{ "metadata": { "name": "Animations_and_Progress" }, "nbformat": 3, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "source": [ "Simple animations, progress bars, and clearing output" ] }, { "cell_type": "markdown", "source": [ "Sometimes you want to print progress in-place, but don't want", "to keep growing the output area. In terminals, there is the carriage-return", "(`'\\r'`) for overwriting a single line, but the notebook frontend does not support this", "behavior (yet).", "", "What the notebook *does* support is explicit `clear_output`, and you can use this to replace previous", "output (specifying stdout/stderr or the special IPython display outputs)." ] }, { "cell_type": "markdown", "source": [ "A simple example printing our progress iterating through a list:" ] }, { "cell_type": "code", "collapsed": true, "input": [ "import sys", "import time" ], "language": "python", "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.core.display import clear_output", "for i in range(10):", " time.sleep(0.25)", " clear_output()", " print i", " sys.stdout.flush()" ], "language": "python", "outputs": [], "prompt_number": 12 }, { "cell_type": "markdown", "source": [ "The AsyncResult object has a special `wait_interactive()` method, which prints its progress interactively,", "so you can watch as your parallel computation completes.", "", "**This example assumes you have an IPython cluster running, which you can start from the [cluster panel](/#tab2)**" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython import parallel", "rc = parallel.Client()", "view = rc.load_balanced_view()", "", "amr = view.map_async(time.sleep, [0.5]*100)", "", "amr.wait_interactive()" ], "language": "python", "outputs": [], "prompt_number": 13 }, { "cell_type": "markdown", "source": [ "You can also use `clear_output()` to clear figures and plots.", "", "This time, we need to make sure we are using inline pylab (**requires matplotlib**)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "", "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", "For more information, type 'help(pylab)'." ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "from scipy.special import jn", "x = linspace(0,5)", "f, ax = plt.subplots()", "ax.set_title(\"Bessel functions\")", "", "for n in range(1,10):", " time.sleep(1)", " ax.plot(x, jn(x,n))", " clear_output()", " display(f)", "", "# close the figure at the end, so we don't get a duplicate", "# of the last plot", "plt.close()" ], "language": "python", "outputs": [ { "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEICAYAAABRSj9aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXXx79JSIA0QiqptEBCD70oUpQqoBQpCgICAoKK\nvqggImChVxEFAQtIL9KLUiJpJJQQSiAFQnpPNm2TbfN9/xjMjxJI25LAfJ5nnt3Nztx7drJ77r3n\nnmJEkpCQkJCQeG4xNrQAEhISEhK6RVL0EhISEs85kqKXkJCQeM6RFL2EhITEc46k6CUkJCSecyRF\nLyEhIfGcIyl6iReK+/fvw9jYGIIglPh+REQEfHx8YG1tjR9//FFvcsXFxcHKygqSt7OELpAUvYTO\nadCgAczNzWFlZQVbW1sMGjQICQkJhharRJYvX45XX30Vubm5mDlzps76adCgAc6dO1f82sPDA3l5\neTAyMtJZnxIvLpKil9A5RkZGOHbsGPLy8pCcnAwnJyd8+OGHhharRGJjY9G8eXOd92NkZCTN3iX0\nhqToJfRKzZo1MXz4cISHhxf/TaFQYPbs2ahfvz7q1auH6dOno6ioCACQkZGBQYMGoW7durCzs8Mr\nr7xSfN2yZcvg5uYGa2treHt7F8+QSWLp0qXw9PSEvb09Ro0ahezs7FJl6927N3x9fTFz5kxYW1sj\nKioKPXv2xNatW4vP+f3339G9e/fi18bGxti0aROaNm2KunXrPrEK2Lx5M5o3bw5ra2u0aNECoaGh\nGDduHOLi4jB48GBYWVlh5cqVT5iUkpKSMGTIENjZ2aFJkybYsmVLcZsLFy7EyJEjMX78eFhbW6Nl\ny5a4cuVKqfdF4gWGEhI6pkGDBjxz5gxJsqCggO+++y7Hjx9f/P6sWbP4xhtvMDs7m3l5eRw8eDDn\nzp1LkpwzZw6nTZtGtVpNtVpNf39/kuSdO3fo7u7O5ORkkmRsbCzv3r1Lkly7di27du3KxMREKpVK\nTp06lWPGjCFJxsTE0MjIiBqNpkRZe/bsya1btz719W+//caXX365+LWRkREHDx7MnJwcxsXF0cHB\ngadOnSJJ7t27l66urrx8+TJJMjo6mrGxscX35OzZs8XtPC5X9+7dOWPGDCoUCl67do0ODg48d+4c\nSXLBggWsVasWT548SUEQOHfuXHbp0qXU+yLx4iLN6CV0Dkm8+eabqFu3LmxsbHD27FnMnj27+L3N\nmzdj9erVsLGxgaWlJebOnYvdu3cDAMzMzJCcnIz79+/DxMQEL730EgDAxMQECoUCt27dgkqlgoeH\nBxo1agQA2LRpE7777ju4uLjA1NQUCxYswP79+5+6AVuSvOVhzpw5sLa2hru7O3r16oWwsDAAwJYt\nW/DFF1+gffv2AIDGjRvDw8Oj1Pbi4+MRGBiIZcuWwczMDG3atMHkyZOxbdu24nO6d++O/v37w8jI\nCGPHji3u81n3ReLFRVL0EjrHyMgIhw8fRnZ2NhQKBdavX48ePXogLS0N6enpkMvlaN++PerWrYu6\ndetiwIAByMjIAAB89tln8PT0RN++fdG4cWMsW7YMAODp6Ym1a9di4cKFcHJywpgxY5CcnAxA9KwZ\nOnRocXvNmzdHjRo1kJqaWmZ5y0O9evWKn5ubmyM/Px8AkJCQgMaNG5erLUA029ja2sLCwqL4bx4e\nHkhMTCx+7eTk9EifRUVFEAThmfdF4sVFUvQSesXIyAhDhw6FiYkJ/P39YW9vj9q1ayM8PBzZ2dnI\nzs6GTCZDbm4uAMDS0hIrV67E3bt3ceTIEaxevbrY5jxmzBj4+fkhNjYWRkZG+OKLLwCISvHUqVPF\n7WVnZ0Mul8PZ2bnc8lpYWKCgoKD4dUpKSpmvdXd3R3R09FPvw9NwcXFBVlZW8YABiO6Xbm5uZer3\nafdF4sVFUvQSeuE/cwjJ4tl9s2bNYGxsjClTpmDWrFlIT08HACQmJuLvv/8GABw/fhzR0dEgCWtr\na5iYmMDExASRkZE4d+4cFAoFatasiVq1asHExAQAMG3aNHz55ZeIi4sDAKSnp+PIkSPllhUAfHx8\ncPDgQRQWFiI6OvqRjdmnXfvf9ZMnT8bKlStx9epVkER0dHSxTE5OTrh7926Jbbi7u6Nbt26YO3cu\nFAoFrl+/jl9//RVjx44tVfZn3ReJFxdJ0Uvohf88TOrUqYP58+dj27ZtaNasGQDRS8TT0xNdunRB\nnTp10KdPH0RGRgIAoqKi0KdPH1hZWaFbt26YMWMGevToAYVCgblz58LBwQHOzs7IyMjAkiVLAAAf\nf/wxhgwZgr59+8La2hpdu3ZFSEhIsSylmWYefv+TTz6BmZkZnJycMHHiRIwdO/aR9x9vy8jIqPhv\nI0aMwLx58/D222/D2toaw4YNK/b+mTt3Lr777jvUrVsXq1evfqKtXbt24f79+3BxccGwYcPwzTff\noHfv3k/08bgcz7ovEi8uRizvzpOEhISERLWi0jP6U6dOwdvbG02aNCneKHuYjIwM9O/fHz4+PmjZ\nsiV+//33ynYpISEhIVEOKjWj12g08PLywpkzZ+Dq6oqOHTti165dxUtyQAzuUCgUWLJkCTIyMuDl\n5YXU1FTUqFFDKx9AQkJCQuLZVGpGHxISAk9PTzRo0ACmpqYYPXo0Dh8+/Mg5zs7OxR4Uubm5sLOz\nk5S8hISEhB6plMZNTEyEu7t78Ws3NzcEBwc/cs6UKVPQu3dvuLi4IC8vD3v37q1MlxISEhIS5aRS\nir4sgSWLFy+Gj48PfH19cffuXfTp0wdhYWGwsrIqd1sSEhISEk9SmgW+UqYbV1dXxMfHF7+Oj49/\nIqgjMDAQb731FgAxBLxhw4aIiIh4qrDSQSxYsMDgMlSVQ7oX0r2Q7sWzj7JQKUXfoUMHREVF4f79\n+1AqldizZw+GDBnyyDne3t44c+YMACA1NRURERFS7g0JCQkJPVIp002NGjXw448/ol+/ftBoNJg0\naRKaNWuGTZs2AQCmTp2KL7/8EhMnTkSbNm0gCAKWL18OW1tbrQgvISEhIVE6VSZg6uFCDGo1EBsL\nREQAMTFAixZA165AzZoGFlJP+Pr6omfPnoYWo0og3Yv/Id2L/yHdi/9RliI2VUrRv/EGERkpKncn\nJ6BpU8DDA7h+HbhzB3jpJaBPH+C114BWrQBp/1ZCQuJFp9op+v37iaZNAU9PoHbtR9/PygLOnwf+\n+Qc4cwbIywP69wcWLAAkk7+EhMSLSrVT9OURJSYG2LkTWLMG+Ogj4PPPgVq1dCighISERBWkLLqz\n2mavbNgQmDcPuHoVuHZNNOWcOmVoqSQkJCSqHtV2Rv84J04AH34ItG0rzvIfCtiVkJCQeG55rmf0\njzNwIHDzpuih07YtsHYtUDWGMAkJCQnD8tzM6B8mOhoYNQrw8QE2bgRMTbXSrISEhESV47nejC2N\n/Hxg9GhApQL27QOsrbXWtISEhESV4YUy3TyOpSVw6JDoetm9O5CYaGiJJCQkJAzDc6voAaBGDeCn\nn4B33hEja2/cMLREEhISEvrnuTXdPM6ePaJXzo4dYnSthISExPPAC226eZxRo4ADB4Bx44Dt2w0t\njYSEhIT+eKFq+nXvDvj6Aq++KqZYGDHC0BJJSEhI6J4XStEDgLe3GFzVty9gZQX062doiSQkJCR0\nywtjunmYNm2Av/4SzTgBAYaWRkJCQkK3vJCKHgC6dRNt9cOGiblyJCQkJJ5XXlhFD4hmmw0bxPQJ\nkZGGlkZCQkJCN7xwNvrHGTECyM0VbfZ+flIyNAkJieePF17RA8B77wEymehff+EC4OhoaIkkJCQk\ntMcLEzBVFubNA86dEytZSUVMJCQkqgMvdFKziiAIYiK0WrWAP/6QatJKSEhUfaTI2HJibAz8/jtw\n6xawYoWhpZGQkJDQDpKN/jHMzYHDh4HOncXgqiFDDC2RhISEROWQTDdPITgYGDRItNm3amVoaSQk\nJCRKRjLdVILOncVyhEOGAOnphpZGQkJCouJIM/pS+PJLwN8fOHMGMDMztDQSEhISjyJ53WgBQRDT\nJNjZAVu2SJ44EhISVQvJdKMFjI2BP/8ELl8GfvzR0NJISEhIlJ9KK/pTp07B29sbTZo0wbJly0o8\nx9fXF23btkXLli3Rs2fPynapdywtgYMHgW+/BQIDDS2NhISERPmolOlGo9HAy8sLZ86cgaurKzp2\n7Ihdu3ahWbNmxefIZDK89NJLOH36NNzc3JCRkQF7e/snBamippuHOXYMmD5dnN07ORlaGgkJCQk9\nmG5CQkLg6emJBg0awNTUFKNHj8bhw4cfOWfnzp0YPnw43NzcAKBEJV9dGDQIGD8eGDMGUKsNLY2E\nhIRE2aiUok9MTIT7Q+ke3dzckJiY+Mg5UVFRyMrKQq9evdChQwdsr+YFWxctAmrUAL76ytCSSEhI\nSJSNSkXGGpXBBUWlUuHq1as4e/Ys5HI5unbtii5duqBJkyZPnLtw4cLi5z179qyS9nwTE2DnTqB9\ne6BLF+DNNw0tkYSExIuEr68vfH19y3VNpRS9q6sr4uPji1/Hx8cXm2j+w93dHfb29qhduzZq166N\nV155BWFhYaUq+qqMvT2wdy8weDDQogVQwkeRkJCQ0AmPT4IXLVpU6jWVMt106NABUVFRuH//PpRK\nJfbs2YMhjyWHeeONN+Dv7w+NRgO5XI7g4GA0b968Mt1WCTp3Fs04w4YBBQWGlkZCQkLi6VRqRl+j\nRg38+OOP6NevHzQaDSZNmoRmzZph06ZNAICpU6fC29sb/fv3R+vWrWFsbIwpU6Y8F4oeAKZNA4KC\nxMdt254MplKoFbiUdAlJeUlIK0hDakEq0grSio98ZT7qWdaDi5ULXK1c4WLlUvzc09YTdWvXNcwH\nk5CQeK6QImMriVwOdO0qul1OmwakF6TjRNQJHI08ijP3zqCJXRM0sGkARwtHOJo7wsnSSXxu4Qhz\nU3Ok5qciKS8JiXmJSMpLKn4elRkFL3sv9GnUB681eg0vub+EmjVqGvrjSkhIVDGkFAh64tTlCAz/\n6iA8Bx5FrDwcrzV6DYObDsaAJgPgaFGxuoRKjRJB8UE4E3MG/9z9B+Hp4ejm3g2vNXoNQ72HorFt\nYy1/CgkJieqIpOh1zN2su5h/fj7OxZyDj+lbuL5/MK4d6gFHO+3PvGVFMpyPOY+/7/2NA+EH4FPP\nB9M7TMdgr8GoYSyVFZCQeFGRFL2OSMlPwXcXvsPum7sxq8sszOoyC5Zmlpg+HcjIED1ydJn8rEhd\nhAPhB7DxykbEZMdgcrvJmNxuMtys3Uq/WEJC4rlCUvRaJleRixWBK/DTpZ8wvs14fNn9S9ib/y/S\nt6gI6NYNeO89YOZM/ch0I/UGNl3ZhJ03dqJHgx74rNtn6ObeTT+dS0hIGBxJ0WsJkth8dTPmn5+P\nAZ4DsKjnItS3qV/iudHRorI/fhzo2FF/MuYr8/Hn9T+xxH8JWju1xne9vkObem30J4CEhIRBkBS9\nFpCr5Hj/6Pu4lX4L297chlZOpdcVPHAA+Owz4MoVoK6ePSQVagU2XdmExX6L0athLyzquQhN7Zrq\nVwgJCQm9IeWjryT3su+h29ZuMDYyRsB7AWVS8gAwfLiYAG3iREDfY1fNGjXxUeePEP1RNFo5tkK3\nrd0w5egUxOfEl36xhITEc4mk6J/CyaiT6Lq1Kya3m4w/3vwD5qbm5bp+xQogKUmsO2sILM0s8WX3\nLxH5YSTsze3hs8kHC30XokhdZBiBJCQkDIZkunkMgQK+v/A9Nl7ZiL0j9uIlj5cq3FZMjJgq4cgR\nMQGaIYnPices07NwPfU6fhr4E/o07mNYgSQkJLSCZKMvJzlFORj31zhkFWZh31v74GzlXOk2Dx0C\nPv4YCA0FbG21IGQlORZ5DB+e/BBd3Lpgdd/VWvmMEhIShkOy0ZeDnKIc9N7WG27Wbjg3/pzWFOCb\nbwIjRogFSwRBK01WikFNB+HWB7fQwKYBWm9sjQ0hG6ARNIYWS0JCQodIM3oABcoC9PuzH9o6t8UP\n/X8oU5798qBSAa+8AgwdCnz+uVabrhS30m5h+vHpKFQX4vc3fkcLxxaGFklCQqKcSKabMlCkLsKQ\nXUPgau2KrUO2wthIN4ucuDjRr/7AAeDll3XSRYX4L0Zg3rl5mPvyXMzqMktn90BCQkL7SIq+FFQa\nFd7a9xZMTUyxa/guneeMOX5czHB59Srg4KDTrsrNvex7GH9oPEyMTPD7m7+jgU2D8jdCAtnZ4qiW\nnw8YG5d8ODgAzs7icwkJiUohKfpnoBE0ePfQu5AVyfDXqL9gZmKml37nzAGuXQNOnKh6ek4jaLA6\naDWWBy7H0leX4r2275VsxsrPB/z9xRErLg6IjRUf4+LEWoseHoC1tbgp8fih0QBpaUBWFuDmBjRo\nANSvLx4NGwLt2gHNm1e9myMhUUWRFP1TIIlpx6chIiMCJ985idqmtfXSLwCo1UCvXsCAAcCXX+qt\n23JxI/UGxv01Du513LF58GbUM6kjVlg5fx44dw4ICwM6dBB9Rxs0EBX7f0edOmXrpKjof4NEbCxw\n/z5w7x5w+bI4EHTqJPqkdu0qPuo7xFhCopogKfoSIInP/vkMfnF+ODPuDKxqWum8z8dJTBT15O7d\nQI8eeu++TChzs3Hsm7FwPPQPuiSboEZrH6B3b3GU6tYNMC9fAFm5SE8HLl4UB5egIFH5e3gAr78u\nujF17iyuHCQkJCRFXxLrLq7D1tCt8J3gC9vahnNsP30amDRJ1GH16hlMjCe5cQPYtAnYuRPo3h03\nX++EtzJ/wqAOb+P73t/rzcT1CGq1aCY6elQMTEhLA4YMAd54A3j1VaC2/lZkEhJVDUnRP0ZwQjAG\n7xqM4MnBaFi3oU77KgsLFwK+vsCZM0ANQ9YOKSwE9u8HNm4UTShTpoijkLs7ACBDnoEJhyYgXZ6O\n3cN3G/7e3bsHHD4sHqGhQN++wIQJQL9+Br6REhL6R1L0D5FVmIV2m9phbf+1eNP7TZ31Ux40GtEa\n0aYNsGyZAQRQqYCffwa++07cBJ02TczGVoKyJIk1F9dgqf9S/PT6TxjRfIQBBC6BjAzg4EHg11+B\n+HgxMu299wBPT0NLJiGhFyRF/wCSeGP3G/C09cTqfqt10kdFycgA2rcH1q0Tzc96gRTNIJ99BjRq\nJGZga9myTJdeSryE0QdGo2/jvljdd7VeN7JL5dYtUeH/+Sfg7S0q/BEjAAsLQ0smIaEzJEX/gJWB\nK7E/fD8uTLxgGBtzKYSEiBPpwEA9TERDQ4H/+z/Rzr1yJdC/f7mbyCnKwdRjU3E74zYOjDwAT9sq\nNntWKoFjx4CtW4HgYNEUNXMm4OpqaMkkJLSOlOsGQGB8IFYErsCeEXuqpJIHRE/ChQvFPPZyuY46\nSUoSZ7gDBwKjRonO/BVQ8gBQp1Yd7Bq+C1PbT0W3rd1w6M4hLQtbSczMgGHDxAi14GDxprZqBYwb\nJ27qSki8YDzXM/oMeQbabWqHDQM3YLDXYK22rW1IUQ/VqAH89puWi4vv3Cmm0Jw0SXTet7bWWtMh\niSEYuW8kRrYYicWvLtZ5dHGFyc4GtmwBfvhBXDZ9+qm4QVKGwKwslQp35HLckcsRWViIDJUKMrUa\nOQ8fGg3yNRqYGhmhlrExahkbo+aDx1rGxrA0MYGrmRnca9WCW82acKtZE+4PHm1r1NB6fiWJF4cX\n2nQjUMCgnYPQwrEFVvRZobV2dUlBgegi/vHHorWh0uTniyaLoCDRab9tWy00+iQZ8gyMPTgWhepC\n7B6+u2qnPlapgH37gFWrxKCtr74CRo4ETExAEnfkcpyXyRCWn4/bD5R7kSDA29wczczN0dTcHA6m\nprCpUQN1Hhw2NWqgjokJLE1MoCZRJAgoEgQoHnqep1YjQaFAgkKB+AfHf88BoLWFBdpYWoqHhQVa\nWligthQrIFEGXmhFv8x/GY5EHoHveF+YmphqrV1dExEBdO8OnDwpbtJWmKtXgdGjxcbWrQMsLbUm\nY0loBA2+u/Adfrn6C3YO24keDapoJNh/kMDp04hbuxZnXVxwdsQInLOxgZmxMXrb2KCDlRW8zc3h\nbW4OZzMznc6405VKXC8owLX8fIQ9OCILC9GgVi10srJCTxsb9LCxQcNataSZv8QTvLCK/lLiJQze\nNRiXplyCex13rbSpT/bvB2bPBi5dqkDyM0EQ6xcuXSqaKUaP1omMT+N09GmMPzQe/9f1/zC72+wq\nqZiu5efjj5QUHMvMRI5ajd4KBV49cgS9L11Co2nTYDRmjMH98ZWCgNtyOYJyc/GvTAZfmQymRkbo\nYWODng+ORpLil8ALqujVghodN3fE7K6z8U7rd7QgmWGYO1fcRzx9GjAt64IkLU30I5fJRLt8Q8ME\nNsXlxGH43uFoaNMQW4dsNUiaicdJUSqxIzUV21JSkKPR4F0nJ4xwcEBLCwsYGxmJM/zz54FFi8SN\n6wULgLffrjLJ1UgiqrAQvjIZ/pXJcF4mg7mJCYbY2WGwnR1erlMHplVEVgn9UibdyUpy8uRJenl5\n0dPTk0uXLn3qeSEhITQxMeGBAwdKfF8LopAkVwWu4mvbXqMgCFppz1Co1WT//uTHH5fxgps3SQ8P\ncu5cUqnUqWxloVBVyEmHJ7H5hua8k37HIDIoNBruTU3lwLAw2vj5ccLt2zyfnU1Nad+Nc+fILl3I\n1q3JY8fIKvhdEgSBoXl5XBQTw/aXL7Ounx/H3LrFXampzFapDC2ehB4pi+6s1Ixeo9HAy8sLZ86c\ngaurKzp27Ihdu3ahWbNmT5zXp08fmJubY+LEiRg+fHjFRqVSiMuJQ7tN7RA0KQhN7JpUqq2qQHa2\n6Hr51VfiRP2p+PmJgUGrVgFjx+pNvrKw+YpY1OSXwb/oLSK5UKPB1pQULI+LQ+PatTGxXj0Mc3CA\nZXk2N0mxqvuXXwJ2dqIprFs33QldSRIVChzLzMSRjAz45eTgFRsbvO3oiCH29uX73I+hzlFDEa+A\nKkMFjVwDQS5AU/jgUa6BUCjWxzSuZfzoUVt8NLUzhVk9M5g5mcG4prTi0AU6N90EBQVh0aJFOHXq\nFABg6dKlAIA5c+Y8ct7atWthZmaGS5cuYdCgQTpR9HwQ/drJtRO+euWrCrdT1bh1C+jZU8xf37Fj\nCSccPCimLtixA+jTR9/ilYmQxBCM2DsC77Z5F4t6LoKJsW68SfI1GmxKSsKq+Hh0srbGPA8PdKys\nK6lGA2zfLppyfHyA778vcxSxochTq3E4MxM7U1MRkJODgXZ2eNvREf1sbWH2mHmHJIpiipAfmo+C\nWwVQxCmgSFCgKL4IingFQKCme02YOpjCxMIEJuYmohI3N4ZJbfE5jAChSHjyKBSgylBBmaKEMlUJ\nEysTUenXM0NN55qo7Vkbtb1qw9zLHOZNzWFiKXkZVYSy6M5K7TglJibC3f1/m51ubm4IDg5+4pzD\nhw/j3LlzuHTpks42jw7dOYTorGjse2ufTto3FC1aAL/8IgZTXboEODk99OaGDcDixaIhX0euk9qg\nk2snXH7/MkbvH43Xd76OHcN2wM7cTmvt56jV2JCYiHUJCehpY4OTrVujjba8jExMxIRpo0eLeYFe\nfRUYPBj49luxSlYVxKpGDYx1csJYJyekK5XYn56O5fHxmHjnDibm2uDNREs43VYjPzQf+dfyYWJh\nAst2lrBoZQGrjlawH2aPmu41Ucu9FkzqmGjlN0uBUGepoUxRQpGsgDJJicLoQmQczIA8Qo7C6EKY\n2pqitldtWDSzgGU7S1h1sIJFcwsY1ZA2nCtLpRR9Wb4As2bNwtKlS4tHnWeNPAsXLix+3rNnT/Ts\n2bNMcuQqcvHRqY+wY9gO1KxRs0zXVCeGDhUzF4wYAZw9C5iZEpg3TyxA6+9vsE3X8uBo4Yi/x/2N\nOWfmoOPmjjg46iB86vlUqk01ifUJCVgcF4cBtrbw9fFBM13ltalVC/jkE2DiRHFwbdkSmDVLTCeh\ny9z8lcQm1wjDLtRAr9O1kf63HAUmMgR6ZSPJ2xgtJzvg9Z5NUM9V97mAjIyNYGpvClN7U1i0fLI/\nCoQiTgF5hBwFtwogOydD/PJ4KBIUsGhjAasOVrDqYAXrTtao3bT2C+1t5OvrC19f33JdUynTzcWL\nF7Fw4cJi082SJUtgbGyML774ovicRo0aFSv3jIwMmJubY/PmzRgyZMijglTCdPPxqY+Rr8zH1iFb\nK/hJqj6CIKZfb+CqwvrCyaLD/bFjgL29oUUrN3tu7sHMkzOxpt8ajG1dsT0F/5wcfBAZCSczM6xv\n0gTe+la2MTFiXcjAQNGcM3ZslfDQoUDkXsxF1oksZJ3OgjxSDpseNrDtZwvbfrao7VkbJPFvTg62\nJifjaGYm+tvaYrKzM3rb2IgeSFUIdY648si9lIu8y3nIDcoFlYRNTxvY9LRBnR51YO5t/kIrfp3b\n6NVqNby8vHD27Fm4uLigU6dOJW7G/sfEiRMxePBgDBs2rELClsTlpMsYtHMQbn1wS6vmgKpIToYK\nIQ1HomlDFeoH7anWWRlvpt3E0D1DMbDJQKzss7LMQW1pSiU+v3cPZ7KzsbpxY7zl4GDYH3lgoJhO\nQaUSN8PLuArVNvIoOVK3pyJ1eyqMzY1hP8Qetv1sYd3NGsZmTx+AslUq7ExLw5bkZOSo1Zju4oL3\nnJ1hV2afXv1TdL8IMl9Z8aEp1MCmpw3q9q4L2wG2qOVRq9xtkoRGkwOlMgVKZSqUylSoVGnQaAog\nCAoIQtGDQ3xOKmFkZApj45owNq4JI6Oaxc+Njc1hamoPMzMHmJraw9RUfDQx0c3vVS9+9CdPnsSs\nWbOg0WgwadIkzJ07F5s2bQIATJ069ZFzta3o1YIanbd0xqzOszCuzbiKf4jqgCAA48ejIC4TXrcP\n4Y9dZnj1VUMLVTlkRTKMPTgWuYpc7H1rL+pZPr3UlobEpqQkLLx/H+/Wq4cF9evDqqoUGSGBPXvE\nGX6HDmLaZz2Y01SZKqTtSUPq9lQUxRTBcYwjnN51gqWPZYUGv5DcXGxITMSRzEwMs7fHDFdXtLMy\nfAxEaRS4jbueAAAgAElEQVTdL4LsXxmy/8lG1uksmNUzg+0AW9gNtIP1S9YwNhUHOlKNwsJ7kMvv\nPHIoFAlQqdJgZGQGMzMnmJnVg5mZE0xNHWFiYglj41oPjprFz42MTEGqHih+BUhF8UCg0cihUmU8\ndqQDAMzM6qFWrQaoVashatVqgNq1Gxa/NjNzhpFR+VeFz33A1NqLa3E08ijOjDvzfC/dSGDGDNEF\n5+RJ+IaYY+RI4N9/gacsnqoNAgV88+832Bq6FXtH7EVX965PnHO7oADj7tyBhbExNjRtipZVdSVT\nWCjO6tesAaZPFxW/DlJP5AbnIn5VPLJOZ8FugB2c3nWCbV9brW1apiuV2JKcjI1JSXCtWRMzXV0x\nwsHhCY+dqgg1RN7lPGScTEFGWDCKzK+gRo9IoEE0VDXjULOmC8zNvR86vFCzpgfMzJxgYqJb859G\nI4dSmYSiovsoLIxBUdF9FBXFFB8aTQHMzZvBwqLlg6MFLCxawszM5Zn67blW9Cn5KWj5U0sETgpE\nU7umOpSsCjBnjrgLe/ZscebJ334TC0MFB1dLM/0THIs8hvcOv4dFPRdhWodpxd+HLcnJ+DImBosb\nNsRkZ+fqMaAnJABffCGOxEuXAu+8U+l0pBSIzOOZiF8RD0WcAm6fuKHehHqoUUd3qxo1iWOZmfgx\nMRHhBQWY4eqKqS4usK+CZh21WgaZzA+5uYHIyQlEfv4V1KrVEJamXWAc3RKFf7sh9686qOPjAPth\n9rB/0x41nauW44ZaLUNBQTgKCm4+OG6hoOAmSCUsLdvC2roTrKw6wsqqE2rWdCv+LTzXin7GiRmo\naVKzylWM0jpLlog+8v/+KwbuPMTcuWKs1NmzQM2q9Z2tEFGZURi+dzjaOrfF4n7r8fG9eEQXFmJ3\n8+b632zVBgEBYipSMzMxsVyJgRDPRlAISP0zFfEr42FsbgyPzzzgMMJB7y6HNwsKsCY+HgczMjDa\n0RGz3NzgZcD/CUkUFkYiM/MYMjOPIy/vMqytO6NOnZdgbd0N1tadUaNGnUeu0RRokHU6CxkHM5B5\nPBPmzc3hMMwBDm85VMiury+UyjTk5V1BXt4l5OVdQm5uCIyMjGBl1QnW1p3QoMH851PRR2dFo8uW\nLrgz8w7szZ+D6ezT2LBBNAP4+ZXosy0IYobd2rWBbdu0nMPeQBQoC/Dmqa/xb+2X8I5zffzcvC1q\nVQOTwVMRBOCPP0R32AEDRNfMR4IhnnJZkYDEDYmIXxUPyzaWcP/MHTa9bAy+oklVKvFTYiI2JiWh\nk7U1PnFzQy8b/chFqiGT/ftAuR+DRiOHnd0g2NkNQt26vcu12SkoBcjOyZB+IB0Zf2XA3NscjmMc\n4fCWA8wcq2aBov8gCYUiHnl5IcjNvQRPz+XPp6Ifc2AMWji0eK4iYJ9g2zZROVy48MyNPblcdPQY\nPBiYP19/4ukCNYnvYmOxKSkJbxhF4q+AL/DbG79hYJOBhhat8uTkiEFW/yn9GTNKzFZHgUjbnYaY\neTGwaG2Bht82hGVr3aaYrgiFGg3+TE3FmoQE1DI2xuceHhjh4IAaOlD4+fk3kJr6B1JTd6BmTTfY\n278BO7tBsLBoo5UBRlAKyP47G6m7UpF1PAvWXazhOMYR9kPtUcO6imz4PwO9JDXTFmUV5UrSFTqv\ndGa+Il/HEhmQY8fIevXI8PAynZ6cTNavT+7cqVuxdEmaQsFXrl7la9euMamoiCQZEBdA11WuXHB+\nATWCxsASaonbt8m+fcnmzckzZx55K+tcFi+3v8zLHS8z2zfbQAKWD40g8GhGBl++epUNg4L4Y0IC\nC9TqSrerUKQxPn4tL11qy8BAN969O5cFBbpPjqfOVzN1dyqvD7nOC9YXeHPkTWYcy6CgqjqJ7XJz\nc3n8+HHOnj2b7du3131SM21S1hl9vz/74U2vNzG943Q9SGUAwsPFKfqRI0CXLmW+7MYNMTr/4EHg\n5Zd1J54uuFVQgME3buBtJyd806DBI0E7KfkpGLV/FCxMLbB96PbnI1biv4Rpn3wCtG2LgqlLcO8H\nBQrCC9BocSM4jHSAkXH1s8MF5uRgRXw8AnNyMMPVFTNcXcvlj08SMtk5JCauh0zmCzu7IahX713Y\n2PSCkZH+8+CoslRI35uOlD9SUHS/CI5vO6Le+Hp6X2HJ5XL4+/vj/PnzOH/+PG7evImOHTuiV69e\n6NWrF1555ZXna0Z/5u4Zev7gSaXa8Gl4dUJmJtm4MfnHHxW6/PRp0tGRvHFDy3LpkJOZmXTw9+f2\nlJSnnqNUK/l/p/+P9dfU58X4i3qUTreo0vIZ2eVP+hsdYlzfzdRkPx+r1NsFBZx05w7r+vnxo8hI\nxhUWPvN8jaaIycm/MySkNYODmzMx8ReqVLl6krZsFNwp4L159xjoEchLPpcYtzqOijSFzvpLT0/n\nr7/+ysGDB9PKyoovv/wy58+fz3PnzrHwsftZFt1ZbRS9IAjs8EsH7r6xW08S6RmVinztNfLTTyvV\nzM6dpJsbef++luTSIesTElgvIID+MlmZzj8YfpAOyx24Pnh9ta83kHEig4Eegbw94TaV1+6Rb71F\nNmhAHjhQJfPfV4TEoiLOjo5mXT8/Trx9m3cKCh55X6nM4P373zEgwJnXrvVhZuapKv9/FTQCs85m\nMXxcOP3q+PHm8JvMOJFBQV15uWNjY7lu3Tr27NmT1tbWHDZsGLdv386srKxnXvdcKfq9N/ey3aZ2\nz4+t9nFmzRJtt1ooGrFuHdm0KZmWpgW5dIBKEDgjMpLNg4N5Vy4v17XRmdH02ejDkftGMreoas36\nyoIiTcHwd8IZ1DCImX9nPvrm2bNkixbigF/G/ZnqQKZSyUUxMXTw9+eImzd5KeM2IyI+oJ+fDW/f\nnsi8vOuGFrFCqGQqJv6cyMsdLjPQLZD3vrpH+d3yfZ9lMhk3bdrELl260M7OjhMmTODhw4cpL8fv\n4rlR9Eq1kk1+aMK/o//Wo0R65NdfySZNyFJG7vIwbx7ZoQOZW8V0oUylYt9r19gvLIyyCg5qcqWc\nU45Modd6L95IrR52KkEQmPJnCgOcAhj1aRTV+U/ZsFQqybVrSXt7cXVXxtVOdSBLnsw9Vyfz6Hkr\nLgkcz/Npd6r8DL6s5IXlMfKjSPrb+zO0dyhTd6dSU1TypFSj0fDs2bMcO3Ys69Spw2HDhvHo0aNU\nVrAy3HOj6Dde2shX/3hVj9LokcBA0sFB6zM4QSCnTBEnhwrdmRLLRYpCwVYhIZwRGUmVFn7gf1z7\ng/bL7fl76O9akE53FCUUMWxAGENahzAnJKdsF6Wmku+9J3pf/forqam+K1mVSsZ79+bTz8+WkZEz\nmCtP4OakJHpevMiXrl7liYyM50bha4o0TN2VytDeofR38Gf07GgWRIgmq/j4eC5YsIANGjRg69at\nuXbtWqanp1e6z+dC0RcoC+iyyoWXEi/pWSI9EB9PuriQx4/rpHmVinzzTXLUKMPrifiiInoFB3NR\nTIxWf9Q3Um/Q+0dvjv9rPPMUeVprV1tkHMtggFMAYxbGUKOswD8hOJjs3Jns1Im8WL02otXqfMbG\nLqW/vz1v357AwsKYR95XCQJ3pqSwZUgI2166xH1paaXX861GFEQWMPqzaG6pu4X9HfvTxsKGH0z7\ngFeuXNHqb+C5UPSLLyzmW3vf0rM0ekAuJ9u3J59RUF0bFBaSPXqQM2cabo/vnlzORkFBXB4bq5P2\n8xX5nHBoAr3We/Fa8jWd9FFeNAoNoz6NYqBHILMvVNInXqMRPbGcncnx48XAiSqMIAhMTd3FwEA3\n3rw5gvn5z16tagSBh9PT2enyZXoHB/OP5GQqDT0zqSRqtZoHDx7kyy+/TA8PDy4ct5B+PfzEWf5n\n0ZRHlc+W/yyqnaL/6KOPuGPHDkZHR1MQBOYU5dBumR0jMiIMLZ72+eADcuRIvWhfmYz08SHnzNG/\nso8oKKB7YCB/TEjQeV/bw7bTfrk9N4RsMKgpQB4l5+X2l3njjRtUZmrRFTgnh/zsM9LOjly+vOrY\n5B4iP/8mQ0N7MSSkNWUyv3JdKwgC/8nKYs/QUDYICuLPiYksrGYKPz8/n+vWrWOjRo3YuXNn7tmz\nh6qH9qIKIgsYPTua/vb+vNbnGtMOpFVspfcQ1U7RL1++nMOHD6erqyvt7e3p3c2brUa3YlRUlKHF\n0y5//SW60ulxoy09nWzVStyk1ZcOvJGfT5eAAG5NStJPhyQjMiLYdmNbDtszjFly7W1ul5WUnSn0\nt/dnwvoE3Q02ERHkwIHiBv6RI1XCHVOlymFU1Kf097dnQsJ6CkLlvMcCZDIODAujS0AAV8XFMV8L\n0ba6RC6Xc/Xq1axXrx6HDRvGwMDAZ56vKdQw5c8UXn35KgOcA3hv/j0Wxj073uBpVDtF/zDR96Np\nM96G70x5hw4ODuzTpw//+uuvR0bHakl8vBjVVMoXQRekpZEtW5Jff637vq7k5tIpIIA7nxEIpSuK\nVEX88MSHrL+mPgPj9HOf1XI1b793mxebXmReqJ72Ck6eJL29yT59yJs39dPnYwiCwJSUPxkQ4MLb\ntydSoUjVavtXc3M54uZNOvj789v795ldxX7/hYWF/OGHH+ji4sKhQ4cyLCys3G3k38hn5MxI+tX1\n4/Uh15l5MpOCpuyDd1kUfZVNgbDx8kYcjTyK428fR1FREfbv34+ffvoJ8fHxeP/99zF58mQ4l5DR\nsTIUFACxsUB2NpCVJT7+d8hkgJUV4OYGuLv/79HGphxZIzUaMU9Bnz5iYisDkJYG9OoFjBoFfP21\nbvoIzs3FkBs3sLFpUwx1cNBNJ2Xg0J1DmHpsKqZ3mI6vXvkKNYx1k6BKkajAzaE3UbtxbXht9oKJ\npR7D9VUq4OefxeIEI0cCixY9kc5aVxQVxSIiYhJUqiw0abIBdeo8WTRGW9wuKMCy+HgczcjA+y4u\nmOXmBiczw2WZVCgU2Lp1K5YsWYK2bdti4cKFaNeuXaXa1ORrkLorFUk/J0Gdo4bLNBc4T3SGqf2z\n00hU26RmKo2KDdc2pH+s/xPnhYaG8v3336eNjQ1HjhxZKbNObq44KZozh+zShbSwIL28xOcDB5Lv\nvCNuYs6fT65aRS5cSE6aRPbrJ8a1WFuT5ubipGryZHL/fjL7Wftu335L9uxJGngZmpJCNmsmiqNt\nwvLy6Ojvz+MZGdpvvAIk5iayz7Y+7LKlC6Mzo7Xefk5wDgNdA3n/+/uGdRHMyCBnzBBdddetE/3x\ndYQgCExM/IX+/vaMjV1WaTNNeYgpLOQHERGs6+fHmZGRvF9KegVtIwgCd+zYQQ8PDw4YMIDBwcE6\n6SPnYg5vj79NPxs/ho8NpyxA9tTvV1nUeJVU9Duu72D3X7s/83yZTMbFixfTzs6O8+bNY35+2fKE\nXL4s7md17Cgq9h49RFPG2bPkYxHaZSInhwwLE39b/fuTlpbkyy+T330n9lW8lxQQIJps9LApWRaS\nk8VBbfFi7bUZWVBAl4AA7k3V7vK9smgEDdcEraH9cnv+Fvqb1hRyyo4U+jv4M/1Q5X2htcaNG6Ip\nx8uLPHxY6/b7wsI4XrvWl5cvt2d+vmHMRSSZrFDw8+ho2vr5cUIJ6RV0wcWLF9mlSxe2b9+eFy5c\n0Hl/JKnMVDJuVRwvNrnIkNYhTPw5karcRwfWsij6Kme6IYk2G9tg2WvLMKDJgFKvS0xMxGeffYaA\ngACsXLkSI0aMeCJHtVIJ7N8PrF8PJCcD48cDvXsDnTsDtbRcWKawUEwhf+qUeMhkwPvvFuGDXd3h\ntP4r4I03tNpfVmEWbqXdQnh6OG5n3EaOIgcCBWgEDTTUFD8HAFdrV3jW9YSnrSea2DWBqbw++vQ2\nxaRJYuW7ypCgUKB7aCjm1a+PyVo2qWmLG6k38PbBt+Ft742Nr2+scCZMCkTMvBik7UlDy8MtYdmq\niuWLJ8Uv3+zZgKOjWMe2kmYFkkhJ+R337n0ON7dZcHf/HMbGhi8pmK1S4cfERKxPTEQPGxvM8fBA\ney0XNE9ISMDcuXNx7tw5LF68GOPGjYOxnovhUCCyz2Yj6eckyHxlcBztCJfpLrBsZVk9SwkeizyG\n+efn4+r7V8tVVODff//FzJkz4ejoiPXr16N58+ZITgY2bQJ++UUsov3hh2KBDhM9mlBvhxPrBp/B\nnsSX8OYYc3zyCdC6dcXayinKwfGo4whKCCpW7oXqQjR3aI7mDs3RzL4ZbGvbwsTIBMZGxjAxNil+\nDgDxufGIzoouPhLzEuFi4Y70297o5vwqfpg5EF72TctdzCFDpcIroaF4z9kZs93dK/bh9ESRughz\nz87F/vD9+HXIr+jTuE+5rlfnqnF77G2oc9Rosb8FzByqcDUitRrYuhVYuBDo1w/4/nvA1bXczSgU\nyYiImAylMgne3n/A0rKCX2Adkq/RYEtyMlbFx6OZuTnmeHhUuvKVXC7HihUr8MMPP2D69OmYM2cO\nLHVQ7L28KBIVSN6SjOTNyajVoBbaBbSrXjZ6QRDYbWu3CmeoVKlUXLduHevW7chmza7QxkbgtGkG\nc0gQ2bqVbNmSGfFyfv+9GAj76qtibZGyuAin5adx85XNHPDnAFottuKgnYO4OnA1T0efZnxOfKXM\nEEWqIt5Jv8OtgftpP+F9Wsx3Y8O1DTnj+AwejzzOAmXpy+EclYrtL1/ml3fvVlgOQ/B39N/0WOPB\n94++X+bkaEXxRQxpGcKIqRHUKKqRf3dODjl3LmlrK244lSMBUmbmKQYE1OO9e/Op0VT99OAKjYa/\nJSfTOziYHS9f5oEKRtseOXKEHh4eHDVqFO9X0VSwgkpg+uH06mej//f+v/T8wZNqTcU2K/PzyS+/\nJG1tNWzW7A+2bduL9+7d07Kk5SA6WgxueWikUSjI7dvJtm3FIkOnTz95WVp+GtddXMcev/VgnSV1\nOHLfSO6+sVun2RpzcsgePQX2e/c6v/ddyh6/9aDlYksO2jmIxyOPl5g1VK5Ws0doKD+IiKiWuUpk\nhTJOOjyJ9dfU55m7Z555bn54PgM9Ahm7LLZaflaSZGwsOW4c6eRErl//zIArQVDx7t05DAx0ZXb2\nef3JqCU0gsCDaWnsePkyvYKDuSUpiUVlmFklJSVxxIgR9PT05NmzZ/UgaeWpdoq+3/Z+3Hxlc7mv\nFQQxjbeHBzlmDJmYKO5cr1q1ig4ODjx06JAOJC4FjUb0sFm5ssS3BUHcK2vUSMxHc+8eGSuL5Ycn\nPmTdpXU57uA4HrlzhIUq/XkVFBaKsvTtKw6a2YXZ/PXqr2y3qR0br2vM1YGrmV0ouhUpNRoOun6d\nb9+6Ve3zk5yIPEG31W6cfmx6iflyci7mMMApgMm/Ve3UA2Xm2jXRc6BxY3L37ieWloWFcbx69SWG\nhfXXul+8vhEEgWezstg/LIzOAQFcEhtboi++RqPhxo0baW9vz3nz5pUrTbChqXaK3nWVK4tUReW6\nLiLifyU4z59/8v3AwEB6eHjw008/rXAa0Arx889iIqpSXCkLC8mPvg2n2cjxrL3AlrOOf8bE3EQ9\nCfkkKhU5caLoYpr5IF26IAgMjAvkmP1jaLPUhlOPTuXQi0f4+vXr1T4nyX9kF2Zz4qGJbLi2Ic/d\nO1f894wTGfS392fG0arhLqpVzp4Vc1m3b19cvzY9/Qj9/R0ZG7uUwnNW++FaXh7HhofT1s+Pn0ZF\nFVe+unXrFl966SV27dqVN6pTebYHVDtFvypwVZnPVyhEM42dnejj/iwdnpGRwYEDB7Jr166Mi4vT\ngrSlcP++mE/81q1nnhacEMyhu4fScYUjZx/5lkPHZNHDg9y3z7BR7YIguqC2aPGkN2hSbhJfO/QJ\nayyx52vb+jI0OdQwQuqI45HH6brKlVOPTuXdX+/S39GfsoDnJyf8EwgCuWcPNU0bMWppfQb61qNM\nFmBoqXRKbGEhP4mKos3582w9Ywbr2tnxp59+oqaaTlqqnaIva5rZ+/fFyfKQIaKZpixoNBouXbqU\njo6OPHnyZCUkLQVBEJcY33//1FOScpM4ev9ouq1247qL65iv+F8MgK+vmJOmXz9SjyliSmTZMtEc\ndu2hhJD70tLoFhjIewW53BCygU4rnPjuX+8yVqabzJSGILswm6snreY+m308cPhA9bXJlxGFIpVX\nr7zM60daUdnUWbTfVcOZbXkIDw+nT7t29OrVi06HDvG1a9d4IiOjWpohq52iLwvHjolxR6tWVWzW\ne+HCBTo5OXHLli3lv7gs/PqruNNawhJDrVFzffB62i+355wzc57q1aJSkQsWiDUnjh7VjZhlZdcu\ncXFy6BAZnJNDe39/XnnIayOnKIfzzs6j7TJbfv7P58U2/OqKIAi8O+cug5sF0/+iP1tsaMHXd7zO\n+9lV0/OisuTmXmFgoAfv3ZsvmmrkcvHH5eREvv02GRlpaBG1ikaj4dq1a2lvb89NmzZREAQqNBpu\nS06mz6VLbBYczF8SEymv4knUHkYviv7kyZP08vKip6cnl5aQW/3PP/9k69at2apVK3br1u2pSX9K\nE1alElMVuLuT/k9mRigXERERbNiwIb/55hvtztYSEkStGPqkOeNS4iW239Ser/z2Cm+mls3f08+P\nrF9fTMOg50jvRwgOJp1aF9L6dAD/Sis5CjQhJ4GTDk+i4wpHrg1aS4W66qXQLQ1BEBj1aRQvtb1E\nZYY4UCvUCn7373e0W2bHVYGrqNJUraRalSElZSf9/e2ZlrbvyTdzc8Xwbnt7Me+HjmoJ6JPY2Fj2\n7t2b3bp1KzF1iiAIPJeVxUHXr9PR359f37vH5CqYCvpxdK7o1Wo1GzduzJiYGCqVSrZp04bhj5XE\nCwwMpOxBOt6TJ0+yc+fO5RY2KYl85RXRIqKtgtfJycls27Ytp06dSrU2Rm9BIAcNEv2UH0JWKOPM\nEzPptMKJv4f+Xu6BJTtbTFvfsqXhVtM5KhW9A0LoOiuO77777EHnesp19v+zP1tsaMHgBO3nAdEV\ngiAw6uMoXm5/mcqsJ1djkRmR7PV7L7bb1I4X46tXpafHEQQ17979gkFBDZmXV0qhlqys/3yWyfff\nJ2Ni9CKjNhEEgdu2baODgwMXL15cpt/77YICTouIoI2fH8eGhzMkp4wlIA2AzhV9YGAg+/XrV/x6\nyZIlXLJkyVPPz8rKoqura8mCPEXYs2fFwjqLFmk/F1hOTg5fe+01vvHGG5V3p9qxQ9TGD80Azt47\nS9dVrpxyZAozCirutSEIokXI3p7csEG/G7UqQeCAsDBOjYhgfr7AESPIrl3FxGhPl1fgrhu76LjC\nkZ//87leXUQrgiAIjPwwkpc7XqYq++kzdkEQuO3aNjqvdOaEQxOYkqf/FMyVRaXKZljYAIaG9qJS\nWY4cPRkZYjEDW1txhl9NAuRycnI4atQotmjRgqElrLRLI0up5Iq4ONYPCmKXK1e4MyWFiiq2aatz\nRb9v3z5Onjy5+PX27ds5c+bMp56/YsUKTpkypWRBShD2jz9Ee/w//1RGymejUCj4zjvvsFu3bsz8\nz5+wvKSkiIKGhJAUbfELzy+k80pn/nNXe8JHRIiecCNGiH7u+mBmZCT7XLtW7Eap0YhJ4OrXf3ST\ntiRS8lI4Yu8Ieq330lte+PIiaARGfBDBK52vUCUrm1kmpyiHs/+eTfvl9lwduJpKddWPGCVJuTyK\nFy82ZWTkhxWPcs3MFFetdnbkhAlV2oZ/+fJlNm7cmNOmTav0RE4tCPwrPZ29QkPpEhDAb2JiqoxZ\nR+eKfv/+/WVW9OfOnWOzZs2YlVVy1R8AXLBgQfExbdp5eniQ4c8uN6kVNBoNP//8c3p7ezO2IrbI\nt94iP/+cJJmcl8zef/Rmz997MilX+24zRUXku++K+73x8Vpv/hE2JSayWXBwiQEm/23Sbt5c+gpj\n3619rLeyHj89/WmZ0iroC0EjMGJqBK90vUJVTvlt77fTb7Pv9r5s9mMzrQ7oukAmC2RAgBMTEzdq\np8HsbDFvt52duGlbgYIbukIQBK5fv5729vbcs2eP1tu/npfHKXfu0MbPj6Nu3aJvdrZePbPOnz//\niK7UuaIPCgp6xHSzePHiEjdkw8LC2Lhx42fmjv9PWI2G/L//EwOg9OHy/jBr1qxhw4YNy5fb4sQJ\nMcJQLueZu2fovNKZX5//usJpHMqCIIglQ11cyIs6MhcH5eTQwd+fEc9I/xoeLlqr3n679PQp6QXp\nHLN/DD1/8KwSNm5BI/DO5Du8+tLVJ9K+lqsdQeBft/9ig7UNOHT3UEZmVL0Zblrafvr72zMj47j2\nG5fJRD9cZ2exiMOFCwYNAsnOzuawYcPYrl07nZcglalU/CE+nt7BwWweHMwfExKYY4AKWDpX9CqV\nio0aNWJMTAwVCkWJm7GxsbFs3Lgxg4KCShVWqRRTcXTr9r+oTH2zbt06NmzYsGwze7mcbNSI6uNH\n+fX5r7VuqimNI0fEOhM7dmi33RSFgm6BgTycXroNt6BALLrStGnpphySPBB+gA7LHbg2aK3B/NMF\nQeCdKXd4tXvllPzDyJVyfn/he9ots+PMEzOZlq8lr4FKEh+/hgEBLszNvaLbjgoLyU2bxElPt27i\nl1PPtuyQkBA2bNiQM2fOZFFR+SLsK4MgCDyfnc23bt6kjZ8fp0ZE8HI5EsdVlLQ08r339OReeeLE\nCTZt2pSNGzfm4gdVLDZu3MiNG8Ul4qRJk2hra0sfHx/6+PiwY8eOJQsCcMAA8vXXK1YARJusWbOG\njRs3ZnxptpEFC5j11iC++ser7PV7L52Yakrj+nWxzviXX2rnd6XUaPjK1aucX85kcDt2iKacn38u\nfUJ3N+su229qz2F7hund714QBEZ9EsUrXa5Qnaf9VVdafho/PPEh7ZbZ8fsL3xvMVCUIakZGfsTg\n4OYsLNRjDIBaTe7ZI9oWW7QQvQh07Bv8n6nGwcGB+/aV4CqqR5KKivjt/ftsEBTEtpcu8aeEBMp0\nME1CI08AACAASURBVMs/cUJcRM2eXQ0DpiZM0GkFtHKxatUqenp6MuFpFaGionivoQ2913jy45Mf\n69RUUxppaWT37mJAY14l61LPioriwLCwCkUIRkSQbdqI7qCleaMVqYo44/gMNlrXiFeSdDzbfIiY\nhTEMaR1SogulNonKjOJbe9+i6ypXbrmyRa/fD7W6gDduvMnQ0F5UqQwUwCYIYmrW/v3F4KuFC5/t\nqlVB5HI5x48fz1atWjE6WvulIiuKRhB4OjOTIx7M8ifcvs0A2dPLAZaVggLygw/EeKJzD1IyVTtF\nX9Wij1esWMEmTZo8qewFgcHDu9B5kTXXXVxnGOEeQ6EQnSA6dxY94SrCjpQUNr54kVmVGG3lcnLa\nNNEr5++/Sz9/z809tF9uz58v/axzU07cqjhebHqRihT9eUtcjL/I7r92Z/MNzbnn5p4S0z1rE6Uy\ng1eudGF4+FhqNFXDK4S3bpFTppA2NmLGvOvXtdJsbGws27dvz1GjRpW5lKghSFUouDw2lk0vXmSz\n4GAui41lYgVMS5cuiRUi33770drU1U7RV0WWLl3Kpk2bMumhxDOHfv2c9nNMeOjmfgNK9iSCIDr/\nNG9e/tK01/LyaO/vz7DKLgkecOqUmCdnypTSZ/cRGRFs/XNrjt4/usz5jspL4i+JDKofxMI4/fv0\nC4LAE5En2PGXjmz5U0vuu7VPJwq/qCiRISEtGB09u2rm50lPF6NtnZ3F6juHDokh7xXg/PnzrFev\nHlesWFE1P2sJCIJAP5mMkx547AwIC+Oe1FQWlmJzVanE2+bgIHq7PY6k6LXE4sWL6eXlxeTkZK77\ndzmdPzNmyBEtuanpgGXLRLt9RETZzs9UKtkoKIg7tby0zskRgyk9PETF/yzkSjknHJpAn40+jJNp\n190qdVcqA1wCWBBp2M0fQRB4NOIo229qz9Y/t+bB8INaU1JyeRSDghoyNvZJr7cqx3/Vd7p2FW0Q\n334rVqsvA4IgcM2aNXRycuI/ugyw0TH5ajW3p6Tw1WvXaOvnx+kREQzKyXni+xAXR778Mtm799O9\nECVFr0W+Xvg17cfa02u+LWMmDjW0OKWyZYs4cbp69dnnaR5Evn6iQ1e0v/8WTTmTJoneeE9DEASu\nCFhBl1UuWnPBTD+STn9Hf+Zd181KoSIIgsDDdw6z7ca29Nnow4PhBys1w8/LC2NAgAsTEzdpUUo9\ncfXq/8w6o0aR//771N18uVzOd955hz4+PoatHKdl7hcW8puYGDa9eJGNgoL41b17vF1QwCNHxDjM\nJUue7WghKXotoVArOHzPcLp+7shuVjVYWEVrSD7OgQPics/X9+nnfH//PrtfvUqVjpe/ubmi7d7N\njTx48NmeOUfuHKH9cnvuulHCOrUcZJ/Ppr+DP3OCq2aekv988Dv80oFe6724+crmchfekckC6O/v\nyNTUitVZrjJkZ5M//EB6e4u2x9WrRVPPA5KSktipUyeOHj2aBYZ2y9MRgiDwcm4uP7oVRYtRiTSr\nV8QPD6aUas+vdoo+La1q2bxJslBVyNd3vM43d73Jglde4sh27Ths2DDtJELTA2fPisr+8OEn37uQ\nnU2ngADG69Hn+Nw50evutdeeXZclLCWM9dfU59fnv67QbDcvLI/+Dv7MOltyJHZVQhAEno85z/5/\n9qfzSmcu9VtKWWHpxU4yM0/R39+BmZk6rK+gbwRBLBU3bhxZpw45YgRDf/yRHh4e2s82WwWJjhaL\nfg0eIvDA3WxOuH2bNn5+7Bkayp8SEphSQtqFaqfo/5+98w5vqnzf+N1CGaWs7gWUFlp2mQKCAl9A\nBRQEEVEZiohb1J8KKMPNXoqCgLJEFAeykT26KS2ddNE90pE2ndnn/v1xGFY60jRpUuznut7rpMnJ\ne56kyZ13PMPPz4Hl5TouLDcA5apyjt87njN+m0HVnh/JQYOoKC/n2LFjuWDBgkbzobt6Vcxt//PP\nd+/LV6nYKSCAx/V10akHKhW5ebPod//OO5U9CP6JpFTC4TuHc8ZvM+rkjy5PkzPAPYC5BxpfvdMI\nSQRn/TmLtqtt+cHpD5hRXHUsR17eb/Tzc6RMVs+c3eaMTMbDr75K++bN+autLbl0aaNJpqYPv/4q\nDso2bao845VrtfwrP5/PxcSw/ZUrHPMv0W90Qp+VtZUhIX2o0ZjeVapUWcpRu0Zx9p+zqZYVigve\nt/INlJSUcNCgQVz2r5TE5kxUlCj2+/eL6/KTIiP5gYn9jvPyxOVZZ2dxT6GqdUi5Ws5Zf87i4O2D\ndcoWqZKqGNwzmOkbGjh/hoFJLUrlwpML2XFVR04/OJ0XUy7eGVhIJPvo7+9Se4rhRowgCFyzZg1d\nXV0ZHBws5tJZuFAcHYwYIUbmmWCQYgwUCtE33stLHJTVRIVGw0P5+Xz2luj/Lzy88Qm9IAiMjZ3N\n2NjZJh0ty+QyDt85nPOPzBcDXZYsETOJ/YPc3Fx2796d33zzjYmsrDvR0eLv1bObCjjs2jWzKewd\nGio6YPyjRnUlBEHgJxc+oddmLyZKq9801lRoGDYijEn/Zz6BM/WlWFHMLcFb2GNLD/b5rg9/DphL\nP39XlpXVXI+4MaNUKjlv3jz6+vreW+NZpRLLrj3zDNmunVhP9OBBMYCjEZKeLpZFnTq1ZkeFqrgt\n+o1O6Ekxqi8kpI/hsuzVEWmFlIO3D+Ybx98Q14aTk8UMfVU4picnJ9PNzc0oGfKMxc/BpbS0U3LD\nD2YSTHMLQRCXlrp1I0ePFqtr/Zvtodvpss6FV7PuHfYIGoFRT0Yx5tkYCtrGsaRWFwRB4LmId3nk\nbGv22dyeC08uZGxeA6R2bWCkUilHjRrFyZMns7S2mI7iYnL3bnHDp2NHcu5csdaomaQPro0zZ8TZ\n7OrV9csD1yiFniTLy+Pp52fPkpJa5jEGJq8sj75bffne3+/dnVE89ZTo51sNERERdHR05Pnb8chm\nTKFKxS6BgfzGv5CuruJ3xNxQq8X0KF26iAXSb6X4v8PhuMN0WOPAU4l3HfMFQcwpH/6/cGoV5jFL\nMTSZmVsYENCZFRWJTC1K5eKzi+m8zpnDdw7njms7WKwwT8+iupCSksIePXrwvffeq7uzQ1aWuLg9\nYoQo+nPmiCP/BnQ00BWtlvzyS3F2bQjZaLRCT4qbTYGBXahSNcw6nLRCyn5b+3HJ2SV3Rf7iRVFx\napkWnjt3jo6Ojrxx44bxDdUTQRA4JSqKC2/5y9+4IaY53rXLtHZVh1JJfvcd6eYmzs7/mRnTP92f\nTmuduPf6XpJk6pepvOp7Va+c8o2B9PQNDAzsyoqKyr7jaq2aR+OPcuovU9l+ZXvOPTSXl1IvNRon\ngX9y7do1urq6cvNmA6QUycwUd/tHjhRFf/Zs8tChhqvWUwNFReQTT4hLlXWNXq+ORi30JJmY+B4j\nIh4Tq9MbkRJFCR/Y8UDlkbxGQ/bvT/6im3/yrl276Onpydxc8/T02JyRwcGhoZXKoN24IQrpDz+Y\n0LBaqKggN24Up7iPPSYGXwkCGZsXy84bO3PZN8sY0CWAiizzG7kZgrS01QwK8qJcXnPa7NyyXK4P\nWM9e3/Zit6+7cfmF5byRb74Dj39y8uRJOjg48I8//jB851lZon/+2LFk27ZiXeft28VC1A1MRIS4\n4frWW4ZdXWr0Qq/VqhgWNoKpqV8Z7brlqnI+vOthvnL0lcojoR07xBFBHUZHS5cu5bBhw+pff9bA\nhN/KY5NUhV1xcaLY791rAsPqgFwu/iD17k327SvORCKOxdDzLU++sf8NoycLMwWpqV8yKMibCoXu\nQz9BEBiSGcJ3Tr1Dl3Uu7L+tP1ddWcXUIvMM8tu5cyednJzo7+9v/IsVFoobQTNnipG4DzwgJpEJ\nDzd6sZSDB0WHoZ9+MnzfjV7oSVIuTzOav7BCreBjPz3GWX/OqiwUxcXiEDI0tE79CYLA5557jk89\n9RS1ZuLRUq7RsGdwMPfVkMcmJkZ8uSZO5a0TgiDmzXlmRDkPWfpz9bxkDv1+BF/46wWqtffP0k1a\n2qpbIq//yFOj1fBCygUuOLqAdqvt+OAPD3Jz0GaD5xLSB0EQuHz5cnp6ejJe16RMhkSpFF283nqL\n7N5dTKU8Z474Q6BDwR1d0WjEWhFdupDXjJSNWxeht7h1osmxsLBAdaYUFBxBYuJbGDw4HFZWtga5\nnkbQYMZvMwAAB58+iOaWze8++OGHQH4+sGtXnftVKpUYN24cHnzwQaxevdogttaHNxISUKTRYH/P\nnrCwsKj2vOvXgUcfBX78EZg0qQEN1AO1VI2wYWGwfL4Ttqa74o8j5bCeNxXeXdrj7wX70cqqhalN\nrBcZGeuRnb0N/ftfRMuWbgbpU61V40zyGfwa8yuOJxyHRwcPTPGZgid7PIk+jn1q/GwYGrVajQUL\nFiAmJgbHjh2Do6Njg127Wm7eBP7+Gzh1Crh0CfDxEb8Q48YBw4YBLVvWucviYuD554HSUuC33wBj\nvcyatPMOxvmNqTu1mZKYuJBRUU8aZKNJK2g5689ZfHTfo/fmFklMJG1t67WGV1BQwO7du/P7702b\nZOpoQQG7BAZWWdy7KoKCxMg8c04KqFVoGfZQGJM+uOsrX1BArt+kYLuXp7L1y49x+eflBtvoamgy\nMjYxMNCTcrnxRt1qrZoXUi5w4cmF9Njkwa6buvLdU+/yQsoFqjTGLchSXl7OSZMmceLEieabQ16p\nFN1hFi0ihwwhbWzENf4vvyQDA3VKrRwXJ+aOf+MN4xdT0kXGG43Qa7UKXr06kBkZX9frOoIg8JWj\nr/DhXQ9XHVb/5JPkV/XfE0hMTKSTkxNPnjRNHpIcpZLO/v68XF1+gWq4dElcS6zKj93UCILA2Fmx\njH4qukpfeZVGzYk7ZtN5yUPs4CTjxIni2mhjyYGVmbmFgYEeDVr6TxAEXs+5zk8vfsrB2wez/cr2\nnHJgCr8L+Y43Cw2bbkAqlXL48OGcM2cOVeZSSk4XiorEGrjvvCOWUGvXjpwwQdSJy5fvKZV49Kg4\nYNqxo2HMu6+EnhRzbov+9fovdi06s4gP7HiAJYoqiveeOycmcjdQjUs/Pz86ODgwKirKIP3pilYQ\n+GhEBJfqmcr177/FD+q/fdhNTcqnKQx9IJSa8up9rLWClq8ff50Dtg7iNz/kc9w48Xv5zDPk77+b\nr+hnZW275Sdv2vS7eWV53B+5n3MOzaHTWid2/7o73zzxJg/HHWZhhf4J4jIyMtirVy++//77ZrN/\npTf5+WJq2HffFUf8bdqQw4dTeP8DrpoTQ1dnDQMCGs6c+07oSVIi+ZlBQd2pVte9yvrGwI3ssaUH\nC8qr8M3XakV3SgNHuf7000/s2rUr8/LyDNpvTWzOyODQeqY4uJ0LOyLCgIbVA8l+CQO7BFKZU7tf\nmiAIXHJ2CXt924tZJVnMyyO//16cfbdvL4r+H3+Yj+hnZ+9kQIA7KyqMVxNAH7SCluE54Vx5ZSXH\n7hlLm69sOGDbAL5z6h3+deMvSiukOvUTGxvLzp07c82aNUa22ESUlVF+6iJn+0ZwYNsEZtj0ID09\nRe+eDRtIf3+jpmi4L4WeJOPiXmJs7PN1Wq//OfJnum9wZ5qsGn/kPXvIYcOM4mb18ccfc8SIEVQ0\nQJReZA2ulHXl11/F6D1TOEX8E5m/jH4OfiyLqtua7sorK+m12auSa2FuLrltm1ixx8ZGjL7dvJlM\nSDC01bqRk7OHAQFuZpW1tTqUGiX90/355eUvOX7veNp8ZUPfrb5888Sb3B+5nzcLb97znQwKCqKT\nkxN3m2MYtoGQSETpmD791uBBqyVjY8XQ89dfF5M4tW5NDhggZvHbulXcEDPQSOO+FXqNppzBwb2Y\nnf2jTuefTjpNx7WOjMqtZgmlokIsaeZnnJSvWq2W06ZN45w5c4watVih0bBPSAh36ViWTRd27hRd\nw6orY2Zs5Kly+rv4s+CEfhHSm4M2s8vGLkyS3pvoTCYTl3PmzRN/0G4Hs5w40TBBlLm5B+nv78yy\nssaZs+a28K/1X8tpv06jyzoXOq515OQDk7nyykqu3r2advZ2PHr0qKlNNRrh4WKpzOXLa64CRblc\n3Mj95hvxAzdggCj+vXqRzz9PrlsnekFIJHUebN63Qk+SZWXR9POzq/VLEpoVSvs19rycern6k1au\nFNPHGZGysjIOGDCAq1evNto13k5I4NPR0Qb/MVm/XvQgaOigX02phiH9Quqdcnjb1W103+DOuPy4\nas8RBDHNwldfkQ89JC67DhsmOl4cP173zIK1kZ9/hH5+jvdVqmFBEJgmS+Ov0b9ywpIJbN62OVsu\naEmfb3z47O/Pcq3/Wp5LPlevtX5z4s8/RccFHYPn70WpFEsp/vAD+eab5MMPiykb7O3FzH5vvimu\nOfr7i8Fe1aCLdjYKP/rqyM7ejuzs7zBwYBAsLVvd83iiNBGjdo/Cd5O+w5M9nqy6k/x8oGdPICAA\n8PbWx3SdyczMxLBhw/Dtt99iypQpBu37TGEh5sXHI2LwYNhaWRm0bwBYtgw4fhy4cAFo397g3d8D\nBSLmqRg0t20On50+9fbz3n19Nz4+/zH+nvU3+jj2qfV8uRwICgIuXxbdqq9eFT8eo0YBQ4cCQ4YA\nXbsC+phVVHQWsbHPoW/fY2jX7gE9Xo15s337dnz66ac4efIkevbuibiCOITlhCFMEoawnDBcl1yH\ng7UD+jn1Qx/HPneat503WjQz/xgIEli1CvjuO+DQIWDwYAN3LpEA0dFAVNTdY1wcYG0N9OhxT7Pw\n9KxVOxu10JNEbOzTaNHCFd27f13pMUmZBCN+HIHFIxbj5UEvV9/J228DggBs2aKP2XXm6tWrmDhx\nIs6cOYP+/fsbpM8itRq+oaH4wccH420NE1D2b0jxrYqIEGNKrK2Ncpk7JH+UjGK/Yvie9YVlC0uD\n9Hkg6gDeO/0eTjx3AgNcBtTpuSoVEBoqCn9IiNgUCvFLPmTI3ebsXLP4Fxf7ITp6Knr3/hMdOjxU\nz1dkfqxevRrbtm3DmTNn0K1btyrPESggqTAJUblRiM6LRlSeeEwrToNXRy/0cewDH3sf+NiJzdvO\nG21btm3gV1I1SiXw8stAbCxw+DDgZph4ttohgexsUfDj48XjrWaRkXF/Cz0AqNVFCA3tj+7dt8De\n/gkAQImyBKN2j8K0HtOwbNSy6p+cmAgMHw7cuAE4OOhrep05ePAgPvjgAwQHB8PZ2bne/T0fGwtb\nKyt80727AayrHkEA5s4FCgvFkUwLIw2+cn/KRcryFAwMHogWDoa9yJ83/sRrx1/DsWePYYjbkHr1\nlZMjjvRvt9BQUeT79q3cevcGbGyAkpKriIqahJ4998PWdryBXpF5QBJLlizB0aNHcfr0abjpoYAK\njQJxBXGIzotGvDQe8QXxiJfGI1GaiI6tO8Lbzhvedt7w6ugFz46ed1qHVh2M8IrupaAAmDpVjHDd\nuxdo06ZBLlsrumhnoxd6ACgu9kdMzFMYNOgaLJs7YtLPk+Bl64XvJn5X85R/+nRg4EDgo4/0tFp/\nbk9tL168iFat7l120pVf8/KwIjUVYYMGwbpZMwNaWDVqtfi2WVsDP/0EGPqSJUEliHoiCv0v9Eeb\nPsb5Jh1LOIZ5h+fh0DOHMKLzCIP1e3vWHRVVud24AQwaFInFi8cjImIH2radjO7dxaWgLl0M/x42\nNFqtFm+88QbCwsJw8uRJ2NnZGbR/gQIySzIRXxCPBGkCUmQpSC5KRnJRMm4W3YSVpRU8O3qia8eu\n6NSuEzq373yndWrXCY5tHOu99BcXJ6YGefpp4KuvAEvDTDINwn9G6AEgNfVzFBWdx+a0ziiUF+HP\nZ/6snL/m3wQEAM88I06DjL0OUQUkMXPmTFhZWWHfvn16fRCzlEoMDA3Fsb59MaRdOyNYWTUKBTBx\noihUW7fqt05dZb/pCoQNC4PPdh/YPW5Ysfg3p2+exqw/Z+G3p3/DKI9RRr1WaWk8wsPHoKJiI+Li\nnkFCApCQIE4oc3MBDw9R8D087r3t7GxeovJvVCoV5syZg7y8PBw+fBht2zbsEgtJSOVSJBclI6Uo\nBRklGUgvTq/UylRlcGvnBte2rnebjXh0aesCZxtnOLZxhG1rW1ha3Ptmnz0LPPccsHo18OKLDfry\ndKJBhP7UqVN45513oNVqMX/+fCxatOiec95++22cPHkS1tbW2L17NwYMuHd9tL5CT2rx6i+eCC4U\n4P9yHNq0qGE0SAIjRgALFgAvvKD3NetLRUUFRo0ahWnTpmHJkiV1ei5JTIiKwvB27bDCw8M4BtZA\naSkwdqyY8+mrr+rfn7Zci/CR4XB8zhGdP+hc/w514HzKecz8fSYOPHUAYz3HGuUaCkUawsMfgofH\np3BxuVclKiqAlBQgLQ1ITb17vN2KigAnJ3Et2NW18tHZWVxGcHQE7O2Nt5RWHXK5HNOnT4eVlRV+\n+eWXes1MjUm5qhzZpdl3Wk5Zzp3bWaVZyCvPQ25ZLkpVpbC3todTGyc4tnGEYxtH5Fx6AsH7JmHB\nyrMYPlINO2s72Fvbw661HTq27ojWzVs3aEK4qjC60Gu1Wvj4+ODs2bNwc3PDkCFDcODAAfTs2fPO\nOSdOnMCWLVtw4sQJBAcHY+HChQgKCtLL2JrYGbYTX135Al/3K8dDAw+jffsHqz/5jz+Azz4DwsJM\nPm/OysrC0KFDsWXLFjz5ZDWeQVXwXVYWdksk8B8wAFYmGvIVFAAPPyyOcj74QP9+SCL2mVhYtrZE\nj909GvSLcyXtCp46+BT2Tt2Lx7o9ZtC+VSoJwsMfgpvbW3B3f1uvPpRKcS8gOxvIyhKPt2/n5gJ5\neWIrKADathVF38EBsLMTm63tva19+8pNj8SMKCkpweTJk+Hu7o5du3bBygieXg2NSqtCfnk+8srz\nkFOSh2++cse1C6546otdoG0CCioKIJVLxWOFFEWKIggU0LFVR3Rs3REdWnW4c7tdy3Zo37J95WMr\n8WjTwgY2LWzQtkVb2LSwQZsWbWpefagFXbRT/94BhISEoFu3bvC4NaKcOXMmDh8+XEnojxw5grlz\n5wIAhg4dCplMhtzcXDg5OdXn0pU4mXgSS88vxeUXL8OWN3DjxvMYPDgczZtXsUmjUgGLFwPffmty\nkQcANzc3HDp0CBMnTkTXrl3h6+tb63MSKiqwPDXVpCIPiKPI06eBhx4COnYE5s/Xr5/0L9OhTFei\n/8X+DT46eqjLQ/hr5l948pcn8eOUH/G49+MG6VetLkRExHg4Oc3RW+QBUYRvL+PUhCCIo//8fPEH\noLBQbFKpeExJuXu7uLhya9YM6NABaNdO/LGwsbn3aGMjrnBaWwOkFN98MwHduw/CrFnfIjjYEq1a\noVJr3Vo8tmwJNK+XyjQcLZq1gFs7N3Ro5oZPXwPkMiDuOmBr+161z1FoFCiSF0GmkKFIUYQieRGK\nFEUoUZagRFmCYmUxskqzUKwovnNfmaoMpapSlKnK7rQWzVrApoUNrK2s0caqDdq0aFPpduvmrWFt\nZY3WVq3RuvmtZiXepwv1+hdkZWWhU6dOd/52d3dHcHBwredkZmYaTOivZV/DnL/m4PDMw/C28wbg\njaKiM4iPX4BevX69Vzi2bwc8PYFHHjHI9Q3BkCFDsGXLFkyZMgXBwcE1vjcaErNv3MCnHh7wMcHe\nwr9xdxfFftQoUSymT6/b8wsOFyD7+2wMDB4Iy1am+dF6sNODOPbcMTxx4Alsm7QNU3tOrVd/Gk0p\nIiMnwNb2UXTpstRAVtaMpeXdUXyPHro/jxRjBm6LflmZ2EpLKx/LysTHk5JycOjQI3B2noiWLVdh\n/XoLKBRiHwoFKt2Wy8UZCSAKfosW4vF2a9FCbFZW9x6trMQfiNvHf99u1uze282a1dwsLcVW3W1L\nS/HHctUqcZ9k4UIxlsLCQmyWlpWPYmsFS0sXWFi4wMIC6GABdLz9WHPAwgqwaPvP8yu3W/8FKIUK\nyLXlkGvLxduacii05ZBrK6DQlkOhrYBSK4dSIUeFVo4irRxKrQwKrVyn/3O9hF7X0de/pxXVPe+T\nTz65c3v06NEYPXp0jf2mylIx+ZfJ+P7x7/Fgp7tLNV5e63Dt2lDk5OyEq+s/fOhLS4EvvhALDJgZ\nzzzzDGJjYzFt2jScP38eLauZT69MS0OH5s3xuqtrA1tYPd27AydOiHUa2rcHxuvoOVgeXY74+fHo\ne6IvWrrqsX5gQB5wewAnnz+JifsnQi2oMaP3DL360WrliI6eDBsbX3h6rjX5+m1tWFjcHam7uNR8\nblpaGsaNG4f3338RS5Ys0fm1aTSi4KtU4vF2U6lELy61+u7tf96n0VR91GrF27ePt2+rVOKxqiYI\nYvv3ba1W/LG7PSMKCBBF3toa2Lnz7mNk5dv/vK+qv3VpwO3bFiDbAGhT6f67j1e+r7z8IuTyiyDb\nAtBx81vncN0qCAwM5KOPPnrn76+++oqrVq2qdM4rr7zCAwcO3Pnbx8eHkirK2tXVFGmFlD229ODm\noKqrxpeVxdLPz55lZdF371yxgpw1q07XaUi0Wi2nT59ebU6cayUldPTzY2YDJEfThytXxPTGuqRo\nVRWoGOgZSMm+6kscmoLrOdfpvM6ZP0XUvbinVqtiZOTjjImZSUGoPpVyYyQuLo6dOnXi11/Xrx6E\nuXLypPjZ/YdUNRp00c56Cb1araanpydTUlKoVCrp6+vL2NjKuWeOHz/OCRMmkBR/GIYOHaq3sbeR\nq+V86MeH+N7f79V4Xnb2DwwJ6U2NpkJMFmRrS6ak6HwdU1BdThy5VsveISH8qYbar+bAiRNieuPI\nyOrP0aq0DB8TXqlKlDkRnRtN1/Wu/CHsB52fIwgaxsTMZGTk49RqG1FRDR24fv06XVxcuGvXLlOb\nYhS++06smdwQ9cmNgdGFniRPnDhBb29venl58atblZm2bdvGbdu23TnnjTfeoJeXF/v168drggAd\nbAAAIABJREFU1VTI1VXotYKWz/z2DKcfnF65oHcVCILAmJhnGR//iljT6513dHxVpiUjI4Nubm48\ndOjQnfveT0riU0ZIWGYMDhwgXV3FqoxVkfBmAiMmRFDQmO9riS+IZ6cNnfhdyHe1nisIAuPiXmZ4\n+GhxUHEfERAQQEdHRx48eNDUphgcjUasHdKjB5lknmMOnWgQoTcUugr9B6c/4IgfRlCu1q0KlFpd\nzKDLnZn7uI1Bq7sbm6tXr9Le3p5hYWG8XFREF39/5ilrL7phLmzfLhbr+nd64+wd2Qz2CaZaplsd\nW1Nys/AmPTZ5cEPAhmrPEQSBSUnvMzT0Ab2K4Zgz586do4ODA0+cOGFqUwxOaSk5eTI5ZkyNiSEb\nBfed0G8J3kKfb3yqrhBVAyVvjKPf6TaUy1P0tM40/Pbbb3Rzd2fnI0d4uBH9SN1m3TrS2/tuemPZ\nFbGASHm8mZR20oE0WRq9Nntx5ZWVVT6emvoFQ0L6UKXSrdpSY+HIkSN0cHDgxYsXTW2KwcnKEtPB\nz5snZgpu7NxXQv/Xjb/oss6FyYV1rKkZEkK6ujI9aSWvXRvW6NZPh7z7Lu1692a5udS9qyPLlokV\nGnMixQIi0lONTxCzSrLYY0sPrriwotLSWUbG1wwK6kaFItuE1hmeAwcO0MnJiSHmVjTYAFy/LtYY\n+uoroxSTMwn3jdAHZQTRYY0Dr2ZdrVungiDOzb7/noKgZUTEBN68ubieljYcJwoK2DkggDNnzeL0\n6dMbZVFlQSDffkPLvm1KeePLDFOboze5Zbns+11fLjqziIIgMCdnNwMCOjW6WWJt7Nixg66uroys\naTe9kXLsmOhZY+Cy0CbnvhD6JGkSndc582i8HuXITp0S1w7U4nqwUpnLgAA3SqV/18fUBkGqUtEt\nIIDnCwupUCg4YsQIfvzxx6Y2q84IgsDIp6M51auI48YJlOu2tWKWFJQXcOD3A/nSHxN4xc+J5eU3\nTG2SQdmwYQO7dOnCBFMV0DUiX38tetYEBpraEsPT6IU+ryyP3b/uzq1Xt9a9Q62W9PUl//ij0t2F\nhefp7+9ChSJLX1MbhGdjYvj2P75weXl57Nq1K/fu3WtCq+pO6hepDH0glKoyLZ9+mpwyhVQ1rtWz\nSqRkH2K/TVZ89uDjVGvNf0NZFwRB4IoVK+jt7c10UxUHNhJqtVgHuGdPMrmOq76NAa2gbdxCX6os\n5ZDtQ7j0/FL9Oty3Tyz6WcVCXErKZwwLe5iCYJ5f1IO5ufQOCmK5pnLQTXR0NB0cHHjlyhUTWVY3\n8g/nM8AtgIosMcBLqSQnTCBnzhRd2xobMpkf/fwcmJ1/ho/se4TTfp1Ghdo8g9d0RavVcuHChfT1\n9a0ykLExU1wsft7GjyeLikxtjeGJlETSd6tv4xV6lUbFCT9N4LzD8/TzG1coRN++S5eqfFgQtLx+\n/RGzXK/PVijo6OfH4OLiKh//+++/6eTkxPj4+Aa2rG6URZfRz96PxUGVX0dFBTl2LDl3rjjpaiyU\nlITSz8+BUulpkqRCreC0X6fx0X2PslzVODfK1Wo1X3jhBY4YMYJF95kSpqSQvXuTr77auGeQ1bH3\n+l7ar7Hnnut7GqfQC4LAuYfmctL+SfpPjTduJCdNqvEUpTKPAQHuLCg4pt81jIAgCJwYEcFltcwx\nd+7cSU9PT+be9ls0M1QFKgZ5BTFnT06Vj5eXiwXvX365cYh9WVk0/f2dmZ//V6X71Vo15x6ay5E/\njqRMLjORdfqhUCg4depUPvLIIywrKzO1OQYlIIB0cSE3b75/PGtuo1Ar+OqxV9n96+6MlIgb5o1S\n6JecXcKhO4ayTKnnh08mE2Pwo6J0OPUK/fwcKZen6nctA7M9K4sDr16lUgf1W7ZsGR944AGzc7vU\nqrS8PvY6E9+rJiz2FiUl5PDhYsCyOX8ZKyqSGBDgRolkf5WPawUt3zzxJgd+P5D55Y0j1qG0tJTj\nx4/nU089RYWZ5k3Sl59/Ju3tRQ+b+42UohQO3j6Y036dxmLF3ZlyoxP6r4O+pvc33vX7wnz0Efni\nizqfnpa2hteuDaVWa9rIiZsVFbT382O0jqMrQRA4e/ZsPvnkk9SY0YJ3/OvxOqc3kMnIIUPI994z\nT7GXy9MZGOjBrKztNZ4nCAI/OvcRe27pyXSZeW9mFhYWctiwYZw3bx7VavPco9IHQSA/+YTs0oWM\niDC1NYbneMJxOq515PqA9fcsZzc6oXdb78aUohT9O8nMFBOX1cFzQBAERkY+wcRE0+XB0QgCR4aF\ncX0dPR6USiXHjBnDt99+20iW1Y3MbzMZ3LNu6Q0KC8WAqiVLzEvslUoJg4K8mZ5effqDf7M+YD07\nbejE6Nzo2k82AdnZ2ezXrx/ffffdRpEzSVfKy8lnniGHDiVzql4tbLRotBouPb+UbuvdeCWtaieM\nRif013Ou16+Tl18mP/ywzk9TqQoZGOjBvLw/aj/ZCKxJS+Oo8HBq9fjyFRUVsXfv3ty4caMRLNOd\nwnOF9HP0Y0Vi3ZN65eeTffqIIzJzQKWSMiSkL1NSPq3zc3+K+ImOax3pl+ZnBMv0JykpiZ6envz8\n88/vK5HPyCAHDSKff17c6L+fyC7J5ujdozl2z1hKSqv3iGp0Ql8vYmPFxTk9MxQVF4fQz8+BFRU1\nry0bmqiyMtr7+TGlHpFEaWlpdHNz4++//25Ay3SnIrGCfo5+LDyvf3YoiUT0df7kE9OO7NVqGUND\nhzAp6X29BfFU4inar7Hn4bjDBrZOP8LDw+ni4lIpo+z9QFCQmCV11Srzmg0agjM3z9BlnQs/ufAJ\nNdqal2b/W0L/5JPkmjX16iIzcwtDQvpSo2kYLwSlVsv+V6/yh+z650oJCwujg4MD/fwadiSplqkZ\n3COYWVvrH4AmkYgj+48+Ms0XV60u4bVrDzIh4c16j3pDMkPovM6ZO67tMJB1+nHx4kU6ODjwt99+\nM6kdhmbfPnFcd+SIqS0xLBqthssvLKfLOheevXlWp+f8d4Tez0/MVFTP+HpBEHjjxlxGR89okOnt\nx8nJfCIy0mDX+vvvv+no6MiIBtqNEtQCIx6LYMIbhguZz88X1+z/7/8aVuw1mjKGhT3MuLgFFGqp\nc6Ar8QXx7LqpKz+/ZJrlkkOHDtHBwYHnzp1r8GsbC42GXLSI7NpVJ8e6RkVOaQ7H7B7DMbvHMKdU\n982G/4bQCwI5YgRpoOo3Wq2coaFDmJa2qvaT60GATEYnf3/mGDhP6i+//EJXV1cmNUAlhcR3E3l9\n3HUKasOKmFRKDh4shq43hD5qNBUMD/8fb9x4wWAif5vskmz6bvXla8dea9CUCTt37qSzszNDQ0Mb\n7JrGpriYfPxxctSoRlVaQifO3jxLl3UuXH5hea1LNf/mvyH0hw+L830DuhgqFBn093ehVHrKYH3+\nkxK1mp6BgTxkpE/rtm3b6Onpyaws4+Xzyd6RzaDuQVQVGifsUCYTM1i88opxg6q0WjkjIh5lTMxz\nRqvzKpPLOH7veE74aUIl/2djIAgCV65cSQ8PD7OPnq4LN26QPj5ipOv9kEP+NiqNiovOLKLrelee\nuXlGrz7uf6FXq8UdPCNERxQVXaafnyMrKgw/Mn7xxg3Oj4szeL//5Msvv2SfPn1YaITyOYVnRA8b\nYxcQKSkhR44UwyKMESqg1SoZGfk4o6OfNnreI5VGxVeOvsI+3/VhapFxAvQ0Gg1ff/119u3bl5mZ\nmUa5hik4dEhML/yD7iV8GwVJ0iQO2T6Ek/ZPYl5Znt793P9Cv3OnGEtvpPm9uDnbhxpNqcH6/D0v\nj92Cglhq5CAnQRD47rvvcvjw4QYNcS+LKaOfgx+LLjZMbpSyMrGkwKxZd7JNGwStVsWoqKmMiprS\nYMVoBEHghoANdFnnwqCMIIP2XV5ezilTpnDs2LGUyRpXOobq0GjIpUvF7bfgYFNbY1hu56r5Oujr\neu/f3N9CX15OurmJPlZGQtycncfo6OkG2UzLvJWwLKiahGWGRqvVcu7cuXz00UepNMB8VylRMtAj\nsNocNsaivFzMQvj44+Lt+qLVqhgd/TQjIiZSq234FABH4o7Qfo09f402TAWMvLw8Dh06lLNnzzbI\n/9kcKCwU/+ejRt0tRXk/UKwo5vN/PM+eW3oyQmIYpwldtNMSjZWNG4Hhw4GhQ412CQsLC3h7fwuF\nIh0ZGavr1ZdA4oW4OLzp5oah7doZyMKasbS0xM6dO9GqVSvMmTMHWq1W7760ci2ip0TDabYTnOc4\nG9DK2rG2Bg4fBjp2BMaPBwoL9e9LEFSIjX0GglCBPn3+gKVlS8MZqiNP+DyBM7PP4P3T7+PLy19C\n/K7qR2JiIoYPH45x48Zhz549aNGihQEtNQ3R0cCQIYC3N3DmDODoaGqLDENgRiAGfD8ANi1sELog\nFP2c+jXcxQ3yk2IA6mSKRCKmOmgAzxKSVCgy6e/vyoICPapc3WJjRgYfvHaNahO42cnlcv7vf//j\nnDlz9MqLI2gFRj8dzZhnY0waVanVku+/T/bqJUZE1v35CkZGTmZk5GSTjOT/TXZJNgdvH8zn/3he\nr1THgYGBdHZ25vfff28E60zDbf/4fftMbYnhUGqUXHJ2CZ3WOvHP2D8N3r8u2tk4hf7VV8l33zWe\nMVVQXBxEPz8HlpTU3V0tsrSU9n5+vGnCGO2ysjKOGTNGL7G/ueQmw0aEUSs3j5zCa9eSnTuLwdC6\notXKGRk5iVFRU02ewO6flKvKOevPWey3tR+TpLoPXG77yB8/ftyI1jUcFRXk/Pli5c/7KSlZhCSC\nvlt9OeXAlBrTGNSH+1PoY2LEn3yp1LgGVUFe3p/093etU1pjuVbLviEh3GUG2Zb0EfvsH7IZ5BVE\nZZ75iCNJ7t1LOjnpVgNUdKF8jNHRTzfYxmtdEASBW4K30HGtY621kQVB4KpVq+jm5sarV682kIXG\nJT6e7NdPrDxWUmJqawyDRqvhqiuraL/GnrvCdxl1Jnx/Cv3jj5Pr1xvXmBrIyNjI4OBeVKt18zp5\nNzGR06OjzSaRVHl5OceMGcPZs2fXKvbS01LRjfKGeeW8v82JE6LbXU2DWo2mnNevj2dMzEyzLR15\nm4D0ALpvcOey88uqDJpRKBScM2cOBw4cyAx91q7MkF9+Ecdt27bdP/lqEqWJfPCHBzlm9xijudL+\nk/tP6M+dE2OfTVgsQRAEJiS8xfDw/9W6BHBSKqV7QAALzKyWmS5iXxJaQj97PxZdNu8Sc0FBpLMz\nuWnTvUKh0ZQxPPx/jI2dZfYifxtJqYSjdo3iYz89RmnF3Vlrbm4uH3zwQU6fPv2+qAgll5OvvUZ6\neZFhYaa2xjBotBpuCtxE+zX23By0mVoDR1lXx/0l9FotOWAA+athXNLqgyBoGBU1hbGxc6odqWcp\nFHT29+clM63FWZPYVyRV0N/Fn3l/6h/E0ZCkpopT/5deuhs1qVIV8tq1B2+lNTCfwiy6oNaq+f7p\n9+mxyYNXs64yIiKCXbp04bJly6htDLUXayE2VvwqT58uRkDfD0RKIvnAjgc4atcoxhc0bETy/SX0\ne/aIlQXMZH6n0ZQzNHQIU1JW3PuYIHB0eDg/S0lpcLvqwm2xnzVr1p1qQ0qJkkFeQczaZrz0Ccag\ntFRMYDpyJJmeLmFISF8mJr5j8Nw1DclvMb+x/Rft2ebRNtz/c9WlDBsTgkBu2XJ/LdXI1XJ+fO5j\nOqxx4I5rOxpsFP9PdBH6xuFHX1EBfPwxsH49YGFhamsAAM2aWaNv36OQSPZCItld6bEv0tJgCeCj\nLl1MYpuuWFtb49ixY8jPz8fUqVNRkluCyImRcJrlBNdXXE1tXp2wsQH++AMYObIIQ4eqIJW+CS+v\nDbCwaBwf8X8jCAISDyei1d5W6DGpB7YqtiJVlmpqs/RGIgEmTQL27AH8/YFXXjGbr7LeXEq9BN9t\nvogriEPEqxGYP3A+LM3186bvr4hUKuW4cePYvXt3jh8/nkVVLFGkp6dz9OjR7NWrF3v37s3NmzfX\n+KuU/1c1Sb6+/JJ86il9TTUqZWWx9PNzZEGBmG/nYlERnf39md2Iii6rVCrOen4W+7Xvx8A5gWaz\ncVxXSksjGRDgxm+/PU0HB/JPw7ssNwhFRUWcPHkyhw8fzoyMDGoFLdf6r6X9Gnvuvb630f1/Dh0S\nPaSWLSPNbLtKLwrKC7jg6AK6rXfjoRuHTG2OcZduPvjgA65evZokuWrVKi5atOiec3JychgeHk5S\nrDzv7e3N2GqcnwHQz6GKRFm3g6MSG7byU1247WOfnHuc7gEBPGkC18/6IGgFRs2M4rxu8+jj48PU\nVON7Chgamcyffn6OlEh+JklevUq6u4sVq8yodnqthIeH08vLi2+//fY96QzCc8LZ69tenPHbDBZW\nGD5ZnaEpLRX3TTw9SX9/U1tTf9RaNb8N+ZYOaxz4xvE3KJObxwaDUYXex8eHEokYAJCTk0MfH59a\nnzNlyhSePVt11RQAzNqWxZDeIdSU/uOb+dpr5MKF+prZYBQWXeaxix25MrpxraUKgsDE9xIZNjKM\nmgoNN27cSDc3twYrXmIIpNJT9POzZ0HBiUr3Z2eLCdFGjxbrxps7u3btor29PQ8cOFDtORWqCr51\n4i122tCJxxPMN1jq9GnRQe7FF+8P3/iLKRfZb2s/jt492mA5agyFUYW+Q4cOd24LglDp76pISUlh\n586dWVpadSZIAGISsRdvMHrGLb/zyEjRUbqgQF8zG4y16el8Lngbr/jZUyZrPMOXlE9SGNInpFJe\n+QMHDtDBwYEXLlwwnWE6kpOzh35+jpTJqi6hqNGQX3whLh0c1T+DhVGRy+V8+eWX2aNHD8bExOj0\nnNNJp+m12YvTD05nZrH5/IoVFJBz55JduohxDo2dNFkaZ/w2g503duZvMb+Z5bJZvYV+3Lhx7NOn\nzz3t8OHD9wh7x44dq+2ntLSUgwYN4qFD1a9nAeCKFSu4/OPlXOCygL++9os4FNuypdYXYWqCiovp\n4OfHVLn81ujSgcXFIaY2q1bSVqYxuEcwlZJ74wHOnTtHBwcHHjx40ASW1Y4gaJmc/DEDA7uyrKx2\ncfTzE9MmvP22ScMw7uHmzZscNGgQn376aZbUcehboarg0vNLabfajpsCNzVoBat/Iwhi8JOzs/ge\nVzOeazSUKEr4yYVPaLfajisurNArF5GxuHDhAlesWHGnGX3pJudWWH92dna1SzcqlYqPPPIIN27c\nWLMh/zBWniqnf4dzLOo61bBJyI1AgUpFj8BA/pF31+c8P/8I/fwcWVoabkLLaiZ9QzqDugVRkVW9\n6oWHh7NTp0786KOP9EqGZiw0mgpGR8/gtWvDqVTqnsO2sJCcNk2sSWvkui+1IggCf/zxR9rb23PT\npk31GineyL/B0btHc+D3AxmS2fADjPR0MWC9d2/dUlKYM3K1nBsCNtBxrSOf/f3ZBolsrS9G34xd\ntUqsq7py5coqN2MFQeDs2bP5zjvv1G7IP40tL6fUYQL9bS9QkWFGw69/oRYEjrt+nR9UkUUzL+93\n+vs7s6zM/CoYZ27JZKBHIOVptRdTz83N5ZgxY/jII4+wwAyW0JRKCa9dG8qYmJnUauteDF4QyK1b\n7/pymyL+KD8/n1OnTmXfvn0ZGRlpkD4FQeDe63vptNaJrx9/nfnlxi+qqlKJEcn29uRnnzXuEn8q\njYrbrm6j+wZ3TjkwhZESw/xfGgKjCr1UKuXYsWPvca/MysrixIkTSZJXrlyhhYUFfX192b9/f/bv\n358nT56s3dgVK8gZM5i2Mo3Xhl4zm6yJ/+bDpCSOu3692tTDEsnP9Pd3YUmJ+cR4Z+/IZkCnAFYk\n655JU61W8/3336eHhwevXbtmROtqpqwsioGBHkxOXl7vtdKoKLEm7YgRYp68huLkyZN0dXXl+++/\nT4UR1pCkFVK+fvx12q625ScXPmGJwvA7oYIgVu/08SEfeaRuWUTNDY1Ww30R++i12Yvj9o4zeOWv\nhsCoQm9o7hibkiK6U6alURAERs+IZvT0aAoa89oE+TU3lx6BgbXmscnL+4N+fg6USk83kGXVk7Mn\nhwFuASxP0G+98eDBg7S3t+ePP/5oYMtq5/beh0RiuETlGg357bfiiHTpUjH/irEoLy/nG2+8wU6d\nOvH8+fPGu9AtkqRJnPXnLDqudeT6gPWsUBkmRXZUFDl+PNmjh5hMzgz3JnVCrpZze+h29tjSg8N3\nDuf5ZOP/T4xF4xT6p54S54G30Cq0DB8TzoQ3Esxmx/t2fvlwHXecbhcaN6RI1ZXcX3Lp7+zPspj6\nJcSKiYmht7c3X3nlFaOMSP+NIGiZmvoV/f2dKJNdMco1srLEvCvdupHVeP/WC39/f/bo0YPPPvus\nUYq110RUbhSf/OVJum9w5/bQ7VRp9ItYyssTy0A4OJBff914A5/yyvL4yYVP6LTWiRP3T+S55HNm\noyv60viE/uxZ0sNDrELwD9QyNa/6XmXq56bfGJGqVPQKCuJ+Sd2KCJSVRTMgoDPT0lY3+Acr+4ds\n+jv7szTCMK4QxcXFnDp1KgcOHGhUf3uVqoARERN57dqDlMvTjXad2xw9KnrmzJlDGqJ8QEFBAefP\nn09XV1f+auJkfEEZQRy3dxy9Nntxc9BmFit0q1ssk5Gffy7OehYuNEkZCIMQlx/HBUcXsMOqDpx/\nZD5j8hpwvc7IND6h79272rh1RbaCgZ6BzN6R3cCW3UUjCHwsIoLv6hmlq1BkMCSkDxMS3mqwjIrp\n69IZ0DmA5XGGdQ8TBIE7d+6kvb09P/30U6oMPMQrLg5iYGAXJiX9X4MWCyktJT/4QFw9/PBD/UI4\nBEHg7t276eTkxLfeeosyM0rR6Jfmx2d+e4YdV3Xk68dfZ2xe1QvsUqmYssDOjpw92/ReSvpQrirn\nz5E/89F9j9JhjQOXX1hutCpPpqTxCf24cTUu+pUnlNPfxb/6nDhG5qObNzk6PLxedV/V6iKGh49m\ndPR0vbxGdEUQBN5ccpPBPYIpTzfedTIyMjhhwgT6+voyzACJxQVBYEbGJvr5OTA//y8DWKgfGRni\nUoWtLbl8ue7pdGNiYvjwww9z8ODBDA2te9nJhiKzOJPLzi+j01onjts7jn/d+IsarYa5ueSiReLr\nnj+/wcoyGwxBEHg59TJfOvwSO67qyEf3Pcr9kfsNtkdhjjQ+odfB/aHkagn9HPwou9Kwo6Tf8/LY\nOSCAuQbwIdNqFYyOnsGwsBFUKAwf1ShoBMa/Es/QQaENUgLw9gjWwcGBS5cu1XvtXq2WMTr6KYaG\nDmJFxU0DW6kfycnkCy+Ia9MrV5LV1fyQyWRcvHgx7e3tuWXLFrOKO6gJhVrBfRH72H/LUNosd2fL\nKQv55MJLTE5pHPaT4ucvOjeaKy6sYNdNXdnr215c7bfarCKGjUnjE3oduV3iriyqYSrtBBYX097P\nj6EGTNohbjJ+Tn9/JxYUGC5niVapZfSMaIaPCae6uGGDzbKysvjEE0+wd+/e9POrOiVBdRQVXWBg\noCfj41836kxHX+LixJqmTk7kxx+LzmGkWId31apVdHBw4Ny5c5mdbbqlxbqiVJIHD4oTaXt7cu4H\n0fzg6Gf03epLx7WOXHB0AU8lnqJSY34O8sWKYv4Z+ydfPvIyO23oxC4bu/CtE2/xatbVRr+5Wld0\n0U6LWyeaHAsLC9TFlNwDuUj+MBn9TvdDm55tjGZXYkUFHr5+HTt9fDDJzs7g/ctkl3HjxvNwdJyJ\nrl2/gqWlld59acu1iHkqBpatLNHrl16wbNXwubFJ4sCBA1i8eDF8fX3x5Zdfol+/ftWer9GUIDn5\nQ0ilx9G9+3ewt3+iAa2tOzduANu3A/v2EQ4O6ZBIPsXYsXJ8/vly9OzZ09Tm6URCArBjB7B3L9C7\nN/Dyy8DUqUCrVnfPuVl4E4fiDuGPG38gviAe4zzHYbj7cAxzH4YBLgPQqnmr6i9gBEqUJbguuY7A\njECcTDqJaznX8GCnB/GY12OY0H0CfOx8YNHYE9zriS7a2WiFHgAkeyVIXpSMPof7oN0D7QxuU65K\nhQfDwrC4c2e87Gq8QhxqdQHi4l6AWl2AXr1+QatWHnXuQ5mlRPTUaLTp1QY+O31g0dy0H3qFQoFt\n27Zh5cqVGDduHD777DN4eXlVOkcqPYGEhFdha/sYvLzWonnz9iayVnfUajX27NmDTz5ZDQeHV2Bh\n8SokEhu8+CLw0kuAp6epLayamzeB48fF4ixxccALLwDz5wPdu9f+3KySLJxLOYfgrGAEZQYhriAO\nvR16Y6j7UAxzG4bejr3RqV0n2La2rbfYChQgKZMgQhKBcEm42HLCISmToK9TXwxxHYJHvR7FaI/R\naNPCeAO8xsR9L/QAUHC0APEvxaPn/p6wHW9rMHvKtFqMuX4dE2xt8VnXrgbrtzpIAZmZm5Cevgre\n3tvg4DBN5+cW+xUjZkYM3N5yQ+fFnc1qZFNaWoqNGzfi66+/xowZM7Bs2TLY27dAUtI7KC72h4/P\nTnTs+D9Tm1krBQUF2L17N7Zu3QoPDw988cUXGD58OABxlL9jB7BvH+DkBDz2GPDoo8BDD1UeJTck\nGg0QEAAcOya2wkKxwtMTTwATJwItWujfd4W6AmE5YQjODEZQVhASpAnIKM6AQqOAezv3O61T+05o\nY9UGlhaWsLSwhAUs7twGAKlcCkmZBJIyCXLKciApkyC/PB8dWnVAX6e+GOgyEAOcB2CA8wB423mj\nmWUzA7079xf/CaEHANkVGWKeikH3Ld3hOMOx3rZoSEyJioJTixb4wadhp4QlJSGIjZ2Jjh3HwdPz\nK1hZ2Vd7LknkfJ+DlOUp6LGnB+wmGH5pyVAUFBRg1aqV+PHH7Xj4YQFz5kzG5Mk70Ly5jalNqxaS\nCAwMxNatW3H06FFMnjwZr7322h2B/zdaLRAaCvz9N3DqFBAdDYwcKQr///4HeHvXT2A4aLijAAAN\n9ElEQVRrIj8fuH4dCA8XbTh7FujaFXj8cbENGgRYGnklr1xVjsySTGSUZIjH4gzINXIIFO40guKR\nhF1rOzjbOMOlrQucbZzhbOMMxzaOaNHMSG/Sfcp/RugBoCyiDJETI9FlaRe4veamdz8k8XJCArKU\nShzp0wdWxv52VIFGI0NKynLk5f2CLl2WwtX1tXvW7gWlgMS3ElHsX4w+f/WBdXfrBrdTV0iiqOgM\nkpOXQCrVwN9/OPbvP4M2bdpg/vz5mDVrFmxtDTcbqy+lpaXYv38/tm7dioqKCrz66qt44YUXYFfH\nPZrCQuDcOVH0L18GMjIADw+gZ0+x9eghHrt0AaytgdatgWbVDFoVCqCg4G7LzxdnEuHhYisrA/r3\nBwYMENvYsYCb/l+DJhoR/ymhBwB5shyRj0TCaY4TuizrotdI/NPUVBwpKMClAQNgU923roEoL49B\nUtI7UCqz0a3bJtjajgcAKLOViJkegxbOLdBjTw80b9vcpHbWRElJMJKTl0ClykbXrl/C3n4aLCws\nIAgCLl26hJ07d+L48eOYMGECXnrpJYwaNQpWVvpvSOvLzZs3cfz4cRw/fhwBAQEYP348XnvtNYwd\nOxaWBvqxVyiApCRRoG/cENfKb9wAMjMBuRyoqBBH/NbWd5tKJQq7Wg3Y299tdnbiDOG2sHft2viL\nbTehH/85oQcAlUSFyMci0e7Bdui2qRssW+j+Jf0+Oxur09MRMHAgnI01x64jJCGVHkFS0nto06YP\nHItWIPk5JVxfdUXnjzrDwtI8v93l5TFISVmK0tJQeHh8AmfnubCwqPoHqaioCPv378eePXsQHx+P\nYcOGYfTo0Rg1ahSGDBmCFkb4XygUCvj7+98R9+LiYkycOBGTJk3C+PHj0a6d4Tf3a4MElEpR8Csq\ngPJywMoKcHAAbGyahLyJqvlPCj0AaGQa3Jh7A8pMJXr93AvWPrUva2zJysKa9HSc8/VFd2vzWwZR\nl1Ygau8KlHTeAdtW0+D1oCj85gQpQCa7gOzs7yGTXUTnzovg6vo6mjVrrXMfRUVFuHLlCi5evIhL\nly4hISEBQ4cOxciRI9G1a1e4ubnB3d0dbm5uaNu2ba39VVRUID4+HrGxsYiJiUFsbCxiY2ORnp4O\nX19fTJo0CZMmTcKAAQMMNnJvoomG5D8r9IA4Es7elo3U5anwXOkJ55ecq13KWZ+RgW+zsnDO1xdd\nW+suSg1F0YUixM+PR/sR7dF5jQ3yFT8gO3sHWrf2gpvb67C3nwZLS9PNQFQqCXJydiEnZyeaNbOB\nq+vLcHKabRB3SZlMBj8/PwQGBiI9PR2ZmZnIyspCVlYWmjVrBnd3d9jZ2UGlUkGhUNzTVCoVunXr\nhl69eqFXr17o3bs3evXqhW7duhllptBEEw3Nf1rob1MeU47Y52Jh3d0a3tu9YWVbef33y7Q07JZI\ncN7XF51M5QtXDZpSDZI/TIb0mBTeW71h9/jdzUBBUEMqPYKsrO9QUREDZ+d5cHV9Ba1adWkQ20gN\nCgvPICdnB2SyC3BwmA4Xl5fRtu2QBvFSIgmZTIasrCxIpVK0bNkSrVq1uqfZ2NigeXPz3cNooon6\n0iT0txAUApIXJyP/z3z03NcTHUZ1AEksT03FH/n5OOfrC5eWLY1ybX0p/LsQ8QviYTveFl7rvNC8\nQ/ViVVERh+zsbZBI9qF1ay906PAw2rd/GO3bj4SVlWG8WQRBjbKya5DJLkEmu4ji4gBYW/vAxWU+\nHB2fRfPmtS+jNNFEE4anSej/hfSkFPEvxcNxpiN2PSvgGIpxxtcXjmY0hS+7XobUz1JRFlYG7+3e\nsH1Ed6EWBAVKSkJQXHwZMtlllJQEoVUrj1vCPxItW3aBlZUtrKzs0Lx5R1hYVPYqIgmNRga1Ohcq\nVS5UKgnk8psoLr6M4uIAtGrVFR06jEaHDqPQocPDNfr4N9FEEw1Dk9BXgVKixP73IuF0ohwer7nD\n+4Mu9yznmILSa6VI/SwVpVdL0fnDznBZ4IJm1vVz7xRH4eF3hFqlyoFaLYVaLYVWW4xmzdrCysoO\nzZq1vXV/HiwsWqJFCye0aOGMFi2c0LJlZ3To8BDat38IVlbmG5DVRBP/VZqE/l+UajSYHx+PdKUS\nh9t5o2h1FvL/zIfbm27o9G6nGpdHjEXJ1RKkfZaG0rBSdF7UGS4vu6BZa+P775NaaDTFt0S/BFZW\ndrCycqqTh0wTTTRhepqE/h/EVVRgWnQ0HmzfHlu6d0erW6508ptypH2RBukxKdwXusP1DVdYdTTu\nCF9bpkXhqULk/JiD8qhydF7cGS4vuZgk22QTTTTRuGkS+lv8np+P1xISsNLTE/NdXKo8pyKhAmlf\npKHgrwLYDLCB3eN2sHvcDtY9rA3iRaLKV0F6VIqCQwWQXZKh3fB2cJzhCKdZTrBs2STwTTTRhH78\n54VeQ2JxcjL+yM/H7717Y5AOATbaCi1kF2SQHpdCekwKi+YWouhPskObPm1g5WBVa7StpkQDRZoC\nyjQlKuIqUHC0AGXXy2D7iC3sp9rDbqKdSZaJmmiiifuP/7TQ56pUeCY2Fq0sLbG/Z0/Y6ZE/hSTK\no8shPSZF4YlCyG/Koc5Xo1mbZrBytIKVgxVaOLZAc9vmUBeooUxTQpGmgKAS0KpLK7Tq0gqtvVrD\n9jFbdBzXsWlppokmmjA4/0mhJ4lDBQVYmJSEF52dscLDA80MGMBDEhqZBuo8NdT5aqjyVFBL1bCy\ns7oj7s3tmptVTvgmmmji/uU/J/ShpaV4LykJRRoNNnfrhv917Ggg65poookmzBNdtPO+WCjOVCrx\ncXIyThcV4TMPD8xzcTHoKL6JJppoojHTqIW+XKvFmvR0bMnKwquurkh44AG0bcpr0kQTTTRRCb13\nBwsLCzF+/Hh4e3vjkUcegUwmq/ZcrVaLAQMG4IknntD3cnf7InFZJsPCxER0Cw5GklyOsMGD8aWn\n530j8hcvXjS1CWZD03txl6b34i5N70Xd0FvoV61ahfHjxyMhIQFjx47FqlWrqj138+bN6NWrl94b\nlCpBwN+FhXglPh6uAQF4OykJ9lZWOO/ri/29eqGLmWWdrC9NH+K7NL0Xd2l6L+7S9F7UDb2HwEeO\nHMGlS5cAAHPnzsXo0aOrFPvMzEycOHECH3/8MTZs2FBjnwfz8iDTaCq1PLUa54uK4GNtjWn29ggY\nOBBeZpgzvokmmmjCXNFb6HNzc+Hk5AQAcHJyQm5ubpXnvfvuu1i7di1KSkpq7fO3/Hx0aN78TnNr\n2RIjmzfHpm7d4G5maYSbaKKJJhoNrIFx48axT58+97TDhw+zQ4cOlc7t2LHjPc8/evQoX3/9dZLk\nhQsX+Pjjj1d7LQBNrak1tabW1PRotVHjiP7MmTPVPubk5ASJRAJnZ2fk5OTA0dHxnnMCAgJw5MgR\nnDhxAgqFAiUlJZgzZw727t17z7lm4s7fRBNNNHHfoXfA1Icffgg7OzssWrQIq1atgkwmq3FD9tKl\nS1i3bh2OHj2qt7FNNNFEE03UHb29bhYvXowzZ87A29sb58+fx+LFiwEA2dnZmDRpUpXPaUoL0EQT\nTTTR8Jg8BcKpU6fwzjvvQKvVYv78+Vi0aJEpzTEZ8+bNw/Hjx+Ho6IioqChTm2NSMjIyMGfOHOTl\n5cHCwgILFizA22+/bWqzTIJCocCoUaOgVCqhUqkwZcoUrFy50tRmmRStVovBgwfD3d39P71C4OHh\ngXbt2qFZs2awsrJCSEhIteeaVOi1Wi18fHxw9uxZuLm5YciQIThw4AB69uxpKpNMxpUrV2BjY4M5\nc+b854VeIpFAIpGgf//+KCsrw6BBg/DXX3/9Jz8XAFBRUQFra2toNBqMHDkS69atw8iRI01tlsnY\nsGEDrl27htLSUhw5csTU5piMrl274tq1a7C1rb2utEnz5oaEhKBbt27w8PCAlZUVZs6cicOHD5vS\nJJPx0EMPoWNTEjYAgLOzM/r37w8AsLGxQc+ePZGdnW1iq0yHtbU1AEClUkGr1er0xb5fuR2XM3/+\n/CYHDujuxGJSoc/KykKnTp3u/O3u7o6srCwTWtSEuZGamorw8HAMHTrU1KaYDEEQ0L9/fzg5OWHM\nmDHo1auXqU0yGbfjciwtm2o7WFhYYNy4cRg8eDB27NhR47kmfbeaNmebqImysjJMnz4dmzdvho2N\njanNMRmWlpa4fv06MjMzcfny5f9s+P+xY8fg6OiIAQMGNI3mAfj7+yM8PBwnT57Et99+iytXrlR7\nrkmF3s3NDRkZGXf+zsjI+P/27lZVsSgM4/g/2E2GAQ3WDYILBEGwbEGDHygG2SAWb8Cr8ArsFoPe\ngShosnkFGhQMIthEBQ1OmXPSnGnDK9vnl1d4wuIJ65N4PG6YSN7F8/mk2WzSbrep1+vWcd5CNBql\nXC6zXq+to5j4upeTTCYJgoDFYkGn07GOZebXn/+vY7EYjUbjn5uxpkWfyWTYbrfs93sejweTyYRa\nrWYZSd7A6/Wi2+3ieR69Xs86jqnz+fz9Muz9fmc+n+OcM05lo9/vczgc2O12jMdjfN//6+XLT3C7\n3bhcLgBcr1dmsxmpVOrH8aZFH4lEGAwGlEolPM+j1Wp97MmKIAjI5XJsNhsSiQTD4dA6kpnVasVo\nNGK5XOKcwznHdDq1jmXieDzi+z7pdJpsNku1WqVQKFjHegufvPR7Op3I5/Pf86JSqVAsFn8cb36O\nXkRE/i9tXYuIhJyKXkQk5FT0IiIhp6IXEQk5Fb2ISMip6EVEQu43rW28lpzf12cAAAAASUVORK5C\nYII=\n", "text": [ "" ] } ], "prompt_number": 20 }, { "cell_type": "heading", "level": 2, "source": [ "A Javascript Progress Bar" ] }, { "cell_type": "markdown", "source": [ "`clear_output()` is still something of a hack, and if you want to do a progress bar in the notebook", "it is better to just use Javascript/HTML if you can.", "", "Here is a simple progress bar using HTML/Javascript:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import uuid", "from IPython.core.display import HTML, Javascript, display", "", "divid = str(uuid.uuid4())", "", "pb = HTML(", "\"\"\"", "
", "
 
", "
", "\"\"\" % divid)", "display(pb)", "for i in range(1,101):", " time.sleep(0.1)", " ", " display(Javascript(\"$('div#%s').width('%i%%')\" % (divid, i)))" ], "language": "python", "outputs": [], "prompt_number": 15 }, { "cell_type": "markdown", "source": [ "The above simply makes a div that is a box, and a blue div inside it with a unique ID ", "(so that the javascript won't collide with other similar progress bars on the same page). ", "", "Then, at every progress point, we run a simple jQuery call to resize the blue box to", "the appropriate fraction of the width of its containing box, and voil\u00e0 a nice", "HTML/Javascript progress bar!" ] }, { "cell_type": "heading", "level": 2, "source": [ "ProgressBar class" ] }, { "cell_type": "markdown", "source": [ "And finally, here is a progress bar *class* extracted from [PyMC](http://code.google.com/p/pymc/), which will work in regular Python as well as in the IPython Notebook" ] }, { "cell_type": "code", "collapsed": true, "input": [ "import sys, time", "try:", " from IPython.core.display import clear_output", " have_ipython = True", "except ImportError:", " have_ipython = False", "", "class ProgressBar:", " def __init__(self, iterations):", " self.iterations = iterations", " self.prog_bar = '[]'", " self.fill_char = '*'", " self.width = 40", " self.__update_amount(0)", " if have_ipython:", " self.animate = self.animate_ipython", " else:", " self.animate = self.animate_noipython", "", " def animate_ipython(self, iter):", " clear_output()", " print '\\r', self,", " sys.stdout.flush()", " self.update_iteration(iter + 1)", "", " def update_iteration(self, elapsed_iter):", " self.__update_amount((elapsed_iter / float(self.iterations)) * 100.0)", " self.prog_bar += ' %d of %s complete' % (elapsed_iter, self.iterations)", "", " def __update_amount(self, new_amount):", " percent_done = int(round((new_amount / 100.0) * 100.0))", " all_full = self.width - 2", " num_hashes = int(round((percent_done / 100.0) * all_full))", " self.prog_bar = '[' + self.fill_char * num_hashes + ' ' * (all_full - num_hashes) + ']'", " pct_place = (len(self.prog_bar) / 2) - len(str(percent_done))", " pct_string = '%d%%' % percent_done", " self.prog_bar = self.prog_bar[0:pct_place] + \\", " (pct_string + self.prog_bar[pct_place + len(pct_string):])", "", " def __str__(self):", " return str(self.prog_bar)" ], "language": "python", "outputs": [], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "p = ProgressBar(1000)", "for i in range(1001):", " p.animate(i)" ], "language": "python", "outputs": [], "prompt_number": 11 } ] } ] }