##// END OF EJS Templates
cleanup profile fixup rst
cleanup profile fixup rst

File last commit:

r9310:92b31d22
r9534:301c4a11
Show More
Gun_Data.orig.html
4200 lines | 243.0 KiB | text/html | HtmlLexer
<html>
<head>
<style type="text/css">
/**
* HTML5 ✰ Boilerplate
*
* style.css contains a reset, font normalization and some base styles.
*
* Credit is left where credit is due.
* Much inspiration was taken from these projects:
* - yui.yahooapis.com/2.8.1/build/base/base.css
* - camendesign.com/design/
* - praegnanz.de/weblog/htmlcssjs-kickstart
*/
/**
* html5doctor.com Reset Stylesheet (Eric Meyer's Reset Reloaded + HTML5 baseline)
* v1.6.1 2010-09-17 | Authors: Eric Meyer & Richard Clark
* html5doctor.com/html-5-reset-stylesheet/
*/
html, body, div, span, object, iframe,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
abbr, address, cite, code, del, dfn, em, img, ins, kbd, q, samp,
small, strong, sub, sup, var, b, i, dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td,
article, aside, canvas, details, figcaption, figure,
footer, header, hgroup, menu, nav, section, summary,
time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline;
}
sup { vertical-align: super; }
sub { vertical-align: sub; }
article, aside, details, figcaption, figure,
footer, header, hgroup, menu, nav, section {
display: block;
}
blockquote, q { quotes: none; }
blockquote:before, blockquote:after,
q:before, q:after { content: ""; content: none; }
ins { background-color: #ff9; color: #000; text-decoration: none; }
mark { background-color: #ff9; color: #000; font-style: italic; font-weight: bold; }
del { text-decoration: line-through; }
abbr[title], dfn[title] { border-bottom: 1px dotted; cursor: help; }
table { border-collapse: collapse; border-spacing: 0; }
hr { display: block; height: 1px; border: 0; border-top: 1px solid #ccc; margin: 1em 0; padding: 0; }
input, select { vertical-align: middle; }
/**
* Font normalization inspired by YUI Library's fonts.css: developer.yahoo.com/yui/
*/
body { font:13px/1.231 sans-serif; *font-size:small; } /* Hack retained to preserve specificity */
select, input, textarea, button { font:99% sans-serif; }
/* Normalize monospace sizing:
en.wikipedia.org/wiki/MediaWiki_talk:Common.css/Archive_11#Teletype_style_fix_for_Chrome */
pre, code, kbd, samp { font-family: monospace, sans-serif; }
em,i { font-style: italic; }
b,strong { font-weight: bold; }
</style>
<style type="text/css">
/* Flexible box model classes */
/* Taken from Alex Russell http://infrequently.org/2009/08/css-3-progress/ */
.hbox {
display: -webkit-box;
-webkit-box-orient: horizontal;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: horizontal;
-moz-box-align: stretch;
display: box;
box-orient: horizontal;
box-align: stretch;
}
.hbox > * {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.vbox {
display: -webkit-box;
-webkit-box-orient: vertical;
-webkit-box-align: stretch;
display: -moz-box;
-moz-box-orient: vertical;
-moz-box-align: stretch;
display: box;
box-orient: vertical;
box-align: stretch;
}
.vbox > * {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.reverse {
-webkit-box-direction: reverse;
-moz-box-direction: reverse;
box-direction: reverse;
}
.box-flex0 {
-webkit-box-flex: 0;
-moz-box-flex: 0;
box-flex: 0;
}
.box-flex1, .box-flex {
-webkit-box-flex: 1;
-moz-box-flex: 1;
box-flex: 1;
}
.box-flex2 {
-webkit-box-flex: 2;
-moz-box-flex: 2;
box-flex: 2;
}
.box-group1 {
-webkit-box-flex-group: 1;
-moz-box-flex-group: 1;
box-flex-group: 1;
}
.box-group2 {
-webkit-box-flex-group: 2;
-moz-box-flex-group: 2;
box-flex-group: 2;
}
.start {
-webkit-box-pack: start;
-moz-box-pack: start;
box-pack: start;
}
.end {
-webkit-box-pack: end;
-moz-box-pack: end;
box-pack: end;
}
.center {
-webkit-box-pack: center;
-moz-box-pack: center;
box-pack: center;
}
</style>
<style type="text/css">
/**
* Primary styles
*
* Author: IPython Development Team
*/
body {
overflow: hidden;
}
blockquote {
border-left: 4px solid #DDD;
padding: 0 15px;
color: #777;
}
span#save_widget {
padding: 5px;
margin: 0px 0px 0px 300px;
display:inline-block;
}
span#notebook_name {
height: 1em;
line-height: 1em;
padding: 3px;
border: none;
font-size: 146.5%;
}
.ui-menubar-item .ui-button .ui-button-text {
padding: 0.4em 1.0em;
font-size: 100%;
}
.ui-menu {
-moz-box-shadow: 0px 6px 10px -1px #adadad;
-webkit-box-shadow: 0px 6px 10px -1px #adadad;
box-shadow: 0px 6px 10px -1px #adadad;
}
.ui-menu .ui-menu-item a {
border: 1px solid transparent;
padding: 2px 1.6em;
}
.ui-menu .ui-menu-item a.ui-state-focus {
margin: 0;
}
.ui-menu hr {
margin: 0.3em 0;
}
#menubar_container {
position: relative;
}
#notification_area {
position: absolute;
right: 0px;
top: 0px;
height: 25px;
padding: 3px 0px;
padding-right: 3px;
z-index: 10;
}
.notification_widget{
float : right;
right: 0px;
top: 1px;
height: 25px;
padding: 3px 6px;
z-index: 10;
}
.toolbar {
padding: 3px 15px;
}
#maintoolbar > select, #maintoolbar label {
font-size: 85%;
margin-left:0.3em;
margin-right:0.3em;
}
div#main_app {
width: 100%;
position: relative;
}
span#quick_help_area {
position: static;
padding: 5px 0px;
margin: 0px 0px 0px 0px;
}
.help_string {
float: right;
width: 170px;
padding: 0px 5px;
text-align: left;
font-size: 85%;
}
.help_string_label {
float: right;
font-size: 85%;
}
div#notebook_panel {
margin: 0px 0px 0px 0px;
padding: 0px;
}
div#notebook {
overflow-y: scroll;
overflow-x: auto;
width: 100%;
/* This spaces the cell away from the edge of the notebook area */
padding: 5px 5px 15px 5px;
margin: 0px;
background-color: white;
}
div#pager_splitter {
height: 8px;
}
#pager_container {
position : relative;
}
div#pager {
padding: 15px;
overflow: auto;
display: none;
}
div.ui-widget-content {
border: 1px solid #aaa;
outline: none;
}
.cell {
border: 1px solid transparent;
}
div.cell {
width: 100%;
padding: 5px 5px 5px 0px;
/* This acts as a spacer between cells, that is outside the border */
margin: 2px 0px 2px 0px;
outline: none;
}
div.code_cell {
background-color: white;
}
/* any special styling for code cells that are currently running goes here */
div.code_cell.running {
}
div.prompt {
/* This needs to be wide enough for 3 digit prompt numbers: In[100]: */
width: 11ex;
/* This 0.4em is tuned to match the padding on the CodeMirror editor. */
padding: 0.4em;
margin: 0px;
font-family: monospace;
text-align: right;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.231;
}
div.input {
page-break-inside: avoid;
}
/* input_area and input_prompt must match in top border and margin for alignment */
div.input_area {
color: black;
border: 1px solid #ddd;
border-radius: 3px;
background: #f7f7f7;
}
div.input_prompt {
color: navy;
border-top: 1px solid transparent;
}
div.output_wrapper {
/* This is a spacer between the input and output of each cell */
margin-top: 5px;
margin-left: 5px;
/* FF needs explicit width to stretch */
width: 100%;
/* this position must be relative to enable descendents to be absolute within it */
position: relative;
}
/* class for the output area when it should be height-limited */
div.output_scroll {
/* ideally, this would be max-height, but FF barfs all over that */
height: 24em;
/* FF needs this *and the wrapper* to specify full width, or it will shrinkwrap */
width: 100%;
overflow: auto;
border-radius: 3px;
box-shadow: inset 0 2px 8px rgba(0, 0, 0, .8);
}
/* output div while it is collapsed */
div.output_collapsed {
margin-right: 5px;
}
div.out_prompt_overlay {
height: 100%;
padding: 0px;
position: absolute;
border-radius: 3px;
}
div.out_prompt_overlay:hover {
/* use inner shadow to get border that is computed the same on WebKit/FF */
box-shadow: inset 0 0 1px #000;
background: rgba(240, 240, 240, 0.5);
}
div.output_prompt {
color: darkred;
/* 5px right shift to account for margin in parent container */
margin: 0 5px 0 -5px;
}
/* This class is the outer container of all output sections. */
div.output_area {
padding: 0px;
page-break-inside: avoid;
}
/* This is needed to protect the pre formating from global settings such
as that of bootstrap */
div.output_area pre {
font-family: monospace;
margin: 0;
padding: 0;
border: 0;
font-size: 100%;
font: inherit;
vertical-align: baseline;
color: black;
background-color: white;
}
/* This class is for the output subarea inside the output_area and after
the prompt div. */
div.output_subarea {
padding: 0.44em 0.4em 0.4em 1px;
}
/* The rest of the output_* classes are for special styling of the different
output types */
/* all text output has this class: */
div.output_text {
text-align: left;
color: black;
font-family: monospace;
/* This has to match that of the the CodeMirror class line-height below */
line-height: 1.231;
}
/* stdout/stderr are 'text' as well as 'stream', but pyout/pyerr are *not* streams */
div.output_stream {
padding-top: 0.0em;
padding-bottom: 0.0em;
}
div.output_stdout {
}
div.output_stderr {
background: #fdd; /* very light red background for stderr */
}
div.output_latex {
text-align: left;
color: black;
}
div.output_html {
}
div.output_png {
}
div.output_jpeg {
}
div.text_cell {
background-color: white;
padding: 5px 5px 5px 5px;
}
div.text_cell_input {
color: black;
border: 1px solid #ddd;
border-radius: 3px;
background: #f7f7f7;
}
div.text_cell_render {
font-family: "Helvetica Neue", Arial, Helvetica, Geneva, sans-serif;
outline: none;
resize: none;
width: inherit;
border-style: none;
padding: 5px;
color: black;
}
/* The following gets added to the <head> if it is detected that the user has a
* monospace font with inconsistent normal/bold/italic height. See
* notebookmain.js. Such fonts will have keywords vertically offset with
* respect to the rest of the text. The user should select a better font.
* See: https://github.com/ipython/ipython/issues/1503
*
* .CodeMirror span {
* vertical-align: bottom;
* }
*/
.CodeMirror {
line-height: 1.231; /* Changed from 1em to our global default */
}
.CodeMirror-scroll {
height: auto; /* Changed to auto to autogrow */
/* The CodeMirror docs are a bit fuzzy on if overflow-y should be hidden or visible.*/
/* We have found that if it is visible, vertical scrollbars appear with font size changes.*/
overflow-y: hidden;
overflow-x: auto; /* Changed from auto to remove scrollbar */
}
/* CSS font colors for translated ANSI colors. */
.ansiblack {color: black;}
.ansired {color: darkred;}
.ansigreen {color: darkgreen;}
.ansiyellow {color: brown;}
.ansiblue {color: darkblue;}
.ansipurple {color: darkviolet;}
.ansicyan {color: steelblue;}
.ansigrey {color: grey;}
.ansibold {font-weight: bold;}
.completions {
position: absolute;
z-index: 10;
overflow: hidden;
border: 1px solid grey;
}
.completions select {
background: white;
outline: none;
border: none;
padding: 0px;
margin: 0px;
overflow: auto;
font-family: monospace;
}
option.context {
background-color: #DEF7FF;
}
option.introspection {
background-color: #EBF4EB;
}
/*fixed part of the completion*/
.completions p b {
font-weight:bold;
}
.completions p {
background: #DDF;
/*outline: none;
padding: 0px;*/
border-bottom: black solid 1px;
padding: 1px;
font-family: monospace;
}
pre.dialog {
background-color: #f7f7f7;
border: 1px solid #ddd;
border-radius: 3px;
padding: 0.4em;
padding-left: 2em;
}
p.dialog {
padding : 0.2em;
}
.shortcut_key {
display: inline-block;
width: 15ex;
text-align: right;
font-family: monospace;
}
.shortcut_descr {
}
/* Word-wrap output correctly. This is the CSS3 spelling, though Firefox seems
to not honor it correctly. Webkit browsers (Chrome, rekonq, Safari) do.
*/
pre, code, kbd, samp { white-space: pre-wrap; }
#fonttest {
font-family: monospace;
}
.js-error {
color: darkred;
}
</style>
<style type="text/css">
.rendered_html {color: black;}
.rendered_html em {font-style: italic;}
.rendered_html strong {font-weight: bold;}
.rendered_html u {text-decoration: underline;}
.rendered_html :link { text-decoration: underline }
.rendered_html :visited { text-decoration: underline }
.rendered_html h1 {font-size: 197%; margin: .65em 0; font-weight: bold;}
.rendered_html h2 {font-size: 153.9%; margin: .75em 0; font-weight: bold;}
.rendered_html h3 {font-size: 123.1%; margin: .85em 0; font-weight: bold;}
.rendered_html h4 {font-size: 100% margin: 0.95em 0; font-weight: bold;}
.rendered_html h5 {font-size: 85%; margin: 1.5em 0; font-weight: bold;}
.rendered_html h6 {font-size: 77%; margin: 1.65em 0; font-weight: bold;}
.rendered_html ul {list-style:disc; margin: 1em 2em;}
.rendered_html ul ul {list-style:square; margin: 0em 2em;}
.rendered_html ul ul ul {list-style:circle; margin-left: 0em 2em;}
.rendered_html ol {list-style:decimal; margin: 1em 2em;}
.rendered_html ol ol {list-style:upper-alpha; margin: 0em 2em;}
.rendered_html ol ol ol {list-style:lower-alpha; margin: 0em 2em;}
.rendered_html ol ol ol ol {list-style:lower-roman; margin: 0em 2em;}
/* any extras will just be numbers: */
.rendered_html ol ol ol ol ol {list-style:decimal; margin: 0em 2em;}
.rendered_html hr {
color: black;
background-color: black;
}
.rendered_html pre {
margin: 1em 2em;
}
.rendered_html blockquote {
margin: 1em 2em;
}
.rendered_html table {
border: 1px solid black;
border-collapse: collapse;
margin: 1em 2em;
}
.rendered_html td {
border: 1px solid black;
text-align: left;
vertical-align: middle;
padding: 4px;
}
.rendered_html th {
border: 1px solid black;
text-align: left;
vertical-align: middle;
padding: 4px;
font-weight: bold;
}
.rendered_html tr {
border: 1px solid black;
}
.rendered_html p + p {
margin-top: 1em;
}
</style>
<style type="text/css">
/* Overrides of notebook CSS for static HTML export
*/
body {
overflow: visible;
padding: 8px;
}
.input_area {
padding: 0.4em;
}
</style>
<meta charset="UTF-8">
<style type="text/css">
.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #808080 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0040D0 } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
</style>
<script src="https://c328740.ssl.cf1.rackcdn.com/mathjax/latest/MathJax.js?config=TeX-AMS_HTML" type="text/javascript">
</script>
<script type="text/javascript">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ]
},
displayAlign: 'left', // Change this to 'center' to center equations.
"HTML-CSS": {
styles: {'.MathJax_Display': {"margin": 0}}
}
});
MathJax.Hub.Queue(["Typeset",MathJax.Hub]);
}
}
init_mathjax();
</script>
</head>
<body>
<div class="text_cell_render border-box-sizing rendered_html">
<h1>
Some gun violence analysis with Wikipedia data
</h1>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>As <a href="https://twitter.com/jonst0kes/status/282330530412888064">requested by John Stokes</a>,
here are per-capita numbers for gun-related homicides,
relating to GDP and total homicides,
so the situation in the United States can be put in context relative to other nations.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>main data source is UNODC (via Wikipedia <a href="http://en.wikipedia.org/wiki/List_of_countries_by_intentional_homicide_rate">here</a>
and <a href="http://en.wikipedia.org/wiki/List_of_countries_by_firearm-related_death_rate">here</a>).</p>
<p>GDP data from World Bank, again <a href="http://en.wikipedia.org/wiki/List_of_countries_by_GDP_(PPP)_per_capita">via Wikipedia</a>.</p>
<p>If the numbers on Wikipedia are inaccurate, or their relationship is not sound
(e.g. numbers taken from different years, during which significant change occured)
then obviously None of this analysis is valid.</p>
<p>To summarize the data,
every possible way you look at it the US is lousy at preventing gun violence.
Even when compared to significantly more violent places,
gun violence in the US is a serious problem,
and when compared to similarly wealthy places,
the US is an outstanding disaster.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>UPDATE:</strong> the relationship of the gun data and totals does not seem to be valid.
<a href="http://www2.fbi.gov/ucr/cius2009/offenses/violent_crime/index.html">FBI data</a> suggests that
the relative contribution of guns to homicides in the US is 47%,
but relating these two data sources gives 80%.
Internal comparisons should still be fine, but 'fraction' analysis has been stricken.</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[1]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="o">%</span><span class="k">load_ext</span> <span class="n">retina</span>
<span class="o">%</span><span class="k">pylab</span> <span class="n">inline</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>
Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].
For more information, type &apos;help(pylab)&apos;.
