Show More
@@ -1,944 +1,1002 b'' | |||
|
1 | 1 | .. _parallel_multiengine: |
|
2 | 2 | |
|
3 | 3 | ========================== |
|
4 | 4 | IPython's Direct interface |
|
5 | 5 | ========================== |
|
6 | 6 | |
|
7 | 7 | The direct, or multiengine, interface represents one possible way of working with a set of |
|
8 | 8 | IPython engines. The basic idea behind the multiengine interface is that the |
|
9 | 9 | capabilities of each engine are directly and explicitly exposed to the user. |
|
10 | 10 | Thus, in the multiengine interface, each engine is given an id that is used to |
|
11 | 11 | identify the engine and give it work to do. This interface is very intuitive |
|
12 | 12 | and is designed with interactive usage in mind, and is the best place for |
|
13 | 13 | new users of IPython to begin. |
|
14 | 14 | |
|
15 | 15 | Starting the IPython controller and engines |
|
16 | 16 | =========================================== |
|
17 | 17 | |
|
18 | 18 | To follow along with this tutorial, you will need to start the IPython |
|
19 | 19 | controller and four IPython engines. The simplest way of doing this is to use |
|
20 | 20 | the :command:`ipcluster` command:: |
|
21 | 21 | |
|
22 | 22 | $ ipcluster start -n 4 |
|
23 | 23 | |
|
24 | 24 | For more detailed information about starting the controller and engines, see |
|
25 | 25 | our :ref:`introduction <parallel_overview>` to using IPython for parallel computing. |
|
26 | 26 | |
|
27 | 27 | Creating a ``DirectView`` instance |
|
28 | 28 | ================================== |
|
29 | 29 | |
|
30 | 30 | The first step is to import the IPython :mod:`IPython.parallel` |
|
31 | 31 | module and then create a :class:`.Client` instance: |
|
32 | 32 | |
|
33 | 33 | .. sourcecode:: ipython |
|
34 | 34 | |
|
35 | 35 | In [1]: from IPython.parallel import Client |
|
36 | 36 | |
|
37 | 37 | In [2]: rc = Client() |
|
38 | 38 | |
|
39 | 39 | This form assumes that the default connection information (stored in |
|
40 | 40 | :file:`ipcontroller-client.json` found in :file:`IPYTHONDIR/profile_default/security`) is |
|
41 | 41 | accurate. If the controller was started on a remote machine, you must copy that connection |
|
42 | 42 | file to the client machine, or enter its contents as arguments to the Client constructor: |
|
43 | 43 | |
|
44 | 44 | .. sourcecode:: ipython |
|
45 | 45 | |
|
46 | 46 | # If you have copied the json connector file from the controller: |
|
47 | 47 | In [2]: rc = Client('/path/to/ipcontroller-client.json') |
|
48 | 48 | # or to connect with a specific profile you have set up: |
|
49 | 49 | In [3]: rc = Client(profile='mpi') |
|
50 | 50 | |
|
51 | 51 | |
|
52 | 52 | To make sure there are engines connected to the controller, users can get a list |
|
53 | 53 | of engine ids: |
|
54 | 54 | |
|
55 | 55 | .. sourcecode:: ipython |
|
56 | 56 | |
|
57 | 57 | In [3]: rc.ids |
|
58 | 58 | Out[3]: [0, 1, 2, 3] |
|
59 | 59 | |
|
60 | 60 | Here we see that there are four engines ready to do work for us. |
|
61 | 61 | |
|
62 | 62 | For direct execution, we will make use of a :class:`DirectView` object, which can be |
|
63 | 63 | constructed via list-access to the client: |
|
64 | 64 | |
|
65 | 65 | .. sourcecode:: ipython |
|
66 | 66 | |
|
67 | 67 | In [4]: dview = rc[:] # use all engines |
|
68 | 68 | |
|
69 | 69 | .. seealso:: |
|
70 | 70 | |
|
71 | 71 | For more information, see the in-depth explanation of :ref:`Views <parallel_details>`. |
|
72 | 72 | |
|
73 | 73 | |
|
74 | 74 | Quick and easy parallelism |
|
75 | 75 | ========================== |
|
76 | 76 | |
|
77 | 77 | In many cases, you simply want to apply a Python function to a sequence of |
|
78 | 78 | objects, but *in parallel*. The client interface provides a simple way |
|
79 | 79 | of accomplishing this: using the DirectView's :meth:`~DirectView.map` method. |
|
80 | 80 | |
|
81 | 81 | Parallel map |
|
82 | 82 | ------------ |
|
83 | 83 | |
|
84 | 84 | Python's builtin :func:`map` functions allows a function to be applied to a |
|
85 | 85 | sequence element-by-element. This type of code is typically trivial to |
|
86 | 86 | parallelize. In fact, since IPython's interface is all about functions anyway, |
|
87 | 87 | you can just use the builtin :func:`map` with a :class:`RemoteFunction`, or a |
|
88 | 88 | DirectView's :meth:`map` method: |
|
89 | 89 | |
|
90 | 90 | .. sourcecode:: ipython |
|
91 | 91 | |
|
92 | 92 | In [62]: serial_result = map(lambda x:x**10, range(32)) |
|
93 | 93 | |
|
94 | 94 | In [63]: parallel_result = dview.map_sync(lambda x: x**10, range(32)) |
|
95 | 95 | |
|
96 | 96 | In [67]: serial_result==parallel_result |
|
97 | 97 | Out[67]: True |
|
98 | 98 | |
|
99 | 99 | |
|
100 | 100 | .. note:: |
|
101 | 101 | |
|
102 | 102 | The :class:`DirectView`'s version of :meth:`map` does |
|
103 | 103 | not do dynamic load balancing. For a load balanced version, use a |
|
104 | 104 | :class:`LoadBalancedView`. |
|
105 | 105 | |
|
106 | 106 | .. seealso:: |
|
107 | 107 | |
|
108 | 108 | :meth:`map` is implemented via :class:`ParallelFunction`. |
|
109 | 109 | |
|
110 | 110 | Remote function decorators |
|
111 | 111 | -------------------------- |
|
112 | 112 | |
|
113 | 113 | Remote functions are just like normal functions, but when they are called, |
|
114 | 114 | they execute on one or more engines, rather than locally. IPython provides |
|
115 | 115 | two decorators: |
|
116 | 116 | |
|
117 | 117 | .. sourcecode:: ipython |
|
118 | 118 | |
|
119 | 119 | In [10]: @dview.remote(block=True) |
|
120 | 120 | ....: def getpid(): |
|
121 | 121 | ....: import os |
|
122 | 122 | ....: return os.getpid() |
|
123 | 123 | ....: |
|
124 | 124 | |
|
125 | 125 | In [11]: getpid() |
|
126 | 126 | Out[11]: [12345, 12346, 12347, 12348] |
|
127 | 127 | |
|
128 | 128 | The ``@parallel`` decorator creates parallel functions, that break up an element-wise |
|
