##// END OF EJS Templates
use new css with old nbconvert html
use new css with old nbconvert html

File last commit:

r9595:c56ac074
r9673:1ce1776b
Show More
Gun_Data.orig.py
303 lines | 10.4 KiB | text/x-python | PythonLexer
## Some gun violence analysis with Wikipedia data
# As [requested by John Stokes](https://twitter.com/jonst0kes/status/282330530412888064),
# here are per-capita numbers for gun-related homicides,
# relating to GDP and total homicides,
# so the situation in the United States can be put in context relative to other nations.
# main data source is UNODC (via Wikipedia [here](http://en.wikipedia.org/wiki/List_of_countries_by_intentional_homicide_rate)
# and [here](http://en.wikipedia.org/wiki/List_of_countries_by_firearm-related_death_rate)).
#
# GDP data from World Bank, again [via Wikipedia](http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita).
#
# If the numbers on Wikipedia are inaccurate, or their relationship is not sound
# (e.g. numbers taken from different years, during which significant change occured)
# then obviously None of this analysis is valid.
#
# To summarize the data,
# every possible way you look at it the US is lousy at preventing gun violence.
# Even when compared to significantly more violent places,
# gun violence in the US is a serious problem,
# and when compared to similarly wealthy places,
# the US is an outstanding disaster.
# **UPDATE:** the relationship of the gun data and totals does not seem to be valid.
# [FBI data](http://www2.fbi.gov/ucr/cius2009/offenses/violent_crime/index.html) suggests that
# the relative contribution of guns to homicides in the US is 47%,
# but relating these two data sources gives 80%.
# Internal comparisons should still be fine, but 'fraction' analysis has been stricken.
# In[1]:
%load_ext retina
%pylab inline
# Out[1]:
#
# Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
# For more information, type 'help(pylab)'.
#
# In[2]:
from IPython.display import display
import pandas
pandas.set_option('display.notebook_repr_html', True)
pandas.set_option('display.precision', 2)
# Some utility functions for display
# In[3]:
def plot_percent(df, limit=10):
df['Gun Percent'][:limit].plot()
plt.ylim(0,100)
plt.title("% Gun Homicide")
plt.show()
# In[4]:
def plot_percapita(df, limit=10):
df = df.ix[:,['Homicides', 'Gun Homicides']][:limit]
df['Total Homicides'] = df['Homicides'] - df['Gun Homicides']
del df['Homicides']
df.plot(kind='bar', stacked=True, sort_columns=True)
plt.ylabel("per 100k")
plt.show()
# In[8]:
def display_relevant(df, limit=10):
display(df.ix[:,['Homicides', 'Gun Homicides', 'Gun Data Source']][:limit])
# Load the data
# In[9]:
totals = pandas.read_csv('totals.csv', '\t', index_col=0)
guns = pandas.read_csv('guns.csv', '\t', index_col=0)
gdp = pandas.read_csv('gdp.csv', '\t', index_col=1)
data = totals.join(guns).join(gdp)
data['Gun Percent'] = 100 * data['Gun Homicides'] / data['Homicides']
del data['Unintentional'],data['Undetermined'],data['Gun Suicides']
data = data.dropna()
# Of all sampled countries (Found data for 68 countries),
# the US is in the top 15 in Gun Homicides per capita.
#
# Numbers are per 100k.
# In[10]:
data = data.sort("Gun Homicides", ascending=False)
display_relevant(data, 15)
# Out[10]:
# Homicides Gun Homicides Gun Data Source
# Country
# El Salvador 69.2 50.4 OAS 2011[1]
# Jamaica 52.2 47.4 OAS 2011[1]
# Honduras 91.6 46.7 OAS 2011[1]
# Guatemala 38.5 38.5 OAS 2011[1]
# Colombia 33.4 27.1 UNODC 2011 [2]
# Brazil 21.0 18.1 UNODC 2011[3]
# Panama 21.6 12.9 OAS 2011[1]
# Mexico 16.9 10.0 UNODC 2011[4]
# Paraguay 11.5 7.3 UNODC 2000[11]
# Nicaragua 13.6 7.1 OAS 2011[1]
# United States 4.2 3.7 OAS 2012[5][6]
# Costa Rica 10.0 3.3 UNODC 2002[7]
# Uruguay 5.9 3.2 UNODC 2002[7]
# Argentina 3.4 3.0 UNODC 2011[12]
# Barbados 11.3 3.0 UNODC 2000[11]
# Take top 30 Countries by GDP
# In[11]:
top = data.sort('GDP')[-30:]
# and rank them by Gun Homicides per capita:
# In[12]:
top_by_guns = top.sort("Gun Homicides", ascending=False)
display_relevant(top_by_guns, 5)
plot_percapita(top_by_guns, 10)
