cknnzzntTNmzKjReunp6cTHx5+X7Lt3\n784LL7xw3ut//etfn/P7+qwt5zJr0jZly0tJgV694Nprja5EPC0rKwtw76Zo166dV9ZYvHgxE06f\n2btr1y6GDBlS5evCwsK48847effddz229tKlS3XTix8wc9I2XdMuKHDfRDNnjtGViDfs378fcM+T\nvWXlypWEhYWRmZlJaGjoBZs2wK9+9SvWrVtXo10kF5Odnc2RI0c0c/YTSto+8vTTcPfdehpNoDrT\ntHv16uW1Ne655x6aNm3KokWLePHFF6t9hFh4eDjTp09n5syZ9fohr6io4MUXX+S5554zdcoLFGb+\n/8BUM+09e2DZMsjIMLoS8ZYzOyi8mbRHjhxZqyfCJCYmMnr0aJYtW8Zdd91VpzUXLVrEhAkTdIiT\nHzFr0jZV054yxf2rSROjKxFvyczMJCIi4pwT8PxB//796d+/f53f/9BDD3mwGqkvJW0f+PprSEtz\nJ20JTIcPH+bUqVMkJSXV+annIjVl1qRtipm2ywWPP+6eZ4eHG12NeEvG6blXnz59DK5ExH+Zoml/\n9pn7YKjkZKMrEW9KT08HOHtinYg3KWl7idPpTtkzZ4L+xRzYdu7cSVRUlE9uqpGGzcwzbb9v2v/6\nl/uuxws8QEQCRHl5OTt37qR///5V3p0o4mlmTdp+fSHSbncfvZqSorOyA93mzZuprKxk0KBBRpci\nDYCStpe89RbEx8ONNxpdiXjan//8Z375y19it9sB+PTTT4mJian27kQRT1LS9rCKCpgxA959Vyk7\nEG3cuBGbzYbT6eTIkSOsWrWK++677+y50CLeZLFY1LQ9bdEiSEyEK680uhLxhiuuuILGjRtTVFTE\nM888w2WXXXbeiXYicj6/HI9UVsLs2fCTEyglgEyYMIH09HRGjRpFWFgY8+bNIySk6gxht9t55ZVX\n+Ne//sWyZct49NFH9UgtqTclbQ9avBi6doUBA4yuRLwlNjaWl19+uUavnT17Np06dWL06NEUFhby\n6quv6gwPqRddiPQgmw1mzYKnnjK6EvEHmZmZfPHFF9x2222A+6k2vXv3NrgqCQRmTdp+17SXLIGE\nBM2yxW3jxo307Nnz7HMQN27cSFJSEqdOnTK4MjEzJW0PsdncD+rVLFvOiImJocnpYx1LS0tZvXo1\nl19+Of/5z38MrkzMzqxJ269m2u+8A+3awTXXGF2J+IuhQ4eybds2PvvsMyorKxk2bBjr1q3zu6Nb\nxVzMnLT9pmnb7e6U/dprRlci/iQsLIzp06cbXYYEILMmbb8Zj/zzn+67HwcPNroSEQl0Zk7aftG0\nXS73g3qnTjW6EhFpKJS06+Hzz93jkREjjK5ERMS/+UXTnjPH/exHncgpIr6ipF1HmzZBVhbU8SHX\nIiK1ppkp2rWWAAAC/UlEQVR2PcyZA7//PYSGGl2JiDQkZk3ahm7527sXvvrKfdaIiIivKGnX0Ysv\nwvjxEBVlZBUi0hApadfS4cPu5z/u3WtUBSLSUClp10FKCowdC6ePlRAR8Skl7VooLYXXX4fUVCNW\nF5GGTkm7lt56C666Cjp2NGJ178rNzTW6BBG5iIyMDNMmbZ83bacT/vpXeOQRX6/sG2raIv4vIyPD\n6BLqzOdN+/PPwWqFQYN8vbKIyA+UtGvoTMo28UhJRAKAWZu2xeWBys081BcRMVJtW7BHdo+Y9W8s\nERGzMfzsERERqTk1bRERE1HTFhExETVtD7r11lvp27cv3bt35zU9oVjE72RnZ9OjRw+jy6gXv3ka\neyBYuHAhcXFxlJWV0a9fP0aPHk3jxo2NLktEAoiStge99NJL9OzZk4EDB5KXl0dmZqbRJYnIT9jt\ndpKTk+nWrRt33HEHZWVlRpdUK2raHrJmzRr++9//kpqayrZt2+jZsycVFRVGlyUiP7Fnzx4mTJjA\nrl27iImJYcGCBUaXVCtq2h5SVFREXFwc4eHh7N69m1QdYSjil9q0acPAgQMBSE5OZu3atQZXVDtq\n2h4ybNgw7HY73bp1Y9q0aWf/UIiIf/nxHdwul8t0d3TrQqSHhIWFsXLlSqPLEJGLOHjwIKmpqQwY\nMIClS5dyzTXXGF1SrShpi0iDYbFY6NKlC/Pnz6dbt26cPHmS3/3ud0aXVSseOTBKRER8Q0lbRMRE\n1LRFRExETVtExETUtEVEDLJp0yauuOIKKioqKCkpoXv37uzatava9+hCpIiIgaZPn055eTllZWW0\nadOGqVOnVvt6NW0REQPZbDb69u1LREQE69evv+jNPhqPiIgY6NixY5SUlFBcXFyjw6uUtEVEDPSL\nX/yCu+++m/3793P48GHmzZtX7et1G7uIiEGWLFmC1Wrlrrvuwul0cuWVV7JmzRoGDx58wfcoaYuI\nmIhm2iIiJqKmLSJiImraIiImoqYtImIiatoiIiaipi0iYiL/DycIU5TELLbPAAAAAElFTkSuQmCC\n",
1289 1289 "text": [
1290 1290 "<matplotlib.figure.Figure at 0xa705fec>"
1291 1291 ]
1292 1292 }
1293 1293 ],
1294 1294 "prompt_number": 25
1295 1295 },
1296 1296 {
1297 1297 "cell_type": "heading",
1298 1298 "level": 1,
1299 1299 "metadata": {
1300 1300 "slideshow": {
1301 1301 "slide_type": "header_slide"
1302 1302 }
1303 1303 },
1304 1304 "source": [
1305 1305 "IPython rocks!"
1306 1306 ]
1307 1307 },
1308 1308 {
1309 1309 "cell_type": "markdown",
1310 1310 "metadata": {},
1311 1311 "source": [
1312 1312 "Just my little contribution... I have a lot of work to do but this is an exciting beginning!\n",
1313 1313 "\n",
1314 1314 "You can check [here](https://github.com/ipython/nbconvert/pull/69) for more information about this PR."
1315 1315 ]
1316 1316 },
1317 1317 {
1318 1318 "cell_type": "markdown",
1319 1319 "metadata": {},
1320 1320 "source": [
1321 1321 "And you can find me at:\n",
1322 1322 "\n",
1323 1323 "* [@damian_avila](https://twitter.com/damian_avila)\n",
1324 1324 "* [OQUANTA](http://www.oquanta.info)\n",
1325 1325 "* [BLOG](http://www.damian.oquanta.info)"
1326 1326 ]
1327 1327 }
1328 1328 ],
1329 1329 "metadata": {}
1330 1330 }
1331 1331 ]
1332 1332 } No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now