##// END OF EJS Templates
Backport PR #13125: Improve formatting of %time documentation
Blazej Michalik -
Show More
@@ -1,1512 +1,1515 b''
1 1 # -*- coding: utf-8 -*-
2 2 """Implementation of execution-related magic functions."""
3 3
4 4 # Copyright (c) IPython Development Team.
5 5 # Distributed under the terms of the Modified BSD License.
6 6
7 7
8 8 import ast
9 9 import bdb
10 10 import builtins as builtin_mod
11 11 import gc
12 12 import itertools
13 13 import os
14 14 import shlex
15 15 import sys
16 16 import time
17 17 import timeit
18 18 import math
19 19 import re
20 20 from pdb import Restart
21 21
22 22 # cProfile was added in Python2.5
23 23 try:
24 24 import cProfile as profile
25 25 import pstats
26 26 except ImportError:
27 27 # profile isn't bundled by default in Debian for license reasons
28 28 try:
29 29 import profile, pstats
30 30 except ImportError:
31 31 profile = pstats = None
32 32
33 33 from IPython.core import oinspect
34 34 from IPython.core import magic_arguments
35 35 from IPython.core import page
36 36 from IPython.core.error import UsageError
37 37 from IPython.core.macro import Macro
38 38 from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic,
39 39 line_cell_magic, on_off, needs_local_scope,
40 40 no_var_expand)
41 41 from IPython.testing.skipdoctest import skip_doctest
42 42 from IPython.utils.contexts import preserve_keys
43 43 from IPython.utils.capture import capture_output
44 44 from IPython.utils.ipstruct import Struct
45 45 from IPython.utils.module_paths import find_mod
46 46 from IPython.utils.path import get_py_filename, shellglob
47 47 from IPython.utils.timing import clock, clock2
48 48 from warnings import warn
49 49 from logging import error
50 50 from io import StringIO
51 51
52 52 if sys.version_info > (3,8):
53 53 from ast import Module
54 54 else :
55 55 # mock the new API, ignore second argument
56 56 # see https://github.com/ipython/ipython/issues/11590
57 57 from ast import Module as OriginalModule
58 58 Module = lambda nodelist, type_ignores: OriginalModule(nodelist)
59 59
60 60
61 61 #-----------------------------------------------------------------------------
62 62 # Magic implementation classes
63 63 #-----------------------------------------------------------------------------
64 64
65 65
66 66 class TimeitResult(object):
67 67 """
68 68 Object returned by the timeit magic with info about the run.
69 69
70 70 Contains the following attributes :
71 71
72 72 loops: (int) number of loops done per measurement
73 73 repeat: (int) number of times the measurement has been repeated
74 74 best: (float) best execution time / number
75 75 all_runs: (list of float) execution time of each run (in s)
76 76 compile_time: (float) time of statement compilation (s)
77 77
78 78 """
79 79 def __init__(self, loops, repeat, best, worst, all_runs, compile_time, precision):
80 80 self.loops = loops
81 81 self.repeat = repeat
82 82 self.best = best
83 83 self.worst = worst
84 84 self.all_runs = all_runs
85 85 self.compile_time = compile_time
86 86 self._precision = precision
87 87 self.timings = [ dt / self.loops for dt in all_runs]
88 88
89 89 @property
90 90 def average(self):
91 91 return math.fsum(self.timings) / len(self.timings)
92 92
93 93 @property
94 94 def stdev(self):
95 95 mean = self.average
96 96 return (math.fsum([(x - mean) ** 2 for x in self.timings]) / len(self.timings)) ** 0.5
97 97
98 98 def __str__(self):
99 99 pm = '+-'
100 100 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
101 101 try:
102 102 u'\xb1'.encode(sys.stdout.encoding)
103 103 pm = u'\xb1'
104 104 except:
105 105 pass
106 106 return (
107 107 u"{mean} {pm} {std} per loop (mean {pm} std. dev. of {runs} run{run_plural}, {loops} loop{loop_plural} each)"
108 108 .format(
109 109 pm = pm,
110 110 runs = self.repeat,
111 111 loops = self.loops,
112 112 loop_plural = "" if self.loops == 1 else "s",
113 113 run_plural = "" if self.repeat == 1 else "s",
114 114 mean = _format_time(self.average, self._precision),
115 115 std = _format_time(self.stdev, self._precision))
116 116 )
117 117
118 118 def _repr_pretty_(self, p , cycle):
119 119 unic = self.__str__()
120 120 p.text(u'<TimeitResult : '+unic+u'>')
121 121
122 122
123 123 class TimeitTemplateFiller(ast.NodeTransformer):
124 124 """Fill in the AST template for timing execution.
125 125
126 126 This is quite closely tied to the template definition, which is in
127 127 :meth:`ExecutionMagics.timeit`.
128 128 """
129 129 def __init__(self, ast_setup, ast_stmt):
130 130 self.ast_setup = ast_setup
131 131 self.ast_stmt = ast_stmt
132 132
133 133 def visit_FunctionDef(self, node):
134 134 "Fill in the setup statement"
135 135 self.generic_visit(node)
136 136 if node.name == "inner":
137 137 node.body[:1] = self.ast_setup.body
138 138
139 139 return node
140 140
141 141 def visit_For(self, node):
142 142 "Fill in the statement to be timed"
143 143 if getattr(getattr(node.body[0], 'value', None), 'id', None) == 'stmt':
144 144 node.body = self.ast_stmt.body
145 145 return node
146 146
147 147
148 148 class Timer(timeit.Timer):
149 149 """Timer class that explicitly uses self.inner
150 150
151 151 which is an undocumented implementation detail of CPython,
152 152 not shared by PyPy.
153 153 """
154 154 # Timer.timeit copied from CPython 3.4.2
155 155 def timeit(self, number=timeit.default_number):
156 156 """Time 'number' executions of the main statement.
157 157
158 158 To be precise, this executes the setup statement once, and
159 159 then returns the time it takes to execute the main statement
160 160 a number of times, as a float measured in seconds. The
161 161 argument is the number of times through the loop, defaulting
162 162 to one million. The main statement, the setup statement and
163 163 the timer function to be used are passed to the constructor.
164 164 """
165 165 it = itertools.repeat(None, number)
166 166 gcold = gc.isenabled()
167 167 gc.disable()
168 168 try:
169 169 timing = self.inner(it, self.timer)
170 170 finally:
171 171 if gcold:
172 172 gc.enable()
173 173 return timing
174 174
175 175
176 176 @magics_class
177 177 class ExecutionMagics(Magics):
178 178 """Magics related to code execution, debugging, profiling, etc.
179 179
180 180 """
181 181
182 182 def __init__(self, shell):
183 183 super(ExecutionMagics, self).__init__(shell)
184 184 if profile is None:
185 185 self.prun = self.profile_missing_notice
186 186 # Default execution function used to actually run user code.
187 187 self.default_runner = None
188 188
189 189 def profile_missing_notice(self, *args, **kwargs):
190 190 error("""\
191 191 The profile module could not be found. It has been removed from the standard
192 192 python packages because of its non-free license. To use profiling, install the
193 193 python-profiler package from non-free.""")
194 194
195 195 @skip_doctest
196 196 @no_var_expand
197 197 @line_cell_magic
198 198 def prun(self, parameter_s='', cell=None):
199 199
200 200 """Run a statement through the python code profiler.
201 201
202 202 Usage, in line mode:
203 203 %prun [options] statement
204 204
205 205 Usage, in cell mode:
206 206 %%prun [options] [statement]
207 207 code...
208 208 code...
209 209
210 210 In cell mode, the additional code lines are appended to the (possibly
211 211 empty) statement in the first line. Cell mode allows you to easily
212 212 profile multiline blocks without having to put them in a separate
213 213 function.
214 214
215 215 The given statement (which doesn't require quote marks) is run via the
216 216 python profiler in a manner similar to the profile.run() function.
217 217 Namespaces are internally managed to work correctly; profile.run
218 218 cannot be used in IPython because it makes certain assumptions about
219 219 namespaces which do not hold under IPython.
220 220
221 221 Options:
222 222
223 223 -l <limit>
224 224 you can place restrictions on what or how much of the
225 225 profile gets printed. The limit value can be:
226 226
227 227 * A string: only information for function names containing this string
228 228 is printed.
229 229
230 230 * An integer: only these many lines are printed.
231 231
232 232 * A float (between 0 and 1): this fraction of the report is printed
233 233 (for example, use a limit of 0.4 to see the topmost 40% only).
234 234
235 235 You can combine several limits with repeated use of the option. For
236 236 example, ``-l __init__ -l 5`` will print only the topmost 5 lines of
237 237 information about class constructors.
238 238
239 239 -r
240 240 return the pstats.Stats object generated by the profiling. This
241 241 object has all the information about the profile in it, and you can
242 242 later use it for further analysis or in other functions.
243 243
244 244 -s <key>
245 245 sort profile by given key. You can provide more than one key
246 246 by using the option several times: '-s key1 -s key2 -s key3...'. The
247 247 default sorting key is 'time'.
248 248
249 249 The following is copied verbatim from the profile documentation
250 250 referenced below:
251 251
252 252 When more than one key is provided, additional keys are used as
253 253 secondary criteria when the there is equality in all keys selected
254 254 before them.
255 255
256 256 Abbreviations can be used for any key names, as long as the
257 257 abbreviation is unambiguous. The following are the keys currently
258 258 defined:
259 259
260 260 ============ =====================
261 261 Valid Arg Meaning
262 262 ============ =====================
263 263 "calls" call count
264 264 "cumulative" cumulative time
265 265 "file" file name
266 266 "module" file name
267 267 "pcalls" primitive call count
268 268 "line" line number
269 269 "name" function name
270 270 "nfl" name/file/line
271 271 "stdname" standard name
272 272 "time" internal time
273 273 ============ =====================
274 274
275 275 Note that all sorts on statistics are in descending order (placing
276 276 most time consuming items first), where as name, file, and line number
277 277 searches are in ascending order (i.e., alphabetical). The subtle
278 278 distinction between "nfl" and "stdname" is that the standard name is a
279 279 sort of the name as printed, which means that the embedded line
280 280 numbers get compared in an odd way. For example, lines 3, 20, and 40
281 281 would (if the file names were the same) appear in the string order
282 282 "20" "3" and "40". In contrast, "nfl" does a numeric compare of the
283 283 line numbers. In fact, sort_stats("nfl") is the same as
284 284 sort_stats("name", "file", "line").
285 285
286 286 -T <filename>
287 287 save profile results as shown on screen to a text
288 288 file. The profile is still shown on screen.
289 289
290 290 -D <filename>
291 291 save (via dump_stats) profile statistics to given
292 292 filename. This data is in a format understood by the pstats module, and
293 293 is generated by a call to the dump_stats() method of profile
294 294 objects. The profile is still shown on screen.
295 295
296 296 -q
297 297 suppress output to the pager. Best used with -T and/or -D above.
298 298
299 299 If you want to run complete programs under the profiler's control, use
300 300 ``%run -p [prof_opts] filename.py [args to program]`` where prof_opts
301 301 contains profiler specific options as described here.
302 302
303 303 You can read the complete documentation for the profile module with::
304 304
305 305 In [1]: import profile; profile.help()
306 306
307 307 .. versionchanged:: 7.3
308 308 User variables are no longer expanded,
309 309 the magic line is always left unmodified.
310 310
311 311 """
312 312 opts, arg_str = self.parse_options(parameter_s, 'D:l:rs:T:q',
313 313 list_all=True, posix=False)
314 314 if cell is not None:
315 315 arg_str += '\n' + cell
316 316 arg_str = self.shell.transform_cell(arg_str)
317 317 return self._run_with_profiler(arg_str, opts, self.shell.user_ns)
318 318
319 319 def _run_with_profiler(self, code, opts, namespace):
320 320 """
321 321 Run `code` with profiler. Used by ``%prun`` and ``%run -p``.
322 322
323 323 Parameters
324 324 ----------
325 325 code : str
326 326 Code to be executed.
327 327 opts : Struct
328 328 Options parsed by `self.parse_options`.
329 329 namespace : dict
330 330 A dictionary for Python namespace (e.g., `self.shell.user_ns`).
331 331
332 332 """
333 333
334 334 # Fill default values for unspecified options:
335 335 opts.merge(Struct(D=[''], l=[], s=['time'], T=['']))
336 336
337 337 prof = profile.Profile()
338 338 try:
339 339 prof = prof.runctx(code, namespace, namespace)
340 340 sys_exit = ''
341 341 except SystemExit:
342 342 sys_exit = """*** SystemExit exception caught in code being profiled."""
343 343
344 344 stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s)
345 345
346 346 lims = opts.l
347 347 if lims:
348 348 lims = [] # rebuild lims with ints/floats/strings
349 349 for lim in opts.l:
350 350 try:
351 351 lims.append(int(lim))
352 352 except ValueError:
353 353 try:
354 354 lims.append(float(lim))
355 355 except ValueError:
356 356 lims.append(lim)
357 357
358 358 # Trap output.
359 359 stdout_trap = StringIO()
360 360 stats_stream = stats.stream
361 361 try:
362 362 stats.stream = stdout_trap
363 363 stats.print_stats(*lims)
364 364 finally:
365 365 stats.stream = stats_stream
366 366
367 367 output = stdout_trap.getvalue()
368 368 output = output.rstrip()
369 369
370 370 if 'q' not in opts:
371 371 page.page(output)
372 372 print(sys_exit, end=' ')
373 373
374 374 dump_file = opts.D[0]
375 375 text_file = opts.T[0]
376 376 if dump_file:
377 377 prof.dump_stats(dump_file)
378 378 print('\n*** Profile stats marshalled to file',\
379 379 repr(dump_file)+'.',sys_exit)
380 380 if text_file:
381 381 with open(text_file, 'w') as pfile:
382 382 pfile.write(output)
383 383 print('\n*** Profile printout saved to text file',\
384 384 repr(text_file)+'.',sys_exit)
385 385
386 386 if 'r' in opts:
387 387 return stats
388 388 else:
389 389 return None
390 390
391 391 @line_magic
392 392 def pdb(self, parameter_s=''):
393 393 """Control the automatic calling of the pdb interactive debugger.
394 394
395 395 Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without
396 396 argument it works as a toggle.
397 397
398 398 When an exception is triggered, IPython can optionally call the
399 399 interactive pdb debugger after the traceback printout. %pdb toggles
400 400 this feature on and off.
401 401
402 402 The initial state of this feature is set in your configuration
403 403 file (the option is ``InteractiveShell.pdb``).
404 404
405 405 If you want to just activate the debugger AFTER an exception has fired,
406 406 without having to type '%pdb on' and rerunning your code, you can use
407 407 the %debug magic."""
408 408
409 409 par = parameter_s.strip().lower()
410 410
411 411 if par:
412 412 try:
413 413 new_pdb = {'off':0,'0':0,'on':1,'1':1}[par]
414 414 except KeyError:
415 415 print ('Incorrect argument. Use on/1, off/0, '
416 416 'or nothing for a toggle.')