129 | 129 | operations and distribute them, reconstructing the result. |
|
130 | 130 | |
|
131 | 131 | .. sourcecode:: ipython |
|
132 | 132 | |
|
133 | 133 | In [12]: import numpy as np |
|
134 | 134 | |
|
135 | 135 | In [13]: A = np.random.random((64,48)) |
|
136 | 136 | |
|
137 | 137 | In [14]: @dview.parallel(block=True) |
|
138 | 138 | ....: def pmul(A,B): |
|
139 | 139 | ....: return A*B |
|
140 | 140 | |
|
141 | 141 | In [15]: C_local = A*A |
|
142 | 142 | |
|
143 | 143 | In [16]: C_remote = pmul(A,A) |
|
144 | 144 | |
|
145 | 145 | In [17]: (C_local == C_remote).all() |
|
146 | 146 | Out[17]: True |
|
147 | 147 | |
|
148 | 148 | Calling a ``@parallel`` function *does not* correspond to map. It is used for splitting |
|
149 | 149 | element-wise operations that operate on a sequence or array. For ``map`` behavior, |
|
150 | 150 | parallel functions do have a map method. |
|
151 | 151 | |
|
152 | 152 | ==================== ============================ ============================= |
|
153 | 153 | call pfunc(seq) pfunc.map(seq) |
|
154 | 154 | ==================== ============================ ============================= |
|
155 | 155 | # of tasks # of engines (1 per engine) # of engines (1 per engine) |
|
156 | 156 | # of remote calls # of engines (1 per engine) ``len(seq)`` |
|
157 | 157 | argument to remote ``seq[i:j]`` (sub-sequence) ``seq[i]`` (single element) |
|
158 | 158 | ==================== ============================ ============================= |
|
159 | 159 | |
|
160 | 160 | A quick example to illustrate the difference in arguments for the two modes: |
|
161 | 161 | |
|
162 | 162 | .. sourcecode:: ipython |
|
163 | 163 | |
|
164 | 164 | In [16]: @dview.parallel(block=True) |
|
165 | 165 | ....: def echo(x): |
|
166 | 166 | ....: return str(x) |
|
167 | 167 | ....: |
|
168 | 168 | |
|
169 | 169 | In [17]: echo(range(5)) |
|
170 | 170 | Out[17]: ['[0, 1]', '[2]', '[3]', '[4]'] |
|
171 | 171 | |
|
172 | 172 | In [18]: echo.map(range(5)) |
|
173 | 173 | Out[18]: ['0', '1', '2', '3', '4'] |
|
174 | 174 | |
|
175 | 175 | |
|
176 | 176 | .. seealso:: |
|
177 | 177 | |
|
178 | 178 | See the :func:`~.remotefunction.parallel` and :func:`~.remotefunction.remote` |
|
179 | 179 | decorators for options. |
|
180 | 180 | |
|
181 | 181 | Calling Python functions |
|
182 | 182 | ======================== |
|
183 | 183 | |
|
184 | 184 | The most basic type of operation that can be performed on the engines is to |
|
185 | 185 | execute Python code or call Python functions. Executing Python code can be |
|
186 | 186 | done in blocking or non-blocking mode (non-blocking is default) using the |
|
187 | 187 | :meth:`.View.execute` method, and calling functions can be done via the |
|
188 | 188 | :meth:`.View.apply` method. |
|
189 | 189 | |
|
190 | 190 | apply |
|
191 | 191 | ----- |
|
192 | 192 | |
|
193 | 193 | The main method for doing remote execution (in fact, all methods that |
|
194 | 194 | communicate with the engines are built on top of it), is :meth:`View.apply`. |
|
195 | 195 | |
|
196 | 196 | We strive to provide the cleanest interface we can, so `apply` has the following |
|
197 | 197 | signature: |
|
198 | 198 | |
|
199 | 199 | .. sourcecode:: python |
|
200 | 200 | |
|
201 | 201 | view.apply(f, *args, **kwargs) |
|
202 | 202 | |
|
203 | 203 | There are various ways to call functions with IPython, and these flags are set as |
|
204 | 204 | attributes of the View. The ``DirectView`` has just two of these flags: |
|
205 | 205 | |
|
206 | 206 | dv.block : bool |
|
207 | 207 | whether to wait for the result, or return an :class:`AsyncResult` object |
|
208 | 208 | immediately |
|
209 | 209 | dv.track : bool |
|
210 | 210 | whether to instruct pyzmq to track when zeromq is done sending the message. |
|
211 | 211 | This is primarily useful for non-copying sends of numpy arrays that you plan to |
|
212 | 212 | edit in-place. You need to know when it becomes safe to edit the buffer |
|
213 | 213 | without corrupting the message. |
|
214 | 214 | dv.targets : int, list of ints |
|
215 | 215 | which targets this view is associated with. |
|
216 | 216 | |
|
217 | 217 | |
|
218 | 218 | Creating a view is simple: index-access on a client creates a :class:`.DirectView`. |
|
219 | 219 | |
|
220 | 220 | .. sourcecode:: ipython |
|
221 | 221 | |
|
222 | 222 | In [4]: view = rc[1:3] |
|
223 | 223 | Out[4]: <DirectView [1, 2]> |
|
224 | 224 | |
|
225 | 225 | In [5]: view.apply<tab> |
|
226 | 226 | view.apply view.apply_async view.apply_sync |
|
227 | 227 | |
|
228 | 228 | For convenience, you can set block temporarily for a single call with the extra sync/async methods. |
|
229 | 229 | |
|
230 | 230 | Blocking execution |
|
231 | 231 | ------------------ |
|
232 | 232 | |
|
233 | 233 | In blocking mode, the :class:`.DirectView` object (called ``dview`` in |
|
234 | 234 | these examples) submits the command to the controller, which places the |
|
235 | 235 | command in the engines' queues for execution. The :meth:`apply` call then |
|
236 | 236 | blocks until the engines are done executing the command: |
|
237 | 237 | |
|
238 | 238 | .. sourcecode:: ipython |
|
239 | 239 | |
|
240 | 240 | In [2]: dview = rc[:] # A DirectView of all engines |
|
241 | 241 | In [3]: dview.block=True |
|
242 | 242 | In [4]: dview['a'] = 5 |
|
243 | 243 | |
|
244 | 244 | In [5]: dview['b'] = 10 |
|
245 | 245 | |
|
246 | 246 | In [6]: dview.apply(lambda x: a+b+x, 27) |
|
247 | 247 | Out[6]: [42, 42, 42, 42] |
|
248 | 248 | |
|
249 | 249 | You can also select blocking execution on a call-by-call basis with the :meth:`apply_sync` |
|
250 | 250 | method: |
|
251 | 251 | |
|
252 | 252 | .. sourcecode:: ipython |
|
253 | 253 | |
|
254 | 254 | In [7]: dview.block=False |
|
255 | 255 | |
|
256 | 256 | In [8]: dview.apply_sync(lambda x: a+b+x, 27) |
|
257 | 257 | Out[8]: [42, 42, 42, 42] |
|
258 | 258 | |
