##// END OF EJS Templates
KernelManager has port traits instead of multiple ip/port pairs...
KernelManager has port traits instead of multiple ip/port pairs all foo_address traits became foo_port, adding one 'ip' trait for all This matches the Kernel, which does not allow specifying multiple IPs for each channel.

File last commit:

r4637:d919e2ec
r4956:09371f3c
Show More
smooth_dos.ipynb
201 lines | 49.5 KiB | text/plain | TextLexer
In [1]:
from sympy import *
import numpy as np
import math

Strutinsky Energy Averaging Method

Define a callable class for computing the smooth part of the density of states $\tilde{g}_m(E)$ with curvature correction of order $2M$.

In [2]:
class SmoothDOS(object):

    def __init__(self, energies):
        self.energies = energies

    def gaussian_smoothing_func(self, M, x):
        return (mpmath.laguerre(M,0.5,x**2)*exp(-x**2)/sqrt(pi)).evalf()

    def __call__(self, e, M=3, gamma=1.0):
        return sum(self.gaussian_smoothing_func(M, (e-ei)/gamma)/gamma for ei in self.energies)
In [3]:
def avgf(M, x):
    return (mpmath.laguerre(M,0.5,x**2)*exp(-x**2)/sqrt(pi)).evalf()
In [4]:
def smooth_dos(gamma, M, e, energies):
    return sum(avgf(M, (e-ei)/gamma)/gamma for ei in energies)

1D Simple Harmonic Oscillator DOS

In [5]:
def sho_smooth_dos(e):
    """Compute the exact smooth DOS."""
    return 1
In [6]:
def sho_spectrum(nmax):
    """Compute the first nmax energies of the 1D SHO."""
    return [n+0.5 for n in range(nmax)]
In [7]:
sho_evalues = np.linspace(0.0,20,100)
In [8]:
sho_dos = SmoothDOS(sho_spectrum(30))
In [10]:
sho_exact_dos = [sho_smooth_dos(e) for e in sho_evalues]
In [23]:
sho_approx_dos = [sho_dos(e,M=3,gamma=10.0) for e in sho_evalues]
In [24]:
plot(sho_evalues, sho_exact_dos, label="exact")
plot(sho_evalues, sho_approx_dos, label="approx")
title("Smooth part of the DOS for the 1D SHO")
xlabel("Energy"); ylabel("$g(E)$")
legend(loc=4)
Out[24]:
<matplotlib.legend.Legend at 0x7f1790f77990>
No description has been provided for this image

Note how the exact smoothed DOS and the Strutinsky approximation agree once the energy is away from 0. In general, these are edge effects and are also present at the right limit if you don't use enough energy levels. Here we have used 30, so the right side doesn't show these artifacts.

1D Particle in a BOX (PIAB) DOS

In [16]:
def piab_smooth_dos(e):
    """Compute the exact smooth DOS."""
    return 1.0/(2.0*math.sqrt(e*math.pi**2/2))
In [17]:
def piab_spectrum(nmax):
    """Compute the first nmax energies of the 1D PIAB."""
    return [0.5*math.pi**2*(n+1)**2 for n in range(nmax)]
In [18]:
piab_evalues = linspace(1.0,1000.0,100)
In [19]:
piab_dos = SmoothDOS(piab_spectrum(20))
In [20]:
piab_exact_dos = [piab_smooth_dos(e) for e in piab_evalues]
In [21]:
piab_approx_dos = [piab_dos(e, M=4, gamma=150.0) for e in piab_evalues]
In [22]:
plot(piab_evalues, piab_exact_dos, label="exact")
plot(piab_evalues, piab_approx_dos, label="approx")
title("Smooth part of the DOS for the 1D PIAB")
xlabel("Energy"); ylabel("$g(E)$")
legend(loc=1)
Out[22]:
<matplotlib.legend.Legend at 0x6107410>
No description has been provided for this image
In [ ]: