##// END OF EJS Templates
Added additional entrypoint script....
Added additional entrypoint script. Added a third entrypoint to use python's minor version as well. This can help when testing out differences of python versions. One could easily open "ipython3.10" and test it's differences with "ipython3.8".

File last commit:

r27288:33f5b346
r27765:1db65d02
Show More
pylabtools.py
424 lines | 13.5 KiB | text/x-python | PythonLexer
# -*- coding: utf-8 -*-
"""Pylab (matplotlib) support utilities."""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from io import BytesIO
from binascii import b2a_base64
from functools import partial
import warnings
from IPython.core.display import _pngxy
from IPython.utils.decorators import flag_calls
# If user specifies a GUI, that dictates the backend, otherwise we read the
# user's mpl default from the mpl rc structure
backends = {
"tk": "TkAgg",
"gtk": "GTKAgg",
"gtk3": "GTK3Agg",
"gtk4": "GTK4Agg",
"wx": "WXAgg",
"qt4": "Qt4Agg",
"qt5": "Qt5Agg",
"qt6": "QtAgg",
"qt": "Qt5Agg",
"osx": "MacOSX",
"nbagg": "nbAgg",
"notebook": "nbAgg",
"agg": "agg",
"svg": "svg",
"pdf": "pdf",
"ps": "ps",
"inline": "module://matplotlib_inline.backend_inline",
"ipympl": "module://ipympl.backend_nbagg",
"widget": "module://ipympl.backend_nbagg",
}
# We also need a reverse backends2guis mapping that will properly choose which
# GUI support to activate based on the desired matplotlib backend. For the
# most part it's just a reverse of the above dict, but we also need to add a
# few others that map to the same GUI manually:
backend2gui = dict(zip(backends.values(), backends.keys()))
# In the reverse mapping, there are a few extra valid matplotlib backends that
# map to the same GUI support
backend2gui["GTK"] = backend2gui["GTKCairo"] = "gtk"
backend2gui["GTK3Cairo"] = "gtk3"
backend2gui["GTK4Cairo"] = "gtk4"
backend2gui["WX"] = "wx"
backend2gui["CocoaAgg"] = "osx"
# There needs to be a hysteresis here as the new QtAgg Matplotlib backend
# supports either Qt5 or Qt6 and the IPython qt event loop support Qt4, Qt5,
# and Qt6.
backend2gui["QtAgg"] = "qt"
backend2gui["Qt4Agg"] = "qt"
backend2gui["Qt5Agg"] = "qt"
# And some backends that don't need GUI integration
del backend2gui["nbAgg"]
del backend2gui["agg"]
del backend2gui["svg"]
del backend2gui["pdf"]
del backend2gui["ps"]
del backend2gui["module://matplotlib_inline.backend_inline"]
del backend2gui["module://ipympl.backend_nbagg"]
#-----------------------------------------------------------------------------
# Matplotlib utilities
#-----------------------------------------------------------------------------
def getfigs(*fig_nums):
"""Get a list of matplotlib figures by figure numbers.
If no arguments are given, all available figures are returned. If the
argument list contains references to invalid figures, a warning is printed
but the function continues pasting further figures.
Parameters
----------
figs : tuple
A tuple of ints giving the figure numbers of the figures to return.
"""
from matplotlib._pylab_helpers import Gcf
if not fig_nums:
fig_managers = Gcf.get_all_fig_managers()
return [fm.canvas.figure for fm in fig_managers]
else:
figs = []
for num in fig_nums:
f = Gcf.figs.get(num)
if f is None:
print('Warning: figure %s not available.' % num)
else:
figs.append(f.canvas.figure)
return figs
def figsize(sizex, sizey):
"""Set the default figure size to be [sizex, sizey].
This is just an easy to remember, convenience wrapper that sets::
matplotlib.rcParams['figure.figsize'] = [sizex, sizey]
"""
import matplotlib
matplotlib.rcParams['figure.figsize'] = [sizex, sizey]
def print_figure(fig, fmt="png", bbox_inches="tight", base64=False, **kwargs):
"""Print a figure to an image, and return the resulting file data
Returned data will be bytes unless ``fmt='svg'``,
in which case it will be unicode.
Any keyword args are passed to fig.canvas.print_figure,
such as ``quality`` or ``bbox_inches``.