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[2]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="kn">from</span> <span class="nn">IPython.display</span> <span class="kn">import</span> <span class="n">display</span>
<span class="kn">import</span> <span class="nn">pandas</span>
<span class="n">pandas</span><span class="o">.</span><span class="n">set_option</span><span class="p">(</span><span class="s">&#39;display.notebook_repr_html&#39;</span><span class="p">,</span> <span class="bp">True</span><span class="p">)</span>
<span class="n">pandas</span><span class="o">.</span><span class="n">set_option</span><span class="p">(</span><span class="s">&#39;display.precision&#39;</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Some utility functions for display</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[3]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">plot_percent</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">limit</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="n">df</span><span class="p">[</span><span class="s">&#39;Gun Percent&#39;</span><span class="p">][:</span><span class="n">limit</span><span class="p">]</span><span class="o">.</span><span class="n">plot</span><span class="p">()</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylim</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">100</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s">&quot;</span><span class="si">% G</span><span class="s">un Homicide&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[4]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">plot_percapita</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">limit</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="n">df</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">ix</span><span class="p">[:,[</span><span class="s">&#39;Homicides&#39;</span><span class="p">,</span> <span class="s">&#39;Gun Homicides&#39;</span><span class="p">]][:</span><span class="n">limit</span><span class="p">]</span>
<span class="n">df</span><span class="p">[</span><span class="s">&#39;Total Homicides&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">]</span> <span class="o">-</span> <span class="n">df</span><span class="p">[</span><span class="s">&#39;Gun Homicides&#39;</span><span class="p">]</span>
<span class="k">del</span> <span class="n">df</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">]</span>
<span class="n">df</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">kind</span><span class="o">=</span><span class="s">&#39;bar&#39;</span><span class="p">,</span> <span class="n">stacked</span><span class="o">=</span><span class="bp">True</span><span class="p">,</span> <span class="n">sort_columns</span><span class="o">=</span><span class="bp">True</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s">&quot;per 100k&quot;</span><span class="p">)</span>
<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[8]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="k">def</span> <span class="nf">display_relevant</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">limit</span><span class="o">=</span><span class="mi">10</span><span class="p">):</span>
<span class="n">display</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">ix</span><span class="p">[:,[</span><span class="s">&#39;Homicides&#39;</span><span class="p">,</span> <span class="s">&#39;Gun Homicides&#39;</span><span class="p">,</span> <span class="s">&#39;Gun Data Source&#39;</span><span class="p">]][:</span><span class="n">limit</span><span class="p">])</span>
</pre></div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Load the data</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[9]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">totals</span> <span class="o">=</span> <span class="n">pandas</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s">&#39;totals.csv&#39;</span><span class="p">,</span> <span class="s">&#39;</span><span class="se">\t</span><span class="s">&#39;</span><span class="p">,</span> <span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">guns</span> <span class="o">=</span> <span class="n">pandas</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s">&#39;guns.csv&#39;</span><span class="p">,</span> <span class="s">&#39;</span><span class="se">\t</span><span class="s">&#39;</span><span class="p">,</span> <span class="n">index_col</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="n">gdp</span> <span class="o">=</span> <span class="n">pandas</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s">&#39;gdp.csv&#39;</span><span class="p">,</span> <span class="s">&#39;</span><span class="se">\t</span><span class="s">&#39;</span><span class="p">,</span> <span class="n">index_col</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">totals</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">guns</span><span class="p">)</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">gdp</span><span class="p">)</span>
<span class="n">data</span><span class="p">[</span><span class="s">&#39;Gun Percent&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="mi">100</span> <span class="o">*</span> <span class="n">data</span><span class="p">[</span><span class="s">&#39;Gun Homicides&#39;</span><span class="p">]</span> <span class="o">/</span> <span class="n">data</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">]</span>
<span class="k">del</span> <span class="n">data</span><span class="p">[</span><span class="s">&#39;Unintentional&#39;</span><span class="p">],</span><span class="n">data</span><span class="p">[</span><span class="s">&#39;Undetermined&#39;</span><span class="p">],</span><span class="n">data</span><span class="p">[</span><span class="s">&#39;Gun Suicides&#39;</span><span class="p">]</span>
<span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">dropna</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Of all sampled countries (Found data for 68 countries),
the US is in the top 15 in Gun Homicides per capita.</p>
<p>Numbers are per 100k.</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[10]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">data</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="s">&quot;Gun Homicides&quot;</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="n">display_relevant</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="mi">15</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Homicides</th>
<th>Gun Homicides</th>
<th>Gun Data Source</th>
</tr>
<tr>
<th>Country</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>El Salvador</strong></td>
<td> 69.2</td>
<td> 50.4</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Jamaica</strong></td>
<td> 52.2</td>
<td> 47.4</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Honduras</strong></td>
<td> 91.6</td>
<td> 46.7</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Guatemala</strong></td>
<td> 38.5</td>
<td> 38.5</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Colombia</strong></td>
<td> 33.4</td>
<td> 27.1</td>
<td> UNODC 2011 [2]</td>
</tr>
<tr>
<td><strong>Brazil</strong></td>
<td> 21.0</td>
<td> 18.1</td>
<td> UNODC 2011[3]</td>
</tr>
<tr>
<td><strong>Panama</strong></td>
<td> 21.6</td>
<td> 12.9</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Mexico</strong></td>
<td> 16.9</td>
<td> 10.0</td>
<td> UNODC 2011[4]</td>
</tr>
<tr>
<td><strong>Paraguay</strong></td>
<td> 11.5</td>
<td> 7.3</td>
<td> UNODC 2000[11]</td>
</tr>
<tr>
<td><strong>Nicaragua</strong></td>
<td> 13.6</td>
<td> 7.1</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>United States</strong></td>
<td> 4.2</td>
<td> 3.7</td>
<td> OAS 2012[5][6]</td>
</tr>
<tr>
<td><strong>Costa Rica</strong></td>
<td> 10.0</td>
<td> 3.3</td>
<td> UNODC 2002[7]</td>
</tr>
<tr>
<td><strong>Uruguay</strong></td>
<td> 5.9</td>
<td> 3.2</td>
<td> UNODC 2002[7]</td>
</tr>
<tr>
<td><strong>Argentina</strong></td>
<td> 3.4</td>
<td> 3.0</td>
<td> UNODC 2011[12]</td>
</tr>
<tr>
<td><strong>Barbados</strong></td>
<td> 11.3</td>
<td> 3.0</td>
<td> UNODC 2000[11]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Take top 30 Countries by GDP</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[11]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">top</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="s">&#39;GDP&#39;</span><span class="p">)[</span><span class="o">-</span><span class="mi">30</span><span class="p">:]</span>
</pre></div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>and rank them by Gun Homicides per capita:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[12]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">top_by_guns</span> <span class="o">=</span> <span class="n">top</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="s">&quot;Gun Homicides&quot;</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="n">display_relevant</span><span class="p">(</span><span class="n">top_by_guns</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
<span class="n">plot_percapita</span><span class="p">(</span><span class="n">top_by_guns</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Homicides</th>
<th>Gun Homicides</th>
<th>Gun Data Source</th>
</tr>
<tr>
<th>Country</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>United States</strong></td>
<td> 4.2</td>
<td> 3.7</td>
<td> OAS 2012[5][6]</td>
</tr>
<tr>
<td><strong>Israel</strong></td>
<td> 2.1</td>
<td> 0.9</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Canada</strong></td>
<td> 1.6</td>
<td> 0.8</td>
<td> Krug 1998[13]</td>
</tr>
<tr>
<td><strong>Luxembourg</strong></td>
<td> 2.5</td>
<td> 0.6</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Greece</strong></td>
<td> 1.5</td>
<td> 0.6</td>
<td> Krug 1998[13]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<img src='
AAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XlYV3X+///HGwEJRFkUIUUItcwVMLcgU1FMc2vSj2lZ
OZa4jGNTqY3lZBqDJdl02Ujikum4pZmpLSIquWRAAhppNe46aciigKKy/f7oC7+IXYE3cO636+Ly
mvNazvOcQ87l43qd1zHl5+fnCwAAAAAAADAYC3MXAAAAAAAAAJgDwRgAAAAAAAAMiWAMAAAAAAAA
hkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAA
AAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIVmau4Ca8ssvv2jGjBnK
yclRSEiIvLy8yh0TFRWlsLCwUtsffPBBTZ8+vSrLBAAAAAAAQA0xTDC2bNky2djYKDMzs9JjR40a
pWbNmhU77uLiUhWlAQAAAAAAwAwMEYxFRUXpzJkzeuyxx7R27dpKj/f19a3QCjMAAAAAAADUHfU+
GMvIyNCaNWs0ZswYWVtbm7scAAAAAAAA1BL1fvP9NWvWyMXFRYGBgeYuBQAAAAAAALVIvQ7Gjh07
pn379mnChAl3PFdOTo6uXbum/Pz8KqgMAAAAAAAA5lZvX6XMycnRsmXL1K9fP7Vp0+aO5nr33XeV
lJQkSbK1tZWfn59Gjx4te3v7qigVAAAAAAAAZlBvg7GtW7cqIyNDY8eOvaN5vLy81KNHD7m6uio3
N1cJCQmKjIzU0aNHFRwcXKlwbPfu3XdUCwAAAAAAAEoWEBBQ6TH1Mhi7ePGitm7dqvHjx6tRo0a3
PY+/v7/69OlT5Jifn5+6dOmixYsXa/Xq1Zo6deodVgsAAAAAAABzqJfB2PLly+Xh4aF+/frd0TyW
liXfHn9/f+3fv1+HDh3SxIkTZWVlVal5fX1976iu2igoKEhLly41dxmoBJ5Z3cMzq1t4XnUPz6zu
4ZnVPTyzuodnVvfwzOoentmdi4uLu+2x9S4YS05OVmJiorp166aNGzcWaTt79qwkKSIiQg4ODurZ
s6c8PT1v6zxdunRRQkKCkpKS1KJFizstGwAAAAAAADWs3gVjeXl5kqTY2FjFxsaW2Gfv3r2SJDc3
t9sOxiwsfvugZ4MGDW5rPAAAAAAAAMyr3gVjLi4uxVaKFYiKilJYWJhCQkLk5eVV7lxnzpxRs2bN
ZGdnV6wtLi5OdnZ2cnFxueOaAQAAAAAAUPMszF1AbZCbm6u0tLQixxITEzVr1iyFh4cXrkIrEBER
oSNHjmjgwIGFK8cAAAAAAABQt9S7FWO3IzQ0VHFxcXrxxRfVo0cPSVLHjh3Vp08fRUVF6dKlS/Lz
85O1tbXi4+OVkJAgb29vjRw50syVAwAAAAAA4HYRjElq2rSpbG1tZW9vX+T45MmT1aFDB+3atUtb
tmxRbm6uPD09NXHiRPXr108mk8lMFQMAAAAAAOBOGSoY69Onj/r06VPs+IQJEzRhwoQSx/Tu3Vu9
e/eu5soAAAAAAABQ09ggCwAAAAAAAIZEMAYAAAAAAABDajB37ty55i7CKE6fPi1JcnNzM3Ml1eO+
++4zdwmoJJ5Z3cMzq1t4XnUPz6zu4ZnVPTyzuodnVvfwzOoentmduXjxoiTJy8ur0mNN+fn5+VVd
EEq2e/duSZKvr6+ZKwEAAACA23ft2jUlJyfr6tWrysnJMXc5AOowS0tLNWnSRE2bNpWdnd1tzREX
FydJCggIqPz5b+uMAAAAAABDSktL0/nz5+Xi4qJ27drJyspKJpPJ3GUBqIPy8/OVnZ2t1NRUnTx5
Uu7u7nJ0dKzRGgjGAAAAAAAVcuPGDZ0/f15t2rSRra2tucsBUMeZTCZZW1vL1dVVjRs31okTJ3TX
XXfJxsamxmpg830AAAAAQIWkpaXJycmJUAxAlbO1tZWTk5PS0tJq9LwEYwAAAACACklPT1fjxo3N
XQaAeqpx48ZKT0+v0XMSjAEAAAAAKiQrK4vVYgCqja2trbKysmr0nARjAAAAAIAKycvLU4MGDcxd
BoB6qkGDBsrLy6vRcxKMAQAAAAAqjC9QAqgu5vj7hWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAA
AIAhEYwBAAAAAADAkAjGAAAAAABVKjvb3BVUvfp4Taj/nJ2dNWzYMHOXUatZmrsAAAAAAED9YmUl
OTk5mruMKpWamlaj58vMzNSnn36qiIgI/fDDD7p8+bLy8/Pl4OCg1q1by9/fX2PHjlWLFi1qtK47
ceDAAQ0fPlyPPfaYli9fXm7/U6dOqVu3bvLz89O2bdtqoMI7t2HDBs2aNUtvv/22Ro8eXSvm4kuy
ZWPFGAAAAAAAtUh4eLh8fHz0wgsvaM+ePXJ1ddWAAQM0YMAAtWzZUtHR0VqwYIG6du2q1157Tdl1
bDlbZYOauhTsbN26VZmZmfrss89q1VwoHSvGAAAAAACoBW7cuKGgoCDt2LFDzZo1U2hoqEaNGqVG
jRoV6ZeZmal169YpNDRUYWFhuv/++/Xkk0+aqWr8XlBQkFJTUzVx4sRaNRdKRzAGAAAAAEAtMG3a
NO3YsUMPPPCA1q9fLycnpxL7NWrUSBMnTtSQIUO0f//+O35lD1Wnb9++6tu3b62bC6UjGAMAAAAA
wMw2btyoLVu26J577tHmzZtlb29f7pi7776bUAy4Q+wxBgAAAACAGeXk5Oif//ynTCaT3nnnnQqF
YgCqBsEYAAAAAABmdPDgQV24cEGdOnXSww8/XCVzTp06Vc7Ozrpw4UKpfYYOHSpnZ+cixzIyMuTs
7KynnnpKkvT1119r9OjRat26tVq2bKk+ffpo6dKlys/Pr5I671RycrKCg4PVu3dvtWrVSu7u7urV
q5deffXVUq/9q6++krOzs9566y3dunVLixYtUq9eveTm5qbOnTtrzpw5un79uiQpNzdXS5culb+/
v+6++261bdtWY8eO1eHDh0uce926dXJ2dtb69etLbL9165ZWrVql4cOHq23btnJzc5Ovr69mzZql
X375pVJzpaena9GiRerfv788PT3l7u6uhx9+WKGhocrMzCz33mVnZ2v58uUaOHCgPDw85O7uroce
ekgLFy5URkZGqeO+/PJLjRw5Uu3bt1fLli3l5+enhQsX6ubNm+WeszYiGAMAAAAAwIz27t0rSRo4
cGCVzluRrzn+sU/BRv+3bt3Su+++q8cff1y//PKL+vfvr+7du+unn37S7Nmz9eKLL1Zprbdj9+7d
6tatmxYtWqSrV68qICBAAwYMUE5Ojj744AN1795dmzZtKjbOzs5OkpSVlaVHHnlEixYtkpeXlwYN
GqS8vDwtWbJEQ4cO1fXr1/XUU0/ptddek5OTk4YOHap77rlHO3fu1JAhQ3Tw4MFSayvp3p87d079
+vXTSy+9pISEBHl7e2vo0KGyt7fX8uXL1atXr8LfhfLmiouLU69evRQcHKzz58/roYce0sCBA5Wb
m6uQkBD17NlTx44dK7W+S5cuacCAAZo1a5ZOnTql3r17a9CgQZKkBQsW6MEHH9SPP/5YbNzs2bP1
1FNPKTY2Vj4+PhowYIAuXryoBQsWaMSIEcrNzS31nLUVe4wBAAAAAGBG586dkyTdf//9ZfbbsmWL
nn/++RLbLl68KGtr6yLHbmdVV0EIEx8fr/379+uDDz7QyJEjC9t//PFHDR48WKtXr9aECRPUsWPH
Sp/ju+++09SpU8vtV9aqp4SEBI0bN04NGjTQkiVLiu21tnPnTk2ZMkVTpkyRo6Oj+vfvX9hWcI3L
ly+Xu7u7oqOj1aJFC0m/raJ6+umnFRERoREjRuinn37Sl19+qQceeKBw/ObNmxUUFKTZs2fr66+/
rtA1Z2ZmatSoUTpx4oTGjx+vuXPnFvnaaEREhIKCgpSYmFjuhvvnzp3TqFGjlJmZqTfeeEOTJ09W
gwYNCtsPHz6sv/zlL3r88cdLHH/z5k2NGTNGiYmJ+tvf/qaXX35ZNjY2he179+7Vn//8Z40dO1b7
9+8vDBJ//vlnLV26VPfcc4+++uorNW3aVJJ09epVjRo1Srm5uUpJSZGLi0uF7kltQTAGAAAAAIAZ
Xb16VZLk4OBQZj8PDw+NHTu2yLHPPvus8LW/qpSamqrXXnutSCgmSe3atdOTTz6pJUuWKDIy8raC
sXPnzhWGgbdrxowZunnzplatWqWhQ4cWax84cKA2bNigwYMH6+WXX1ZsbKysrKyK9Ll165ZWrlxZ
GIpJkpWVlWbOnKmIiAgdPnxYr776apFQTJJGjhypd955Rz/88IOSkpIqFAR98MEHOnHihB5//HGF
hoYWaw8MDNSRI0fUuHHjcuf6xz/+oStXrmj+/PmaMmVKsfauXbvqiy++KDVgW7lypY4ePaqZM2dq
1qxZxdr79u2rhQsXKigoSB999FHhORITEyVJ/fr1KwzFJKlJkybauHGjHBwcKrRKsbbhVUoAAAAA
AMyoSZMmkqQrV66U2a9r165avHhxkR9HR8dqqalhw4aaMGFCiW39+vWTJP3vf/+7rbn/9Kc/KSUl
pdyf7777rsTxiYmJiouLk6+vb4mhWIFu3bppyJAhOn/+fImvKHbv3r3EVXre3t6ytLSUyWTSmDFj
Sp07Pz+/zD3cfm/Tpk0ymUyaPXt2qX0qEoqlpaXp888/l5ubm4KCgkrt5+joWOq51q5dK2dnZ82Y
MaPU8cOGDZO1tbV27NhReKwgANy9e3ex/dAcHR3rZCgmsWIMAAAAAACzatWqlSTp+PHjGj58uJmr
+Y2np2epQY2rq6sk6caNG9VaQ2mvgsbGxkqSAgICyp1jwIAB2rZtm2JiYhQYGFikrbTVbiaTSc2a
NVNGRobc3NxK7NO8eXNJFbsH165d04kTJ9SqVSt5enqW278scXFxysvLU+/evYu8PlmSRx99tNix
rKwsHT9+XI6Ojpo2bVqZ400mk44fP174v/38/BQYGKiIiAh17dpVDz/8sHr37q0ePXqoa9eut3dB
tQDBGAAAAAAAZtSvXz8tXrxYO3fu1CuvvFJj583Lyyu17Y9fq/y9gj2nzCUtLU2SirzOV5pmzZpJ
+u3V0D8qa7VdgwYN5OTkVGq7pWXF45SCV2XLuqcVVZlrt7OzK7KPmfT/r0pMS0vThg0bSh1rMpmU
n5+vW7duFTn20UcfaenSpfroo4+0a9cu7dq1S9Jv4W5oaGiFwsrahlcpAQAAAAAwowcffFAtWrTQ
0aNHtW/fviqdu6z9x0oKiwpYWNTeuKAg0Lp8+XK5fZOSkiSpxJCrpl79K9g7Ljk5+Y7nKrj2isyV
mZlZ7AMGBbV06dKlzNdYk5OTC//8PWtra02bNk3fffedjh49qvDwcA0ZMkQXLlzQE088ocOHD9/x
Nda02vubDgAAAACAAVhaWhbuB/XSSy+V+TXGimrYsKGk0gOUq1ev6vTp03d8HnPo3r27pN/2uipP
ZGSkJKlHjx7VWlNZbG1tde+99+r8+fN3fM+7du0qCwsL7du3Tzk5OWX2/fzzz4sdu+uuu9SpUyd9
//33t71HXIEWLVro8ccf10cffaQFCxYoLy9Pq1atuqM5zYFgDAAAAAAAM3viiSc0YsQInTp1SqNG
jSpzNVdFtGzZUpIUExNTYvuKFSuUnZ19R+cwlw4dOsjX11fx8fFFNof/o9jYWO3YsUOtWrUq9QuN
NeX//u//JElvvvlmqX0q8swdHBw0ZMgQXbx4UeHh4aX2S0tLU0hISIlt48aNU15enl5++eVSx//6
669asmRJsePR0dEl9i8IK6tiVVxNIxgDAAAAAKAW+Pe//61HH31UMTEx8vPz0+rVq3Xt2rVi/fLy
8vTNN99owoQJpa76GTBggCRpyZIl+umnn4q0bdq0SQsXLiz8GmZdtHDhQjVs2FCTJ0/W5s2bi7VH
RkYWflFy4cKFldoTrDpMnDhR9957r7Zu3aoXXnhBGRkZRdp37dolHx8fLVq0qNy53njjDTk4OGju
3LlasmRJsb3iEhISNGTIkCL7g/3eM888Ix8fH0VERGjy5MmFe6AVOHLkiIYPH645c+YoKiqq8HhI
SIgGDx6sf/zjH0VWq928eVPvvPOOJMnHx6fc+msbNt8HAAAAAKAWsLGx0erVqxUeHq7Q0FD97W9/
09///nd16dJFzZs3l8lk0uXLl5WYmKj09HRJkpubm4KCgmRtbV1krk6dOunJJ5/U2rVr1adPH/Xs
2VNNmzbVsWPH9NNPP+nVV1/V3r17dfDgQXNc6h3z9vbWmjVr9NxzzykoKEhvvvmmvL29ZTKZdOzY
MZ04cUI2NjZ6//331b9/f3OXKzs7O3388ccaO3as1qxZo08//VTdunWTo6Oj/vvf/+r777+Xvb19
4cqrsrRq1Uoff/yxnn76ac2ZM0eLFy9W165d1bBhQ/33v//VDz/8IFdXV23atEm9e/cuNt7S0lJr
167V2LFj9fHHH+vLL79Uz549ZWdnp1OnTuno0aNq2LCh3nrrLfXp06dw3FNPPaX169fr3//+tz75
5BM98MADys3N1bfffqu0tDS1b99eU6ZMqcrbViMIxgAAAAAAVSo7W0pNTTN3GVUqO1uysqqZc02c
OFFPPvmktmzZol27dikxMVHff/+98vPz5eDgIG9vb3Xp0kUDBgxQr169St0o/7333tP999+vDRs2
KDY2Vg0bNtQDDzygt956S/7+/oqOjpbJZNLVq1fr5OqxgIAAxcbGKjw8XF999ZX27Nkj6be9ryZN
mqTJkycXvlJaWRXZmL+kPiaTqdSx7u7u2rt3r9auXatPP/1UR44c0bVr1+Tq6qrnn39eL7zwglxd
XSs0V9euXfXtt99q+fLl+vzzz3XgwAHl5ubKy8tLM2fO1JQpU2Rvb19q7c2bN1dERITWrl2rzZs3
KyYmRjdv3pSbm5vGjx+voKAgtW3btlj9Bw8e1L///W99/vnn2rNnj6ysrOTh4aGJEydq6tSpZv9i
6e0w5efn55u7CKMo2BjQ19fXzJUAAAAAQOXFxcXx7xkA1ep2/p6Ji4uT9FtYWlnsMVaf1dGNFMtV
X68LAAAAAADUKF6lrM+srOTo5GTuKqpc2h1+nQUAAAAAAEBixRgAAAAAAAAMimAMAAAAAAAAhkQw
BgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAY
EsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAA
AGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAAAFSJt956S87Ozvrmm2/MXQrK
sG7dOjk7O2v9+vXmLsXsCMYAAAAAAFUrO9vcFVS9arqmqVOnytnZudI/w4YNq5Z6zKXgPuzevbtC
/YODg+tcsDN69Gh17dpVv/76a62Zy2Qy3XEtdZ2luQsAAAAAANQzVlZydHIydxVVKi01tVrm7dmz
pywsiq9ZOXnypKKjo9W+fXt5e3sXa2/btm211GNulQ1q6kqwk5KSosjISJlMJsXExGjo0KG1Yi4Q
jAEAAAAAYDbjxo3TuHHjih1fv369oqOjFRgYqDlz5lT5edPT0xUWFqZOnTpp8ODBVT4/inJ2dtak
SZN08uRJ9enTp9bMBYIxAAAAAABqnfz8/Gqd/8qVK3r77bc1duxYgrEaEhwcXCvnMjpDBGO//PKL
ZsyYoZycHIWEhMjLy6tC4zIyMrRlyxbFxsbqypUratKkiXx8fPT444/L0dGxmqsGAAAAAABAdTJE
MLZs2TLZ2NgoMzOzwmPS09P1+uuvKyUlRQEBAbr77ruVlJSkyMhIxcfH64033lDTpk2rsWoAAAAA
AKpXda9MA2q7ev9VyqioKJ05c0bDhw+v1LjVq1crOTlZ8+bN0zPPPKMBAwboySefVEhIiLKysrR8
+fJqqhgAAAAAgIpJTk5WcHCwevfurVatWsnd3V29evXSq6++qgsXLhTrP3ToUDk7O8vHx0fSb3uZ
/f5rl78fc/XqVb377rt69NFHde+996p58+a67777NGnSJJ06darGrvF2xcTEaOLEierUqZNcXV3V
pk0bDRs2TB9++KGyS/nK6DPPPCNnZ2edP39e//3vfzVp0iS1a9dOLVq00IABA7R169bCvv/73//0
wgsvqEOHDnJzc5Ovr69ee+01paenlzh3wb0vzYULF/Tqq6+qV69eatWqlTw8PBQYGKiVK1cqLy+v
UnP98MMP+utf/yofHx+5ubnp3nvv1ejRo/XFF1+UdcsKnT9/XrNmzVLXrl3l5uamtm3batSoUfr8
889LHXP16lUtWrSo8HexdevWGjlypCIjIyt0TnOp1yvGMjIytGbNGo0ZM0bW1tYVHpeamqqDBw9q
yJAh8vT0LNLm6uqq4cOHa926dbpw4YJatmxZxVUDAAAAAFC+3bt367nnnlN6erpatmypgIAAmUwm
ff/99/rggw/04Ycf6r333tOoUaMKx/Tv31+enp7KzMzUtm3b5OXlpZ49exa229raSpIOHz6sMWPG
KCUlRW5uburRo4esrKz0008/adOmTdq5c6e+/PJLtWvXrkqvqSpWsOXm5mr27Nlavny5LCws5OPj
o169eik9PV2HDh3SwYMHtWLFCq1fv17u7u5FxtrZ2UmS9u/frxkzZqh58+Z66KGHdOXKFR08eFAT
JkzQhQsX1L9/fw0bNkx5eXny9/eXhYWFYmJiFBYWpn379ikiIkI2NjbFaivtK5qbNm3S9OnTdfPm
TXl6eiogIED5+fn65ptvNGPGDG3YsEGbNm1SkyZNyp0rNDRUISEhkqSOHTvqgQceUFZWlqKjoxUZ