417 417 return
418 418 else:
419 419 # toggle
420 420 new_pdb = not self.shell.call_pdb
421 421
422 422 # set on the shell
423 423 self.shell.call_pdb = new_pdb
424 424 print('Automatic pdb calling has been turned',on_off(new_pdb))
425 425
426 426 @skip_doctest
427 427 @magic_arguments.magic_arguments()
428 428 @magic_arguments.argument('--breakpoint', '-b', metavar='FILE:LINE',
429 429 help="""
430 430 Set break point at LINE in FILE.
431 431 """
432 432 )
433 433 @magic_arguments.argument('statement', nargs='*',
434 434 help="""
435 435 Code to run in debugger.
436 436 You can omit this in cell magic mode.
437 437 """
438 438 )
439 439 @no_var_expand
440 440 @line_cell_magic
441 441 def debug(self, line='', cell=None):
442 442 """Activate the interactive debugger.
443 443
444 444 This magic command support two ways of activating debugger.
445 445 One is to activate debugger before executing code. This way, you
446 446 can set a break point, to step through the code from the point.
447 447 You can use this mode by giving statements to execute and optionally
448 448 a breakpoint.
449 449
450 450 The other one is to activate debugger in post-mortem mode. You can
451 451 activate this mode simply running %debug without any argument.
452 452 If an exception has just occurred, this lets you inspect its stack
453 453 frames interactively. Note that this will always work only on the last
454 454 traceback that occurred, so you must call this quickly after an
455 455 exception that you wish to inspect has fired, because if another one
456 456 occurs, it clobbers the previous one.
457 457
458 458 If you want IPython to automatically do this on every exception, see
459 459 the %pdb magic for more details.
460 460
461 461 .. versionchanged:: 7.3
462 462 When running code, user variables are no longer expanded,
463 463 the magic line is always left unmodified.
464 464
465 465 """
466 466 args = magic_arguments.parse_argstring(self.debug, line)
467 467
468 468 if not (args.breakpoint or args.statement or cell):
469 469 self._debug_post_mortem()
470 470 elif not (args.breakpoint or cell):
471 471 # If there is no breakpoints, the line is just code to execute
472 472 self._debug_exec(line, None)
473 473 else:
474 474 # Here we try to reconstruct the code from the output of
475 475 # parse_argstring. This might not work if the code has spaces
476 476 # For example this fails for `print("a b")`
477 477 code = "\n".join(args.statement)
478 478 if cell:
479 479 code += "\n" + cell
480 480 self._debug_exec(code, args.breakpoint)
481 481
482 482 def _debug_post_mortem(self):
483 483 self.shell.debugger(force=True)
484 484
485 485 def _debug_exec(self, code, breakpoint):
486 486 if breakpoint:
487 487 (filename, bp_line) = breakpoint.rsplit(':', 1)
488 488 bp_line = int(bp_line)
489 489 else:
490 490 (filename, bp_line) = (None, None)
491 491 self._run_with_debugger(code, self.shell.user_ns, filename, bp_line)
492 492
493 493 @line_magic
494 494 def tb(self, s):
495 495 """Print the last traceback.
496 496
497 497 Optionally, specify an exception reporting mode, tuning the
498 498 verbosity of the traceback. By default the currently-active exception
499 499 mode is used. See %xmode for changing exception reporting modes.
500 500
501 501 Valid modes: Plain, Context, Verbose, and Minimal.
502 502 """
503 503 interactive_tb = self.shell.InteractiveTB
504 504 if s:
505 505 # Switch exception reporting mode for this one call.
506 506 # Ensure it is switched back.
507 507 def xmode_switch_err(name):
508 508 warn('Error changing %s exception modes.\n%s' %
509 509 (name,sys.exc_info()[1]))
510 510
511 511 new_mode = s.strip().capitalize()
512 512 original_mode = interactive_tb.mode
513 513 try:
514 514 try:
515 515 interactive_tb.set_mode(mode=new_mode)
516 516 except Exception:
517 517 xmode_switch_err('user')
518 518 else:
519 519 self.shell.showtraceback()
520 520 finally:
521 521 interactive_tb.set_mode(mode=original_mode)
522 522 else:
523 523 self.shell.showtraceback()
524 524
525 525 @skip_doctest
526 526 @line_magic
527 527 def run(self, parameter_s='', runner=None,
528 528 file_finder=get_py_filename):
529 529 """Run the named file inside IPython as a program.
530 530
531 531 Usage::
532 532
533 533 %run [-n -i -e -G]
534 534 [( -t [-N<N>] | -d [-b<N>] | -p [profile options] )]
535 535 ( -m mod | file ) [args]
536 536
537 537 Parameters after the filename are passed as command-line arguments to
538 538 the program (put in sys.argv). Then, control returns to IPython's
539 539 prompt.
540 540
541 541 This is similar to running at a system prompt ``python file args``,
542 542 but with the advantage of giving you IPython's tracebacks, and of
543 543 loading all variables into your interactive namespace for further use
544 544 (unless -p is used, see below).
545 545
546 546 The file is executed in a namespace initially consisting only of
547 547 ``__name__=='__main__'`` and sys.argv constructed as indicated. It thus
548 548 sees its environment as if it were being run as a stand-alone program
549 549 (except for sharing global objects such as previously imported
550 550 modules). But after execution, the IPython interactive namespace gets
551 551 updated with all variables defined in the program (except for __name__
552 552 and sys.argv). This allows for very convenient loading of code for
553 553 interactive work, while giving each program a 'clean sheet' to run in.
554 554
555 555 Arguments are expanded using shell-like glob match. Patterns
556 556 '*', '?', '[seq]' and '[!seq]' can be used. Additionally,
557 557 tilde '~' will be expanded into user's home directory. Unlike
558 558 real shells, quotation does not suppress expansions. Use
559 559 *two* back slashes (e.g. ``\\\\*``) to suppress expansions.
560 560 To completely disable these expansions, you can use -G flag.
561 561
562 562 On Windows systems, the use of single quotes `'` when specifying
563 563 a file is not supported. Use double quotes `"`.
564 564
565 565 Options:
566 566
567 567 -n
568 568 __name__ is NOT set to '__main__', but to the running file's name
569 569 without extension (as python does under import). This allows running
570 570 scripts and reloading the definitions in them without calling code
571 571 protected by an ``if __name__ == "__main__"`` clause.
572 572
573 573 -i
574 574 run the file in IPython's namespace instead of an empty one. This
575 575 is useful if you are experimenting with code written in a text editor
576 576 which depends on variables defined interactively.
577 577
578 578 -e
579 579 ignore sys.exit() calls or SystemExit exceptions in the script
580 580 being run. This is particularly useful if IPython is being used to
581 581 run unittests, which always exit with a sys.exit() call. In such
582 582 cases you are interested in the output of the test results, not in
583 583 seeing a traceback of the unittest module.
584 584
585 585 -t
586 586 print timing information at the end of the run. IPython will give
587 587 you an estimated CPU time consumption for your script, which under
588 588 Unix uses the resource module to avoid the wraparound problems of
589 589 time.clock(). Under Unix, an estimate of time spent on system tasks
590 590 is also given (for Windows platforms this is reported as 0.0).
591 591
592 592 If -t is given, an additional ``-N<N>`` option can be given, where <N>
593 593 must be an integer indicating how many times you want the script to
594 594 run. The final timing report will include total and per run results.
595 595
596 596 For example (testing the script uniq_stable.py)::
597 597
598 598 In [1]: run -t uniq_stable
599 599
600 600 IPython CPU timings (estimated):
601 601 User : 0.19597 s.
602 602 System: 0.0 s.
603 603
604 604 In [2]: run -t -N5 uniq_stable
605 605
606 606 IPython CPU timings (estimated):
607 607 Total runs performed: 5
608 608 Times : Total Per run
609 609 User : 0.910862 s, 0.1821724 s.
610 610 System: 0.0 s, 0.0 s.
611 611
612 612 -d
613 613 run your program under the control of pdb, the Python debugger.
614 614 This allows you to execute your program step by step, watch variables,
615 615 etc. Internally, what IPython does is similar to calling::
616 616
617 617 pdb.run('execfile("YOURFILENAME")')
618 618
619 619 with a breakpoint set on line 1 of your file. You can change the line
620 620 number for this automatic breakpoint to be <N> by using the -bN option
621 621 (where N must be an integer). For example::
622 622
623 623 %run -d -b40 myscript
624 624
625 625 will set the first breakpoint at line 40 in myscript.py. Note that
626 626 the first breakpoint must be set on a line which actually does
627 627 something (not a comment or docstring) for it to stop execution.
628 628
629 629 Or you can specify a breakpoint in a different file::
630 630
631 631 %run -d -b myotherfile.py:20 myscript
632 632
633 633 When the pdb debugger starts, you will see a (Pdb) prompt. You must
634 634 first enter 'c' (without quotes) to start execution up to the first
635 635 breakpoint.
636 636
637 637 Entering 'help' gives information about the use of the debugger. You
638 638 can easily see pdb's full documentation with "import pdb;pdb.help()"
639 639 at a prompt.
640 640
641 641 -p
642 642 run program under the control of the Python profiler module (which
643 643 prints a detailed report of execution times, function calls, etc).
644 644
645 645 You can pass other options after -p which affect the behavior of the
646 646 profiler itself. See the docs for %prun for details.
647 647
648 648 In this mode, the program's variables do NOT propagate back to the
649 649 IPython interactive namespace (because they remain in the namespace
650 650 where the profiler executes them).
651 651
652 652 Internally this triggers a call to %prun, see its documentation for
653 653 details on the options available specifically for profiling.
654 654
655 655 There is one special usage for which the text above doesn't apply:
656 656 if the filename ends with .ipy[nb], the file is run as ipython script,
657 657 just as if the commands were written on IPython prompt.
658 658
659 659 -m
660 660 specify module name to load instead of script path. Similar to
661 661 the -m option for the python interpreter. Use this option last if you
662 662 want to combine with other %run options. Unlike the python interpreter
663 663 only source modules are allowed no .pyc or .pyo files.
664 664 For example::
665 665
666 666 %run -m example
667 667
668 668 will run the example module.
669 669
670 670 -G
671 671 disable shell-like glob expansion of arguments.
672 672
673 673 """
674 674
675 675 # Logic to handle issue #3664
676 676 # Add '--' after '-m <module_name>' to ignore additional args passed to a module.
677 677 if '-m' in parameter_s and '--' not in parameter_s:
678 678 argv = shlex.split(parameter_s, posix=(os.name == 'posix'))
679 679 for idx, arg in enumerate(argv):
680 680 if arg and arg.startswith('-') and arg != '-':
681 681 if arg == '-m':
682 682 argv.insert(idx + 2, '--')
683 683 break
684 684 else:
685 685 # Positional arg, break
686 686 break
687 687 parameter_s = ' '.join(shlex.quote(arg) for arg in argv)
688 688
689 689 # get arguments and set sys.argv for program to be run.
690 690 opts, arg_lst = self.parse_options(parameter_s,
691 691 'nidtN:b:pD:l:rs:T:em:G',
692 692 mode='list', list_all=1)
693 693 if "m" in opts:
694 694 modulename = opts["m"][0]
695 695 modpath = find_mod(modulename)
696 696 if modpath is None:
697 697 msg = '%r is not a valid modulename on sys.path'%modulename
698 698 raise Exception(msg)
699 699 arg_lst = [modpath] + arg_lst
700 700 try:
701 701 fpath = None # initialize to make sure fpath is in scope later
702 702 fpath = arg_lst[0]
703 703 filename = file_finder(fpath)
704 704 except IndexError:
705 705 msg = 'you must provide at least a filename.'
706 706 raise Exception(msg)
707 707 except IOError as e:
708 708 try:
709 709 msg = str(e)
710 710 except UnicodeError:
711 711 msg = e.message
712 712 if os.name == 'nt' and re.match(r"^'.*'$",fpath):
713 713 warn('For Windows, use double quotes to wrap a filename: %run "mypath\\myfile.py"')
714 714 raise Exception(msg)
715 715 except TypeError:
716 716 if fpath in sys.meta_path:
717 717 filename = ""
718 718 else:
719 719 raise
720 720
721 721 if filename.lower().endswith(('.ipy', '.ipynb')):
722 722 with preserve_keys(self.shell.user_ns, '__file__'):
723 723 self.shell.user_ns['__file__'] = filename
724 724 self.shell.safe_execfile_ipy(filename, raise_exceptions=True)
725 725 return
726 726
727 727 # Control the response to exit() calls made by the script being run
728 728 exit_ignore = 'e' in opts
729 729
730 730 # Make sure that the running script gets a proper sys.argv as if it
731 731 # were run from a system shell.
732 732 save_argv = sys.argv # save it for later restoring
733 733
734 734 if 'G' in opts:
735 735 args = arg_lst[1:]
736 736 else:
737 737 # tilde and glob expansion
738 738 args = shellglob(map(os.path.expanduser, arg_lst[1:]))
739 739
740 740 sys.argv = [filename] + args # put in the proper filename
741 741
742 742 if 'n' in opts:
743 743 name = os.path.splitext(os.path.basename(filename))[0]
744 744 else:
745 745 name = '__main__'
746 746
747 747 if 'i' in opts:
748 748 # Run in user's interactive namespace
749 749 prog_ns = self.shell.user_ns
750 750 __name__save = self.shell.user_ns['__name__']
751 751 prog_ns['__name__'] = name
752 752 main_mod = self.shell.user_module
753 753
754 754 # Since '%run foo' emulates 'python foo.py' at the cmd line, we must
755 755 # set the __file__ global in the script's namespace
756 756 # TK: Is this necessary in interactive mode?
757 757 prog_ns['__file__'] = filename
758 758 else:
759 759 # Run in a fresh, empty namespace
760 760
761 761 # The shell MUST hold a reference to prog_ns so after %run
762 762 # exits, the python deletion mechanism doesn't zero it out
763 763 # (leaving dangling references). See interactiveshell for details
764 764 main_mod = self.shell.new_main_mod(filename, name)
765 765 prog_ns = main_mod.__dict__
766 766
767 767 # pickle fix. See interactiveshell for an explanation. But we need to
768 768 # make sure that, if we overwrite __main__, we replace it at the end
769 769 main_mod_name = prog_ns['__name__']
770 770
771 771 if main_mod_name == '__main__':
772 772 restore_main = sys.modules['__main__']
773 773 else:
774 774 restore_main = False
775 775
776 776 # This needs to be undone at the end to prevent holding references to
777 777 # every single object ever created.
778 778 sys.modules[main_mod_name] = main_mod
779 779
780 780 if 'p' in opts or 'd' in opts:
781 781 if 'm' in opts:
782 782 code = 'run_module(modulename, prog_ns)'
783 783 code_ns = {
784 784 'run_module': self.shell.safe_run_module,
785 785 'prog_ns': prog_ns,
786 786 'modulename': modulename,
787 787 }
788 788 else:
789 789 if 'd' in opts:
790 790 # allow exceptions to raise in debug mode
791 791 code = 'execfile(filename, prog_ns, raise_exceptions=True)'
792 792 else:
793 793 code = 'execfile(filename, prog_ns)'
794 794 code_ns = {
795 795 'execfile': self.shell.safe_execfile,
796 796 'prog_ns': prog_ns,
797 797 'filename': get_py_filename(filename),
798 798 }
799 799
800 800 try:
801 801 stats = None
802 802 if 'p' in opts:
803 803 stats = self._run_with_profiler(code, opts, code_ns)
804 804 else:
805 805 if 'd' in opts:
806 806 bp_file, bp_line = parse_breakpoint(
807 807 opts.get('b', ['1'])[0], filename)
808 808 self._run_with_debugger(
809 809 code, code_ns, filename, bp_line, bp_file)
810 810 else:
811 811 if 'm' in opts:
812 812 def run():
813 813 self.shell.safe_run_module(modulename, prog_ns)
814 814 else:
815 815 if runner is None:
816 816 runner = self.default_runner
817 817 if runner is None:
818 818 runner = self.shell.safe_execfile
819 819
820 820 def run():
821 821 runner(filename, prog_ns, prog_ns,
822 822 exit_ignore=exit_ignore)
823 823
824 824 if 't' in opts:
825 825 # timed execution
826 826 try:
827 827 nruns = int(opts['N'][0])
828 828 if nruns < 1:
829 829 error('Number of runs must be >=1')
830 830 return
831 831 except (KeyError):
832 832 nruns = 1
833 833 self._run_with_timing(run, nruns)
834 834 else:
835 835 # regular execution
836 836 run()
837 837
838 838 if 'i' in opts:
839 839 self.shell.user_ns['__name__'] = __name__save
840 840 else:
841 841 # update IPython interactive namespace
842 842
843 843 # Some forms of read errors on the file may mean the
844 844 # __name__ key was never set; using pop we don't have to
845 845 # worry about a possible KeyError.
846 846 prog_ns.pop('__name__', None)
847 847
848 848 with preserve_keys(self.shell.user_ns, '__file__'):
849 849 self.shell.user_ns.update(prog_ns)
850 850 finally:
851 851 # It's a bit of a mystery why, but __builtins__ can change from
852 852 # being a module to becoming a dict missing some key data after
853 853 # %run. As best I can see, this is NOT something IPython is doing
854 854 # at all, and similar problems have been reported before:
855 855 # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html
856 856 # Since this seems to be done by the interpreter itself, the best
857 857 # we can do is to at least restore __builtins__ for the user on
858 858 # exit.
859 859 self.shell.user_ns['__builtins__'] = builtin_mod
860 860
861 861 # Ensure key global structures are restored
862 862 sys.argv = save_argv
863 863 if restore_main:
864 864 sys.modules['__main__'] = restore_main
865 865 if '__mp_main__' in sys.modules:
866 866 sys.modules['__mp_main__'] = restore_main
867 867 else:
868 868 # Remove from sys.modules the reference to main_mod we'd
869 869 # added. Otherwise it will trap references to objects
870 870 # contained therein.
871 871 del sys.modules[main_mod_name]
872 872
873 873 return stats
874 874
875 875 def _run_with_debugger(self, code, code_ns, filename=None,
876 876 bp_line=None, bp_file=None):
877 877 """
878 878 Run `code` in debugger with a break point.
879 879
880 880 Parameters
881 881 ----------
882 882 code : str
883 883 Code to execute.
884 884 code_ns : dict
885 885 A namespace in which `code` is executed.
886 886 filename : str
887 887 `code` is ran as if it is in `filename`.
888 888 bp_line : int, optional
889 889 Line number of the break point.
890 890 bp_file : str, optional
891 891 Path to the file in which break point is specified.
892 892 `filename` is used if not given.
893 893
894 894 Raises
895 895 ------
896 896 UsageError
897 897 If the break point given by `bp_line` is not valid.
898 898
899 899 """
900 900 deb = self.shell.InteractiveTB.pdb
901 901 if not deb:
902 902 self.shell.InteractiveTB.pdb = self.shell.InteractiveTB.debugger_cls()
903 903 deb = self.shell.InteractiveTB.pdb
904 904
905 905 # deb.checkline() fails if deb.curframe exists but is None; it can
906 906 # handle it not existing. https://github.com/ipython/ipython/issues/10028
907 907 if hasattr(deb, 'curframe'):
908 908 del deb.curframe
909 909
910 910 # reset Breakpoint state, which is moronically kept
911 911 # in a class
912 912 bdb.Breakpoint.next = 1
913 913 bdb.Breakpoint.bplist = {}
914 914 bdb.Breakpoint.bpbynumber = [None]
915 915 deb.clear_all_breaks()
916 916 if bp_line is not None:
917 917 # Set an initial breakpoint to stop execution
918 918 maxtries = 10
919 919 bp_file = bp_file or filename
920 920 checkline = deb.checkline(bp_file, bp_line)
921 921 if not checkline:
922 922 for bp in range(bp_line + 1, bp_line + maxtries + 1):
923 923 if deb.checkline(bp_file, bp):
924 924 break
925 925 else:
926 926 msg = ("\nI failed to find a valid line to set "
927 927 "a breakpoint\n"
928 928 "after trying up to line: %s.\n"
929 929 "Please set a valid breakpoint manually "
930 930 "with the -b option." % bp)
931 931 raise UsageError(msg)
932 932 # if we find a good linenumber, set the breakpoint
933 933 deb.do_break('%s:%s' % (bp_file, bp_line))
934 934
935 935 if filename:
936 936 # Mimic Pdb._runscript(...)
937 937 deb._wait_for_mainpyfile = True
938 938 deb.mainpyfile = deb.canonic(filename)
939 939
940 940 # Start file run
941 941 print("NOTE: Enter 'c' at the %s prompt to continue execution." % deb.prompt)
942 942 try:
943 943 if filename:
944 944 # save filename so it can be used by methods on the deb object
945 945 deb._exec_filename = filename
946 946 while True:
947 947 try:
948 948 trace = sys.gettrace()
949 949 deb.run(code, code_ns)
950 950 except Restart:
951 951 print("Restarting")
952 952 if filename:
953 953 deb._wait_for_mainpyfile = True
954 954 deb.mainpyfile = deb.canonic(filename)
955 955 continue
956 956 else:
957 957 break
958 958 finally:
959 959 sys.settrace(trace)
960 960
961 961
962 962 except:
963 963 etype, value, tb = sys.exc_info()
964 964 # Skip three frames in the traceback: the %run one,
965 965 # one inside bdb.py, and the command-line typed by the
966 966 # user (run by exec in pdb itself).
967 967 self.shell.InteractiveTB(etype, value, tb, tb_offset=3)
968 968
969 969 @staticmethod
970 970 def _run_with_timing(run, nruns):
971 971 """
972 972 Run function `run` and print timing information.
973 973
974 974 Parameters
975 975 ----------
976 976 run : callable
977 977 Any callable object which takes no argument.
978 978 nruns : int
979 979 Number of times to execute `run`.
980 980
981 981 """
982 982 twall0 = time.perf_counter()
983 983 if nruns == 1:
984 984 t0 = clock2()
985 985 run()
986 986 t1 = clock2()
987 987 t_usr = t1[0] - t0[0]
988 988 t_sys = t1[1] - t0[1]
989 989 print("\nIPython CPU timings (estimated):")
990 990 print(" User : %10.2f s." % t_usr)
991 991 print(" System : %10.2f s." % t_sys)
992 992 else:
993 993 runs = range(nruns)
994 994 t0 = clock2()
995 995 for nr in runs:
996 996 run()
997 997 t1 = clock2()
998 998 t_usr = t1[0] - t0[0]
999 999 t_sys = t1[1] - t0[1]
1000 1000 print("\nIPython CPU timings (estimated):")
1001 1001 print("Total runs performed:", nruns)
1002 1002 print(" Times : %10s %10s" % ('Total', 'Per run'))
1003 1003 print(" User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns))
1004 1004 print(" System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns))
1005 1005 twall1 = time.perf_counter()
1006 1006 print("Wall time: %10.2f s." % (twall1 - twall0))
1007 1007
1008 1008 @skip_doctest
1009 1009 @no_var_expand
1010 1010 @line_cell_magic
1011 1011 @needs_local_scope
1012 1012 def timeit(self, line='', cell=None, local_ns=None):
1013 1013 """Time execution of a Python statement or expression
1014 1014
1015 1015 Usage, in line mode:
1016 1016 %timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] statement
1017 1017 or in cell mode:
1018 1018 %%timeit [-n<N> -r<R> [-t|-c] -q -p<P> -o] setup_code
1019 1019 code
1020 1020 code...
