##// END OF EJS Templates
Clean up javascript based on js2-mode feedback.
Clean up javascript based on js2-mode feedback.

File last commit:

r5279:4d707b82
r5479:0168dc21
Show More
dense_coding.ipynb
161 lines | 42.1 KiB | text/plain | TextLexer

Dense Coding

In [2]:
%load_ext sympyprinting
In [3]:
from sympy import sqrt, symbols, Rational
from sympy import expand, Eq, Symbol, simplify, exp, sin
from sympy.physics.quantum import *
from sympy.physics.quantum.qubit import *
from sympy.physics.quantum.gate import *
from sympy.physics.quantum.grover import *
from sympy.physics.quantum.qft import QFT, IQFT, Fourier
from sympy.physics.quantum.circuitplot import circuit_plot
In [4]:
psi = Qubit('00')/sqrt(2) + Qubit('11')/sqrt(2); psi
Out[4]:
$$\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }$$
In [5]:
circuits = [H(1)*CNOT(1,0), H(1)*CNOT(1,0)*X(1), H(1)*CNOT(1,0)*Z(1), H(1)*CNOT(1,0)*Z(1)*X(1)]
In [6]:
for circuit in circuits:
    circuit_plot(circuit, nqubits=2)
    display(Eq(circuit*psi,qapply(circuit*psi)))
$$H_{1} CNOT_{1,0} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|00\right\rangle }$$
$$H_{1} CNOT_{1,0} X_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|01\right\rangle }$$
$$H_{1} CNOT_{1,0} Z_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|10\right\rangle }$$
$$H_{1} CNOT_{1,0} Z_{1} X_{1} \left(\frac{1}{2} \sqrt{2} {\left|00\right\rangle } + \frac{1}{2} \sqrt{2} {\left|11\right\rangle }\right) = {\left|11\right\rangle }$$
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image