If `base64` is True, return base64-encoded str instead of raw bytes
for binary-encoded image formats
.. versionadded:: 7.29
base64 argument
"""
# When there's an empty figure, we shouldn't return anything, otherwise we
# get big blank areas in the qt console.
if not fig.axes and not fig.lines:
return
dpi = fig.dpi
if fmt == 'retina':
dpi = dpi * 2
fmt = 'png'
# build keyword args
kw = {
"format":fmt,
"facecolor":fig.get_facecolor(),
"edgecolor":fig.get_edgecolor(),
"dpi":dpi,
"bbox_inches":bbox_inches,
}
# **kwargs get higher priority
kw.update(kwargs)
bytes_io = BytesIO()
if fig.canvas is None:
from matplotlib.backend_bases import FigureCanvasBase
FigureCanvasBase(fig)
fig.canvas.print_figure(bytes_io, **kw)
data = bytes_io.getvalue()
if fmt == 'svg':
data = data.decode('utf-8')
elif base64:
data = b2a_base64(data).decode("ascii")
return data
def retina_figure(fig, base64=False, **kwargs):
"""format a figure as a pixel-doubled (retina) PNG
If `base64` is True, return base64-encoded str instead of raw bytes
for binary-encoded image formats
.. versionadded:: 7.29
base64 argument
"""
pngdata = print_figure(fig, fmt="retina", base64=False, **kwargs)
# Make sure that retina_figure acts just like print_figure and returns
# None when the figure is empty.
if pngdata is None:
return
w, h = _pngxy(pngdata)
metadata = {"width": w//2, "height":h//2}
if base64:
pngdata = b2a_base64(pngdata).decode("ascii")
return pngdata, metadata
# We need a little factory function here to create the closure where
# safe_execfile can live.
def mpl_runner(safe_execfile):
"""Factory to return a matplotlib-enabled runner for %run.
Parameters
----------
safe_execfile : function
This must be a function with the same interface as the
:meth:`safe_execfile` method of IPython.
Returns
-------
A function suitable for use as the ``runner`` argument of the %run magic
function.
"""
def mpl_execfile(fname,*where,**kw):
"""matplotlib-aware wrapper around safe_execfile.
Its interface is identical to that of the :func:`execfile` builtin.
This is ultimately a call to execfile(), but wrapped in safeties to
properly handle interactive rendering."""
import matplotlib
import matplotlib.pyplot as plt
#print '*** Matplotlib runner ***' # dbg
# turn off rendering until end of script
is_interactive = matplotlib.rcParams['interactive']
matplotlib.interactive(False)
safe_execfile(fname,*where,**kw)
matplotlib.interactive(is_interactive)
# make rendering call now, if the user tried to do it
if plt.draw_if_interactive.called:
plt.draw()
plt.draw_if_interactive.called = False
# re-draw everything that is stale
try:
da = plt.draw_all
except AttributeError:
pass
else:
da()
return mpl_execfile
def _reshow_nbagg_figure(fig):
"""reshow an nbagg figure"""
try:
reshow = fig.canvas.manager.reshow
except AttributeError as e:
raise NotImplementedError() from e
else:
reshow()
def select_figure_formats(shell, formats, **kwargs):
"""Select figure formats for the inline backend.
Parameters
----------
shell : InteractiveShell
The main IPython instance.
formats : str or set
One or a set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'.
**kwargs : any
Extra keyword arguments to be passed to fig.canvas.print_figure.
"""
import matplotlib
from matplotlib.figure import Figure
svg_formatter = shell.display_formatter.formatters['image/svg+xml']
png_formatter = shell.display_formatter.formatters['image/png']
jpg_formatter = shell.display_formatter.formatters['image/jpeg']
pdf_formatter = shell.display_formatter.formatters['application/pdf']
if isinstance(formats, str):
formats = {formats}
# cast in case of list / tuple
formats = set(formats)
[ f.pop(Figure, None) for f in shell.display_formatter.formatters.values() ]
mplbackend = matplotlib.get_backend().lower()
if mplbackend == 'nbagg' or mplbackend == 'module://ipympl.backend_nbagg':
formatter = shell.display_formatter.ipython_display_formatter
formatter.for_type(Figure, _reshow_nbagg_figure)
supported = {'png', 'png2x', 'retina', 'jpg', 'jpeg', 'svg', 'pdf'}
bad = formats.difference(supported)
if bad:
bs = "%s" % ','.join([repr(f) for f in bad])
gs = "%s" % ','.join([repr(f) for f in supported])
raise ValueError("supported formats are: %s not %s" % (gs, bs))
if "png" in formats:
png_formatter.for_type(
Figure, partial(print_figure, fmt="png", base64=True, **kwargs)
)
if "retina" in formats or "png2x" in formats:
png_formatter.for_type(Figure, partial(retina_figure, base64=True, **kwargs))
if "jpg" in formats or "jpeg" in formats:
jpg_formatter.for_type(
Figure, partial(print_figure, fmt="jpg", base64=True, **kwargs)
)
if "svg" in formats:
svg_formatter.for_type(Figure, partial(print_figure, fmt="svg", **kwargs))
if "pdf" in formats:
pdf_formatter.for_type(
Figure, partial(print_figure, fmt="pdf", base64=True, **kwargs)
)
#-----------------------------------------------------------------------------
# Code for initializing matplotlib and importing pylab
#-----------------------------------------------------------------------------
def find_gui_and_backend(gui=None, gui_select=None):
"""Given a gui string return the gui and mpl backend.