# Out[12]:
# Homicides Gun Homicides Gun Data Source
# Country
# United States 4.2 3.7 OAS 2012[5][6]
# Israel 2.1 0.9 WHO 2012[10]
# Canada 1.6 0.8 Krug 1998[13]
# Luxembourg 2.5 0.6 WHO 2012[10]
# Greece 1.5 0.6 Krug 1998[13]
# image file: tests/ipynbref/Gun_Data_orig_files/Gun_Data_orig_fig_00.png
# **NOTE:** these bar graphs should not be interpreted as fractions of a total,
# as the two data sources do not appear to be comparable.
# But the red and blue bar graphs should still be internally comparable.
# The US is easily #1 of 30 wealthiest countries in Gun Homicides per capita,
# by a factor of 4:1
# Adding USA, Canada, and Mexico to all of Europe,
# USA is a strong #2 behind Mexico in total gun homicides per-capita
# In[13]:
index = (data['Region'] == 'Europe') + \
(data.index == 'United States') + \
(data.index == 'Canada') + \
(data.index == 'Mexico')
selected = data[index]
print "By Total Gun Homicides"
sys.stdout.flush()
by_guns = selected.sort("Gun Homicides", ascending=False)
#by_guns['Gun Homicides'].plot(kind='bar')
plot_percapita(by_guns, limit=25)
display_relevant(selected, limit=None)
# Out[13]:
# By Total Gun Homicides
#
# image file: tests/ipynbref/Gun_Data_orig_files/Gun_Data_orig_fig_01.png
# Homicides Gun Homicides Gun Data Source
# Country
# Mexico 16.9 10.0 UNODC 2011[4]
# United States 4.2 3.7 OAS 2012[5][6]
# Montenegro 3.5 2.1 WHO 2012[10]
# Moldova 7.5 1.0 WHO 2012[10]
# Canada 1.6 0.8 Krug 1998[13]
# Serbia 1.2 0.6 WHO 2012[10]
# Luxembourg 2.5 0.6 WHO 2012[10]
# Greece 1.5 0.6 Krug 1998[13]
# Croatia 1.4 0.6 WHO 2012[10]
# Switzerland 0.7 0.5 OAS 2011[1]
# Malta 1.0 0.5 WHO 2012[10]
# Portugal 1.2 0.5 WHO 2012[10]
# Belarus 4.9 0.4 UNODC 2002[7]
# Ireland 1.2 0.4 WHO 2012[10]
# Italy 0.9 0.4 WHO 2012[10]
# Ukraine 5.2 0.3 UNODC 2000[11]
# Estonia 5.2 0.3 WHO 2012[10]
# Belgium 1.7 0.3 WHO 2012[10]
# Finland 2.2 0.3 WHO 2012[10]
# Lithuania 6.6 0.2 WHO 2012[10]
# Bulgaria 2.0 0.2 WHO 2012[10]
# Georgia 4.3 0.2 WHO 2012[10]
# Denmark 0.9 0.2 WHO 2012[10]
# France 1.1 0.2 WHO 2012[10]
# Netherlands 1.1 0.2 WHO 2012[10]
# Sweden 1.0 0.2 WHO 2012[10]
# Slovakia 1.5 0.2 WHO 2012[10]
# Austria 0.6 0.2 WHO 2012[10]
# Latvia 3.1 0.2 WHO 2012[10]
# Spain 0.8 0.1 WHO 2012[10]
# Hungary 1.3 0.1 WHO 2012[10]
# Czech Republic 1.7 0.1 WHO 2012[10]
# Germany 0.8 0.1 WHO 2012[10]
# Slovenia 0.7 0.1 WHO 2012[10]
# Romania 2.0 0.0 WHO 2012[10]
# United Kingdom 1.2 0.0 WHO2012 [10]
# Norway 0.6 0.0 WHO 2012[10]
# Poland 1.1 0.0 WHO 2012[10]
# Let's just compare US, Canada, and UK:
# In[15]:
select = data.ix[['United States', 'Canada', 'United Kingdom']]
plot_percapita(select)
# Out[15]:
# image file: tests/ipynbref/Gun_Data_orig_files/Gun_Data_orig_fig_02.png
# Normalize to the US numbers (inverse)
# In[16]:
select['Homicides'] = select['Homicides']['United States'] / select['Homicides']
select['Gun Homicides'] = select['Gun Homicides']['United States'] / select['Gun Homicides']
display_relevant(select)
# Out[16]:
# Homicides Gun Homicides Gun Data Source
# United States 1.0 1.0 OAS 2012[5][6]
# Canada 2.6 4.9 Krug 1998[13]
# United Kingdom 3.5 92.5 WHO2012 [10]
# So, you are 2.6 times more likely to be killed in the US than Canada,
# and 3.5 times more likely than in the UK.
# That's bad, but not extreme.
#
# However, you are 4.9 times more likely to be killed *with a gun* in the US than Canada,
# and almost 100 times more likely than in the UK. That is pretty extreme.
#
# Countries represented:
# In[14]:
for country in data.index:
print country
# Out[14]:
# El Salvador
# Jamaica
# Honduras
# Guatemala
# Colombia
# Brazil
# Panama
# Mexico
# Paraguay
# Nicaragua
# United States
# Costa Rica
# Uruguay
# Argentina
# Barbados
# Montenegro
# Peru
# Moldova
# Israel
# India
# Canada
# Serbia
# Luxembourg
# Greece
# Uzbekistan
# Croatia
# Kyrgyzstan
# Switzerland
# Malta
# Portugal
# Belarus
# Ireland
# Italy
# Kuwait
# Ukraine
# Estonia
# Belgium
# Finland
# Lithuania
# Cyprus
# Bulgaria
# Georgia
# Denmark
# France
# Netherlands
# Sweden
# Slovakia
# Qatar
# Austria
# Latvia
# New Zealand
# Spain
# Hungary
# Czech Republic
# Hong Kong
# Australia
# Singapore
# Chile
# Germany
# Slovenia
# Romania
# Azerbaijan
# South Korea
# United Kingdom
# Norway
# Japan
# Poland
# Mauritius
#