|
259 | 259 | Python commands can be executed as strings on specific engines by using a View's ``execute`` |
|
260 | 260 | method: |
|
261 | 261 | |
|
262 | 262 | .. sourcecode:: ipython |
|
263 | 263 | |
|
264 | 264 | In [6]: rc[::2].execute('c=a+b') |
|
265 | 265 | |
|
266 | 266 | In [7]: rc[1::2].execute('c=a-b') |
|
267 | 267 | |
|
268 | 268 | In [8]: dview['c'] # shorthand for dview.pull('c', block=True) |
|
269 | 269 | Out[8]: [15, -5, 15, -5] |
|
270 | 270 | |
|
271 | 271 | |
|
272 | 272 | Non-blocking execution |
|
273 | 273 | ---------------------- |
|
274 | 274 | |
|
275 | 275 | In non-blocking mode, :meth:`apply` submits the command to be executed and |
|
276 | 276 | then returns a :class:`AsyncResult` object immediately. The |
|
277 | 277 | :class:`AsyncResult` object gives you a way of getting a result at a later |
|
278 | 278 | time through its :meth:`get` method. |
|
279 | 279 | |
|
280 | 280 | .. seealso:: |
|
281 | 281 | |
|
282 | 282 | Docs on the :ref:`AsyncResult <parallel_asyncresult>` object. |
|
283 | 283 | |
|
284 | 284 | This allows you to quickly submit long running commands without blocking your |
|
285 | 285 | local Python/IPython session: |
|
286 | 286 | |
|
287 | 287 | .. sourcecode:: ipython |
|
288 | 288 | |
|
289 | 289 | # define our function |
|
290 | 290 | In [6]: def wait(t): |
|
291 | 291 | ....: import time |
|
292 | 292 | ....: tic = time.time() |
|
293 | 293 | ....: time.sleep(t) |
|
294 | 294 | ....: return time.time()-tic |
|
295 | 295 | |
|
296 | 296 | # In non-blocking mode |
|
297 | 297 | In [7]: ar = dview.apply_async(wait, 2) |
|
298 | 298 | |
|
299 | 299 | # Now block for the result |
|
300 | 300 | In [8]: ar.get() |
|
301 | 301 | Out[8]: [2.0006198883056641, 1.9997570514678955, 1.9996809959411621, 2.0003249645233154] |
|
302 | 302 | |
|
303 | 303 | # Again in non-blocking mode |
|
304 | 304 | In [9]: ar = dview.apply_async(wait, 10) |
|
305 | 305 | |
|
306 | 306 | # Poll to see if the result is ready |
|
307 | 307 | In [10]: ar.ready() |
|
308 | 308 | Out[10]: False |
|
309 | 309 | |
|
310 | 310 | # ask for the result, but wait a maximum of 1 second: |
|
311 | 311 | In [45]: ar.get(1) |
|
312 | 312 | --------------------------------------------------------------------------- |
|
313 | 313 | TimeoutError Traceback (most recent call last) |
|
314 | 314 | /home/you/<ipython-input-45-7cd858bbb8e0> in <module>() |
|
315 | 315 | ----> 1 ar.get(1) |
|
316 | 316 | |
|
317 | 317 | /path/to/site-packages/IPython/parallel/asyncresult.pyc in get(self, timeout) |
|
318 | 318 | 62 raise self._exception |
|
319 | 319 | 63 else: |
|
320 | 320 | ---> 64 raise error.TimeoutError("Result not ready.") |
|
321 | 321 | 65 |
|
322 | 322 | 66 def ready(self): |
|
323 | 323 | |
|
324 | 324 | TimeoutError: Result not ready. |
|
325 | 325 | |
|
326 | 326 | .. Note:: |
|
327 | 327 | |
|
328 | 328 | Note the import inside the function. This is a common model, to ensure |
|
329 | 329 | that the appropriate modules are imported where the task is run. You can |
|
330 | 330 | also manually import modules into the engine(s) namespace(s) via |
|
331 | 331 | :meth:`view.execute('import numpy')`. |
|
332 | 332 | |
|
333 | 333 | Often, it is desirable to wait until a set of :class:`AsyncResult` objects |
|
334 | 334 | are done. For this, there is a the method :meth:`wait`. This method takes a |
|
335 | 335 | tuple of :class:`AsyncResult` objects (or `msg_ids` or indices to the client's History), |
|
336 | 336 | and blocks until all of the associated results are ready: |
|
337 | 337 | |
|
338 | 338 | .. sourcecode:: ipython |
|
339 | 339 | |
|
340 | 340 | In [72]: dview.block=False |
|
341 | 341 | |
|
342 | 342 | # A trivial list of AsyncResults objects |
|
343 | 343 | In [73]: pr_list = [dview.apply_async(wait, 3) for i in range(10)] |
|
344 | 344 | |
|
345 | 345 | # Wait until all of them are done |
|
346 | 346 | In [74]: dview.wait(pr_list) |
|
347 | 347 | |
|
348 | 348 | # Then, their results are ready using get() or the `.r` attribute |
|
349 | 349 | In [75]: pr_list[0].get() |
|
350 | 350 | Out[75]: [2.9982571601867676, 2.9982588291168213, 2.9987530708312988, 2.9990990161895752] |
|
351 | 351 | |
|
352 | 352 | |
|
353 | 353 | |
|
354 | 354 | The ``block`` and ``targets`` keyword arguments and attributes |
|
355 | 355 | -------------------------------------------------------------- |
|
356 | 356 | |
|
357 | 357 | Most DirectView methods (excluding :meth:`apply`) accept ``block`` and |
|
358 | 358 | ``targets`` as keyword arguments. As we have seen above, these keyword arguments control the |
|
359 | 359 | blocking mode and which engines the command is applied to. The :class:`View` class also has |
|
360 | 360 | :attr:`block` and :attr:`targets` attributes that control the default behavior when the keyword |
|
361 | 361 | arguments are not provided. Thus the following logic is used for :attr:`block` and :attr:`targets`: |
|
362 | 362 | |
|
363 | 363 | * If no keyword argument is provided, the instance attributes are used. |
|
364 | 364 | * The Keyword arguments, if provided overrides the instance attributes for |
|
365 | 365 | the duration of a single call. |
|
366 | 366 | |
|
367 | 367 | The following examples demonstrate how to use the instance attributes: |
|
368 | 368 | |
|
369 | 369 | .. sourcecode:: ipython |
|
370 | 370 | |
|
371 | 371 | In [16]: dview.targets = [0,2] |
|
372 | 372 | |
|
373 | 373 | In [17]: dview.block = False |
|
374 | 374 | |
|
375 | 375 | In [18]: ar = dview.apply(lambda : 10) |
|
376 | 376 | |
|
377 | 377 | In [19]: ar.get() |
|
378 | 378 | Out[19]: [10, 10] |
|
379 | 379 | |
|
380 | 380 | In [20]: dview.targets = v.client.ids # all engines (4) |
|
381 | 381 | |
|
382 | 382 | In [21]: dview.block = True |
|
383 | 383 | |
|
384 | 384 | In [22]: dview.apply(lambda : 42) |
|
385 | 385 | Out[22]: [42, 42, 42, 42] |
|