1021 1021
1022 1022 Time execution of a Python statement or expression using the timeit
1023 1023 module. This function can be used both as a line and cell magic:
1024 1024
1025 1025 - In line mode you can time a single-line statement (though multiple
1026 1026 ones can be chained with using semicolons).
1027 1027
1028 1028 - In cell mode, the statement in the first line is used as setup code
1029 1029 (executed but not timed) and the body of the cell is timed. The cell
1030 1030 body has access to any variables created in the setup code.
1031 1031
1032 1032 Options:
1033 1033 -n<N>: execute the given statement <N> times in a loop. If <N> is not
1034 1034 provided, <N> is determined so as to get sufficient accuracy.
1035 1035
1036 1036 -r<R>: number of repeats <R>, each consisting of <N> loops, and take the
1037 1037 best result.
1038 1038 Default: 7
1039 1039
1040 1040 -t: use time.time to measure the time, which is the default on Unix.
1041 1041 This function measures wall time.
1042 1042
1043 1043 -c: use time.clock to measure the time, which is the default on
1044 1044 Windows and measures wall time. On Unix, resource.getrusage is used
1045 1045 instead and returns the CPU user time.
1046 1046
1047 1047 -p<P>: use a precision of <P> digits to display the timing result.
1048 1048 Default: 3
1049 1049
1050 1050 -q: Quiet, do not print result.
1051 1051
1052 1052 -o: return a TimeitResult that can be stored in a variable to inspect
1053 1053 the result in more details.
1054 1054
1055 1055 .. versionchanged:: 7.3
1056 1056 User variables are no longer expanded,
1057 1057 the magic line is always left unmodified.
1058 1058
1059 1059 Examples
1060 1060 --------
1061 1061 ::
1062 1062
1063 1063 In [1]: %timeit pass
1064 1064 8.26 ns ± 0.12 ns per loop (mean ± std. dev. of 7 runs, 100000000 loops each)
1065 1065
1066 1066 In [2]: u = None
1067 1067
1068 1068 In [3]: %timeit u is None
1069 1069 29.9 ns ± 0.643 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
1070 1070
1071 1071 In [4]: %timeit -r 4 u == None
1072 1072
1073 1073 In [5]: import time
1074 1074
1075 1075 In [6]: %timeit -n1 time.sleep(2)
1076 1076
1077 1077
1078 1078 The times reported by %timeit will be slightly higher than those
1079 1079 reported by the timeit.py script when variables are accessed. This is
1080 1080 due to the fact that %timeit executes the statement in the namespace
1081 1081 of the shell, compared with timeit.py, which uses a single setup
1082 1082 statement to import function or create variables. Generally, the bias
1083 1083 does not matter as long as results from timeit.py are not mixed with
1084 1084 those from %timeit."""
1085 1085
1086 1086 opts, stmt = self.parse_options(line,'n:r:tcp:qo',
1087 1087 posix=False, strict=False)
1088 1088 if stmt == "" and cell is None:
1089 1089 return
1090 1090
1091 1091 timefunc = timeit.default_timer
1092 1092 number = int(getattr(opts, "n", 0))
1093 1093 default_repeat = 7 if timeit.default_repeat < 7 else timeit.default_repeat
1094 1094 repeat = int(getattr(opts, "r", default_repeat))
1095 1095 precision = int(getattr(opts, "p", 3))
1096 1096 quiet = 'q' in opts
1097 1097 return_result = 'o' in opts
1098 1098 if hasattr(opts, "t"):
1099 1099 timefunc = time.time
1100 1100 if hasattr(opts, "c"):
1101 1101 timefunc = clock
1102 1102
1103 1103 timer = Timer(timer=timefunc)
1104 1104 # this code has tight coupling to the inner workings of timeit.Timer,
1105 1105 # but is there a better way to achieve that the code stmt has access
1106 1106 # to the shell namespace?
1107 1107 transform = self.shell.transform_cell
1108 1108
1109 1109 if cell is None:
1110 1110 # called as line magic
1111 1111 ast_setup = self.shell.compile.ast_parse("pass")
1112 1112 ast_stmt = self.shell.compile.ast_parse(transform(stmt))
1113 1113 else:
1114 1114 ast_setup = self.shell.compile.ast_parse(transform(stmt))
1115 1115 ast_stmt = self.shell.compile.ast_parse(transform(cell))
1116 1116
1117 1117 ast_setup = self.shell.transform_ast(ast_setup)
1118 1118 ast_stmt = self.shell.transform_ast(ast_stmt)
1119 1119
1120 1120 # Check that these compile to valid Python code *outside* the timer func
1121 1121 # Invalid code may become valid when put inside the function & loop,
1122 1122 # which messes up error messages.
1123 1123 # https://github.com/ipython/ipython/issues/10636
1124 1124 self.shell.compile(ast_setup, "<magic-timeit-setup>", "exec")
1125 1125 self.shell.compile(ast_stmt, "<magic-timeit-stmt>", "exec")
1126 1126
1127 1127 # This codestring is taken from timeit.template - we fill it in as an
1128 1128 # AST, so that we can apply our AST transformations to the user code
1129 1129 # without affecting the timing code.
1130 1130 timeit_ast_template = ast.parse('def inner(_it, _timer):\n'
1131 1131 ' setup\n'
1132 1132 ' _t0 = _timer()\n'
1133 1133 ' for _i in _it:\n'
1134 1134 ' stmt\n'
1135 1135 ' _t1 = _timer()\n'
1136 1136 ' return _t1 - _t0\n')
1137 1137
1138 1138 timeit_ast = TimeitTemplateFiller(ast_setup, ast_stmt).visit(timeit_ast_template)
1139 1139 timeit_ast = ast.fix_missing_locations(timeit_ast)
1140 1140
1141 1141 # Track compilation time so it can be reported if too long
1142 1142 # Minimum time above which compilation time will be reported
1143 1143 tc_min = 0.1
1144 1144
1145 1145 t0 = clock()
1146 1146 code = self.shell.compile(timeit_ast, "<magic-timeit>", "exec")
1147 1147 tc = clock()-t0
1148 1148
1149 1149 ns = {}
1150 1150 glob = self.shell.user_ns
1151 1151 # handles global vars with same name as local vars. We store them in conflict_globs.
1152 1152 conflict_globs = {}
1153 1153 if local_ns and cell is None:
1154 1154 for var_name, var_val in glob.items():
1155 1155 if var_name in local_ns:
1156 1156 conflict_globs[var_name] = var_val
1157 1157 glob.update(local_ns)
1158 1158
1159 1159 exec(code, glob, ns)
1160 1160 timer.inner = ns["inner"]
1161 1161
1162 1162 # This is used to check if there is a huge difference between the
1163 1163 # best and worst timings.