GamhQ4eqX79+pd6/HTt2KCgoSDdu3FD79u01dOhQXb9+XTExMXr66af12GOPKSwsTFZWVoVjUlNT
NWDAAJ05c0atW7dWYGCgkpKSFBUVpb1792rhwoX685//XOo5zaleB2Nr1qyRi4uLAgMDFRUVVeFx
CQkJysvLk5+fX4ntfn5+WrduneLj4wnGAAAAAAA1LiEhQePGjVODBg20ZMkSjR49ukj7zp07NWXK
FE2ZMkWOjo7q37+/JGn69OmSflsRtG3bNvXs2VOLFy8uNn/Lli3l6emp0NBQDRs2rEjbsmXL9Mor
r2jOnDnatGlTlV7XkiVLtGXLlnL7HT16tNS2N954Q8uXL5e3t7c++OADtW3btrDt+vXrCg4O1gcf
fFC4msne3r6wvSBsmjlzpp599lnNnz9fFha/vWz3888/a8CAAQoJCdGmTZvUoUMHrVmzRo0aNZIk
ZWdn6+mnn1ZERIRWrVqlSZMmVeiad+/ercmTJ8ve3l5Lly7V0KFDC9tu3ryp2bNna9euXTp//nyR
YKwkS5cuVUhIiDw8PBQeHq4HHnigsC0nJ0crVqzQ3LlzFRMTU+L4mJgYTZgwQc2bN1doaKgCAwML
227duqV58+YpLCxMd999t+bNm1fYtnjxYp05c0ZBQUH65z//WXj8wIEDGjNmjH799dcK3QtzqLfB
2LFjx7Rv3z69+eablR579uxZWVpaysPDo8T2pk2bqlGjRjp37tydlgkAAAAAQKXNmDFDN2/e1KpV
q4oEKQUGDhyoDRs2aPDgwXr55ZcVGxtbZIVPeSuzmjdvroiIiBLbnn/+ea1atUr79u3TrVu3KvWG
VnkqsqjFZDKVWv/x48e1ZMkStWjRQp9++qkaN25cpN3W1lbBwcG6deuWVq5cqX/961+aM2dOsXna
t29f7MuPBa8jrlixQsePH1d8fHxhKCZJVlZWmjlzpiIiIrR79+4KBWN5eXn6+9//LklauXKl+vbt
W6S9YcOGeuedd5Senl7sWv7o8uXLevPNN2Vvb6/PPvus2Go4S0tLBQUFyc3NTePHjy82Pj8/XzNn
zpSNjY0+/vjjYqsBra2t9eabb+r48eNatmyZ/vKXv8jFxUWS9P3330tSkdWJkuTv76+EhIQyX/s0
t3q5x1hOTo6WLVumfv36qU2bNpUeX/ALV9qyRElycHBQRkbGnZQJAAAAAEClJSYmKi4uTr6+viWG
YgW6deumIUOG6Pz589q7d2+V1nDfffcpJydHycnJVTrvpk2blJKSUuZPcnKyXnrppRLH/+c//1F+
fr5eeOGFMoOk2bNny9raurD/Hz3zzDMljitYgfXQQw+pRYsWxdq9vb1laWlZ4v5uJTl8+LBOnjyp
Hj16FAvFfq+8UEySPvnkE12/fl3PPvtssVDs94YNG6bevXsXO3706FF9//33euqpp8p8RXbkyJG6
deuWdu7cWXisefPmkqQNGzYoNze3SP/aHIpJ9XTF2NatW5WRkaGxY8fe1vhr166V+C7w79nY2BCM
AQAAAABqXGxsrCQpICCg3L4DBgzQtm3bFBMTU+S1uIrIz8/Xrl27tGPHDh09elSXLl3StWvXlJWV
pfz8fJlMpmKbwteU0laMVfTeODo6qmvXrjp06JBOnjxZbFFNx44dSxxXsEKqtEU4JpNJzZo1040b
N8o8f4GCV0IffvjhCvUvS2V+L4YMGaJ9+/YVOXb48OHCeaZOnVrq2IsXL0qSfvzxx8Jj06dP186d
O7V8+XJt375dgYGBevDBB+Xn51digFib1Ltg7OLFi9q6davGjx9fZEkjAAAAAAD1QVpamqTftvkp
T7NmzST9tjl6ZaSkpOjpp5/Wt99+q4YNG8rHx0d9+vQpfB3z0KFDOn36dCUrr35paWkymUyVujcF
9/P3HB0dSxxjaflbjFLWKqgGDRpUpFRJ0pUrV8qdr7JzFVxXWQoCvpLGHz58uDAk+6OC11hNJlOR
xUL33nuvdu3apYULF+qLL77QmjVrtGbNGplMJg0cOFD/+te/KlSXOdS7YGz58uXy8PAo8wsL5bGz
syt3/7BTj7DaAAAgAElEQVQbN27U2ocKAAAAAKi/CkKby5cvl9s3KSlJkuTk5FSpc7z88sv69ttv
NWrUKIWEhBQLioKCgmplMObo6KjTp0/r8uXLhV+YLE3B/Svp3hRsuF/dHBwcJKlKXkktmCspKanc
r4WWtBl+wTNesGCBnn/++Uqf/5577tGSJUuUm5urxMRE7d+/X2vXrtVXX32lkSNHas+ePZUKDWtK
vdpjLDk5WYmJiXJ0dNTGjRu1YcOGwp/o6GhJUkREhDZs2KAzZ86UOk/jxo2VkZFR5maEV65cKfLl
CgAAAAAAakL37t0l/fY1w/JERkZKknr06FHh+bOzs7Vjxw65uroqLCysxNVTZ8+erfB8Nalbt27K
z88v996kpqbq8OHDatasmVq3bl1D1RXn7e0tSfr666/veK7K/F7s2LGj1PG/3zvsdjRo0EBdunTR
X/7yFx04cEDdunVTYmJiYS5T29SrYKzg3ebY2Fh9+umnRX7i4uIkSXv37tWnn35a5n/EHh4eysnJ
KbVPcnKyMjMzS/1qJQAAAAAA1aVDhw7y9fVVfHx8iQFHgdjYWO3YsUOtWrUqtrF7wYqoW7duFRuX
mpqqvLw82djYlPhRuosXL+rIkSNlfrDOXMaNGycLCwu99957Sk9PL7VfSEiIbt26paeeeqoGqyvO
19dXbdu2VXR0dJmBVkmve/7Rn/70J9na2mrVqlU6f/58qf22b9+u/fv3FzveoUMH+fj4aO/evdq2
bVup47du3VrsVctr164Vfpny9xo0aCBfX19JVbMqrjrUq2DMxcVFGzduLPFn8uTJkn775d+4cWOZ
G9t5e3vLwsJCBw4cKLG94LiPj0/VXwQAAAAAAOVYuHChGjZsqMmTJ2vz5s3F2iMjIzVmzJjCvgV7
YxUoeO0uJiZGOTk5hcfz8vLk4uKiZs2a6cyZM9q4cWORcadOndLYsWNla2srScW+QGhu7dq10+TJ
k/W///1Pf/rTn3Ty5Mki7VlZWfrHP/6hlStXqk2bNpo+fbqZKv2NyWRSSEiILCws9Oc//1lbt24t
0n7z5k299NJL8vf3L9yovzTNmjXTq6++qszMTD322GOKj48v0p6Tk6Ply5dr4sSJhV+R/KO3335b
1tbWmjZtmtauXVts/LJlyzRp0iRNnDhR2dnZkn67p3379tWIESOKBW4//vijPvnkE1lYWBSujqtt
6t0eY5WVm5ur9PT0IktDnZyc5Ofnp507d8rf31+enp6FbZcuXdJnn30mb2/vWv9lBQAAAABA/eTt
7a01a9boueeeU1BQkN588015e3vLZDLp2LFjOnHihGxsbPT++++rf//+xcY3atRIffv21d69e/XQ
Qw+pffv2On78uMLDw9WxY0ctWrRITz/9tKZMmaL3339f9913n65cuaJDhw6pZ8+eGjhwoBYuXKjr
16+b4erLNnfuXGVlZWnlypXq2bOnunbtKnd3d6Wnpys6OloZGRlq166d1q9fX+NbJJW0ZVPfvn0V
Fham6dOna8KECZo3b546d+6s/Px8HTp0SCkpKerRo4fuueeecueaNGmS0tPT9fbbb6t///7q3Lmz
WrduraysLMXGxiolJUWDBw9WYGCgXnjhhWLjfX19tWLFCk2aNEl//etf9d5776lTp07KyspSQkKC
fv31V3l5eWndunWFH2K46667NG3aNL300ksaMWKEfHx85OnpqUuXLik6Olr5+fmaMWOGWrVqVUV3
sWoZPhgLDQ1VXFycXnzxxSLvXD/zzDM6efKk5syZo/79+8vNzU2XL1/Wrl27ZGdnd1sb0QEAAACA
IWRnK62SX0Gs9bKzpf8XBNQEk8lU7quKAQEBio2NVXh4uL766ivt2bNHktSiRQtNmjRJkydPVsuW
LUsdv2TJEr3yyivas2ePLl68qA4dOhR+zXHw4MHavn273n33XR09elRnz56Vh4eHZs2apalTp2rV
qlUymUz69ddfdf/99xervTqut6L9LSwstHDhQo0aNUorVqzQN998oyNHjsjOzk6dO3fWY489pnHj
xhVbRXc7dZRWW2VrHjlypHr16qWwsDDt2bNHe/bskclk0n333adXXnlF48ePLzK2rLlmzpypwYMH
Kzw8XPv379cXX3yhRo0aycfHR08++aSGDRumdevWlTp+8ODB+vbbbxUWFqbIyEh99dVXatiwodq0
aaOpU6fqueeeU8OGDYuMGTdunDp37qwlS5bo4MGDOnbsmJycnPTwww9rwoQJGjRoUEVunVmY8sva
Yb4eiYqKUlhYmEJCQuTl5VV4fMWKFTpw4IBmzJih9u3bFxmTmZmpTz75RN99951SU1Pl4OAgHx8f
jRw5snDZaWUUvC9c8H5tTXCs5JdH6oJ693+wAAAAQB0RFxdXo/+eAWA8t/P3TMG+8gEBAZU+n2GC
sdqAYKxqEIwBAAAA5kEwBqC61XQwVq823wcAAAAAAAAqimAMAAAAAAAAhkQwBgAAAACoMHbjAVBd
zPH3C8EYAAAAAKBCLCwslJuba+4yANRTubm5srCo2aiKYAwAAAAAUCF33XWXrl+/bu4yANRT169f
11133VWj5yQYAwAAAABUSOPGjZWenm7uMgDUU+np6WrcuHGNnpNgDAAAAABQIY6OjkpNTWXVGIAq
d/36daWmpsrR0bFGz2tZo2cDAAAAANRZNjY2cnd314kTJ+Ti4iInJydZWVnJZDKZuzQAdVB+fr6y
s7OVmpqqpKQkubu7y8bGpkZrIBgDAAAAAFSYo6OjrK2tlZycrB9//FE5OTnmLglAHWZpaakmTZqo
devWsrOzq/nz1/gZAQAAAAB1mp2dnVn+AQsAVY09xgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAA
GBLBGAAAAAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAA
AABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMA
AAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlg
DAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAw
JEtzF4BqlJ2ttNRUc1dR9bKzJSsrc1cBAAAAAADqOIKx+szKSk5OjuauosqlpqaZuwQAAAAAAFAP
8ColAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAA
AGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAA
AAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAM
AAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkCzNXUB1ycnJ0fbt23XgwAElJSXJ
0tJSbdq00aOPPipvb+8KzREVFaWwsLBS2x988EFNnz69qkoGAAAAAABADaqXwVh2drbmzZunn3/+
Wb169VJgYKCysrIUHR2tkJAQTZgwQYGBgRWeb9SoUWrWrFmx4y4uLlVZNgAAAAAAAGpQvQzGzp49
q9TUVE2bNk3+/v6Fx0eMGKHg4GCtWbNG/v7+srW1rdB8vr6+8vLyqq5yAQAAAAAAYAb1co+xNm3a
6P333y8SihXo27evbt26pRMnTpihMgAAAAAAANQW9TIYkySTyVTicWtr6yJ/AgAAAAAAwJjqbTBW
mq+//loODg6VfjUyJydH165dU35+fjVVBgAAAAAAgJpUL/cY+70bN24oMzNTly5dUkREhBISEjRj
xoxKrRh79913lZSUJEmytbWVn5+fRo8eLXt7++oqGwAAAAAAANWs3gdj27dv1+bNmyVJNjY2mjVr
ljp27Fjh8V5eXurRo4dcXV2Vm5urhIQERUZG6ujRowoODiYcAwAAAAAAqKNM+fX83cBLly7p3Llz
SkpK0v79+3XmzBk9++yzGjRoULljc3JyZGlZPDs8cOCAFi9erN69e2vq1KkVrmX37t2SfvvKZU1x
cnKssXPVlNTUNHOXAAAAAAAAaom4uDhJUkBAQKXH1vs9xlxdXdW9e3cNGTJEb731lh599FGtWrVK
p0+fLndsSaGYJPn7+8vb21uHDh1SdnZ2VZcMAAAAAACAGlDvg7E/euKJJ2Rtba09e/bc0TxdunRR
dnZ24d5jAAAAAAAAqFsMF4xZW1vLycnpjgMtC4vfbl2DBg2qoiwAAAAAAADUsHoXjOXl5SkuLk77
9u0rsf369etKSUmRg4NDuXOdOXNG165dK7EtLi5OdnZ2cnFxuaN6AQAAAAAAYB71LhgzmUzasGGD
wsPDi+0jlpeXpw8//FDZ2dny8/MrPJ6bm6u0tKIbuicmJmrWrFkKDw9XXl5ekbaIiAgdOXJEAwcO
LFw5BgAAAAAAgLql5N3l6zCTyaQpU6YoODhYr7/+unr37i13d3ddu3ZNMTExOn36tB555BF17ty5
cExoaKji4uL04osvqkePHpKkjh07qk+fPoqKitKlS5fk5+cna2trxcfHKyEhQd7e3ho5cqS5LhMA
AAAAAAB3qN4FY5Lk6empBQsWaMeOHYqLi1NUVJSsrKzk5eVVJPwq0LRpU9na2sre3r7I8cmTJ6tD
hw7atWuXtmzZotzcXHl6emrixInq16+fTCZTTV4WAAAAAAAAqpApPz8/39xFGMXu3bslSb6+vjV2
Ticnxxo7V01JTU0rvxMAAAAAADCEuLg4SVJAQEClx7JBFgAAAAAAAAyJYAwAAAAAAACGRDAGAAAA
AAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgA
AAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgE
YwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACA
IRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAA
AACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAA
AAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjG
AAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABD
IhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAA
AAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAA
AAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhWZq7
gOqQk5Oj7du368CBA0pKSpKlpaXatGmjRx99VN7e3hWeJyMjQ1u2bFFsbKyuXLmiJk2ayMfHR48/
/rgcHR2r8QoAAAAAAABQ3epdMJadna158+bp559/Vq9evRQYGKisrCxFR0crJCREEyZMUGBgYLnz
pKen6/XXX1dKSooCAgJ09913KykpSZGRkYqPj9cbb7yhpk2b1sAVAQAAAAAAoDrUu2Ds7NmzSk1N
1bRp0+Tv7194fMSIEQoODtaaNWvk7+8vW1vbMudZvXq1kpOTNX/+fHl6ehYeDwgI0OzZs7V8+XK9
8sor1XUZAAAAAAAAqGb1bo+xNm3a6P333y8SihXo27evbt26pRMnTpQ5R2pqqg4ePKhHHnmkSCgm
Sa6urho+fLji4+N14cKFqiwdAAAAAAAANajeBWOSZDKZSjxubW1d5M/SJCQkKC8vT35+fiW2FxyP
j4+/gyoBAAAAAABgTvUyGCvN119/LQcHB3l5eZXZ7+zZs7K0tJSHh0eJ7U2bNlWjRo107ty56igT
AAAAAAAANaDe7TH2ezdu3FBmZqYuXbqkiIgIJSQkaMaMGeWuGEtPT1fjxo1LXXkmSQ4ODsrIyKjq
kgEAAAAAAFBD6nUwtn37dm3evFmSZGNjo1mzZqljx47ljrt27ZpsbGzK7GNjY0MwBgAAAAAAUIfV
62DsoYcekoeHh5KSkrR//37Nnz9fzz77rAYNGmTu0gAAAAAAAGBm9ToYc3V1laurqyRpyJAhWr16
tVatWqV27drpnnvuKXWcnZ1dufuH3bhxQ82aNavSegEAAAAAAFBzDLX5/hNPPCFra2vt2bOnzH6N
GzdWRkaG8vPzS+1z5coV2dvbV3WJAAAAAAAAqCGGCsasra3l5OSkpKSkMvt5eHgoJydHZ8+eLbE9
OTlZmZmZpX61EgAAAAAAALVfvQrG8vLyFBcXp3379pXYfv36daWkpMjBwaHMeby9vWVhYaEDBw6U
2F5w3MfH584KBgAAAAAAgNnUq2DMZDJpw4YNCg8P1+nTp4u05eXl6cMPP1R2drb8/PwKj+fm5iot
La1IXycnJ/n5+Wnnzp06c+ZMkbZLly7ps88+k7e3t1q0aFFt1wIAAAAAAIDqVa823zeZTJoyZYqC
g4P1+uuvq3fv3nJ3d9e1a9cUExOj06dP65FHHlHnzp0Lx4SGhiouLk4vvviievToUXj8mWee0cmT
JzVnzhz1799fbm5uunz5snbt2iU7Ozs9//zz5rhEAAAAAAAAVJF6FYxJkqenpxYsWKAdO3YoLi5O
UVFRsrKykpeXV7HwS5KaNm0qW1vbYhvp29vba/78+frkk0/03XffKTU1VQ4ODvL399fIkSPLfR0T
AAAAAAAAtZspv6xPL6JK7d69W5Lk6+tbY+d0cnKssXPVlNTUtPI7AQAAAAAAQ4iLi5MkBQQEVHps
vdpjDAAAAAAAAKgogjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAA
AACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwA
AAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSC
MQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADA
kAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAA
AABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAA
AAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARj
AAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAh
EYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAA
AIZEMAYAAAAAAABDIhgDAAAAAACAIZk9GLt+/bq5SwAAAAAAAIABVXkw9vPPP1e4b2ZmpubPn1/V
JQAAAAAAAADlqvJg7J///KdOnTpVbr/09HS98cYbFeoLAAAAAAAAVLUqD8aysrIUHBysc+fOldon
NTVVr7/+us6dO6d77723qksAAAAAAAAAylXlwdj48eMLX5H85ZdfirVfvnxZr7/+un755Rd17txZ
r732WlWXAAAAAAAAAJTLsqonfOSRR2QymbRy5UrNmzdPc+fOlaurqyTp0qVLmjdvnlJSUtS9e3dN
nz5dlpZVXoIkKT4+Xtu2bdP58+d148YNtWjRQv7+/ho0aFCFzxkVFaWwsLBS2x988EFNnz69qkoG
AAAAAABADaqWVGrgwIEymUxasWKF5s+fr7lz5+rmzZuaP3++rly5oj59+igoKEgWFtXzUcytW7dq
/fr1atmypYYMGSJra2slJibqP//5j+Li4jRnzpxKnXvUqFFq1qxZseMuLi5VWTYAAAAAAABqUPUs
15IUGBgoSVqxYoXmzZunrKwsZWRkaNCgQXr22Wer67Q6f/681q9fr06dOmn27NmFAdjgwYO1Y8cO
rVmzRnv27FH//v0rPKevr6+8vLyqq2QAAAAAAACYQfUs2fp/AgMD9dxzz/1/7N19lFblYS7uG5jh
Y4AREBDFABILRkXAL9RBRZEElYTTissmOZZzQmrryWk0JhG1GmNdrnVM7LKN8bN2+ZlEm4oaqTEI
SgJ+HEVAg0YjKiCmHAIDDoMKMwO/P1LnFyIgDu/MC7Ova62sFfbz7Gffr+9Ch5u9n53Vq1dnw4YN
mTJlSquWYkmybNmyDBo0KF/+8pc/clfYmWeemS5duuTFF19s1QwAAAAA7PladMfYK6+8sstzBw4c
mBNPPDGbNm3KYYcdtt1zDz300JbE2K4TTzwxJ5544nbHOnTokKqqqmzevLlk1wMAAABg79SiYuyq
q65q0cWee+657R6///77W7TeJ7Vy5cqsW7duh8XZzjQ2NmbTpk2pqqpKhw4dWiEdAAAAAG2pRcXY
lClTSp2j1W3dujV33XVXOnbsmAkTJnyic6+//vqsXr06SVJVVZWampqcc8456dmzZ2tEBQAAAKAN
tKgYO/vss0udo9Xdeeedeemll/L5z3/+E71NcujQoRkzZkwGDBiQpqamLF68OLNnz85LL72Ua665
RjkGAAAAsJdqtbdS7knuu+++PPbYYxkxYkS+9KUv7fJ5Y8eOzbhx47Y5VlNTk5EjR+aGG27I3Xff
na997WslTgtAq2loSCory52idbTnzwYAAK2kZMVYQ0ND3nzzzSxbtixr1qxJfX19Nm/enM6dO6dH
jx7p27dvDjrooAwdOjQVFW3Xxz344IN58MEHc+ihh+biiy/+yJsqd2ZHOceOHZt58+blmWeeyXnn
nZdKfxAB2DtUVqZ3nz7lTtEq1tXWljsCAADsdXa7oaqrq8u///u/Z968eXnvvfc+dn5VVVXGjh2b
s88+O9XV1bt7+Z169NFHc9999+Uzn/lMLr300nTu3Llka48cOTKLFy/O6tWrM3DgwJKtCwAAAEDb
2K1i7NVXX833v//91NfXp2fPnjnxxBMzaNCg9O3bN1VVVamoqEhjY2Pee++9rFmzJitWrMiiRYsy
a9asPP300/nmN7+ZQw89tFSfZRtPPPFE7rrrrhxyyCElL8WSNN951qlTp5KuCwAAAEDbaHExtmbN
mlx77bXZvHlzpk6dms9+9rO79IhkY2NjZs2alXvvvTff+9738r3vfe8TbYa/K+bPn59bb701w4cP
z2WXXZYuXbq0aJ1ly5alX79+6d69+0fGFi5cmO7du5c8OwAAAABtY9c33PoTDz/8cN57771ccMEF
OeOMM3Z537CKioqcccYZufDCC/P+++/n4YcfbmmE7Xruuedy4403ZtiwYbtcijU1NWXdunXbHFuy
ZEmmT5+e2267LVu2bNlmbNasWXnxxRfzuc997hPtWQYAAADAnqPFd4z9+te/zqBBg3Lssce26Pxj
jz02gwYNypIlS1oaYbv+6Z/+KRUVFTnhhBPy7LPPbndO165dc9xxxzX/+rrrrsvChQtz0UUXZcyY
MUmSww8/POPGjcvcuXOzatWq1NTUpHPnzlm0aFEWL16cUaNGZcqUKSXNDgAAAEDbaXExtnbt2hx1
1FG7dfEDDjggCxcu3K01/lRTU1Oamppy55137nBOv379tinGPtwTrWfPntvMO//883PYYYfl8ccf
z4wZM9LU1JQhQ4bkvPPOy6mnnpoOHTqUNDsAAAAAbafFxVj37t3z7rvv7tbF6+rqUlVVtVtr/Kn7
77//E58zbdq0TJs2bbtjJ510Uk466aTdjQUAAADAHqbFG2R96lOfytKlS7NmzZoWnf/73/8+r7/+
egYNGtTSCAAAAADQYi0uxs4888xs3rw53//+97N27dpPdO7atWtz3XXXpaGhIWeccUZLIwAAAABA
i7X4UcpRo0blC1/4Qn72s5/lwgsvzLhx43L00UdnyJAh2WeffT4y/913381bb72VF154IXPnzs3m
zZszadKkjB49erc+AAAAAAC0RIuLsST58pe/nIEDB+bee+/NrFmzMmvWrCRJp06d0q1bt3Tq1ClN
TU15//3309TU1Hxez54985WvfCWnnHLK7qUHAAAAgBbarWIsScaNG5eamposWLAgS5YsyfLly1NX
V5f6+vps2LAh3bp1S9++fVNdXZ3BgwdnxIgROfroo1NRsduXBgAAAIAWK0k7VVlZmeOPPz7HH398
KZYDAAAAgFbX4s33d8WWLVtac3kAAAAAaLGS3DHW0NCQ5557LkuWLMmyZcuyZs2a1NfXZ8uWLenY
sWN69OiRvn375qCDDsrhhx+eY4891qOUAAAAAJTVbrdTTzzxRH70ox+lvr7+/1+0oiI9e/Zs3nx/
48aNefPNN/Pmm29mzpw56dGjR770pS9l/Pjxu3t5AAAAAGiR3SrG7rnnnsycOTOdO3fOxIkTc8wx
x2TQoEGprq7+yNy6urqsWLEizz//fJ544oncdtttWblyZaZOnbo7EQAAAACgRVpcjC1evDgzZ87M
QTdBGBgAACAASURBVAcdlIsvvjh9+vTZ6fzq6uocfvjhOfzwwzN58uRce+21efTRRzNixIgceeSR
LY0BAAAAAC3S4s33/+M//iOdO3fOt771rY8txf5Unz598u1vfzuVlZX5+c9/3tIIAAAAANBiLS7G
3n777Rx88MHp27dvi87v27dv/uzP/iwrVqxoaQQAAAAAaLEWF2P19fXb3Uvsk6iurs577723W2sA
AAAAQEu0uBjr27dvfve73+3Wxd95551P/BgmAAAAAJRCi4uxESNGZMWKFXn22WdbdP6zzz6bt99+
O0cccURLIwAAAABAi7W4GJs8eXKqqqpyww035JFHHklDQ8MundfQ0JBHHnkkP/jBD9KtW7d84Qtf
aGkEAAAAAGixipae2Ldv31x66aW59tprc++99+ahhx7KEUcckSFDhmTfffdNt27d0qlTpzQ1NeX9
99/P2rVrs2zZsrz00kupr69Pjx498u1vfzv9+vUr5ecBAAAAgF3S4mIsSYYNG5brr78+DzzwQH71
q1/l6aefztNPP73Tc6qqqjJx4sScddZZu715PwAAAAC01G4VY8kf3iz5P//n/8y5556bN998MytW
rEhdXV3q6+vz/vvvp1u3bunRo0eqq6szePDgHHTQQamo2O3LAgAAAMBuKVlDVVFRkWHDhmXYsGGl
WhIAAAAAWk2LN98HAAAAgL2ZYgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAhtfitlOedd146
dOhQkhC33nprSdYBAAAAgF3V4mJsw4YN2bJlSymzAAAAAECbaXExNm3atPzLv/xLhgwZku9+97vp
1q1bKXMBAAAAQKtq8R5jp512Wk4//fQsW7Ys1113XZqamkqZCwAAAABa1W5tvv9Xf/VXGTlyZJYs
WZIf/vCHpcoEAAAAAK1ut4qxjh075sILL8zAgQOzaNGivPPOO6XKBQAAAACtqsV7jH2oqqoq06dP
T2NjYwYOHFiKTAAAAADQ6na7GEuS/fbbrxTLAAAAAECb2a1HKQEAAABgb6UYAwAAAKCQFGMAAAAA
FJJiDAAAAFpTQ0O5E7SO9vq5KJSSbL4PAAAA7EBlZXr36VPuFCW3rra23BFgt7ljDAAAAIBCUowB
AAAAUEiKMQAAAAAKqeTF2B133JFFixaVelkAAAAAKKmSF2O/+MUvMn/+/FIvCwAAAAAlVfJirG/f
vlm/fn2plwUAAACAkip5MXbUUUfllVdeyYoVK0q9NAAAAACUTMmLsbPOOiv77bdfrr322ixfvrzU
ywMAAABASVSUesFFixZlwoQJeeSRRzJ9+vQcccQRGTx4cLp06bLDc6ZMmVLqGAAAAACwUyUvxm66
6aZtfv3iiy/mxRdf3Ok5ijEAAAAA2lrJi7HvfOc7pV4SAAAAAEqu5MXYYYcdVuolAQAAAKDkSr75
PgAAAADsDUp+x9gfa2hoyG9+85usXLky7733nr3EYGcaGpLKynKnaB3t+bMBAACw12q1Yuyxxx7L
Aw88kLq6uuZjHxZjq1atys0335xvfOMb6dWrV2tFgL1LZWV69+lT7hStYl1tbbkjAAAAwEe0yqOU
d999d+6444707NkzU6ZMycEHH7zN+JIlS/Lqq6/m2muvzdatW1sjAgAAAADsVMnvGHvllVfyH//x
HznhhBPyv//3/06nTp2yevXqLF26tHnOaaedlrVr12bGjBmZM2dOTjvttFLHAAAAAICdKvkdYz//
+c/TrVu3nHfeeenUqdMO5/35n/95qqqq8tRTT5U6AgAAAAB8rJIXY6+99lqGDx+ebt267XRe586d
M2zYsKxYsaLUEQAAAADgY5W8GKuvr0+PHj12aW5VVVU++OCDUkcAAAAAgI9V8mJsn332yX/+53/u
0tx33nknfdrpW/gAAAAA2LOVfPP9ESNG5Je//GV++9vfZtiwYTuc98ILL2T58uWtsvH+okWL8rOf
/Sxvv/12PvjggwwcODBjx47N6aefnoqKXf/IGzZsyIwZM/L8889n/fr12WeffTJ69OicddZZ6d27
d8lzAwAAANB2Sn7H2KRJk9KhQ4fceuutWb9+/XbnvP7667ntttvSsWPHnHnmmSW9/kMPPZT/83/+
T+rq6jJp0qR86Utfyr777pt7770311xzTbZs2bJL69TV1eU73/lO5syZk2OOOSZTp07NCSeckKee
eiqXX3551qxZU9LcAAAAALStkt8xNmjQoPyP//E/cscdd2T69OmZPHlyamtrk/zhLrEXXnghTz75
ZLZs2ZJp06blgAMOKNm133777fzkJz/JiBEjctlll6Vjxz/0fmeccUZmzpyZe+65J0888cQu3aV2
9913Z82aNbn66qszZMiQ5uPjx4/PZZddlttvvz2XXHJJybIDAAAA0LZKfsdYkkycODHf+MY3kiR3
3XVXlixZkiT53ve+lzlz5qRXr1755je/mc9+9rMlve6yZcsyaNCgfPnLX24uxT505plnpkuXLnnx
xRc/dp3a2to89dRTmThx4jalWJIMGDAgkydPzqJFi7Jy5cpSxgcAAACgDZX8jrEPHXfccTnyyCOz
aNGiLF26tPltlcOHD8+oUaM+0V5fu+rEE0/MiSeeuN2xDh06pKqqKps3b/7YdRYvXpwtW7akpqZm
u+M1NTX58Y9/nEWLFuXAAw/crcwAAAAAlEerFWNJ0rlz54wZMyZjxoxpzcvskpUrV2bdunU7LM7+
2PLly1NRUZHBgwdvd7xv377p0aNHVqxYUeqYAAAAALSRVnmUck+zdevW3HXXXenYsWMmTJjwsfPr
6upSXV2dDh067HBOr169smHDhlLGBAAAAKANteodYwsWLMicOXPy2muvZePGjenevXuGDx+e8ePH
5+ijj27NS2/jzjvvzEsvvZTPf/7z6d+//8fO37hxY7p27brTOV27dlWMAQAAAOzFWqUY27RpU264
4YY8//zzf7hIRUV69eqV+vr6LFy4MAsXLszRRx+dr3/96+nSpUtrRGh233335bHHHsuIESPypS99
qVWvBQAAAMDeo1WKsR/84AdZsGBBDj744PzlX/5lDj300HTq1ClNTU15+eWXc//992fBggX553/+
51x88cWtESFJ8uCDD+bBBx/MoYcemosvvvgjb6rcke7du3/s/mEffPBB+vXrV4qYAAAAAJRByfcY
W7BgQRYsWJBRo0blH/7hHzJixIh06tQpSdKpU6ccccQR+Yd/+IeMHj06L7zwQhYsWFDqCEmSRx99
NPfdd18+85nP5NJLL03nzp13+dzq6ups2LAhW7du3eGc9evXp2fPnqWICgAAAEAZlLwYe/LJJ9Op
U6f8zd/8TXMh9qf+ePzJJ58sdYQ88cQTueuuu3LIIYd84lIsSQYPHpzGxsYsX758u+Nr1qxJfX39
Dt9aCQAAAMCer+TF2Ouvv57hw4enT58+O53Xu3fvDB8+PEuXLi3p9efPn59bb701w4cPz2WXXdai
PcxGjRqVjh07Zv78+Tu8RpKMHj16t7ICAAAAUD4lL8Y2btz4saXYh3r37p36+vqSXfu5557LjTfe
mGHDhu1yKdbU1JR169Ztc6xPnz6pqanJL37xiyxbtmybsVWrVuXhhx/OqFGjMnDgwJJlBwAAAKBt
lXzz/erq6rz77ru7NHfDhg2prq4u2bX/6Z/+KRUVFTnhhBPy7LPPbndO165dc9xxxzX/+rrrrsvC
hQtz0UUXZcyYMc3Hp06dmjfeeCNXXHFFTjvttOy///75/e9/n8cffzzdu3fPX//1X5csNwAAAABt
r+TF2OGHH55nn302GzduTPfu3Xc477333surr76aY489tmTXbmpqSlNTU+68884dzunXr982xVjf
vn1TVVX1kY30e/bsmauvvjoPPPBAFixYkNra2vTq1Stjx47NlClT0qtXr5LlBgAAAKDtlbwYO/30
0zNv3rz8+Mc/3uldVT/5yU/S0NCQ008/vWTXvv/++z/xOdOmTcu0adO2O9ajR49MnTo1U6dO3d1o
AAAAAOxhSr7H2NChQ/PFL34xs2fPzh133JHNmzdvM75p06bceeedmTVrVv7yL/8yBx98cKkjAAAA
AMDHKvkdYzfddFOSpFevXnnssccyf/78HHHEEenVq1fWr1+fl156KfX19dlnn33yn//5n7n55pt3
ut75559f6ogAAAAAUPpi7Je//OU2v66vr8/TTz/9kXnvvvtu5s6d+7HrKcYAAAAAaA0lL8ZuuOGG
Ui8JAAAAACVX8mKsf//+pV4SAAAAAEqu5JvvAwAAAMDeQDEGAAAAQCEpxgAAAAAoJMUYAAAAAIWk
GAMAAACgkBRjAAAAABSSYgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAhKcYAAAAAKCTFGAAA
AACFpBgDAAAAoJAUYwAAAAAUkmIMAAAAgEJSjAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgk
xRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEpxgAA
AAAoJMUYAAAAAIWkGAMAAACgkBRjAAAAABSSYgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAh
KcYAAAAAKCTFGAAAAACFpBgDAAAAoJAUYwAAAAAUkmIMAAAAgEJSjAEAAABQSIoxAAAAAApJMQYA
AABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAAAIBCUowBtFRDQ7kTtJ72/NkA
AAD+S0W5AwDstSor07tPn3KnaBXramvLHQEAAKDVuWMMAAAAgEJSjAEAAABQSIoxAAAAAApJMQYA
AABAISnGAAAAACgkxRgAAAAAhVRR7gCt7dlnn80Pf/jDjBgxItOnT9/l8+bOnZubb755h+MnnHBC
LrjgglJEBAAAAKAM2nUxNmPGjNx///27tcbZZ5+dfv36feR4//79d2tdAAAAAMqrXRZjjY2NueWW
WzJv3rxMmDAhCxcubPFaRx55ZIYOHVrCdAAAAADsCdrlHmNPPPFE5s2bl7PPPjtf/epX06FDh3JH
AgAAAGAP0y7vGJswYUL69euX0aNHlzsKAAAAAHuodnnHWIcOHUpaijU2Nmbjxo3ZunVrydYEAAAA
oLza5R1jpXT99ddn9erVSZKqqqrU1NTknHPOSc+ePcucDAAAAIDdoRjbiaFDh2bMmDEZMGBAmpqa
snjx4syePTsvvfRSrrnmGuUYALS2hoaksrLcKVpHe/5sAAB7CcXYDowdOzbjxo3b5lhNTU1GjhyZ
G264IXfffXe+9rWvlSccABRFZWV69+lT7hStYl1tbbkjAAAUXrvcY6wUKiq23xmOHTs2o0aNyjPP
PJOGhoY2TgUAAABAqSjGWmDkyJFpaGho3nsMAAAAgL2PYqwFOnb8wz+2Tp06lTkJAAAAAC2lGNuB
ZcuWZePGjdsdW7hwYbp3757+/fu3cSoAAAAASqXwxVhTU1PWrVu3zbElS5Zk+vTpue2227Jly5Zt
xmbNmpUXX3wxn/vc55rvHAMAAABg71P4t1Jed911WbhwYS666KKMGTMmSXL44Ydn3LhxmTt3blat
WpWampp07tw5ixYtyuLFizNq1KhMmTKlzMkBAAAA2B2FL8b69u2bqqqq9OzZc5vj559/fg477LA8
/vjjmTFjRpqamjJkyJCcd955OfXUU9OhQ4cyJQYAAACgFApRjN144407HJs2bVqmTZu23bGTTjop
J510UmvFAgAAAKCMbJIFAAAAQCEpxgAAAAAoJMUYAAAAAIWkGAMAAACgkBRjAAAAABSSYgwAAACA
QlKMAQAAAFBIijEAAAAACkkxBgAAAEAhKcYAAAAAKCTFGAAAAACFpBgDAAAAoJAUYwAAAAAUkmIM
AAAAgEJSjAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAA
FJJiDAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEpxgAAAAAoJMUYAAAAAIWkGAMAAACgkBRj
AAAAABSSYgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAhKcYAAAAAKCTFGAAAAACFpBgDAAAA
oJAUYwAAAAB/rKGh3AlaR3v9XLuhotwBAAAAAPYolZXp3adPuVOU3Lra2nJH2OO4YwwAAACAQlKM
AQAAAFBIijEAAAAACkkxBgAAAEAhKcYAAAAAKCTFGAAAAACFpBgDAAAAoJAUYwAAAAAUkmIMAAAA
gEJSjAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJi
DAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEpxgAAAAAopIpyB2hNzz77bH74wx9mxIgRmT59
+ic6d8OGDZkxY0aef/75rF+/Pvvss09Gjx6ds846K717926lxAAAAAC0lXZbjM2YMSP3339/i86t
q6vLlVdembVr12b8+PE54IADsnr16syePTuLFi3KVVddlb59+5Y4MQAAAABtqd0VY42Njbnlllsy
b968TJgwIQsXLvzEa9x9991Zs2ZNrr766gwZMqT5+Pjx43PZZZfl9ttvzyWXXFLC1AAAAAC0tXa3
x9gTTzyRefPm5eyzz85Xv/rVdOjQ4ROdX1tbm6eeeioTJ07cphRLkgEDBmTy5MlZtGhRVq5cWcLU
AAAAALS1dnfH2IQJE9KvX7+MHj26RecvXrw4W7ZsSU1NzXbHa2pq8uMf/ziLFi3KgQceuDtRAQAA
ACijdnfHWIcOHVpciiXJ8uXLU1FRkcGDB293vG/fvunRo0dWrFjR4msAAAAAUH7trhjbXXV1damu
rt7pI5i9evXKhg0b2jAVAAAAAKWmGPsTGzduTNeuXXc6p2vXrooxAAAAgL2cYgwAAIqsoaHcCVpH
e/1cAJRUu9t8f3d17979Y/cP++CDD9KvX782SgQAAK2osjK9+/Qpd4qSW1dbW+4IAOwF3DH2J6qr
q7Nhw4Zs3bp1h3PWr1+fnj17tmEqAAAAAEpNMfYnBg8enMbGxixfvny742vWrEl9ff0O31oJAAAA
wN5BMfYnRo0alY4dO2b+/PnbHf/w+OjRo9syFgAAAAAlVuhirKmpKevWrdvmWJ8+fVJTU5Nf/OIX
WbZs2TZjq1atysMPP5xRo0Zl4MCBbZgUAAAAgFIr9Ob71113XRYuXJiLLrooY8aMaT4+derUvPHG
G7niiity2mmnZf/998/vf//7PP744+nevXv++q//uoypAQAAACiFQhdjffv2TVVV1Uc20u/Zs2eu
vvrqPPDAA1mwYEFqa2vTq1evjB07NlOmTEmvXr3KlBgAAACAUmn3xdiNN964w7Fp06Zl2rRp2x3r
0aNHpk6dmqlTp7ZWNAAAAADKqN0XY7DXaGjIutracqdoHQ0NSWVluVMAAADANhRjsKeorEyfPr3L
naJV1Nau+/hJAAAA0MYK/VZKAAAAAIpLMQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAA2Js0NJQ7
Qetor58L2KN5KyUAAMDepLIyvfv0KXeKkltXW1vuCEABuWMMAAAAgEJSjAEAAABQSIoxAAAAAApJ
MQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAAAIBCUowBAAAAUEiKMQAA
AAAKSTEGAAAAQCEpxgAAAAAoJMUYAAAAAIWkGAMAAACgkBRjAAAAABSSYgwAAACAQlKMAQAAAFBI
ijEAAAAACqmi3AEA9loNDVlXW1vuFK2joSGprCx3CgAAgFalGANoqcrK9OnTu9wpWkVt7bpyRwAA
AGh1HqUEAAAAoJAUYwAAAAAUkmIMAAAAgEJSjAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgk
xRgAAAAAhaQYAwCgdBoayp2gdbTXzwUABVdR7gAAALQjlZXp3adPuVOU3Lra2nJHAABagTvGAAAA
ACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEp
xgAAAAAoJMUYAAAAAIWkGAMAAACgkBRjAAAAABSSYgwAAACAQqoodwAAaDMNDVlXW1vuFK2joSGp
rCx3CgAA2KsoxgAojsrK9OnTu9wpWkVt7bpyR2gdykwAAFqRYgwA2HMpMwEAaEX2GAMAAACgkBRj
AAAAABSSYgwAAACAQlKMAQAAAFBIijEAAAAACqldv5Xytddey4wZM/Lmm29m06ZNGTBgQCZMmJAJ
Eybs0vlz587NzTffvMPxE044IRdccEGp4gIAAADQhtptMfbcc8/l+uuvzwEHHJAzzzwzXbt2zcsv
v5zbb789S5cuzfnnn7/La5199tnp16/fR47379+/lJEBAAAAaEPtshirq6vLLbfckkMOOSSXX355
OnXqlCSZOHFiZs6cmXvuuSejR4/Occcdt0vrHXnkkRk6dGhrRgYAAACgjbXLPcaefPLJbNy4MdOm
TWsuxT40adKkHHjggXnkkUfKlA4AAACAPUG7vGPshRdeyODBg3PggQdud/z444/PT3/609TX16dH
jx5tnA4AoB1raMi62tpypyi9hoaksrLcKQCAEmuXxdjy5ctzwgkn7HD8oIMOap532GGH7dKajY2N
2bRpU6qqqtKhQ4eS5AQAaHcqK9OnT+9ypyi52tp15Y4AALSCdleMNTY25oMPPkivXr12OOfDsQ0b
NuzSmtdff31Wr16dJKmqqkpNTU3OOeec9OzZc/cDAwAAAFAW7a4Yq6+vT5J06dJlh3O6deuW5A+b
9H+coUOHZsyYMRkwYECampqyePHizJ49Oy+99FKuueYa5RgAAADAXqrdFWOlNHbs2IwbN26bYzU1
NRk5cmRuuOGG3H333fna175WnnAAAAAA7JZ291bKDzfT37Rp0w7nvP/++0mS6urqna5VUbH93nDs
2LEZNWpUnnnmmTQ0NLQwKQAAAADl1O7uGKuoqEjXrl2zfv36Hc75cGx3HoMcOXJkFi9enNWrV2fg
wIEtXgcAAMrKm0QBKLB2V4wlyeDBg7N06dIdjr/11lvN81qqY8c/3GzXqVOnFq8BAABl502iABRY
u3uUMkmOOuqorFixIitXrvzI2NatW/P000/n4IMPbn7sckeWLVuWjRs3bnds4cKF6d69e/r371+S
zAAAAAC0rXZZjJ1yyinp3r17br/99jQ2Nm4zNnPmzLzzzjuZNGlS87GmpqasW7ft3ygtWbIk06dP
z2233ZYtW7ZsMzZr1qy8+OKL+dznPtd85xgAAAAAe5d2+ShldXV1/vZv/zbXX399pk+fnhNPPDFd
unTJK6+8kueeey4nn3xyjj/++Ob51113XRYuXJiLLrooY8aMSZIcfvjhGTduXObOnZtVq1alpqYm
nTt3zqJFi7J48eKMGjUqU6ZMKddHBAAAAGA3tctiLEmOPfbYXHXVVXnggQcyc+bMbN68Ofvvv3++
+tWvZsKECdvM7du3b6qqqj6yGf/555+fww47LI8//nhmzJiRpqamDBkyJOedd15OPfXUdOjQoS0/
EgAAAAAl1G6LsSQZNmxYLr300o+dN23atEybNm27YyeddFJOOumkUkcDAAAAoMxskAUAAABAISnG
AAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAA
QCEpxgAAAAAoJMUYAAAAAIWkGAMAAACgkCrKHQAAAIBPoKEh62pry52i9BoaksrKcqdoHb6zvY/v
rDAUYwAAAHuTysr06dO73ClKrrZ2XbkjtB7f2d7Hd1YYHqUEAAAAoJAUYwAAAAAUkmIMAAAAgEJS
jAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQFGMAAAAAFJJiDAAA
AIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEpxgAAAAAoJMUYAAAAAIWkGAMAAACgkBRjAAAAABSS
YgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAhKcYAAAAAKCTFGAAAAACFpBgDAAAAoJAUYwAA
AAAUkmIMAAAAgEJSjAEAAABQSIoxAAAAAApJMQYAAABAISnGAAAAACgkxRgAAAAAhaQYAwAAAKCQ
FGMAAAAAFJJiDAAAAIBCUowBAAAAUEiKMQAAAAAKSTEGAAAAQCEpxgAAAAAoJMUYAAAAAIWkGAMA
AACgkBRjAAAAABSSYgwAAACAQlKMAQAAAFBIijEAAAAACkkxBgAAAEAhVZQ7QGt57bXXMmPGjLz5
5pvZtGlTBgwYkAkTJmTChAm7vMaGDRsyY8aMPP/881m/fn322WefjB49OmeddVZ69+7diukBAAAA
aG3tshh77rnncv311+eAAw7ImWeema5du+bll1/O7bffnqVLl+b888//2DXq6upy5ZVXZu3atRk/
fnwOOOCArF69OrNnz86iRYty1VVXpW/fvm3waQAAAABoDe2uGKurq8stt9ySQw45JJdffnk6deqU
JJk4cWJmzpyZe+65J6NHj85xxx2303XuvvvurFmzJldffXWGDBnSfHz8+PG57LLLcvvtt+eSSy5p
zY8CAAAAQCtqd3uMPfnkk9m4cWOmTZvWXIp9aNKkSTnwwAPzyCOP7HSN2traPPXUU5k4ceI2pViS
DBgwIJMnT86iRYuycuXKUscHAAAAoI20u2LshRdeyODBg3PggQdud/z444/P0qVLU19fv8M1Fi9e
nC1btqSmpma74x8eX7Ro0e4HBgAAAKAs2l0xtnz58nz605/e4fhBBx3UPG9na1RUVGTw4MHb2KMz
6QAAIABJREFUHe/bt2969OiRFStW7F5YAAAAAMqmXe0x1tjYmA8++CC9evXa4ZwPxzZs2LDDOXV1
damurk6HDh12us7O1tiZhQsXtui8lpg9u80u1Wba8B9fm2uP31fiO9sb+c72Pr6zvY/vbO/Snr+v
xHe2N/Kd7X18Z3sf31kxtKs7xj58PLJLly47nNOtW7ckfyi/dmTjxo3p2rXrTq/VtWvXFhdjAAAA
AJRfu7pjbE83fvz4ckcAAAAA4L+0qzvGevTokSTZtGnTDue8//77SZLq6uodzunevXvzvB354IMP
0rNnzxakBAAAAGBP0K6KsYqKinTt2jXr16/f4ZwPx3ZWalVXV2fDhg3ZunXrTtdRjAEAAADsvdpV
MZYkgwcPztKlS3c4/tZbbzXP29kajY2NO3xz5Zo1a1JfX7/TNQAAAADYs7W7Yuyoo47KihUrsnLl
yo+Mbd26NU8//XQOPvjg5scut2fUqFHp2LFj5s+fv93xD4+PHj26NKEBAAAAaHPtrhg75ZRT0r17
99x+++1pbGzcZmzmzJl55513MmnSpOZjTU1NWbdu3Tbz+vTpk5qamvziF7/IsmXLthlbtWpVHn74
4YwaNSoDBw5stc8BAAAAQOvqsHVnG2ntpZ577rlcf/31OeCAA3LiiSemS5cueeWVV/Lcc8/l5JNP
zv/6X/+ree61116bhQsX5qKLLsqYMWOaj2/YsCHf+c53smbNmpx22mnZf//98/vf/z6PP/54unfv
nquuuip9+/Ytx8cDAAAAoATaZTGWJL/97W/zwAMP5I033sjmzZuz//7757TTTsuECRO2mfev//qv
mT9/fr797W/n0EMP3Wasvr4+DzzwQBYsWJDa2tr06tUro0ePzpQpU9KrV6+2/DgAAAAAlFi7LcYA
AAAAYGfa3R5jAAAAALArFGMAAAAAFJJiDAAAAIBCqih3APZua9euTe/evdOx4//fsT7zzDNZsGBB
unbtmtNPPz0HHnhgGRPC3u+DDz7I3Llzs3LlyjQ0NHxkfPPmzamrq8sVV1xRhnQAAAB7L8UYLbZi
xYpcccUV+Yu/+ItMnjw5SfLoo4/mrrvuSteuXbNp06Y89dRT+e53v5shQ4aUN2zB/PSnP02HDh12
a40pU6aUKA27Y82aNbnyyiuzZs2a9OjRI/X19amurk5jY2Pee++9JMmf/dmfpbq6usxJi+2VV17Z
pXkdO3bMPvvsk379+qWiwn+C9ySrVq3K7Nmz89prr6Wuri5/+7d/m8985jP53e9+l969e6dbt27l
jlg4c+fO3e3/lp188sklSkOpvPvuuzv9S55DDjmkDKlg73bTTTdl/PjxGT58+A7nPP7449m8eXPO
PPPMNkxGklx11VW7vcaVV15ZgiTsiJ/KabGf/OQn6dy5c44++ugkSWNjYx544IEMGzYsV155Zerq
6nL55ZdnxowZueiii8qctlj+/d//fbfXUIztGX70ox9l06ZNufbaa9O7d++cd955+drXvpZRo0Zl
9erV+dGPfpQNGzbkwgsvLHfUQvukP/B06tQpRx11VP77f//v2W+//VopFbtq9uzZueOOO9K5c+cM
GDAgq1atyubNm5Mkt956axobG3P11Vdvc3c0re/mm2/e7TUUY3uOn//855kxY0bq6up2Ou/+++9v
o0Rsz9/93d/llFNOycknn5x999233HHYRb/85S9z2GGH7bQYa2hoyEMPPaQYK4OtW7emQ4cO2bp1
63bHXn311STJgQcemL59+2bNmjVZuXJlkuSQQw7x80cbUIzRYq+++mrOPPPMDBw4MEnyxhtvpL6+
PpMnT05FRUX69OmTU089NbNmzSpz0uLxQ2X78eqrr2b8+PEZMmRI3n///SRpvoOif//+ueCCC3Ll
lVfm/vvvz7nnnlvOqIX2ne98J7/97W9z3333ZcyYMTnhhBPSp0+frFu3Ls8880yeeeaZTJ48OSNH
jsz69euzYsWKzJkzJ5dffnmuvvrqDBgwoNwfobBefvnl/Mu//EvOOOOMfPGLX8x7772Xv/mbv2ke
/8pXvpLLLrssP//5z/1hoo3dcMMNOxx7+umnc9999+Wzn/1sxo0bl3333Tdr167N3Llz8/jjj+ec
c85JTU1NG6ZlZ2bPnp0777wzRx99dA4++ODcd999mTRpUvbdd9+89dZbeeqppzJp0qQcf/zx5Y5K
/vBz5L/9279lxIgRGTduXI499thUVlaWOxa7qa6urvlnSdrWd7/73e0e37JlS/7xH/8xAwYMyAUX
XJChQ4c2j7355pv553/+53Tv3j3f+ta32ihpcSnGaLGtW7du8/jWr3/963To0CGHH35487Hq6ups
3LixHPGgXairq0v//v2TJF26dEmHDh2yYcOG5vGOHTvm+OOPz8yZMxVjZbTvvvvmwQcfzLnnnptJ
kyZtMzZmzJgMGzYs99xzT4499tjU1NSkpqYmEydOzN///d/nzjvvzCWXXFKm5Dz00EM59NBDM3Xq
1CRpfkT5Q4MHD84JJ5yQefPmKcba2If/7vtTb775Zu6///589atfzWmnndZ8fJ999snQoUPzqU99
Kv/6r/+aI444Iv369WuruOzE7NmzM2rUqHz729/Ohg0bct999+WII47IyJEjkySnn356rrrqqowa
NarMSbnhhhvy29/+NvPnz88zzzyTH/zgB6mqqkpNTU3GjRuXgw8+uNwR+S833XTTNnchPfHEE9vd
2mHr1q1Zu3ZtlixZkiOOOKKtY7ITc+bMyeLFi3Pttdd+ZF/uoUOH5lvf+lYuueSSzJkzJxMmTChT
ymJwTx4tNmjQoPzf//t/kyRNTU2ZP39+hg4dmq5duzbPef3113f4gy3l19DQkNra2uZHhtjzVFdX
Nz920rFjx/Tv3z9vv/32NnO2bt36sY+m0Lp++tOf5tOf/vRHSrEPnXHGGTn44IPzwAMPNB/r3bt3
/uIv/iIvvvhi6uvr2yoqf+L1119v/sP5jnz605/OO++800aJ+DgPPvhghg0btk0p9scmTJiQ4cOH
58EHH2zjZOzIO++80/z77MOfE5uamprHhw4dmgkTJuTf/u3fypKPbQ0bNixf+cpXcsstt+TSSy/N
kUcemV/96lf5+7//+3zzm9/MI488knfffbfcMQvv5ZdfzpIlS/Lyyy8nSVauXJklS5Z85H8vv/xy
amtrM27cuHz9618vc2r+2JNPPplx48bt8GV1n/rUp3LyySdnzpw5bZyseNwxRot94QtfyPe///18
85vfTGNjY1atWpW/+7u/ax6fP39+5s2bl7PPPruMKdmeX/7yl3nsscfy1ltvZevWrbnssssycuTI
LFiwIP3798+gQYPKHZH/Mnz48CxatCh//ud/niQZOXJkfvWrX2Xy5MmpqqpKY2Njnn76aftUldlL
L72U//bf/ttO54wZM2abYixJDj300GzZsiWrVq3yt/BlsmXLlm3+QmdHc+zvsef4zW9+87G/3445
5pjMmDGjjRLxcSoqKpofxausrExVVVX+3//7f9vM2W+//Wy/sYfp1KlTRo0alVGjRmXTpk15/vnn
M2fOnNx777358Y9/nNGjR2fcuHE56qij0qlTp3LHLZwbb7yx+f+fc845OffcczNu3LjyBeITe/vt
t3PqqafudM5BBx2UX/3qV22UqLj8lEeLHX300bnwwgvTuXPnVFZWZtq0aRk7dmzz+GuvvZbPfOYz
zW+sZM9www035KabbkqPHj3yuc99bpuxWbNm5eqrr97mUT3Ka+LEiXnttdeydOnSJMnnP//5bNy4
MRdffHFuvvnmTJ8+PUuXLs3pp59e5qTF9t57733sWyYrKio+8ia2D89x12b5DB48uPnu5x1ZsGDB
Nvt+UF4ffPBBunTpstM5nTt39vtqD7L//vtn2bJlzb8+6KCDsmTJkm3m/O53v0vnzp3bOBm74sPN
wRctWtT888iAAQOyfPny/OM//mPOP//8zJw5c7sbi9N2dvctvrS9ysrKj9337f3337fHXxtwxxi7
5fjjj9/hRqnnnntuOnbs+LF/WKTtzJ49O/Pnz8+3vvWtHHPMMVm/fn0ee+yx5vGvf/3rufDCC/Pg
gw/mr/7qr8qYlA8dcsghueKKK5rvJurfv38uu+yy3HPPPXn66afTvXv3TJ06dYePFNE2+vfvn8WL
F3+kbP5jv/71r5tfVvKh1atXJ8k2+zXStiZMmJAbb7wxDz300HbvQpo9e3ZefvnlfOMb3yhDOrZn
v/32y9KlS3e638obb7zhpRZ7kGOOOSY/+9nP8sUvfjE9evTIuHHjcuONN+bRRx/Nsccem9/85jeZ
PXt2jjrqqHJH5Y8sW7Ys8+bNy/z587N+/fp07do1Y8eOzSmnnJJhw4Zl69atzd/dPffckzfeeCMX
XHBBuWMXkhdv7Z0+/elP59lnn82kSZO2W2xu3bo1zz77rKcK2oDGglbjb/32PI8//njGjh2bY445
ZrvjPXr0yEknnZQXXnhBMbYH+eMXWiR/KMuuueaaMqVhe8aOHZt/+//Yu++oqM78f+DvGSmCAwoO
xRJBBAREVIq9gCAg9qwuURNJ+dlCEmui0RglrrFtzNri+s0aV11XERUkBhuBoQSJYokgolFQVBQc
EAGliMzvj8RZkA4yd4D36xzPgXufy75PZmHmfu7zfJ5DhxAREVHllHiZTIaEhIRKv1exsbGQSCTV
9pagpjd8+HBcuXIFBw4cwLVr15SNiS9fvozIyEicPXsWbm5uGDhwoMBJ6aVBgwbhyJEjcHd3h7W1
daXz169fR3R0NCZPnixAOqqKt7e3sp+iRCLB0KFDce7cOezZswd79uwBABgZGWHatGkCJ6WcnBzE
xsYiOjpa2dO0Z8+emDp1KgYNGlRhtqZIJIKdnR3s7Oxgb2+PnTt3YurUqewv3MRKS0vx4sWLWmfO
kvrz8vLCxo0b8d///hfTpk2rUBxTKBT473//i1u3buGzzz4TMGXrwMIYNVpycjJOnTqFlJQU5OXl
YenSpejTpw9u3LgBqVQKQ0NDoSPSnzIyMuDm5lbjmE6dOkEul6soEVHLMHbsWJw7dw47d+7EtWvX
4OXlBalUCrlcjtOnTyMqKgqWlpYVZpRdunQJMplM2T+OhOPv748ePXogJCQEly9fBgCEhYXB0NAQ
H3zwATw9PQVOSOWNGTMGMTEx+PrrrzF58mS4ubmhXbt2ePr0KSIjIxEUFARjY2PuIqpGdHR0sGrV
KuX3YrEYixcvxuXLl5Geno527dph0KBB0NXVFS4kAQA+/PBDKBQKtG/fHuPHj4ebmxs6d+5c63Uv
N1d49OgRC2NNbOnSpXj8+DG2bdsGHR0dAEBAQECdr1+5cmVTRaN6cnZ2hru7O0JDQ3HlyhUMHz4c
BgYGePz4MaKjo3H79m14eHhwNq0KsDBGjXLw4EEEBwejc+fOsLKywvnz55Xn/vvf/+Lx48fYsGED
n2ioCS0tLRQVFdU4Jj8/nx9MBSCTyRrdG2LEiBGvKQ3Vl7a2Nr788kvs2rUL0dHRlZqkDh48GLNm
zaqwtPzixYvo3r07C2NqQCQSYfTo0fD29saDBw+Qn58PPT29Ot0Mkurp6Ojgiy++wD/+8Q/s27cP
+/btg4aGBkpLSwEAlpaWWLBgQa2bKpDqyOVySCSSSq/Jy8buAJCbm4uysjJIJBIhItKf+vXrh5Ej
R8LJyalem44oFAp4eHiwKKYCHTp0QGlpaYUNDxQKBUQiUa193tiHTP3MmjUL5ubmCA4Oxt69e5XH
+XBOtUQKdkmkBoqPj8e3334LPz8/+Pj4IDc3F7Nnz1bucCiXy7Fo0SKMHTuWO1OqiY0bN+LevXvY
uHEjtLS0Kr1mpaWlWLx4MczMzNhPR8V8fX0b/TPYX0I9ZGZmIikpCU+ePIG+vj7s7e2r7XVUWFio
fNpLwrl//z5MTU2r3FWttLQUmZmZlfrDkXpITExEUlIS8vLylL9vvXv3FjoWvcLX1xcffvhhjQ9w
9u3bh6SkJKxfv16FyYiI1EdGRgYfzgmEM8aowcLCwuDk5AQfH58qz0ulUgwbNgzx8fEsjKmJCRMm
YMWKFdiyZQv8/f0rnCstLcX333+PzMxMfPLJJwIlbL22bt1a7bm4uDgcPHgQnp6ecHV1RceOHZGd
nQ2ZTIYzZ87A19cXQ4YMUWFaetWMGTMwZ84cDB48GCYmJjAxManTdSyKCS87OxsrVqzA6NGjq3yv
CgoKQnh4ODZu3MjWAGqod+/eLIS1ECYmJjh16pTQMYiIBMNimHBYGKMGu337Nv7617/WOKZbt26Q
yWSqCUS1sra2xsyZM7Fr1y7Mnz8fNjY2AIDQ0FDs3LkTjx8/xqxZs2BhYSFw0tanuqUHqampCAwM
xP/7f/+vws6T7du3h4WFBd544w3s2rULDg4OMDIyUlVceoWmpiby8vKEjkENEBQUBE1NzWp3FB09
ejQiIyNx6NAhzJkzR8XpiJqvl/1KXy5Oyc/Pr7KHqUKhQHZ2NiIiItCuXTuVZmzN/P3967T07lUv
rxGJRNi2bVsTpSMiUi0WxqjB6tJ3oKioiLtTqhkPDw/06NEDoaGhuHr1KsRiMe7duwd7e3uMHz8e
ZmZmQkekcoKDg2FtbV2hKFbeqFGjEBsbi+DgYCxatEjF6eilXr16IS4uDl5eXuzf0cxcunQJ7u7u
0NfXr/J8hw4d4O7ujoiICBUno5qUlpYiLi4O9+/fR25ubrXj5s6dq8JUVN6rM9Nf9oOrjlgsxuzZ
s5s6Fv3Jzs6uUdfzvU79FBUVQSaT4d69e3j+/Hml8yUlJcjLy8OKFSsESEfVSUpKQnBwMO7evYsn
T55UO44tU5oWC2PUYD169EBMTAx8fHyqLJIpFAqcPXu2yq3USVjdu3fHvHnzhI5BdXDt2jVMnDix
xjEuLi44evSoihJRVd555x2sWrUK27Ztg5+fX7VFFlI/BQUFtS6R7NixIwoKClSUiGqTmZmJv/3t
b8jKygIAtGvXjsuS1VD5ouSOHTswcuRI9OzZs8qxmpqa6NGjR7X9GOn1e7VwSc2bXC7HypUrlRtd
FBQUQF9fH6WlpXj27BkAwMrKip9P1ExcXBw2b94MTU1N9OvXD1KplJugCYSFMWqwsWPHYt26ddi9
ezfee++9SucPHTqE1NRUPpUgaoSioqJad3XV0tJCSUmJihJRVQ4ePAhzc3PExcXh119/RZcuXar9
YMNt0tWLoaEh7t+/X+OY+/fvw8DAQEWJqDb/+c9/kJOTg/feew/Dhw/nTYSacnV1VX69Y8cO2NjY
cPdkoiayf/9+FBcXY/369TAwMMCsWbPg7++Pvn37IisrC/v370d+fj7mz58vdFQq59ixYzA1NcXq
1atZtBQYC2PUYP369cOkSZMQHByMlJQUZfPbqKgoHDp0CDdv3sSUKVNgb28vcFJ61bNnz5CRkVFl
MeX58+fIy8vDsGHDBEhGrzIxMcHNmzcxatSoasfcunWLT9kFlp2dDZFIVGE2RFV9W7j0RP04Ojoi
IiIC3t7eVW6a8PDhQ0RERGD48OECpKOqXL16FR4eHvD29hY6CtXR5MmT2aqBqAmlpKTA3d0d5ubm
KCwsBPC/zxzGxsaYN28eVq5cicDAQLzzzjtCRqVy7t+/j8mTJ7MopgZYGKNGeeutt2BpaYmQkBCE
hYUB+GNKqLW1NZYuXYp+/foJnJDKKysrw3/+8x+cOHECZWVlNY5lYUw9DBo0CEeOHIG7u3uVy5Kv
X7+O6OhoTJ48WYB09NKqVauEjkANNG7cOERFReFvf/sb3n33XTg5OSnPXbx4Ebt374ZYLMaECRME
TEnllZaWolu3bkLHoHrg7uTNi1wux4kTJ3Dv3r0qH6KWlJQgPz8fW7ZsESAdVSUvL0+5kZO2tjZE
IhHy8/OV58ViMQYNGoTjx4+zMKZG2rVrx1nPaoKFMWo0Z2dnODs7o6SkBAUFBZBIJGy4r6ZCQ0Px
008/wcfHB927d8f27dsxffp0dOrUCbdv38aJEyfg6emJsWPHCh2V/jRmzBjExMTg66+/xuTJk+Hm
5oZ27drh6dOniIyMRFBQEIyNjTFmzBihoxI1S1KpFEuWLMGmTZuwYcMGtGvXDu3bt0dubi6ePXsG
fX19LFmyBFKpVOio9KcePXrUuvyVhCGTyRo9M5bLLYWVnp6OlStXorS0FKampkhPT0e3bt0gEonw
4MEDlJSUwMXFBZaWlkJHpXL09fWVu2OLxWIYGxvj7t27FcYoFAruoK1mnJ2dkZCQAE9PT6GjtHos
jFGDBQUFoX///sqp8VpaWpUaGMfFxQEABg8erPJ8VFlMTAwGDx4MPz8/ZSNpMzMz9OnTBy4uLhgx
YgQ+//xzdO/eHQMGDBA4LQGAjo4OvvjiC/zjH/9Q7uiloaGB0tJSAIClpSUWLFiAtm3bCpyUqPmy
tbXFli1bEB0djWvXriE/Px9mZmawtbXFiBEj+PulZv7yl79g48aNGDx4MG/O1cyOHTsa/TNYGBPW
gQMHoKuri9WrV6NNmzaYNWsWpk+fjr59+6KoqAiHDh3C5cuXMWfOHKGjUjk9e/bEpUuXMGnSJABA
nz59EB0djQkTJkBXV1e5k29VLQNIOL6+vli+fDn27NmD6dOnQ0OD5Rmh8L88Ndjhw4dhbGxcY8+I
l1OxWRhTD5mZmcpeVS9v9Mpv52xsbAwvLy+EhISwMKZGjIyMsGbNGiQmJiIpKQl5eXnQ19eHvb29
srcfCSsgIKBO4woLC7Fu3bomTkMNoaOjAy8vL3h5eQkdhWrRtm1bjBw5EitXroSrqyt69+4NPT29
Kmcq2dnZCZCw9dq6davQEaiRbt68CS8vLxgaGqKoqAjA/3pVtW3bFjNmzMD9+/exf/9+zJ49W8io
VI63tzdWrlyJmzdvwtLSUtkm4LPPPkOvXr1w8+ZN3Lt3DzNnzhQ6KpUTFBQEMzMzhIWFQSaToWfP
ntDT04NYLK40tvxOv/T6sTBGTerFixecsqtGyu9uqKGhAYlEgszMzApjDAwMcO/ePVVHozro3bs3
C2FqSqFQQCQSVWi4/3LJQkZGBgDA2toa7du3Fyoi1dHDhw/x5MkTdOnSBRKJROg4VIXly5crvw4P
D0d4eHi1YwMDA1URif70sscRNV+FhYXKXXi1tbUhFouRm5tbYYyjoyOOHDkiRDyqho2NDVasWKGc
RWtsbIxly5Zh3759iIuLQ7t27eDn5wcPDw+Bk1J5Z8+ehba2trJdw6vLX0l1WBijegkKCqpw83f+
/Hk8evSo0jiFQoGcnBzExsbCwsJC1TGpGl27dsWtW7eU31tZWSEhIaFCf6rU1FQ2gSSqp5qa7+fk
5OCHH37A48ePsXDhQtWFojorLS1FSEgITp06pXyYs2zZMvTp0wfh4eEwNTXlDstqZMmSJRUe9BDR
62NgYICcnBwAf8wU69SpE+7cuVNhTHFxsXLnQ1Ifr75P2djYYM2aNQKlobr417/+JXQE+hMLY1Qv
hw8frvD9+fPncf78+SrHamhowNramtOs1cigQYOwf/9++Pr6QiqVwsPDAxs3bsSePXvg4uKClJQU
yGQyuLm5CR2VyuHuUM2boaEhFi5ciBUrVuDIkSOYNm2a0JGonNLSUnz99ddISUmBm5sbTExMsH//
fuX5q1evYu/evdi0aRMb8KsJR0dHoSNQAz179gwZGRlVvpc9f/4ceXl53BVbYHZ2djh37pxyJ1En
JydERETAx8cHUqkUz549Q2RkJLp27SpwUipv3759cHR0hK2tbZXL8IioZiyMUb2UX5Lg6+uLuXPn
wtXVVbhAVC8eHh64deuWsrGjs7MzfHx8EBYWhrCwMAB/7Pb11ltvCRmTyuHuUC2DWCzGkCFD8OOP
P7IwpmZ++uknXL9+HV999RUsLS2Rm5tboTA2d+5cLFiwAEeOHOGDHqIGKisrw3/+8x+cOHECZWVl
NY5lYUxYY8aMweeff67sVTV27FjIZDJ8+umnMDc3x927d5Gfn49FixYJHZXKOX78OI4fPw5dXV04
ODjAyckJ/fr1g56entDRiJoFFsaoURq7JTeploaGBvz9/Ssce9lvID09He3atUOvXr3Qpk0bgRLS
q7g7VMtRVlaGJ0+eCB2DXhEVFQVXV9dqi8taWloYNmwYYmJiVJyMalJWVobLly/j7t27FTaReenl
TFoWM9VDaGgofvrpJ/j4+KB79+7Yvn07pk+fjk6dOuH27ds4ceIEPD09MXbsWKGjtnrdunXDxo0b
0blzZwBA+/btERAQgKCgINy5cwedOnXC7Nmz4eLiInBSKu/bb7/FlStXkJiYiCtXriA+Ph4ikQiW
lpZwdHSEk5NTjRumkXBSU1MREhJS4/vZ06dPKzy0o9ePhTFqsK1bt0JfX1/oGFQPa9euxcSJE2Fr
a1vheJcuXdClSxeBUlFNuDtUy1BUVASZTMZt0tVQZmYmvL29axwjlUorNZ8m4RQUFGDNmjVITU2t
doyhoSE3T1AjMTExGDx4MPz8/FBQUAAAMDMzQ58+feDi4oIRI0bg888/R/fu3bkrthp4WRQr//28
efMESkN10blzZ3Tu3Bne3t4oKyvDrVu3kJiYiMTERBw5cgSBgYEwNDSEo6Mjd6ZUI8nJyVizZg30
9fVhbm6Oixcvonfv3tDW1sadO3fw6NEjuLm5cemyCrAwRg3GnYean+TkZLi4uFQqjJH64u5QzYNM
JqtyBm1xcTHkcjl++eUXyOVy+Pn5CZCOaqKrq1vrTL6cnBwuR1Ej+/fvx/3797F48WKYmZnh448/
xueffw5ra2ukpaXh4MGDMDU15db2aiQzMxOjRo0C8MdDHQAVZkYYGxvDy8sLISEhLIwJLCAgABMn
TkSfPn2qHRMSEoKCggK8/fbbKkxGdSUWi2FlZQUrKyu8+eabyMjIwN69e3Hp0iWEh4cuII3qAAAg
AElEQVSzMKZGjhw5AlNTU6xZswYlJSWYOXMmxo4di759+6KsrAwnT55ESEgIJk+eLHTUFo+FMWoU
Tv1sXszNzZGSksKtmpsR7g7VPOzYsaPG88bGxpg5cyZ/99SQg4MDwsPDMXr06CpnGBUVFSEiIqLG
m0RSrcTERIwcORIuLi549uwZgD/+Purq6qJXr15YsWIFPv/8c4SEhODNN98UOC0BqLCLqIaGBiQS
CTIzMyuMMTAwwL1791QdjV6RnJxca//gtm3bIjQ0lIUxNZaWloaEhAQkJCTg9u3bkEgkGDp0KJyc
nISORuWkpaVh/PjxaNu2baUHrGKxGD4+Prh58yb27duHBQsWCJSydWBhjBqMUz+bn6lTp2LNmjXo
2bOn8sktqTfuDtU8bN26tcrjIpEI7du3h5aWlooTUV1NmjQJ8fHxWL9+PebNm6fcnAT4Y8neli1b
8PTpU0yaNEnAlFTe48ePlX/zXs4+Kv9wQEtLC66urggPD2dhTE107doVt27dUn5vZWWFhIQEjBkz
RnksNTUVurq6QsSjerp3716VD8RJOC9evMDVq1eVxbDs7Gx07twZTk5O8PPzg42NDXerVEPPnz9X
zkjX1taGhoaG8oH4S7a2tjh48KAQ8VoVFsaowTj1s/l5+PAh3Nzc8MMPPyAiIgK2trbVfgjl66Ye
uDtU88Cl5c1X165dsXDhQmzZsgXz589XNifeu3cvMjMzoaGhgUWLFsHU1FTgpPSSRCJRzhQTi8Xo
2LFjpZlGmpqakMvlQsSjKgwaNAj79++Hr68vpFIpPDw8sHHjRuzZswcuLi5ISUmBTCaDm5ub0FFb
pYCAgArfh4SEQCaTVTk2OzsbmZmZGDx4sAqSUV198MEHKCwshJ2dHXx8fODs7Mz3rWZAKpUiKytL
+f3LhwgjR45UHnvy5AlKS0uFiNeqsDBGDcapn83Pzp07lV+npqbW2LiYhTH1wN2hmqfc3Fzk5eVB
X18fHTp0EDoO1cLJyQnffvstTp06haSkJJiamkJXVxfjxo2Dl5cXX0M106NHDyQlJWH8+PEAAHt7
e8TGxmLixInKGX8XLlyAVCoVMiaV4+HhgVu3bilfH2dnZ/j4+CAsLAxhYWEA/nhd33rrLSFjtloK
hQIikQgKhaLCsaqYmJhg+PDhmDBhgqriUR0YGBigsLAQWVlZyn9SqbTCLGhSPw4ODjh79ix8fX0h
FosxYMAABAcHw93dHRYWFpDL5fj5559hbm4udNQWT6So7q8eUS3eeecdvPvuu3B3dwcATJ8+HR98
8EGFCveZM2dw8OBB7Nq1S6iYREQqExsbi6NHj+L+/fvKY126dMGbb76JoUOHCpiMqOW4ePEi1q9f
j7Vr18LCwgJ37tzB0qVLYWFhgX79+iElJQWJiYmYOnUqJk6cKHRcqsH9+/eRnp6Odu3aoVevXmjT
po3QkVo9X19fzJ07t9Y+Y6R+MjIykJCQgPPnz+P333+HtrY2+vbtCycnJzg6OnKnXjWUlZWFpUuX
4osvvoCFhQUKCwuxdOlSZGVloWPHjsjOzoZYLMby5cthZ2cndNwWrc2qVatWCR2CmqeYmBh06NAB
vXv3BgCcO3cOIpGoQlPHS5cuISUlhb1ZiKjF279/P/bt24f27dvD09MTQ4YMgYWFBe7fv4/w8HCU
lJTAwcFB6JhUi+fPn+PJkydo06YNb9LVVKdOnWBkZAQHBweIxWJ06NABXbt2RVxcHC5evIjs7GyM
Hj0aU6ZMYU8dNaevr4833ngDJiYmfK3UhEwmg5OTE3uXNkN6enro2bMnRo4cCU9PT5iYmODevXs4
ceIEQkJCkJiYiPz8fPTs2VPoqPSndu3awd3dHSYmJgD+aAMwZMgQiEQilJWVoUePHpg1axZfMxXg
jDFqsN27d+PSpUv4xz/+AbFYjKNHjyI4OBgBAQHKqZ8rVqyAsbFxpd4FJJyioiJls+KXfv/9d1y8
eBHa2tpwdXXlsiE1VFpaiqysLDx58qTa5Q18kiSc3377DV9//TU8PT3x/vvvV1heXlZWht27d+P0
6dNYvnw5i2NqKioqCidPnkRaWhoUCgWWLVuGPn36ICEhAcbGxujWrZvQEakO8vLyoK2tXWEXRFKt
oKCgSi026oOtHIherzt37mD//v347bffAACBgYECJyJSP1x0TA02ZswYxMTE4Pbt27CwsMDo0aMR
FRWF5cuXV5j6+fHHHwsdlf70slg5ZcoU5ZLXuLg4bNmyRVlsOXXqFFatWqV8ckHCKisrQ1BQEI4f
P46SkpIax/KDjnBOnDiBbt264d13362y56Kfnx9SUlJw4sQJFsbU0NatWxEbGwsHBwd4eXnh5MmT
ynOnT59GWloaNm3apNw5itSXvr6+0BFavcOHDzfqehbGVGf9+vWNun7JkiWvKQm9Tnl5ebhy5QoS
ExORlJQEuVwOsVgMGxubCit7iOh/WBijBjM2NsaWLVuU69V1dHSwevVqHD9+HHfu3EHPnj3h4+OD
Hj16CJyUXtq/fz+ePXum3KVGoVBg37596NKlC7744gtkZ2dj7dq1OHr0KObOnStwWgL+2P316NGj
sLCwwPDhw2FkZAQdHR2hY9Erfv/9d4wbN67apXcaGhoYMmQIfvzxRxUno9qEh4cjNjYWixcvhouL
