|
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
"""
|
|
|
R related magics.
|
|
|
|
|
|
Author:
|
|
|
* Jonathan Taylor
|
|
|
|
|
|
"""
|
|
|
|
|
|
import sys
|
|
|
import tempfile
|
|
|
from glob import glob
|
|
|
from shutil import rmtree
|
|
|
from getopt import getopt
|
|
|
|
|
|
# numpy and rpy2 imports
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
import rpy2.rinterface as ri
|
|
|
import rpy2.robjects as ro
|
|
|
from rpy2.robjects.numpy2ri import numpy2ri
|
|
|
ro.conversion.py2ri = numpy2ri
|
|
|
|
|
|
# IPython imports
|
|
|
|
|
|
from IPython.core.displaypub import publish_display_data
|
|
|
from IPython.core.magic import (Magics, magics_class, cell_magic, line_magic,
|
|
|
line_cell_magic)
|
|
|
from IPython.testing.skipdoctest import skip_doctest
|
|
|
from IPython.core.magic_arguments import (
|
|
|
argument, magic_arguments, parse_argstring
|
|
|
)
|
|
|
|
|
|
@magics_class
|
|
|
class RMagics(Magics):
|
|
|
|
|
|
def __init__(self, shell, Rconverter=np.asarray,
|
|
|
pyconverter=np.asarray):
|
|
|
super(RMagics, self).__init__(shell)
|
|
|
ri.set_writeconsole(self.write_console)
|
|
|
|
|
|
# the embedded R process from rpy2
|
|
|
self.r = ro.R()
|
|
|
self.output = []
|
|
|
self.Rconverter = Rconverter
|
|
|
self.pyconverter = pyconverter
|
|
|
|
|
|
def eval(self, line):
|
|
|
try:
|
|
|
return ri.baseenv['eval'](ri.parse(line))
|
|
|
except (ri.RRuntimeError, ValueError) as msg:
|
|
|
self.output.append('ERROR parsing "%s": %s\n' % (line, msg))
|
|
|
pass
|
|
|
|
|
|
def write_console(self, output):
|
|
|
'''
|
|
|
A hook to capture R's stdout.
|
|
|
'''
|
|
|
self.output.append(output)
|
|
|
|
|
|
def flush(self):
|
|
|
value = ''.join([s.decode('utf-8') for s in self.output])
|
|
|
self.output = []
|
|
|
return value
|
|
|
|
|
|
@skip_doctest
|
|
|
@line_magic
|
|
|
def Rpush(self, line):
|
|
|
'''
|
|
|
A line-level magic for R that pushes
|
|
|
variables from python to rpy2. The line should be made up
|
|
|
of whitespace separated variable names in the IPython
|
|
|
namespace.
|
|
|
|
|
|
In [7]: import numpy as np
|
|
|
|
|
|
In [8]: X = np.array([4.5,6.3,7.9])
|
|
|
|
|
|
In [9]: X.mean()
|
|
|
Out[9]: 6.2333333333333343
|
|
|
|
|
|
In [10]: %Rpush X
|
|
|
|
|
|
In [11]: %R mean(X)
|
|
|
Out[11]: array([ 6.23333333])
|
|
|
|
|
|
'''
|
|
|
|
|
|
inputs = line.split(' ')
|
|
|
for input in inputs:
|
|
|
self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
|
|
|
|
|
|
@skip_doctest
|
|
|
@line_magic
|
|
|
def Rpull(self, line):
|
|
|
'''
|
|
|
A line-level magic for R that pulls
|
|
|
variables from python to rpy2::
|
|
|
|
|
|
In [18]: _ = %R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
|
|
|
|
|
|
In [19]: %Rp
|
|
|
%Rpull %Rpush
|
|
|
|
|
|
In [19]: %Rpull x y z
|
|
|
|
|
|
In [20]: x
|
|
|
Out[20]: array([ 3. , 4. , 6.7])
|
|
|
|
|
|
In [21]: y
|
|
|
Out[21]: array([ 4., 6., 7.])
