##// END OF EJS Templates
Merge pull request #1331 from ellisonbg/celltypes...
Merge pull request #1331 from ellisonbg/celltypes Added plaintext and heading cells to the notebook UI and nbformat. In the process we have updated the nbformat to v3 and integrated these new cell types into the new toolbar.

File last commit:

r6035:3077781f
r6037:069f64e8 merge
Show More
trapezoid_rule.ipynb
117 lines | 21.0 KiB | text/plain | TextLexer

Basic numerical integration: the trapezoid rule

A simple illustration of the trapezoid rule for definite integration:

$$ \int_{a}^{b} f(x)\, dx \approx \frac{1}{2} \sum_{k=1}^{N} \left( x_{k} - x_{k-1} \right) \left( f(x_{k}) + f(x_{k-1}) \right). $$
First, we define a simple function and sample it between 0 and 10 at 200 points
In [1]:
def f(x):
    return (x-3)*(x-5)*(x-7)+85

x = linspace(0, 10, 200)
y = f(x)

Choose a region to integrate over and take only a few points in that region

In [2]:
a, b = 1, 9
xint = x[logical_and(x>=a, x<=b)][::30]
yint = y[logical_and(x>=a, x<=b)][::30]

Plot both the function and the area below it in the trapezoid approximation

In [3]:
plot(x, y, lw=2)
axis([0, 10, 0, 140])
fill_between(xint, 0, yint, facecolor='gray', alpha=0.4)
text(0.5 * (a + b), 30,r"$\int_a^b f(x)dx$", horizontalalignment='center', fontsize=20);
No description has been provided for this image

Compute the integral both at high accuracy and with the trapezoid approximation

In [4]:
from scipy.integrate import quad, trapz
integral, error = quad(f, 1, 9)
print "The integral is:", integral, "+/-", error
print "The trapezoid approximation with", len(xint), "points is:", trapz(yint, xint)
The integral is: 680.0 +/- 7.54951656745e-12
The trapezoid approximation with 6 points is: 621.286411141
In [ ]: