##// END OF EJS Templates
Manage and propagate argv correctly....
Manage and propagate argv correctly. All Application objects should take argv in their constructor, akin to how the standard signature of C programs is "main(int argc, char *argv)". This makes it possible to initialize them from code with different command-line options (otherwise, they end up directly accessing sys.argv[1:] via argparse).

File last commit:

r1395:1feaf0a3
r2391:1d7c11a4
Show More
parallelfunction.py
106 lines | 3.1 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""A parallelized function that does scatter/execute/gather."""
__docformat__ = "restructuredtext en"
#-------------------------------------------------------------------------------
# Copyright (C) 2008 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Imports
#-------------------------------------------------------------------------------
from types import FunctionType
from zope.interface import Interface, implements
class IMultiEngineParallelDecorator(Interface):
"""A decorator that creates a parallel function."""
def parallel(dist='b', targets=None, block=None):
"""
A decorator that turns a function into a parallel function.
This can be used as:
@parallel()
def f(x, y)
...
f(range(10), range(10))
This causes f(0,0), f(1,1), ... to be called in parallel.
:Parameters:
dist : str
What decomposition to use, 'b' is the only one supported
currently
targets : str, int, sequence of ints
Which engines to use for the map
block : boolean
Should calls to `map` block or not
"""
class ITaskParallelDecorator(Interface):
"""A decorator that creates a parallel function."""
def parallel(clear_before=False, clear_after=False, retries=0,
recovery_task=None, depend=None, block=True):
"""
A decorator that turns a function into a parallel function.
This can be used as:
@parallel()
def f(x, y)
...
f(range(10), range(10))
This causes f(0,0), f(1,1), ... to be called in parallel.
See the documentation for `IPython.kernel.task.BaseTask` for
documentation on the arguments to this method.
"""
class IParallelFunction(Interface):
pass
class ParallelFunction(object):
"""
The implementation of a parallel function.
A parallel function is similar to Python's map function:
map(func, *sequences) -> pfunc(*sequences)
Parallel functions should be created by using the @parallel decorator.
"""
implements(IParallelFunction)
def __init__(self, mapper):
"""
Create a parallel function from an `IMapper`.
:Parameters:
mapper : an `IMapper` implementer.
The mapper to use for the parallel function
"""
self.mapper = mapper
def __call__(self, func):
"""
Decorate a function to make it run in parallel.
"""
assert isinstance(func, (str, FunctionType)), "func must be a fuction or str"
self.func = func
def call_function(*sequences):
return self.mapper.map(self.func, *sequences)
return call_function