##// END OF EJS Templates
Added GTK support to ZeroMQ kernel....
Added GTK support to ZeroMQ kernel. We use an approach which is a combination of an gtk timer callback into our execution loop, like we do for Qt and Wx, I've run as tests several GTK examples found on the net, as well as multiple matplotlib scripts, and so far everything works as expected. The only catch is that we silently trap gtk.main_quit(), so examples that call it with a 'close' button or similar seem to not do anything. But their windows close normally and no other problems have been found. This solution uses code taken from an old bug report of ours: https://bugs.launchpad.net/ipython/+bug/270856 specifically the attachment in this comment: https://bugs.launchpad.net/ipython/+bug/270856/comments/6 along with the changes suggested by Michiel de Hoon there. Thanks to Ville and Michiel for that old discussion, which put me on the right track to figure out the details of the logic needed for GTK.

File last commit:

r2267:928c921b
r2949:13751b1c
Show More
PhysicalQInteractive.py
90 lines | 3.3 KiB | text/x-python | PythonLexer
/ IPython / deathrow / PhysicalQInteractive.py
# -*- coding: utf-8 -*-
"""Modify the PhysicalQuantities class for more convenient interactive use.
Also redefine some math functions to operate on PhysQties with no need for
special method syntax. This just means moving them out to the global
namespace.
This module should always be loaded *after* math or Numeric, so it can
overwrite math functions with the versions that handle units.
Authors
-------
- Fernando Perez <Fernando.Perez@berkeley.edu>
"""
#*****************************************************************************
# Copyright (C) 2008-2009 The IPython Development Team
# Copyright (C) 2001-2007 Fernando Perez <fperez@colorado.edu>
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#*****************************************************************************
from Scientific.Physics.PhysicalQuantities import PhysicalQuantity
# This code can be set up to work with Numeric or with math for providing the
# mathematical functions. Uncomment the one you prefer to use below.
# If you use math, sin(x) won't work for x an array, only float or PhysQty
import math
# If you use Numeric, sin(x) works for x a float, PhysQty an array.
#import Numeric as math
class PhysicalQuantityFunction:
"""Generic function wrapper for PhysicalQuantity instances.
Calls functions from either the math library or the instance's methods as
required. Allows using sin(theta) or sqrt(v**2) syntax irrespective of
whether theta is a pure number or a PhysicalQuantity.
This is *slow*. It's meant for convenient interactive use, not for
speed."""
def __init__(self,name):
self.name = name
def __call__(self,x):
if isinstance(x,PhysicalQuantity):
return PhysicalQuantity.__dict__[self.name](x)
else:
return math.__dict__[self.name](x)
class PhysicalQuantityInteractive(PhysicalQuantity):
"""Physical quantity with units - modified for Interactive use.
Basically, the __str__ and __repr__ methods have been swapped for more
convenient interactive use. Powers are shown as ^ instead of ** and only 4
significant figures are shown.
Also adds the following aliases for commonly used methods:
b = PhysicalQuantity.inBaseUnits
u = PhysicalQuantity.inUnitsOf
These are useful when doing a lot of interactive calculations.
"""
# shorthands for the most useful unit conversions
b = PhysicalQuantity.inBaseUnits # so you can just type x.b to get base units
u = PhysicalQuantity.inUnitsOf
# This can be done, but it can get dangerous when coupled with IPython's
# auto-calling. Everything ends up shown in baseunits and things like x*2
# get automatically converted to k(*2), which doesn't work.
# Probably not a good idea in general...
#__call__ = b
def __str__(self):
return PhysicalQuantity.__repr__(self)
def __repr__(self):
value = '%.4G' % self.value
units = self.unit.name().replace('**','^')
return value + ' ' + units
# implement the methods defined in PhysicalQuantity as PhysicalQuantityFunctions
sin = PhysicalQuantityFunction('sin')
cos = PhysicalQuantityFunction('cos')
tan = PhysicalQuantityFunction('tan')
sqrt = PhysicalQuantityFunction('sqrt')