{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Simple usage of a set of MPI engines" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This example assumes you've started a cluster of N engines (4 in this example) as part\n", "of an MPI world. \n", "\n", "Our documentation describes [how to create an MPI profile](http://ipython.org/ipython-doc/dev/parallel/parallel_process.html#using-ipcluster-in-mpiexec-mpirun-mode)\n", "and explains [basic MPI usage of the IPython cluster](http://ipython.org/ipython-doc/dev/parallel/parallel_mpi.html).\n", "\n", "\n", "For the simplest possible way to start 4 engines that belong to the same MPI world, \n", "you can run this in a terminal:\n", "\n", "
\n",
    "ipcluster start --engines=MPI -n 4\n",
    "
\n", "\n", "or start an MPI cluster from the cluster tab if you have one configured.\n", "\n", "Once the cluster is running, we can connect to it and open a view into it:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.parallel import Client\n", "c = Client()\n", "view = c[:]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define a simple function that gets the MPI rank from each engine." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@view.remote(block=True)\n", "def mpi_rank():\n", " from mpi4py import MPI\n", " comm = MPI.COMM_WORLD\n", " return comm.Get_rank()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[2, 3, 1, 0]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpi_rank()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To get a mapping of IPython IDs and MPI rank (these do not always match),\n", "you can use the get_dict method on AsyncResults." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{0: 2, 1: 3, 2: 1, 3: 0}" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mpi_rank.block = False\n", "ar = mpi_rank()\n", "ar.get_dict()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With %%px cell magic, the next cell will actually execute *entirely on each engine*:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%%px\n", "from mpi4py import MPI\n", "\n", "comm = MPI.COMM_WORLD\n", "size = comm.Get_size()\n", "rank = comm.Get_rank()\n", "\n", "if rank == 0:\n", " data = [(i+1)**2 for i in range(size)]\n", "else:\n", " data = None\n", "data = comm.scatter(data, root=0)\n", "\n", "assert data == (rank+1)**2, 'data=%s, rank=%s' % (data, rank)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[9, 16, 4, 1]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "view['data']" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }