|
|
# <nbformat>2</nbformat>
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# # Parallel Monto-Carlo options pricing
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# ## Problem setup
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
import sys
|
|
|
import time
|
|
|
from IPython.parallel import Client
|
|
|
import numpy as np
|
|
|
from mckernel import price_options
|
|
|
from matplotlib import pyplot as plt
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
cluster_profile = "default"
|
|
|
price = 100.0 # Initial price
|
|
|
rate = 0.05 # Interest rate
|
|
|
days = 260 # Days to expiration
|
|
|
paths = 10000 # Number of MC paths
|
|
|
n_strikes = 6 # Number of strike values
|
|
|
min_strike = 90.0 # Min strike price
|
|
|
max_strike = 110.0 # Max strike price
|
|
|
n_sigmas = 5 # Number of volatility values
|
|
|
min_sigma = 0.1 # Min volatility
|
|
|
max_sigma = 0.4 # Max volatility
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
|
|
|
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# ## Parallel computation across strike prices and volatilities
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# The Client is used to setup the calculation and works with all engines.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
c = Client(profile=cluster_profile)
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# A LoadBalancedView is an interface to the engines that provides dynamic load
|
|
|
# balancing at the expense of not knowing which engine will execute the code.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
view = c.load_balanced_view()
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
print "Strike prices: ", strike_vals
|
|
|
print "Volatilities: ", sigma_vals
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Submit tasks for each (strike, sigma) pair.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
t1 = time.time()
|
|
|
async_results = []
|
|
|
for strike in strike_vals:
|
|
|
for sigma in sigma_vals:
|
|
|
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
|
|
|
async_results.append(ar)
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
print "Submitted tasks: ", len(async_results)
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Block until all tasks are completed.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
c.wait(async_results)
|
|
|
t2 = time.time()
|
|
|
t = t2-t1
|
|
|
|
|
|
print "Parallel calculation completed, time = %s s" % t
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# ## Process and visualize results
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Get the results using the `get` method:
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
results = [ar.get() for ar in async_results]
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Assemble the result into a structured NumPy array.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
prices = np.empty(n_strikes*n_sigmas,
|
|
|
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
|
|
|
)
|
|
|
|
|
|
for i, price in enumerate(results):
|
|
|
prices[i] = tuple(price)
|
|
|
|
|
|
prices.shape = (n_strikes, n_sigmas)
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Plot the value of the European call in (volatility, strike) space.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
plt.figure()
|
|
|
plt.contourf(sigma_vals, strike_vals, prices['ecall'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title('European Call')
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Plot the value of the Asian call in (volatility, strike) space.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
plt.figure()
|
|
|
plt.contourf(sigma_vals, strike_vals, prices['acall'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("Asian Call")
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Plot the value of the European put in (volatility, strike) space.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
plt.figure()
|
|
|
plt.contourf(sigma_vals, strike_vals, prices['eput'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("European Put")
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
# <markdowncell>
|
|
|
|
|
|
# Plot the value of the Asian put in (volatility, strike) space.
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
plt.figure()
|
|
|
plt.contourf(sigma_vals, strike_vals, prices['aput'])
|
|
|
plt.axis('tight')
|
|
|
plt.colorbar()
|
|
|
plt.title("Asian Put")
|
|
|
plt.xlabel("Volatility")
|
|
|
plt.ylabel("Strike Price")
|
|
|
|
|
|
# <codecell>
|
|
|
|
|
|
plt.show()
|
|
|
|
|
|
|