1164 1164 # Issue: https://github.com/ipython/ipython/issues/6471
1165 1165 if number == 0:
1166 1166 # determine number so that 0.2 <= total time < 2.0
1167 1167 for index in range(0, 10):
1168 1168 number = 10 ** index
1169 1169 time_number = timer.timeit(number)
1170 1170 if time_number >= 0.2:
1171 1171 break
1172 1172
1173 1173 all_runs = timer.repeat(repeat, number)
1174 1174 best = min(all_runs) / number
1175 1175 worst = max(all_runs) / number
1176 1176 timeit_result = TimeitResult(number, repeat, best, worst, all_runs, tc, precision)
1177 1177
1178 1178 # Restore global vars from conflict_globs
1179 1179 if conflict_globs:
1180 1180 glob.update(conflict_globs)
1181 1181
1182 1182 if not quiet :
1183 1183 # Check best timing is greater than zero to avoid a
1184 1184 # ZeroDivisionError.
1185 1185 # In cases where the slowest timing is lesser than a microsecond
1186 1186 # we assume that it does not really matter if the fastest
1187 1187 # timing is 4 times faster than the slowest timing or not.
1188 1188 if worst > 4 * best and best > 0 and worst > 1e-6:
1189 1189 print("The slowest run took %0.2f times longer than the "
1190 1190 "fastest. This could mean that an intermediate result "
1191 1191 "is being cached." % (worst / best))
1192 1192
1193 1193 print( timeit_result )
1194 1194
1195 1195 if tc > tc_min:
1196 1196 print("Compiler time: %.2f s" % tc)
1197 1197 if return_result:
1198 1198 return timeit_result
1199 1199
1200 1200 @skip_doctest
1201 1201 @no_var_expand
1202 1202 @needs_local_scope
1203 1203 @line_cell_magic
1204 1204 def time(self,line='', cell=None, local_ns=None):
1205 1205 """Time execution of a Python statement or expression.
1206 1206
1207 1207 The CPU and wall clock times are printed, and the value of the
1208 1208 expression (if any) is returned. Note that under Win32, system time
1209 1209 is always reported as 0, since it can not be measured.
1210 1210
1211 1211 This function can be used both as a line and cell magic:
1212 1212
1213 1213 - In line mode you can time a single-line statement (though multiple
1214 1214 ones can be chained with using semicolons).
1215 1215
1216 1216 - In cell mode, you can time the cell body (a directly
1217 1217 following statement raises an error).
1218 1218
1219 1219 This function provides very basic timing functionality. Use the timeit
1220 1220 magic for more control over the measurement.
1221 1221
1222 1222 .. versionchanged:: 7.3
1223 1223 User variables are no longer expanded,
1224 1224 the magic line is always left unmodified.
1225 1225
1226 1226 Examples
1227 1227 --------
1228 1228 ::
1229 1229
1230 1230 In [1]: %time 2**128
1231 1231 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1232 1232 Wall time: 0.00
1233 1233 Out[1]: 340282366920938463463374607431768211456L
1234 1234
1235 1235 In [2]: n = 1000000
1236 1236
1237 1237 In [3]: %time sum(range(n))
1238 1238 CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s
1239 1239 Wall time: 1.37
1240 1240 Out[3]: 499999500000L
1241 1241
1242 1242 In [4]: %time print 'hello world'
1243 1243 hello world
1244 1244 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1245 1245 Wall time: 0.00
1246 1246
1247 Note that the time needed by Python to compile the given expression
1248 will be reported if it is more than 0.1s. In this example, the
1249 actual exponentiation is done by Python at compilation time, so while
1250 the expression can take a noticeable amount of time to compute, that
1251 time is purely due to the compilation:
1252 1247
1253 In [5]: %time 3**9999;
1254 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1255 Wall time: 0.00 s
1248 .. note::
1249 The time needed by Python to compile the given expression will be
1250 reported if it is more than 0.1s.
1256 1251
1257 In [6]: %time 3**999999;
1258 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1259 Wall time: 0.00 s
1260 Compiler : 0.78 s
1261 """
1252 In the example below, the actual exponentiation is done by Python
1253 at compilation time, so while the expression can take a noticeable
1254 amount of time to compute, that time is purely due to the
1255 compilation::
1262 1256
1257 In [5]: %time 3**9999;
1258 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1259 Wall time: 0.00 s
1260
1261 In [6]: %time 3**999999;
1262 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
1263 Wall time: 0.00 s
1264 Compiler : 0.78 s
1265 """
1263 1266 # fail immediately if the given expression can't be compiled
1264 1267
1265 1268 if line and cell:
1266 1269 raise UsageError("Can't use statement directly after '%%time'!")
1267 1270
1268 1271 if cell:
1269 1272 expr = self.shell.transform_cell(cell)
1270 1273 else:
1271 1274 expr = self.shell.transform_cell(line)
1272 1275
1273 1276 # Minimum time above which parse time will be reported
1274 1277 tp_min = 0.1
1275 1278
1276 1279 t0 = clock()
1277 1280 expr_ast = self.shell.compile.ast_parse(expr)
1278 1281 tp = clock()-t0
1279 1282
1280 1283 # Apply AST transformations
1281 1284 expr_ast = self.shell.transform_ast(expr_ast)
1282 1285
1283 1286 # Minimum time above which compilation time will be reported
1284 1287 tc_min = 0.1
1285 1288
1286 1289 expr_val=None
1287 1290 if len(expr_ast.body)==1 and isinstance(expr_ast.body[0], ast.Expr):
1288 1291 mode = 'eval'
1289 1292 source = '<timed eval>'
1290 1293 expr_ast = ast.Expression(expr_ast.body[0].value)
1291 1294 else:
1292 1295 mode = 'exec'
1293 1296 source = '<timed exec>'
1294 1297 # multi-line %%time case
1295 1298 if len(expr_ast.body) > 1 and isinstance(expr_ast.body[-1], ast.Expr):
1296 1299 expr_val= expr_ast.body[-1]
1297 1300 expr_ast = expr_ast.body[:-1]
1298 1301 expr_ast = Module(expr_ast, [])
1299 1302 expr_val = ast.Expression(expr_val.value)
1300 1303
1301 1304 t0 = clock()
1302 1305 code = self.shell.compile(expr_ast, source, mode)
1303 1306 tc = clock()-t0
1304 1307
1305 1308 # skew measurement as little as possible
1306 1309 glob = self.shell.user_ns
1307 1310 wtime = time.time
1308 1311 # time execution
1309 1312 wall_st = wtime()
1310 1313 if mode=='eval':
1311 1314 st = clock2()
1312 1315 try:
1313 1316 out = eval(code, glob, local_ns)
1314 1317 except:
1315 1318 self.shell.showtraceback()
1316 1319 return
1317 1320 end = clock2()
1318 1321 else:
1319 1322 st = clock2()
1320 1323 try:
1321 1324 exec(code, glob, local_ns)
1322 1325 out=None
1323 1326 # multi-line %%time case
1324 1327 if expr_val is not None:
1325 1328 code_2 = self.shell.compile(expr_val, source, 'eval')
1326 1329 out = eval(code_2, glob, local_ns)
1327 1330 except:
1328 1331 self.shell.showtraceback()
1329 1332 return
1330 1333 end = clock2()
1331 1334
1332 1335 wall_end = wtime()
1333 1336 # Compute actual times and report
1334 1337 wall_time = wall_end-wall_st
1335 1338 cpu_user = end[0]-st[0]
1336 1339 cpu_sys = end[1]-st[1]
1337 1340 cpu_tot = cpu_user+cpu_sys
1338 1341 # On windows cpu_sys is always zero, so no new information to the next print
1339 1342 if sys.platform != 'win32':
1340 1343 print("CPU times: user %s, sys: %s, total: %s" % \
1341 1344 (_format_time(cpu_user),_format_time(cpu_sys),_format_time(cpu_tot)))
1342 1345 print("Wall time: %s" % _format_time(wall_time))
1343 1346 if tc > tc_min:
1344 1347 print("Compiler : %s" % _format_time(tc))
1345 1348 if tp > tp_min:
1346 1349 print("Parser : %s" % _format_time(tp))
1347 1350 return out
1348 1351
1349 1352 @skip_doctest
1350 1353 @line_magic
1351 1354 def macro(self, parameter_s=''):
1352 1355 """Define a macro for future re-execution. It accepts ranges of history,
1353 1356 filenames or string objects.
