##// END OF EJS Templates
cleanup connection files on notebook shutdown...
cleanup connection files on notebook shutdown Kernels would not linger, but the KernelManagers are not garbage-collected on shutdown. This means that connection files for kernels still running at notebook shutdown would not be removed. Also disable the unnecessary (and actively unhelpful) SIGINT handler inherited from the original copy/paste from the qt app.

File last commit:

r5486:79538b03
r5799:1e917565
Show More
mcpricer.py
180 lines | 3.4 KiB | text/x-python | PythonLexer
# <nbformat>2</nbformat>
# <markdowncell>
# # Parallel Monto-Carlo options pricing
# <markdowncell>
# ## Problem setup
# <codecell>
import sys
import time
from IPython.parallel import Client
import numpy as np
from mckernel import price_options
from matplotlib import pyplot as plt
# <codecell>
cluster_profile = "default"
price = 100.0 # Initial price
rate = 0.05 # Interest rate
days = 260 # Days to expiration
paths = 10000 # Number of MC paths
n_strikes = 6 # Number of strike values
min_strike = 90.0 # Min strike price
max_strike = 110.0 # Max strike price
n_sigmas = 5 # Number of volatility values
min_sigma = 0.1 # Min volatility
max_sigma = 0.4 # Max volatility
# <codecell>
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)
# <markdowncell>
# ## Parallel computation across strike prices and volatilities
# <markdowncell>
# The Client is used to setup the calculation and works with all engines.
# <codecell>
c = Client(profile=cluster_profile)
# <markdowncell>
# A LoadBalancedView is an interface to the engines that provides dynamic load
# balancing at the expense of not knowing which engine will execute the code.
# <codecell>
view = c.load_balanced_view()
# <codecell>
print "Strike prices: ", strike_vals
print "Volatilities: ", sigma_vals
# <markdowncell>
# Submit tasks for each (strike, sigma) pair.
# <codecell>
t1 = time.time()
async_results = []
for strike in strike_vals:
for sigma in sigma_vals:
ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
async_results.append(ar)
# <codecell>
print "Submitted tasks: ", len(async_results)
# <markdowncell>
# Block until all tasks are completed.
# <codecell>
c.wait(async_results)
t2 = time.time()
t = t2-t1
print "Parallel calculation completed, time = %s s" % t
# <markdowncell>
# ## Process and visualize results
# <markdowncell>
# Get the results using the `get` method:
# <codecell>
results = [ar.get() for ar in async_results]
# <markdowncell>
# Assemble the result into a structured NumPy array.
# <codecell>
prices = np.empty(n_strikes*n_sigmas,
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
)
for i, price in enumerate(results):
prices[i] = tuple(price)
prices.shape = (n_strikes, n_sigmas)
# <markdowncell>
# Plot the value of the European call in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['ecall'])
plt.axis('tight')
plt.colorbar()
plt.title('European Call')
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian call in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['acall'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Call")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the European put in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['eput'])
plt.axis('tight')
plt.colorbar()
plt.title("European Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <markdowncell>
# Plot the value of the Asian put in (volatility, strike) space.
# <codecell>
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['aput'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
# <codecell>
plt.show()