##// END OF EJS Templates
Backport PR #2126: ipcluster broken with any batch (PBS/LSF/SGE)...
Backport PR #2126: ipcluster broken with any batch (PBS/LSF/SGE) I have setup ipcluster_config.py to start with LSF: ``` c.IPClusterStart.controller_launcher_class = 'LSF' c.IPClusterStart.engine_launcher_class = 'LSF' ``` But the ipcluster command fails to start the engines: ``` ipcluster start --profile=lsf -n 10 ``` The problem is fixed if I add quotes to the launch command string ```cmd``` in ```launcher.py```. ``` diff --git a/IPython/parallel/apps/launcher.py b/IPython/parallel/apps/launcher.py index e752d2a..6035303 100644 --- a/IPython/parallel/apps/launcher.py +++ b/IPython/parallel/apps/launcher.py @@ -73,7 +73,7 @@ WINDOWS = os.name == 'nt' # Paths to the kernel apps #----------------------------------------------------------------------------- -cmd = "from IPython.parallel.apps.%s import launch_new_instance; launch_new_instance()" +cmd = "\"from IPython.parallel.apps.%s import launch_new_instance; launch_new_instance()\"" ipcluster_cmd_argv = [sys.executable, "-c", cmd % "ipclusterapp"] ```

File last commit:

r4910:0dc49390
r7995:061632b4
Show More
parallel_pylab.ipy
49 lines | 1.2 KiB | text/plain | TextLexer
"""Example of how to use pylab to plot parallel data.
The idea here is to run matplotlib is the same IPython session
as an ipython parallel Client. That way matplotlib
can be used to plot parallel data that is gathered using
a DirectView.
To run this example, first start the IPython controller and 4
engines::
ipcluster -n 4
Then start ipython in pylab mode::
ipython -pylab
Then a simple "run parallel_pylab.ipy" in IPython will run the
example.
"""
import numpy as N
from pylab import *
from IPython.parallel import Client
# load the parallel magic
%load_ext parallelmagic
# Get an IPython Client
rc = Client()
v = rc[:]
v.activate()
# Create random arrays on the engines
# This is to simulate arrays that you have calculated in parallel
# on the engines.
# Anymore that length 10000 arrays, matplotlib starts to be slow
%px import numpy as N
%px x = N.random.standard_normal(10000)
%px y = N.random.standard_normal(10000)
print v.apply_async(lambda : x[0:10]).get_dict()
print v.apply_async(lambda : y[0:10]).get_dict()
# Bring back the data
x_local = v.gather('x', block=True)
y_local = v.gather('y', block=True)
# Make a scatter plot of the gathered data
plot(x_local, y_local,'ro')