1354 1357
1355 1358 Usage:\\
1356 1359 %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ...
1357 1360
1358 1361 Options:
1359 1362
1360 1363 -r: use 'raw' input. By default, the 'processed' history is used,
1361 1364 so that magics are loaded in their transformed version to valid
1362 1365 Python. If this option is given, the raw input as typed at the
1363 1366 command line is used instead.
1364 1367
1365 1368 -q: quiet macro definition. By default, a tag line is printed
1366 1369 to indicate the macro has been created, and then the contents of
1367 1370 the macro are printed. If this option is given, then no printout
1368 1371 is produced once the macro is created.
1369 1372
1370 1373 This will define a global variable called `name` which is a string
1371 1374 made of joining the slices and lines you specify (n1,n2,... numbers
1372 1375 above) from your input history into a single string. This variable
1373 1376 acts like an automatic function which re-executes those lines as if
1374 1377 you had typed them. You just type 'name' at the prompt and the code
1375 1378 executes.
1376 1379
1377 1380 The syntax for indicating input ranges is described in %history.
1378 1381
1379 1382 Note: as a 'hidden' feature, you can also use traditional python slice
1380 1383 notation, where N:M means numbers N through M-1.
1381 1384
1382 1385 For example, if your history contains (print using %hist -n )::
1383 1386
1384 1387 44: x=1
1385 1388 45: y=3
1386 1389 46: z=x+y
1387 1390 47: print x
1388 1391 48: a=5
1389 1392 49: print 'x',x,'y',y
1390 1393
1391 1394 you can create a macro with lines 44 through 47 (included) and line 49
1392 1395 called my_macro with::
1393 1396
1394 1397 In [55]: %macro my_macro 44-47 49
1395 1398
1396 1399 Now, typing `my_macro` (without quotes) will re-execute all this code
1397 1400 in one pass.
1398 1401
1399 1402 You don't need to give the line-numbers in order, and any given line
1400 1403 number can appear multiple times. You can assemble macros with any
1401 1404 lines from your input history in any order.
1402 1405
1403 1406 The macro is a simple object which holds its value in an attribute,
1404 1407 but IPython's display system checks for macros and executes them as
1405 1408 code instead of printing them when you type their name.
1406 1409
1407 1410 You can view a macro's contents by explicitly printing it with::
1408 1411
1409 1412 print macro_name
1410 1413
1411 1414 """
1412 1415 opts,args = self.parse_options(parameter_s,'rq',mode='list')
1413 1416 if not args: # List existing macros
1414 1417 return sorted(k for k,v in self.shell.user_ns.items() if isinstance(v, Macro))
1415 1418 if len(args) == 1:
1416 1419 raise UsageError(
1417 1420 "%macro insufficient args; usage '%macro name n1-n2 n3-4...")
1418 1421 name, codefrom = args[0], " ".join(args[1:])
1419 1422
1420 1423 #print 'rng',ranges # dbg
1421 1424 try:
1422 1425 lines = self.shell.find_user_code(codefrom, 'r' in opts)
1423 1426 except (ValueError, TypeError) as e:
1424 1427 print(e.args[0])
1425 1428 return
1426 1429 macro = Macro(lines)
1427 1430 self.shell.define_macro(name, macro)
1428 1431 if not ( 'q' in opts) :
1429 1432 print('Macro `%s` created. To execute, type its name (without quotes).' % name)
1430 1433 print('=== Macro contents: ===')
1431 1434 print(macro, end=' ')
1432 1435
1433 1436 @magic_arguments.magic_arguments()
1434 1437 @magic_arguments.argument('output', type=str, default='', nargs='?',
1435 1438 help="""The name of the variable in which to store output.
1436 1439 This is a utils.io.CapturedIO object with stdout/err attributes
1437 1440 for the text of the captured output.
1438 1441
1439 1442 CapturedOutput also has a show() method for displaying the output,
1440 1443 and __call__ as well, so you can use that to quickly display the
1441 1444 output.
1442 1445
1443 1446 If unspecified, captured output is discarded.
1444 1447 """
1445 1448 )
1446 1449 @magic_arguments.argument('--no-stderr', action="store_true",
1447 1450 help="""Don't capture stderr."""
1448 1451 )
1449 1452 @magic_arguments.argument('--no-stdout', action="store_true",
1450 1453 help="""Don't capture stdout."""
1451 1454 )
1452 1455 @magic_arguments.argument('--no-display', action="store_true",
1453 1456 help="""Don't capture IPython's rich display."""
1454 1457 )
1455 1458 @cell_magic
1456 1459 def capture(self, line, cell):
1457 1460 """run the cell, capturing stdout, stderr, and IPython's rich display() calls."""
1458 1461 args = magic_arguments.parse_argstring(self.capture, line)
1459 1462 out = not args.no_stdout
1460 1463 err = not args.no_stderr
1461 1464 disp = not args.no_display
1462 1465 with capture_output(out, err, disp) as io:
1463 1466 self.shell.run_cell(cell)
1464 1467 if args.output:
1465 1468 self.shell.user_ns[args.output] = io
1466 1469
1467 1470 def parse_breakpoint(text, current_file):
1468 1471 '''Returns (file, line) for file:line and (current_file, line) for line'''
1469 1472 colon = text.find(':')
1470 1473 if colon == -1:
1471 1474 return current_file, int(text)
1472 1475 else:
1473 1476 return text[:colon], int(text[colon+1:])
1474 1477
1475 1478 def _format_time(timespan, precision=3):
1476 1479 """Formats the timespan in a human readable form"""
1477 1480
1478 1481 if timespan >= 60.0:
1479 1482 # we have more than a minute, format that in a human readable form
1480 1483 # Idea from http://snipplr.com/view/5713/
1481 1484 parts = [("d", 60*60*24),("h", 60*60),("min", 60), ("s", 1)]
1482 1485 time = []
1483 1486 leftover = timespan
1484 1487 for suffix, length in parts:
1485 1488 value = int(leftover / length)
1486 1489 if value > 0:
1487 1490 leftover = leftover % length
1488 1491 time.append(u'%s%s' % (str(value), suffix))
1489 1492 if leftover < 1:
1490 1493 break
1491 1494 return " ".join(time)
1492 1495
1493 1496
1494 1497 # Unfortunately the unicode 'micro' symbol can cause problems in
1495 1498 # certain terminals.
1496 1499 # See bug: https://bugs.launchpad.net/ipython/+bug/348466
1497 1500 # Try to prevent crashes by being more secure than it needs to
1498 1501 # E.g. eclipse is able to print a µ, but has no sys.stdout.encoding set.
1499 1502 units = [u"s", u"ms",u'us',"ns"] # the save value
1500 1503 if hasattr(sys.stdout, 'encoding') and sys.stdout.encoding:
1501 1504 try:
1502 1505 u'\xb5'.encode(sys.stdout.encoding)
1503 1506 units = [u"s", u"ms",u'\xb5s',"ns"]
1504 1507 except:
1505 1508 pass
1506 1509 scaling = [1, 1e3, 1e6, 1e9]
1507 1510
1508 1511 if timespan > 0.0:
1509 1512 order = min(-int(math.floor(math.log10(timespan)) // 3), 3)
1510 1513 else:
1511 1514 order = 3
1512 1515 return u"%.*g %s" % (precision, timespan * scaling[order], units[order])
General Comments 0
You need to be logged in to leave comments. Login now