386 | 386 | |
|
387 | 387 | The :attr:`block` and :attr:`targets` instance attributes of the |
|
388 | 388 | :class:`.DirectView` also determine the behavior of the parallel magic commands. |
|
389 | 389 | |
|
390 | 390 | Parallel magic commands |
|
391 | 391 | ----------------------- |
|
392 | 392 | |
|
393 | 393 | We provide a few IPython magic commands (``%px``, ``%autopx`` and ``%result``) |
|
394 | 394 | that make it a bit more pleasant to execute Python commands on the engines interactively. |
|
395 | 395 | These are simply shortcuts to :meth:`.DirectView.execute` |
|
396 | 396 | and :meth:`.AsyncResult.display_outputs` methods repsectively. |
|
397 | 397 | The ``%px`` magic executes a single Python command on the engines |
|
398 | 398 | specified by the :attr:`targets` attribute of the :class:`DirectView` instance: |
|
399 | 399 | |
|
400 | 400 | .. sourcecode:: ipython |
|
401 | 401 | |
|
402 | 402 | # Create a DirectView for all targets |
|
403 | 403 | In [22]: dv = rc[:] |
|
404 | 404 | |
|
405 | 405 | # Make this DirectView active for parallel magic commands |
|
406 | 406 | In [23]: dv.activate() |
|
407 | 407 | |
|
408 | 408 | In [24]: dv.block=True |
|
409 | 409 | |
|
410 | 410 | # import numpy here and everywhere |
|
411 | 411 | In [25]: with dv.sync_imports(): |
|
412 | 412 | ....: import numpy |
|
413 | 413 | importing numpy on engine(s) |
|
414 | 414 | |
|
415 | 415 | In [27]: %px a = numpy.random.rand(2,2) |
|
416 | 416 | Parallel execution on engines: [0, 1, 2, 3] |
|
417 | 417 | |
|
418 | 418 | In [28]: %px numpy.linalg.eigvals(a) |
|
419 | 419 | Parallel execution on engines: [0, 1, 2, 3] |
|
420 | 420 | [0] Out[68]: array([ 0.77120707, -0.19448286]) |
|
421 | 421 | [1] Out[68]: array([ 1.10815921, 0.05110369]) |
|
422 | 422 | [2] Out[68]: array([ 0.74625527, -0.37475081]) |
|
423 | 423 | [3] Out[68]: array([ 0.72931905, 0.07159743]) |
|
424 | 424 | |
|
425 | 425 | In [29]: %px print 'hi' |
|
426 | 426 | Parallel execution on engine(s): [0, 1, 2, 3] |
|
427 | 427 | [stdout:0] hi |
|
428 | 428 | [stdout:1] hi |
|
429 | 429 | [stdout:2] hi |
|
430 | 430 | [stdout:3] hi |
|
431 | 431 | |
|
432 | 432 | |
|
433 | 433 | Since engines are IPython as well, you can even run magics remotely: |
|
434 | 434 | |
|
435 | 435 | .. sourcecode:: ipython |
|
436 | 436 | |
|
437 | 437 | In [28]: %px %pylab inline |
|
438 | 438 | Parallel execution on engine(s): [0, 1, 2, 3] |
|
439 | 439 | [stdout:0] |
|
440 | 440 | Welcome to pylab, a matplotlib-based Python environment... |
|
441 | 441 | For more information, type 'help(pylab)'. |
|
442 | 442 | [stdout:1] |
|
443 | 443 | Welcome to pylab, a matplotlib-based Python environment... |
|
444 | 444 | For more information, type 'help(pylab)'. |
|
445 | 445 | [stdout:2] |
|
446 | 446 | Welcome to pylab, a matplotlib-based Python environment... |
|
447 | 447 | For more information, type 'help(pylab)'. |
|
448 | 448 | [stdout:3] |
|
449 | 449 | Welcome to pylab, a matplotlib-based Python environment... |
|
450 | 450 | For more information, type 'help(pylab)'. |
|
451 | 451 | |
|
452 | 452 | And once in pylab mode with the inline backend, |
|
453 | 453 | you can make plots and they will be displayed in your frontend |
|
454 | 454 | if it suports the inline figures (e.g. notebook or qtconsole): |
|
455 | 455 | |
|
456 | 456 | .. sourcecode:: ipython |
|
457 | 457 | |
|
458 | 458 | In [40]: %px plot(rand(100)) |
|
459 | 459 | Parallel execution on engine(s): [0, 1, 2, 3] |
|
460 | 460 | <plot0> |
|
461 | 461 | <plot1> |
|
462 | 462 | <plot2> |
|
463 | 463 | <plot3> |
|
464 | 464 | [0] Out[79]: [<matplotlib.lines.Line2D at 0x10a6286d0>] |
|
465 | 465 | [1] Out[79]: [<matplotlib.lines.Line2D at 0x10b9476d0>] |
|
466 | 466 | [2] Out[79]: [<matplotlib.lines.Line2D at 0x110652750>] |
|
467 | 467 | [3] Out[79]: [<matplotlib.lines.Line2D at 0x10c6566d0>] |
|
468 | 468 | |
|
469 | 469 | |
|
470 | 470 | ``%%px`` Cell Magic |
|
471 | 471 | ******************* |
|
472 | 472 | |
|
473 | 473 | `%%px` can also be used as a Cell Magic, which accepts ``--[no]block`` flags, |
|
474 | 474 | and a ``--group-outputs`` argument, which adjust how the outputs of multiple |
|
475 | 475 | engines are presented. |
|
476 | 476 | |
|
477 | 477 | .. seealso:: |
|
478 | 478 | |
|
479 | 479 | :meth:`.AsyncResult.display_outputs` for the grouping options. |
|
480 | 480 | |
|
481 | 481 | .. sourcecode:: ipython |
|
482 | 482 | |
|
483 | 483 | In [50]: %%px --block --group-outputs=engine |
|
484 | 484 | ....: import numpy as np |
|
485 | 485 | ....: A = np.random.random((2,2)) |
|
486 | 486 | ....: ev = numpy.linalg.eigvals(A) |
|
487 | 487 | ....: print ev |
|
488 | 488 | ....: ev.max() |
|
489 | 489 | ....: |
|
490 | 490 | Parallel execution on engine(s): [0, 1, 2, 3] |
|
491 | 491 | [stdout:0] [ 0.60640442 0.95919621] |
|
492 | 492 | [0] Out[73]: 0.9591962130899806 |
|
493 | 493 | [stdout:1] [ 0.38501813 1.29430871] |
|
494 | 494 | [1] Out[73]: 1.2943087091452372 |
|
495 | 495 | [stdout:2] [-0.85925141 0.9387692 ] |
|
496 | 496 | [2] Out[73]: 0.93876920456230284 |
|
497 | 497 | [stdout:3] [ 0.37998269 1.24218246] |
|
498 | 498 | [3] Out[73]: 1.2421824618493817 |
|
499 | 499 | |
|
500 | 500 | ``%result`` Magic |
|
501 | 501 | ***************** |
|
502 | 502 | |
|
503 | 503 | If you are using ``%px`` in non-blocking mode, you won't get output. |
|
504 | 504 | You can use ``%result`` to display the outputs of the latest command, |
|
505 | 505 | just as is done when ``%px`` is blocking: |
|
506 | 506 | |
|
507 | 507 | .. sourcecode:: ipython |
|
508 | 508 | |
|
509 | 509 | In [39]: dv.block = False |
|
510 | 510 | |
|
511 | 511 | In [40]: %px print 'hi' |
|
512 | 512 | Async parallel execution on engine(s): [0, 1, 2, 3] |
|
513 | 513 | |
|
514 | 514 | In [41]: %result |
|
515 | 515 | [stdout:0] hi |
|
516 | 516 | [stdout:1] hi |
|
517 | 517 | [stdout:2] hi |
|
