##// END OF EJS Templates
Merge pull request #1331 from ellisonbg/celltypes...
Merge pull request #1331 from ellisonbg/celltypes Added plaintext and heading cells to the notebook UI and nbformat. In the process we have updated the nbformat to v3 and integrated these new cell types into the new toolbar.

File last commit:

r6035:3077781f
r6037:069f64e8 merge
Show More
sympy_quantum_computing.ipynb
409 lines | 26.9 KiB | text/plain | TextLexer
/ docs / examples / notebooks / sympy_quantum_computing.ipynb

Basic Symbolic Quantum Mechanics with SymPy

We first load the IPython extensions that enable LaTeX-based mathematical printing of SymPy objects, and then import the quantum computing libraries from SymPy.

In [1]:
%load_ext sympyprinting
In [2]:
from sympy import sqrt, symbols, Rational
from sympy import expand, Eq, Symbol, simplify, exp, sin
from sympy.physics.quantum import *
from sympy.physics.quantum.qubit import *
from sympy.physics.quantum.gate import *
from sympy.physics.quantum.grover import *
from sympy.physics.quantum.qft import QFT, IQFT, Fourier
from sympy.physics.quantum.circuitplot import circuit_plot

Bras and Kets

Create symbolic states

In [3]:
phi, psi = Ket('phi'), Ket('psi')
alpha, beta = symbols('alpha beta', complex=True)

Create a superposition

In [4]:
state = alpha*psi + beta*phi; state
Out[4]:
$$\alpha {\left|\psi\right\rangle } + \beta {\left|\phi\right\rangle }$$

Dagger the superposition and multiply the original

In [5]:
ip = Dagger(state)*state; ip
Out[5]:
$$\left(\overline{\alpha} {\left\langle \psi\right|} + \overline{\beta} {\left\langle \phi\right|}\right) \left(\alpha {\left|\psi\right\rangle } + \beta {\left|\phi\right\rangle }\right)$$

Distribute

In [6]:
qapply(expand(ip))
Out[6]:
$$\alpha \overline{\alpha} \left\langle \psi \right. {\left|\psi\right\rangle } + \alpha \overline{\beta} \left\langle \phi \right. {\left|\psi\right\rangle } + \beta \overline{\alpha} \left\langle \psi \right. {\left|\phi\right\rangle } + \beta \overline{\beta} \left\langle \phi \right. {\left|\phi\right\rangle }$$

Operators

Create symbolic operators

In [7]:
A = Operator('A')
B = Operator('B')
C = Operator('C')

Test commutativity

In [8]:
A*B == B*A
Out[8]:
False

Distribute A+B squared

In [9]:
expand((A+B)**2)
Out[9]:
$$A B + \left(A\right)^{2} + B A + \left(B\right)^{2}$$

Create a commutator

In [10]:
comm = Commutator(A,B); comm
Out[10]:
$$\left[A,B\right]$$

Carry out the commutator

In [11]:
comm.doit()
Out[11]:
$$A B - B A$$

Create a more fancy commutator

In [12]:
comm = Commutator(A*B,B+C); comm
Out[12]:
$$\left[A B,B + C\right]$$

Expand the commutator

In [13]:
comm.expand(commutator=True)
Out[13]:
$$\left[A,B\right] B + \left[A,C\right] B + A \left[B,C\right]$$

Carry out and expand the commutators

In [14]:
_.doit().expand()
Out[14]:
$$A B C + A \left(B\right)^{2} - B A B - C A B$$

Take the dagger

In [15]:
Dagger(_)
Out[15]:
$$- B^{\dagger} A^{\dagger} B^{\dagger} - B^{\dagger} A^{\dagger} C^{\dagger} + \left(B^{\dagger}\right)^{2} A^{\dagger} + C^{\dagger} B^{\dagger} A^{\dagger}$$