|
|
#!/usr/bin/env python
|
|
|
"""Parallel word frequency counter.
|
|
|
|
|
|
This only works for a local cluster, because the filenames are local paths.
|
|
|
"""
|
|
|
|
|
|
|
|
|
import os
|
|
|
import time
|
|
|
import urllib
|
|
|
|
|
|
from itertools import repeat
|
|
|
|
|
|
from wordfreq import print_wordfreq, wordfreq
|
|
|
|
|
|
from IPython.parallel import Client, Reference
|
|
|
|
|
|
davinci_url = "http://www.gutenberg.org/cache/epub/5000/pg5000.txt"
|
|
|
|
|
|
def pwordfreq(view, fnames):
|
|
|
"""Parallel word frequency counter.
|
|
|
|
|
|
view - An IPython DirectView
|
|
|
fnames - The filenames containing the split data.
|
|
|
"""
|
|
|
assert len(fnames) == len(view.targets)
|
|
|
view.scatter('fname', fnames, flatten=True)
|
|
|
ar = view.apply(wordfreq, Reference('fname'))
|
|
|
freqs_list = ar.get()
|
|
|
word_set = set()
|
|
|
for f in freqs_list:
|
|
|
word_set.update(f.keys())
|
|
|
freqs = dict(zip(word_set, repeat(0)))
|
|
|
for f in freqs_list:
|
|
|
for word, count in f.iteritems():
|
|
|
freqs[word] += count
|
|
|
return freqs
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
# Create a Client and View
|
|
|
rc = Client()
|
|
|
|
|
|
view = rc[:]
|
|
|
|
|
|
if not os.path.exists('davinci.txt'):
|
|
|
# download from project gutenberg
|
|
|
print "Downloading Da Vinci's notebooks from Project Gutenberg"
|
|
|
urllib.urlretrieve(davinci_url, 'davinci.txt')
|
|
|
|
|
|
# Run the serial version
|
|
|
print "Serial word frequency count:"
|
|
|
text = open('davinci.txt').read()
|
|
|
tic = time.time()
|
|
|
freqs = wordfreq(text)
|
|
|
toc = time.time()
|
|
|
print_wordfreq(freqs, 10)
|
|
|
print "Took %.3f s to calcluate"%(toc-tic)
|
|
|
|
|
|
|
|
|
# The parallel version
|
|
|
print "\nParallel word frequency count:"
|
|
|
# split the davinci.txt into one file per engine:
|
|
|
lines = text.splitlines()
|
|
|
nlines = len(lines)
|
|
|
n = len(rc)
|
|
|
block = nlines/n
|
|
|
for i in range(n):
|
|
|
chunk = lines[i*block:i*(block+1)]
|
|
|
with open('davinci%i.txt'%i, 'w') as f:
|
|
|
f.write('\n'.join(chunk))
|
|
|
|
|
|
cwd = os.path.abspath(os.getcwdu())
|
|
|
fnames = [ os.path.join(cwd, 'davinci%i.txt'%i) for i in range(n)]
|
|
|
tic = time.time()
|
|
|
pfreqs = pwordfreq(view,fnames)
|
|
|
toc = time.time()
|
|
|
print_wordfreq(freqs)
|
|
|
print "Took %.3f s to calcluate on %i engines"%(toc-tic, len(view.targets))
|
|
|
# cleanup split files
|
|
|
map(os.remove, fnames)
|
|
|
|