518 | 518 | [stdout:3] hi |
|
519 | 519 | |
|
520 | 520 | ``%result`` simply calls :meth:`.AsyncResult.display_outputs` on the most recent request. |
|
521 | 521 | You can pass integers as indices if you want a result other than the latest, |
|
522 | 522 | e.g. ``%result -2``, or ``%result 0`` for the first. |
|
523 | 523 | |
|
524 | 524 | |
|
525 | 525 | ``%autopx`` |
|
526 | 526 | *********** |
|
527 | 527 | |
|
528 | 528 | The ``%autopx`` magic switches to a mode where everything you type is executed |
|
529 | 529 | on the engines until you do ``%autopx`` again. |
|
530 | 530 | |
|
531 | 531 | .. sourcecode:: ipython |
|
532 | 532 | |
|
533 | 533 | In [30]: dv.block=True |
|
534 | 534 | |
|
535 | 535 | In [31]: %autopx |
|
536 | 536 | %autopx enabled |
|
537 | 537 | |
|
538 | 538 | In [32]: max_evals = [] |
|
539 | 539 | |
|
540 | 540 | In [33]: for i in range(100): |
|
541 | 541 | ....: a = numpy.random.rand(10,10) |
|
542 | 542 | ....: a = a+a.transpose() |
|
543 | 543 | ....: evals = numpy.linalg.eigvals(a) |
|
544 | 544 | ....: max_evals.append(evals[0].real) |
|
545 | 545 | ....: |
|
546 | 546 | |
|
547 | 547 | In [34]: print "Average max eigenvalue is: %f" % (sum(max_evals)/len(max_evals)) |
|
548 | 548 | [stdout:0] Average max eigenvalue is: 10.193101 |
|
549 | 549 | [stdout:1] Average max eigenvalue is: 10.064508 |
|
550 | 550 | [stdout:2] Average max eigenvalue is: 10.055724 |
|
551 | 551 | [stdout:3] Average max eigenvalue is: 10.086876 |
|
552 | ||
|
552 | ||
|
553 | 553 | In [35]: %autopx |
|
554 | 554 | Auto Parallel Disabled |
|
555 | 555 | |
|
556 | 556 | |
|
557 | Engines as Kernels | |
|
558 | ****************** | |
|
559 | ||
|
560 | Engines are really the same object as the Kernels used elsewhere in IPython, | |
|
561 | with the minor exception that engines connect to a controller, while regular kernels | |
|
562 | bind their sockets, listening for connections from a QtConsole or other frontends. | |
|
563 | ||
|
564 | Sometimes for debugging or inspection purposes, you would like a QtConsole connected | |
|
565 | to an engine for more direct interaction. You can do this by first instructing | |
|
566 | the Engine to *also* bind its kernel, to listen for connections: | |
|
567 | ||
|
568 | .. sourcecode:: ipython | |
|
569 | ||
|
570 | In [50]: %px from IPython.parallel import bind_kernel; bind_kernel() | |
|
571 | ||
|
572 | Then, if your engines are local, you can start a qtconsole right on the engine(s): | |
|
573 | ||
|
574 | .. sourcecode:: ipython | |
|
575 | ||
|
576 | In [51]: %px %qtconsole | |
|
577 | ||
|
578 | Careful with this one, because if your view is of 16 engines it will start 16 QtConsoles! | |
|
579 | ||
|
580 | Or you can view just the connection info, and work out the right way to connect to the engines, | |
|
581 | depending on where they live and where you are: | |
|
582 | ||
|
583 | .. sourcecode:: ipython | |
|
584 | ||
|
585 | In [51]: %px %connect_info | |
|
586 | Parallel execution on engine(s): [0, 1, 2, 3] | |
|
587 | [stdout:0] | |
|
588 | { | |
|
589 | "stdin_port": 60387, | |
|
590 | "ip": "127.0.0.1", | |
|
591 | "hb_port": 50835, | |
|
592 | "key": "eee2dd69-7dd3-4340-bf3e-7e2e22a62542", | |
|
593 | "shell_port": 55328, | |
|
594 | "iopub_port": 58264 | |
|
595 | } | |
|
596 | ||
|
597 | Paste the above JSON into a file, and connect with: | |
|
598 | $> ipython <app> --existing <file> | |
|
599 | or, if you are local, you can connect with just: | |
|
600 | $> ipython <app> --existing kernel-60125.json | |
|
601 | or even just: | |
|
602 | $> ipython <app> --existing | |
|
603 | if this is the most recent IPython session you have started. | |
|
604 | [stdout:1] | |
|
605 | { | |
|
606 | "stdin_port": 61869, | |
|
607 | ... | |
|
608 | ||
|
609 | .. note:: | |
|
610 | ||
|
611 | ``%qtconsole`` will call :func:`bind_kernel` on an engine if it hasn't been done already, | |
|
612 | so you can often skip that first step. | |
|
613 | ||
|
614 | ||
|
557 | 615 | Moving Python objects around |
|
558 | 616 | ============================ |
|
559 | 617 | |
|
560 | 618 | In addition to calling functions and executing code on engines, you can |
|
561 | 619 | transfer Python objects to and from your IPython session and the engines. In |
|
562 | 620 | IPython, these operations are called :meth:`push` (sending an object to the |
|
563 | 621 | engines) and :meth:`pull` (getting an object from the engines). |
|
564 | 622 | |
|
565 | 623 | Basic push and pull |
|
566 | 624 | ------------------- |
|
567 | 625 | |
|
568 | 626 | Here are some examples of how you use :meth:`push` and :meth:`pull`: |
|
569 | 627 | |
|
570 | 628 | .. sourcecode:: ipython |
|
571 | 629 | |
|
572 | 630 | In [38]: dview.push(dict(a=1.03234,b=3453)) |
|
573 | 631 | Out[38]: [None,None,None,None] |
|
574 | 632 | |
|
575 | 633 | In [39]: dview.pull('a') |
|
576 | 634 | Out[39]: [ 1.03234, 1.03234, 1.03234, 1.03234] |
|
577 | 635 | |
|
578 | 636 | In [40]: dview.pull('b', targets=0) |
|
579 | 637 | Out[40]: 3453 |
|
580 | 638 | |
|
581 | 639 | In [41]: dview.pull(('a','b')) |
|
582 | 640 | Out[41]: [ [1.03234, 3453], [1.03234, 3453], [1.03234, 3453], [1.03234, 3453] ] |
|
583 | 641 | |
|
584 | 642 | In [42]: dview.push(dict(c='speed')) |
|
585 | 643 | Out[42]: [None,None,None,None] |
|
586 | 644 | |
|
587 | 645 | In non-blocking mode :meth:`push` and :meth:`pull` also return |
|
588 | 646 | :class:`AsyncResult` objects: |
|
589 | 647 | |
|
590 | 648 | .. sourcecode:: ipython |
|
591 | 649 | |
|
592 | 650 | In [48]: ar = dview.pull('a', block=False) |
|
593 | 651 | |
|
594 | 652 | In [49]: ar.get() |
|
595 | 653 | Out[49]: [1.03234, 1.03234, 1.03234, 1.03234] |
|
596 | 654 | |
|
597 | 655 | |
|
598 | 656 | Dictionary interface |
|
599 | 657 | -------------------- |
|
600 | 658 | |
|
601 | 659 | Since a Python namespace is just a :class:`dict`, :class:`DirectView` objects provide |