|
|
|
|
|
|
In [22]: z
|
|
|
Out[22]:
|
|
|
array(['a', '3', '4'],
|
|
|
dtype='|S1')
|
|
|
|
|
|
Notes
|
|
|
-----
|
|
|
|
|
|
Beware that R names can have '.' so this is not fool proof.
|
|
|
To avoid this, don't name your R objects with '.'s...
|
|
|
|
|
|
'''
|
|
|
outputs = line.split(' ')
|
|
|
for output in outputs:
|
|
|
self.shell.push({output:self.Rconverter(self.r(output))})
|
|
|
|
|
|
|
|
|
@skip_doctest
|
|
|
@magic_arguments()
|
|
|
@argument(
|
|
|
'-i', '--input', action='append',
|
|
|
help='Names of input variable from shell.user_ns to be assigned to R variables of the same names after calling self.pyconverter. Multiple names can be passed separated only by commas with no whitespace.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-o', '--output', action='append',
|
|
|
help='Names of variables to be pushed from rpy2 to shell.user_ns after executing cell body and applying self.Rconverter. Multiple names can be passed separated only by commas with no whitespace.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-w', '--width', type=int,
|
|
|
help='Width of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-h', '--height', type=int,
|
|
|
help='Height of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
|
|
|
@argument(
|
|
|
'-u', '--units', type=int,
|
|
|
help='Units of png plotting device sent as an argument to *png* in R. One of ["px", "in", "cm", "mm"].'
|
|
|
)
|
|
|
@argument(
|
|
|
'-p', '--pointsize', type=int,
|
|
|
help='Pointsize of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'-b', '--bg',
|
|
|
help='Background of png plotting device sent as an argument to *png* in R.'
|
|
|
)
|
|
|
@argument(
|
|
|
'code',
|
|
|
nargs='*',
|
|
|
)
|
|
|
@line_cell_magic
|
|
|
def R(self, line, cell=None):
|
|
|
'''
|
|
|
Execute code in R, and pull some of the results back into the Python namespace.
|
|
|
|
|
|
In line mode, this will evaluate an expression and convert the returned value to a Python object.
|
|
|
The return value is determined by rpy2's behaviour of returning the result of evaluating the
|
|
|
final line. Multiple R lines can be executed by joining them with semicolons::
|
|
|
|
|
|
In [9]: %R X=c(1,4,5,7); sd(X); mean(X)
|
|
|
Out[9]: array([ 4.25])
|
|
|
|
|
|
As a cell, this will run a block of R code, without bringing anything back by default::
|
|
|
|
|
|
In [10]: %%R
|
|
|
....: Y = c(2,4,3,9)
|
|
|
....: print(summary(lm(Y~X)))
|
|
|
....:
|
|
|
|
|
|
Call:
|
|
|
lm(formula = Y ~ X)
|
|
|
|
|
|
Residuals:
|
|
|
1 2 3 4
|
|
|
0.88 -0.24 -2.28 1.64
|
|
|
|
|
|
Coefficients:
|
|
|
Estimate Std. Error t value Pr(>|t|)
|
|
|
(Intercept) 0.0800 2.3000 0.035 0.975
|
|
|
X 1.0400 0.4822 2.157 0.164
|
|
|
|
|
|
Residual standard error: 2.088 on 2 degrees of freedom
|
|
|
Multiple R-squared: 0.6993,Adjusted R-squared: 0.549
|
|
|
F-statistic: 4.651 on 1 and 2 DF, p-value: 0.1638
|
|
|
|
|
|
In the notebook, plots are published as the output of the cell.
|
|
|
|
|
|
%R plot(X, Y)
|
|
|
|
|
|
will create a scatter plot of X bs Y.
|
|
|
|
|
|
If cell is not None and line has some R code, it is prepended to
|
|
|
the R code in cell.
|
|
|
|
|
|
Objects can be passed back and forth between rpy2 and python via the -i -o flags in line::
|
|
|
|
|
|
In [14]: Z = np.array([1,4,5,10])
|
|
|
|
|
|
In [15]: %R -i Z mean(Z)
|
|
|
Out[15]: array([ 5.])
|
|
|
|
|
|
|
|
|
In [16]: %R -o W W=Z*mean(Z)
|
|
|
Out[16]: array([ 5., 20., 25., 50.])
|
|
|
|
|
|
In [17]: W
|
|
|
Out[17]: array([ 5., 20., 25., 50.])
|
|
|
|
|
|
If the cell is None, the resulting value is returned,
|
|
|
after conversion with self.Rconverter
|
|
|
unless the line has contents that are published to the ipython
|
|
|
notebook (i.e. plots are create or something is printed to
|
|
|
R's stdout() connection).
|
|
|
|
|
|
If the cell is not None, the magic returns None.
|
|
|
|
|
|
'''
|
|
|
|
|
|
args = parse_argstring(self.R, line)
|
|
|
|
|
|
# arguments 'code' in line are prepended to
|
|
|
# the cell lines
|
|
|
if not cell:
|
|
|
code = ''
|
|
|
return_output = True
|
|
|
else:
|
|
|
code = cell
|
|
|
return_output = False
|
|
|
|
|
|
code = ' '.join(args.code) + code
|
|
|
|
|
|
if args.input:
|
|
|
for input in ','.join(args.input).split(','):
|
|
|
self.r.assign(input, self.pyconverter(self.shell.user_ns[input]))
|
|
|
|
|
|
png_argdict = dict([(n, getattr(args, n)) for n in ['units', 'height', 'width', 'bg', 'pointsize']])
|
|
|
png_args = ','.join(['%s=%s' % (o,v) for o, v in png_argdict.items() if v is not None])
|
|
|
# execute the R code in a temporary directory
|
|
|
|
|
|
tmpd = tempfile.mkdtemp()
|
|
|
self.r('png("%s/Rplots%%03d.png",%s)' % (tmpd, png_args))
|
|
|
result = self.eval(code)
|
|
|
self.r('dev.off()')
|
|
|
|
|
|
# read out all the saved .png files
|
|
|
|
|
|
images = [open(imgfile, 'rb').read() for imgfile in glob("%s/Rplots*png" % tmpd)]
|
|
|
|
|
|
# now publish the images
|
|
|
# mimicking IPython/zmq/pylab/backend_inline.py
|
|
|
fmt = 'png'
|
|
|
mimetypes = { 'png' : 'image/png', 'svg' : 'image/svg+xml' }
|
|
|
mime = mimetypes[fmt]
|
|
|
|
|
|
published = False
|
|
|
# publish the printed R objects, if any
|
|
|
flush = self.flush()
|
|
|
if flush:
|
|
|
published = True
|
|
|
publish_display_data('RMagic.R', {'text/plain':flush})
|
|
|
|
|
|
# flush text streams before sending figures, helps a little with output
|
|
|
for image in images:
|
|
|
published = True
|
|
|
# synchronization in the console (though it's a bandaid, not a real sln)
|
|
|
sys.stdout.flush(); sys.stderr.flush()
|
|
|
publish_display_data(
|
|
|
'RMagic.R',
|
|
|
{mime : image}
|
|
|
)
|
|
|
value = {}
|
|
|
|
|
|
# kill the temporary directory
|
|
|
rmtree(tmpd)
|
|
|
|
|
|
# try to turn every output into a numpy array
|
|
|
# this means that output are assumed to be castable
|
|
|
# as numpy arrays
|
|
|
|
|
|
if args.output:
|
|
|
for output in ','.join(args.output).split(','):
|
|
|
# with self.shell, we assign the values to variables in the shell
|
|
|
self.shell.push({output:self.Rconverter(self.r(output))})
|
|
|
|
|
|
|
|
|
# if there was a single line, return its value
|
|
|
# converted to a python object
|
|
|
|
|
|
if return_output and not published:
|
|
|
return self.Rconverter(result)
|
|
|
|
|
|
_loaded = False
|
|
|
def load_ipython_extension(ip):
|
|
|
"""Load the extension in IPython."""
|
|
|
global _loaded
|
|
|
if not _loaded:
|
|
|
ip.register_magics(RMagics)
|
|
|
_loaded = True
|
|
|
|