Parameters
----------
gui : str
Can be one of ('tk','gtk','wx','qt','qt4','inline','agg').
gui_select : str
Can be one of ('tk','gtk','wx','qt','qt4','inline').
This is any gui already selected by the shell.
Returns
-------
A tuple of (gui, backend) where backend is one of ('TkAgg','GTKAgg',
'WXAgg','Qt4Agg','module://matplotlib_inline.backend_inline','agg').
"""
import matplotlib
if gui and gui != 'auto':
# select backend based on requested gui
backend = backends[gui]
if gui == 'agg':
gui = None
else:
# We need to read the backend from the original data structure, *not*
# from mpl.rcParams, since a prior invocation of %matplotlib may have
# overwritten that.
# WARNING: this assumes matplotlib 1.1 or newer!!
backend = matplotlib.rcParamsOrig['backend']
# In this case, we need to find what the appropriate gui selection call
# should be for IPython, so we can activate inputhook accordingly
gui = backend2gui.get(backend, None)
# If we have already had a gui active, we need it and inline are the
# ones allowed.
if gui_select and gui != gui_select:
gui = gui_select
backend = backends[gui]
return gui, backend
def activate_matplotlib(backend):
"""Activate the given backend and set interactive to True."""
import matplotlib
matplotlib.interactive(True)
# Matplotlib had a bug where even switch_backend could not force
# the rcParam to update. This needs to be set *before* the module
# magic of switch_backend().
matplotlib.rcParams['backend'] = backend
# Due to circular imports, pyplot may be only partially initialised
# when this function runs.
# So avoid needing matplotlib attribute-lookup to access pyplot.
from matplotlib import pyplot as plt
plt.switch_backend(backend)
plt.show._needmain = False
# We need to detect at runtime whether show() is called by the user.
# For this, we wrap it into a decorator which adds a 'called' flag.
plt.draw_if_interactive = flag_calls(plt.draw_if_interactive)
def import_pylab(user_ns, import_all=True):
"""Populate the namespace with pylab-related values.
Imports matplotlib, pylab, numpy, and everything from pylab and numpy.
Also imports a few names from IPython (figsize, display, getfigs)
"""
# Import numpy as np/pyplot as plt are conventions we're trying to
# somewhat standardize on. Making them available to users by default
# will greatly help this.
s = ("import numpy\n"
"import matplotlib\n"
"from matplotlib import pylab, mlab, pyplot\n"
"np = numpy\n"
"plt = pyplot\n"
)
exec(s, user_ns)
if import_all:
s = ("from matplotlib.pylab import *\n"
"from numpy import *\n")
exec(s, user_ns)
# IPython symbols to add
user_ns['figsize'] = figsize
from IPython.display import display
# Add display and getfigs to the user's namespace
user_ns['display'] = display
user_ns['getfigs'] = getfigs
def configure_inline_support(shell, backend):
"""
.. deprecated:: 7.23
use `matplotlib_inline.backend_inline.configure_inline_support()`
Configure an IPython shell object for matplotlib use.
Parameters
----------
shell : InteractiveShell instance
backend : matplotlib backend
"""
warnings.warn(
"`configure_inline_support` is deprecated since IPython 7.23, directly "
"use `matplotlib_inline.backend_inline.configure_inline_support()`",
DeprecationWarning,
stacklevel=2,
)
from matplotlib_inline.backend_inline import (
configure_inline_support as configure_inline_support_orig,
)
configure_inline_support_orig(shell, backend)