|
602 | 660 | dictionary-style access by key and methods such as :meth:`get` and |
|
603 | 661 | :meth:`update` for convenience. This make the remote namespaces of the engines |
|
604 | 662 | appear as a local dictionary. Underneath, these methods call :meth:`apply`: |
|
605 | 663 | |
|
606 | 664 | .. sourcecode:: ipython |
|
607 | 665 | |
|
608 | 666 | In [51]: dview['a']=['foo','bar'] |
|
609 | 667 | |
|
610 | 668 | In [52]: dview['a'] |
|
611 | 669 | Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'] ] |
|
612 | 670 | |
|
613 | 671 | Scatter and gather |
|
614 | 672 | ------------------ |
|
615 | 673 | |
|
616 | 674 | Sometimes it is useful to partition a sequence and push the partitions to |
|
617 | 675 | different engines. In MPI language, this is know as scatter/gather and we |
|
618 | 676 | follow that terminology. However, it is important to remember that in |
|
619 | 677 | IPython's :class:`Client` class, :meth:`scatter` is from the |
|
620 | 678 | interactive IPython session to the engines and :meth:`gather` is from the |
|
621 | 679 | engines back to the interactive IPython session. For scatter/gather operations |
|
622 | 680 | between engines, MPI, pyzmq, or some other direct interconnect should be used. |
|
623 | 681 | |
|
624 | 682 | .. sourcecode:: ipython |
|
625 | 683 | |
|
626 | 684 | In [58]: dview.scatter('a',range(16)) |
|
627 | 685 | Out[58]: [None,None,None,None] |
|
628 | 686 | |
|
629 | 687 | In [59]: dview['a'] |
|
630 | 688 | Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15] ] |
|
631 | 689 | |
|
632 | 690 | In [60]: dview.gather('a') |
|
633 | 691 | Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] |
|
634 | 692 | |
|
635 | 693 | Other things to look at |
|
636 | 694 | ======================= |
|
637 | 695 | |
|
638 | 696 | How to do parallel list comprehensions |
|
639 | 697 | -------------------------------------- |
|
640 | 698 | |
|
641 | 699 | In many cases list comprehensions are nicer than using the map function. While |
|
642 | 700 | we don't have fully parallel list comprehensions, it is simple to get the |
|
643 | 701 | basic effect using :meth:`scatter` and :meth:`gather`: |
|
644 | 702 | |
|
645 | 703 | .. sourcecode:: ipython |
|
646 | 704 | |
|
647 | 705 | In [66]: dview.scatter('x',range(64)) |
|
648 | 706 | |
|
649 | 707 | In [67]: %px y = [i**10 for i in x] |
|
650 | 708 | Parallel execution on engines: [0, 1, 2, 3] |
|
651 | 709 | |
|
652 | 710 | In [68]: y = dview.gather('y') |
|
653 | 711 | |
|
654 | 712 | In [69]: print y |
|
655 | 713 | [0, 1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824,...] |
|
656 | 714 | |
|
657 | 715 | Remote imports |
|
658 | 716 | -------------- |
|
659 | 717 | |
|
660 | 718 | Sometimes you will want to import packages both in your interactive session |
|
661 | 719 | and on your remote engines. This can be done with the :class:`ContextManager` |
|
662 | 720 | created by a DirectView's :meth:`sync_imports` method: |
|
663 | 721 | |
|
664 | 722 | .. sourcecode:: ipython |
|
665 | 723 | |
|
666 | 724 | In [69]: with dview.sync_imports(): |
|
667 | 725 | ....: import numpy |
|
668 | 726 | importing numpy on engine(s) |
|
669 | 727 | |
|
670 | 728 | Any imports made inside the block will also be performed on the view's engines. |
|
671 | 729 | sync_imports also takes a `local` boolean flag that defaults to True, which specifies |
|
672 | 730 | whether the local imports should also be performed. However, support for `local=False` |
|
673 | 731 | has not been implemented, so only packages that can be imported locally will work |
|
674 | 732 | this way. |
|
675 | 733 | |
|
676 | 734 | You can also specify imports via the ``@require`` decorator. This is a decorator |
|
677 | 735 | designed for use in Dependencies, but can be used to handle remote imports as well. |
|
678 | 736 | Modules or module names passed to ``@require`` will be imported before the decorated |
|
679 | 737 | function is called. If they cannot be imported, the decorated function will never |
|
680 | 738 | execute and will fail with an UnmetDependencyError. Failures of single Engines will |
|
681 | 739 | be collected and raise a CompositeError, as demonstrated in the next section. |
|
682 | 740 | |
|
683 | 741 | .. sourcecode:: ipython |
|
684 | 742 | |
|
685 | 743 | In [69]: from IPython.parallel import require |
|
686 | 744 | |
|
687 | 745 | In [70]: @require('re'): |
|
688 | 746 | ....: def findall(pat, x): |
|
689 | 747 | ....: # re is guaranteed to be available |
|
690 | 748 | ....: return re.findall(pat, x) |
|
691 | 749 | |
|
692 | 750 | # you can also pass modules themselves, that you already have locally: |
|
693 | 751 | In [71]: @require(time): |
|
694 | 752 | ....: def wait(t): |
|
695 | 753 | ....: time.sleep(t) |
|
696 | 754 | ....: return t |
|
697 | 755 | |
|
698 | 756 | .. _parallel_exceptions: |
|
699 | 757 | |
|
700 | 758 | Parallel exceptions |
|
701 | 759 | ------------------- |
|
702 | 760 | |
|
703 | 761 | In the multiengine interface, parallel commands can raise Python exceptions, |
|
704 | 762 | just like serial commands. But, it is a little subtle, because a single |
|
705 | 763 | parallel command can actually raise multiple exceptions (one for each engine |
|
706 | 764 | the command was run on). To express this idea, we have a |
|
707 | 765 | :exc:`CompositeError` exception class that will be raised in most cases. The |
|
708 | 766 | :exc:`CompositeError` class is a special type of exception that wraps one or |
|
709 | 767 | more other types of exceptions. Here is how it works: |
|
710 | 768 | |
|
711 | 769 | .. sourcecode:: ipython |
|
712 | 770 | |
|
713 | 771 | In [76]: dview.block=True |
|
714 | 772 | |
|
715 | 773 | In [77]: dview.execute('1/0') |
|
716 | 774 | --------------------------------------------------------------------------- |
|
717 | 775 | CompositeError Traceback (most recent call last) |
|
718 | 776 | /home/user/<ipython-input-10-5d56b303a66c> in <module>() |
|
719 | 777 | ----> 1 dview.execute('1/0') |
|
720 | 778 | |
|
721 | 779 | /path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block) |
|
722 | 780 | 591 default: self.block |
|
723 | 781 | 592 """ |
|
724 | 782 | --> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets) |
|
725 | 783 | 594 |
|
726 | 784 | 595 def run(self, filename, targets=None, block=None): |
|
727 | 785 | |
|
728 | 786 | /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track) |
|
729 | 787 | |
|
730 | 788 | /path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs) |
|
731 | 789 | 55 def sync_results(f, self, *args, **kwargs): |
|
732 | 790 | 56 """sync relevant results from self.client to our results attribute.""" |
|
733 | 791 | ---> 57 ret = f(self, *args, **kwargs) |
|
734 | 792 | 58 delta = self.outstanding.difference(self.client.outstanding) |
|
735 | 793 | 59 completed = self.outstanding.intersection(delta) |
|
736 | 794 | |
|
737 | 795 | /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track) |
|
738 | 796 | |
|
739 | 797 | /path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs) |
|
740 | 798 | 44 n_previous = len(self.client.history) |
|
741 | 799 | 45 try: |
|
742 | 800 | ---> 46 ret = f(self, *args, **kwargs) |
|
743 | 801 | 47 finally: |
|
744 | 802 | 48 nmsgs = len(self.client.history) - n_previous |
|
745 | 803 | |
|
746 | 804 | /path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track) |
|
747 | 805 | 529 if block: |
|
748 | 806 | 530 try: |
|
749 | 807 | --> 531 return ar.get() |
|
750 | 808 | 532 except KeyboardInterrupt: |
|
751 | 809 | 533 pass |
|
752 | 810 | |
|
753 | 811 | /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout) |
|
754 | 812 | 101 return self._result |
|
755 | 813 | 102 else: |
|
756 | 814 | --> 103 raise self._exception |
|
757 | 815 | 104 else: |
|
758 | 816 | 105 raise error.TimeoutError("Result not ready.") |
|
759 | 817 | |
|
760 | 818 | CompositeError: one or more exceptions from call to method: _execute |
|
761 | 819 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
762 | 820 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
763 | 821 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
764 | 822 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
765 | 823 | |
|
766 | 824 | Notice how the error message printed when :exc:`CompositeError` is raised has |
|
767 | 825 | information about the individual exceptions that were raised on each engine. |
|
768 | 826 | If you want, you can even raise one of these original exceptions: |
|
769 | 827 | |
|
770 | 828 | .. sourcecode:: ipython |
|
771 | 829 | |
|
772 | 830 | In [80]: try: |
|
773 | 831 | ....: dview.execute('1/0') |
|
774 | 832 | ....: except parallel.error.CompositeError, e: |
|
775 | 833 | ....: e.raise_exception() |
|
776 | 834 | ....: |
|
777 | 835 | ....: |
|
778 | 836 | --------------------------------------------------------------------------- |
|
779 | 837 | RemoteError Traceback (most recent call last) |
|
780 | 838 | /home/user/<ipython-input-17-8597e7e39858> in <module>() |
|
781 | 839 | 2 dview.execute('1/0') |
|
782 | 840 | 3 except CompositeError as e: |
|
783 | 841 | ----> 4 e.raise_exception() |
|
784 | 842 | |
|
785 | 843 | /path/to/site-packages/IPython/parallel/error.pyc in raise_exception(self, excid) |
|
786 | 844 | 266 raise IndexError("an exception with index %i does not exist"%excid) |
|
787 | 845 | 267 else: |
|
788 | 846 | --> 268 raise RemoteError(en, ev, etb, ei) |
|
789 | 847 | 269 |
|
790 | 848 | 270 |
|
791 | 849 | |
|
792 | 850 | RemoteError: ZeroDivisionError(integer division or modulo by zero) |
|
793 | 851 | Traceback (most recent call last): |
|
794 | 852 | File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request |
|
795 | 853 | exec code in working,working |
|
796 | 854 | File "<string>", line 1, in <module> |
|
797 | 855 | File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute |
|
798 | 856 | exec code in globals() |
|
799 | 857 | File "<string>", line 1, in <module> |
|
800 | 858 | ZeroDivisionError: integer division or modulo by zero |
|
801 | 859 | |
|
802 | 860 | If you are working in IPython, you can simple type ``%debug`` after one of |
|
803 | 861 | these :exc:`CompositeError` exceptions is raised, and inspect the exception |
|
804 | 862 | instance: |
|
805 | 863 | |
|
806 | 864 | .. sourcecode:: ipython |
|
807 | 865 | |
|
808 | 866 | In [81]: dview.execute('1/0') |
|
809 | 867 | --------------------------------------------------------------------------- |
|
810 | 868 | CompositeError Traceback (most recent call last) |
|
811 | 869 | /home/user/<ipython-input-10-5d56b303a66c> in <module>() |
|
812 | 870 | ----> 1 dview.execute('1/0') |
|
813 | 871 | |
|
814 | 872 | /path/to/site-packages/IPython/parallel/client/view.pyc in execute(self, code, targets, block) |
|
815 | 873 | 591 default: self.block |
|
816 | 874 | 592 """ |
|
817 | 875 | --> 593 return self._really_apply(util._execute, args=(code,), block=block, targets=targets) |
|
818 | 876 | 594 |
|
819 | 877 | 595 def run(self, filename, targets=None, block=None): |
|
820 | 878 | |
|
821 | 879 | /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track) |
|
822 | 880 | |
|
823 | 881 | /path/to/site-packages/IPython/parallel/client/view.pyc in sync_results(f, self, *args, **kwargs) |
|
824 | 882 | 55 def sync_results(f, self, *args, **kwargs): |
|
825 | 883 | 56 """sync relevant results from self.client to our results attribute.""" |
|
826 | 884 | ---> 57 ret = f(self, *args, **kwargs) |
|
827 | 885 | 58 delta = self.outstanding.difference(self.client.outstanding) |
|
828 | 886 | 59 completed = self.outstanding.intersection(delta) |
|
829 | 887 | |
|
830 | 888 | /home/user/<string> in _really_apply(self, f, args, kwargs, targets, block, track) |
|
831 | 889 | |
|
832 | 890 | /path/to/site-packages/IPython/parallel/client/view.pyc in save_ids(f, self, *args, **kwargs) |
|
833 | 891 | 44 n_previous = len(self.client.history) |
|
834 | 892 | 45 try: |
|
835 | 893 | ---> 46 ret = f(self, *args, **kwargs) |
|
836 | 894 | 47 finally: |
|
837 | 895 | 48 nmsgs = len(self.client.history) - n_previous |
|
838 | 896 | |
|
839 | 897 | /path/to/site-packages/IPython/parallel/client/view.pyc in _really_apply(self, f, args, kwargs, targets, block, track) |
|
840 | 898 | 529 if block: |
|
841 | 899 | 530 try: |
|
842 | 900 | --> 531 return ar.get() |
|
843 | 901 | 532 except KeyboardInterrupt: |
|
844 | 902 | 533 pass |
|
845 | 903 | |
|
846 | 904 | /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout) |
|
847 | 905 | 101 return self._result |
|
848 | 906 | 102 else: |
|
849 | 907 | --> 103 raise self._exception |
|
850 | 908 | 104 else: |
|
851 | 909 | 105 raise error.TimeoutError("Result not ready.") |
|
852 | 910 | |
|
853 | 911 | CompositeError: one or more exceptions from call to method: _execute |
|
854 | 912 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
855 | 913 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
856 | 914 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
857 | 915 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
858 | 916 | |
|
859 | 917 | In [82]: %debug |
|
860 | 918 | > /path/to/site-packages/IPython/parallel/client/asyncresult.py(103)get() |
|
861 | 919 | 102 else: |
|
862 | 920 | --> 103 raise self._exception |
|
863 | 921 | 104 else: |
|
864 | 922 | |
|
865 | 923 | # With the debugger running, self._exception is the exceptions instance. We can tab complete |
|
866 | 924 | # on it and see the extra methods that are available. |
|
867 | 925 | ipdb> self._exception.<tab> |
|
868 | 926 | e.__class__ e.__getitem__ e.__new__ e.__setstate__ e.args |
|
869 | 927 | e.__delattr__ e.__getslice__ e.__reduce__ e.__str__ e.elist |
|
870 | 928 | e.__dict__ e.__hash__ e.__reduce_ex__ e.__weakref__ e.message |
|
871 | 929 | e.__doc__ e.__init__ e.__repr__ e._get_engine_str e.print_tracebacks |
|
872 | 930 | e.__getattribute__ e.__module__ e.__setattr__ e._get_traceback e.raise_exception |
|
873 | 931 | ipdb> self._exception.print_tracebacks() |
|
874 | 932 | [0:apply]: |
|
875 | 933 | Traceback (most recent call last): |
|
876 | 934 | File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request |
|
877 | 935 | exec code in working,working |
|
878 | 936 | File "<string>", line 1, in <module> |
|
879 | 937 | File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute |
|
880 | 938 | exec code in globals() |
|
881 | 939 | File "<string>", line 1, in <module> |
|
882 | 940 | ZeroDivisionError: integer division or modulo by zero |
|
883 | 941 | |
|
884 | 942 | |
|
885 | 943 | [1:apply]: |
|
886 | 944 | Traceback (most recent call last): |
|
887 | 945 | File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request |
|
888 | 946 | exec code in working,working |
|
889 | 947 | File "<string>", line 1, in <module> |
|
890 | 948 | File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute |
|
891 | 949 | exec code in globals() |
|
892 | 950 | File "<string>", line 1, in <module> |
|
893 | 951 | ZeroDivisionError: integer division or modulo by zero |
|
894 | 952 | |
|
895 | 953 | |
|
896 | 954 | [2:apply]: |
|
897 | 955 | Traceback (most recent call last): |
|
898 | 956 | File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request |
|
899 | 957 | exec code in working,working |
|
900 | 958 | File "<string>", line 1, in <module> |
|
901 | 959 | File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute |
|
902 | 960 | exec code in globals() |
|
903 | 961 | File "<string>", line 1, in <module> |
|
904 | 962 | ZeroDivisionError: integer division or modulo by zero |
|
905 | 963 | |
|
906 | 964 | |
|
907 | 965 | [3:apply]: |
|
908 | 966 | Traceback (most recent call last): |
|
909 | 967 | File "/path/to/site-packages/IPython/parallel/engine/streamkernel.py", line 330, in apply_request |
|
910 | 968 | exec code in working,working |
|
911 | 969 | File "<string>", line 1, in <module> |
|
912 | 970 | File "/path/to/site-packages/IPython/parallel/util.py", line 354, in _execute |
|
913 | 971 | exec code in globals() |
|
914 | 972 | File "<string>", line 1, in <module> |
|
915 | 973 | ZeroDivisionError: integer division or modulo by zero |
|
916 | 974 | |
|
917 | 975 | |
|
918 | 976 | All of this same error handling magic even works in non-blocking mode: |
|
919 | 977 | |
|
920 | 978 | .. sourcecode:: ipython |
|
921 | 979 | |
|
922 | 980 | In [83]: dview.block=False |
|
923 | 981 | |
|
924 | 982 | In [84]: ar = dview.execute('1/0') |
|
925 | 983 | |
|
926 | 984 | In [85]: ar.get() |
|
927 | 985 | --------------------------------------------------------------------------- |
|
928 | 986 | CompositeError Traceback (most recent call last) |
|
929 | 987 | /home/user/<ipython-input-21-8531eb3d26fb> in <module>() |
|
930 | 988 | ----> 1 ar.get() |
|
931 | 989 | |
|
932 | 990 | /path/to/site-packages/IPython/parallel/client/asyncresult.pyc in get(self, timeout) |
|
933 | 991 | 101 return self._result |
|
934 | 992 | 102 else: |
|
935 | 993 | --> 103 raise self._exception |
|
936 | 994 | 104 else: |
|
937 | 995 | 105 raise error.TimeoutError("Result not ready.") |
|
938 | 996 | |
|
939 | 997 | CompositeError: one or more exceptions from call to method: _execute |
|
940 | 998 | [0:apply]: ZeroDivisionError: integer division or modulo by zero |
|
941 | 999 | [1:apply]: ZeroDivisionError: integer division or modulo by zero |
|
942 | 1000 | [2:apply]: ZeroDivisionError: integer division or modulo by zero |
|
943 | 1001 | [3:apply]: ZeroDivisionError: integer division or modulo by zero |
|
944 | 1002 |
General Comments 0
You need to be logged in to leave comments.
Login now