C3JzcysUxj755BPMnz8fwcHBmDFjhoBJiZqXbt26YdSoUejfvz/atGlT7WxnEk56errQEeg1uXTp
EhITE5GYmKh8XSUSCfr27QtHR0f06dOHPcYEJJPJGjWTFgBGjBjxmtJQVVgYo0Z59Q+svr4+pk2b
JlAaqk1iYiK8vb2VS+7S0tKQk5OD6dOnw8DAAAYGBnB3d0dMTIzASeml6Oho9OrVCytWrGj0Gyo1
naKiolo/cEokEhQVFakoEdXVmTNnMHTo0Gp3dpVIJBg+fDguXLjAwpiK+fr6NvpncCat6m3duhVn
zpyBTCbDrl27cOTIEYwcORIeHh7o2LGj0PGonO3btwsdgV6TdevWAQDeeOMNTJgwAY6OjrC2tmbv
PjWxY8eORv8MFsaaFgtj1GD+/v6YMWMGBgwYUO2YAwcOICsrC/PmzVNhMqpOSUlJhe3rk5KSAAB9
+/ZVHjMyMkJeXp7Ks1HVcnJyMGbMGBbF1JxUKsXdu3drHHP37t0Kv3+kHjIyMuDm5lbjmE6dOkEu
l6soEb3EJXXNk7GxMaZPnw5fX1+cO3cOZ86cUfahdXR0hKenZ4XPHUTUeO+//z6cnJz4OUNNbd26
VegIVAsWxqjB5HJ5rbMfOnbsWGFJCgmrc+fOSEpKwqhRowD80V+sa9euFWa6pKenw9DQUKiI9Aqp
VIrnz58LHYNq4eLiglOnTsHT0xNdunSpdP7evXuIiIiAl5eXAOmoJlpaWrW+l+Xn50NXV1dFieil
KVOmCB2BGkFDQwODBw/G4MGDkZGRgfDwcERFReHChQswNjaGu7s7Ro4cyb5wRK8BP1+oN2NjY6Ej
UC1YGKMmU1paiqtXrwodg8rx8vLCP//5T6xduxYlJSVIS0vDe++9pzyfnJyMiIgIeHt7C5iSynNz
c0NkZCS8vb2hqakpdByqxrhx4xAVFYU1a9ZgxowZGDhwIIA/+vj9+uuv2LNnD3R0dDB+/HiBk9Kr
bGxsEBkZCR8fH2hpaVU6X1paiujoaO76qkbWrl2LiRMnwtbWVugoVEedO3fGjBkz8NZbbyE+Ph5n
zpzBgQMHEBQUhP79+2PUqFH8HSNqhKioqDqNKyws5Od8oiqIFOyESfXg7+8PkUgEhUIBuVwOiUQC
HR2dKhuq5uXloaSkBN7e3hWKLySs0NBQhIaG4vnz5/D09MS0adOUy/Q2b96MO3fu4G9/+xtnR6iJ
srIybNq0Cbm5ufDz84OVlZXQkagaaWlp+Pvf/w65XA5dXV106NABubm5ePbsGaRSKT799FOYm5sL
HZNecePGDaxYsQIuLi7w9/dHcXExZs+ejWXLlqFXr174/vvvER0djTVr1sDCwkLouATgnXfegZ+f
Hzw8PISOQo2Qnp6O8PBwxMTE4NmzZ+jSpQs8PDzg4+MjdDSiZqc+PRnZe1H9JCcn49SpU0hJSUFe
Xh6WLl2KPn364MaNG5BKpVzNowIsjFG9lG/SGR0djZ49e8LExKTKsVpaWrC2tmajwGakoKAAIpEI
7dq1EzoK/WnhwoUoKSnBo0ePAADa2trQ09NTnn9ZqBaJRNi2bZtQMelPJSUliI2NRWJiIvLz86Gn
p4fevXtj2LBhnPGnxsLDw7Fr1y7o6+vDxsYG8fHxsLe3x4MHD/D48WPMmjWr1j5kpDorVqyAiYkJ
PvroI6GjUCOlpaXh+PHjiI2NBQCYmZlhw4YNAqcian6ysrIqHVMoFMjPz0dSUhKOHTsGV1dXTJo0
icuX1czBgwcRHByMzp07o0uXLjh//jyWLVuGPn36YNWqVXj8+DE2bNgAbW1toaO2aFxKSfXi7++v
/Do6Ohru7u4sfLUg3MZZ/bzxxhvQ1taudZt7NudXD1paWhg5ciRGjhwpdBSqBw8PD/To0QOhoaG4
evUqxGIx7t27B3t7e4wfPx5mZmZCR6Rypk6dijVr1qBnz57KnpnUfBQXF+OXX37BmTNnkJqaCk1N
TQwfPhyjRo2CtbW10PGImqXqeliZmJjA0tISAwcOxPLly2Fra4v+/furOB1VJz4+HsHBwfDz84OP
jw9yc3Nx/vx55fmPPvoIixYtQmhoKPtuNjEWxqjBbG1t0b59e6FjUDXWr1/fqOuXLFnympJQYyxY
sEDoCFRPL168QGpqKvLy8qCvrw8LCwu0adNG6FhUjdDQUPTv3x/du3fnDsrNxMOHD+Hm5oYffvgB
ERERsLW1rXb5P3e2VB93797FmTNnlEsnO3XqhHfeeQeurq58MEfUxExNTTFq1CiEhISwMKZGwsLC
4OTkVO0ScqlUimHDhiE+Pp6FsSbGwhg12KpVq4SOQDVIT08XOgJRq1JWVobg4GAcP34cz549Ux7X
1dXF2LFj8eabb3Jmnxo6cOAAJBIJTE1NhY5CdbRz507l16mpqUhNTa12LAtjwnr+/DnOnj2LM2fO
4MaNGxCLxcpm+/b29kLHI2pVpFIp7ty5I3QMKuf27dv461//WuOYbt26QSaTqSZQK8bCGNVZcnIy
evToUe365kuXLuHEiROQy+UwMDCAm5sbhg4dquKU9FL5fnDUMjx58gTPnz+vdLykpAR5eXmwsbER
IBW9tHnzZsTHx8PGxgZubm4wNDRETk4OZDIZDh06hLt372L+/PlCx6RXmJqa4sGDB0LHoHpg42j1
l5GRgfDwcERFRaGgoAAdO3aEr68v3NzcYGBgIHQ8olbp+vXr0NHREToGlSMWi2sdU1RUVOWu2fR6
sTBGdZKZmYl169Zh6NChmDVrVqXzMpkMO3bsAPBHn6qsrCwkJSXh1q1b8PPzU3VcohblxIkTOHr0
KPLy8mocx5tF4cTGxiI+Ph5Tp07FxIkTK5xzdXVFcHAwDh48CBcXFwwZMkSglFSVMWPGYM+ePRg0
aBB3nSR6DQICApCcnAyRSIQ+ffrA09MT/fr1q9MNIBG9XiUlJZDL5fj5558RHR2NYcOGCR2JyunR
owdiYmLg4+NT5d9IhUKBs2fPsv+iCrAwRnUSGhqKFy9eVLk1elFREXbv3g0NDQ0sWLAAzs7OKCkp
wQ8//ICwsDAMGTIElpaWAqQmav7Cw8Px73//G87OzrC0tMTBgwcxduxYdOzYEWlpafjll18wduxY
DBo0SOiordrPP/8MW1vbSkWxlyZOnIjLly8jPDychTE1Y29vD3d3d3z11Vdwd3evsV+VnZ2ditNR
XTx48AB5eXno0qULe1WpgeTkZABAly5dIBaLER4ejvDw8Dpfzx6nRPXn6+tb6xhra2u8/fbbKkhD
dTV27FisW7cOu3fvxnvvvVfp/KFDh5CamooVK1YIkK51YWGM6uTKlSsYPnx4lU/TY2JiUFRUhKlT
p8LZ2RnAHzuzzZo1C7///juCg4Px6aefqjoyUYsQHh6Ovn374tNPP0V+fj4OHjwIBwcH9OnTBwAw
evRoBAQEoG/fvgInbd3S0tJq7BEhEonQv39/HDp0SIWpqC7KN9w/fvw4jh8/Xu1YzspUH6WlpQgJ
CcGpU6eUs2lfbm8fHh4OU1NT9rASiFQqBfDHg1P2OyVSjZr6KbZv3x5vvPEGbG1tVZiI6qJfv36Y
NGkSgoODkZKSgt69ewMAoqKicOjQIdy8eRNTpkzh+5kKsDBGdZKTk1PtEhOZTAZNTU14enpWOC4W
izF48GCEhYWpIiJRi3T//n0MHz4cANC2bVsAf+x6+JKFhQVGjRqFQ4cOcUMMASkUCmhqatY4RlNT
E2VlZSpKRHX15ZdfCh2B6qm0tBRff/01UlJS4ObmBhMTE+zfv195/urVq9i7dy82bdqkLNKQ6rDH
KVHTksvllf621XXHwuDgYEyaNKkpYlEDvfXWW7C0tERISIjyvjkuLg7W1tZYunQp+vXrJ3DC1oGF
MaoTDQ0NPH36tNJxuVyOmzdvwtnZucqlJ3p6eigqKlJFRKIWSUNDQ1lw0dTUhK6uLjIzMyuMMTEx
wenTp4WIR38yMzPDjRs3MGrUqGrH/P777zA3N1ddKKqTXr16CR2B6umnn37C9evX8dVXX8HS0hK5
ubkVCmNz587FggULcOTIEcyePVvApEREr9/q1asREBCADh061Ou6wMBAHD16lIUxNXL27FnY2dnB
2dlZ2Y6ooKAAEomEDfdVjF0wqU7MzMxw4cKFSsdPnjwJANU2cszIyKj3H20i+p9OnTrh9u3byu+7
d++OpKSkCmMyMjL45ikwLy8vxMTE4MaNG1Wev3HjBmJjY+Hl5aXiZEQtT1RUFFxdXavtX6qlpYVh
w4bhypUrKk5GRNT05HI5Vq9ejYKCgjpfs3//fhw9ehTdu3dvwmRUX5s3b65wj62lpQVDQ0N+rhcA
C2NUJ66urrhx4wYCAwOVS4Hi4+Px008/wdDQUNlbrLy8vDzExMSgZ8+eqo5L1GK4uLggLi5O+eHH
1dUVCQkJCAsLg1wuR0xMDMLDw9l7QGBDhgzBqFGjsH79esTExCiPKxQKxMTEYP369fDw8MDQoUMF
TEnUMmRmZsLMzKzGMVKpFLm5uSpKRESkOvPnz0dGRgbWrFmDwsLCWsfv3r0boaGhsLCwYBN3NWNk
ZITs7GyhYxC4lJLqyNXVFb/++iuOHj2KsLAwtGnTBk+fPoVYLMYHH3wADY2K/1cqLCzE119/jYKC
Anh7ewuUmqj58/b2xm+//aacVj106FCcO3cOe/bswZ49ewD88aY6bdo0gZO2Dv7+/hCJRFAoFBWO
vzxWUFCAbdu2Yffu3TAwMMDjx4+Vy9AvXryIS5cuYdu2bUJEpz/dunULxcXFFXaYzM3NrXHJXe/e
vfHFF1+oIh7Vga6uLp48eVLjmJycHOjp6akoERGR6ri4uODDDz/Etm3bsG7dOixfvrzaGUbff/89
wsPDlUWx6nZdJmG4ubkhLCwMI0aMgLGxsdBxWjUWxqhOxGIxPv30U5w4cQLx8fEoKCiAlZUVJk2a
BBsbm0rjdXR00L59e0yZMgXW1tYCJCZqGXR0dCo01ReLxVi8eDEuX76M9PR06OrqYvDgwfygoyLl
iykNIRKJXlMSaojS0lJs2rQJALB161aIxRUnzjs5OaFjx44Vjt27dw+JiYm4e/cu3njjDZVlpeo5
ODggPDwco0ePhkQiqXS+qKgIERERyt17iYhammHDhqGwsBC7du3Cxo0bsWTJkgoTFcrKyrBjxw5E
R0fD0tISy5cv52dFNTR+/Hjk5eVh1apVGD9+POzs7Kp9nbiZTNNiYYzqTENDA+PGjcO4cePqNH7R
okVcH03URPr27Yu+ffsKHaPV8ff3FzoCNYJMJoNcLseiRYsqFcWAP3rFvVpMkcvl+Oijj/Drr7+y
MKYmJk2ahPj4eKxfvx7z5s2rcDNYUFCALVu24OnTp2wwTUQtmqenJ4qKirB//35s3rwZCxYsgFgs
RllZGbZu3Yq4uDgWxdTc9OnTlV/v3r27xrGBgYFNHadVY2GMmgyLYkT1p1AocP369SpnYr5KLpfj
yJEjVS5nJqLKEhIS0K1bN/Tv37/O10ilUjg4OODatWtNmIzqo2vXrli4cCG2bNmC+fPnK/uN7d27
F5mZmdDQ0MCiRYtgamoqcFIioqY1fvx4PHv2DMHBwfjuu+8wZ84cbN68GefOnYOVlRWWL18OHR0d
oWNSNebOnSt0BPoT76SIiNTI7t27ERkZiY0bN9Z6U3f58mVERERALBZj5syZKkpI1Hzdvn0bI0aM
qPd11tbWCA8Pb4JE1FBOTk749ttvcerUKSQlJcHU1BS6uroYN24cvLy8uCM2EbUab731FgoLC3Hy
5ElcvXoVOTk5sLa2xvLly9G2bVuh41ENXF1dhY5Af2JhjIhITaSlpeHUqVNwdnaGkZFRreM9PDyQ
l5eHwMBAuLm5wdLSUgUpqTpXrlzBsWPHcPfu3Robg3MqvHDy8/Or7NEhkUjw+eefw8LCosrrOnTo
gPz8/KaOR/VkaGiIqVOnCh2DiEhw7733HoqKiiCTydCzZ08sW7aMRTGiemBhjIhITYSHh0NbWxtz
5sxBmzZt6nTNxIkTER0djZ9//pmFMQHFxsZi69atkEgkcHR0hIGBATQ1NYWORa/Q1NTE8+fPKx3X
0NCosWdfSUkJlyurkaioKNja2ta4g1dKSgoiIyO5TIWIWpz169dXefzl+9uLFy+wefPmaq9fsmRJ
k+SimlX3utUVX7emxU95RERq4urVqxgwYAD09PTqfI1YLIaLiwsSEhKaMBnV5tixY+jWrRtWr17N
J7RqzNDQEA8ePKj3dQ8ePKi0WyUJ57vvvoOOjg7ee++9apfGPnz4EDKZjIUxImpx0tPTqz0nlUqR
m5uL3NxcFSaiuqjpdSPhsTBGRKQmsrOz4e3tXe/rjIyMIJfLmyAR1VVGRgamTJnCopia6927N+Lj
4+Hn51fnGWClpaU4d+5cvRr2U9MrKyvDd999h0uXLmHWrFnccY2IWo3t27cLHYEagK+bequ8VzkR
EQlCQ0MDZWVl9b6utLQUYjH/nAtJT0+PO/E2A25ubsjNzcWxY8fqfE1ISAhyc3Ph5ubWhMmovmbM
mIGxY8fi7NmzWLx4MZKTk4WORERERM0U76SIiNSEoaEhMjIy6n3d/fv3q2woTqozfPhwREZGorCw
UOgoVANzc3MMHz4cQUFBiI6OrnV8VFQUDh8+jKFDh1bbmJ+EoampiXfeeQdffvklFAoFVq9ejQMH
DjTo4QIRERG1blxKSbXy9fVt9M/gLmxEtevduzfOnj2Ld999t87LvJ4/f47z589j4MCBTZyOajJl
yhTcuXMHX3zxBXx8fGBhYQGJRAKRSFRpLIuYwvrggw+Qnp6O7du34+LFixg/fnyloldqaiqOHTuG
+Ph4mJmZYebMmQKlpdr06tULf//73/Gvf/0LISEhuHLlCj755BOhYxEREVEzwsIY1Wry5MnVnsvN
zUV4eDjat2+PAQMGQCqVIjs7G/Hx8Xjy5Ak8PDzQoUMHFaYlar5cXV1x4sQJBAcHY8qUKXW6JiQk
BE+ePOEyL4FpamrCyckJe/bswf/93//VOJYPCoTVtm1bBAQEYOfOnYiLi8PZs2ehr6+v3OEwKysL
eXl5AICBAwdi7ty57B2n5tq1a4d58+bB0dERu3btwpIlS2BnZyd0LCIiImomWBijWlV3g15YWIgl
S5bA0dER8+fPh7a2tvLctGnTsHnzZly5cgUbNmxQVVSiZs3c3Byurq44fPgwjIyM4OrqWuP4yMhI
HD58GMOGDUP37t1VE5KqFBERgV27dqFr164YMGAADAwMoKmpKXQsqkbbtm0xb948jB49GjKZDFev
XlXuFmVoaAhnZ2eMGDECNjY2Aiel+hg2bBhsbW2xbds2XLp0Seg4RERE1EyIFAqFQugQ1DwdOHAA
MpkM33zzDSQSSaXzBQUFWLhwIdzc3DB16lQBEhI1P8XFxVi1ahVSU1MxcOBATJgwocZlXubm5vjq
q68qFKZJ9RYsWACJRIJVq1ahTZs2QschatGCgoLg4uICc3PzKs+XlZXhxx9/xOXLl7Fy5UrVhiMi
IqJmhzPGqMHi4+Ph6upaZVEMACQSCdzc3BAXF8fCGFEdaWtrY+XKlcplXvHx8dUu8xo0aBDmzJnD
opgaePToEdzd3VkUI1IBIyOjGpe3isVi9OjRA1ZWVipMRURERM0VC2PUYHK5XHmzXh0jIyPk5OSo
KBFRy1CXZV6urq7o2bOnwEnpJVNTU5SWlgodg6hV2LFjBz788EOYmppWO+bGjRuIjIzE1q1bVZiM
iIiImiMWxqjBJBJJrUWvnJycameUEVHNrK2tYW1tLXQMqoPRo0fjyJEjcHNzQ/v27YWOQ9TqaWlp
8cEcERER1QkLY9Rg9vb2iIyMxJgxY6Crq1vp/LNnzxAZGQl7e3sB0hERqY6DgwOuXbuGzz77DOPG
jYOdnR0kEgnEYnGlsVKpVICERM2bTCaDSCTCy9a4KSkpVY5TKBTIyclBWFgYOnfurMqIRERE1Eyx
+T412J07d7B06VLY2dnB398fhoaGynM5OTnYvn07rl27hnXr1qFbt24CJiUialq+vr51HhsYGNiE
SYhapvr8jgGAsbEx5s2bB0tLyyZKRERERC0FC2PUKDKZDDt37oSmpiZ69+6NDh06IDc3F1euXMGL
Fy8we/ZsjBgxQuiYRERN6vTp09DS0qrTWFdX16YNQ9QCZWVlKb/++OOP8fbbb2PAgAFVjtXS0kKH
Dh1UFY2IiIiaOS6lpEZxdXVF9+7dERoaiqSkJOTn50NPTw/9+/fHhAkTOFOMiOEPl5IAABcFSURB
VFoFT09PoSMQtWivbvZTfrdeIiIiosbgjDEiIqLX7Pnz58jPz4dEIqnzTDIiqpurV6+iS5cunBVG
RERErwULY/Ta8EaQiFq7qKgonDx5EmlpaVAoFFi2bBn69OmDhIQEGBsbcxYtEREREZGa4VJKajTe
CBIRAVu3bkVsbCwcHBzg5eWFkydPKs+dPn0aaWlp2LRpE/T09ARMSdS87Ny5E9nZ2fjss8+gofHH
x9agoCCIRKI6XT958uSmjEdEREQtAAtj1Ci8ESQiAsLDwxEbG4vFixfDxcUFubm5Ff4efvLJJ5g/
fz6Cg4MxY8YMAZMSNS+XL19GXl4eioqKIJFIAACHDx+u8/UsjBEREVFtWBijBuONIBHRH86cOYOh
Q4fCxcWlyvMSiQTDhw/HhQsX+PeQqB7Wrl2LkpISZVEMAAIDAwVMRERERC2NWOgA1HzV50aQiKgl
y8jIgJWVVY1jOnXqBLlcrqJERC1Dhw4duPskERERNSkWxqjBeCNIRPQHLS0tFBUV1TgmPz8furq6
KkpE1HJ98803kMlkePLkidBRiIiIqAXgUkpqMN4IEhH9wcbGBpGRkfDx8alyV97S0lJER0fDzs5O
gHRELUtCQgLOnTsHAOjRowccHR3h5OSE7t27C5yMiIiImiPOGKMGe3kjWFJSUuV53ggSUWsxYcIE
PHz4EFu2bEFhYWGFc6Wlpfj++++RmZmJCRMmCJSQqOXYvXs3lixZAh8fHxQXFyMoKAhLly7FnDlz
sHPnTiQkJKC4uFjomERERNRMiBQKhULoENQ83bhxAytWrICLiwv8/f1RXFyM2bNnY9myZejVqxe+
//57REdHY82aNbCwsBA6LhFRkwoPD8euXbugr68PGxsbxMfHw97eHg8ePMDjx48xa9YsuLm5CR2T
qMXJzc1FYmKi8l9OTg40NTVhZ2eHZcuWCR2PiIiI1BwLY9QovBEkIvqftLQ0hIaG4urVq8jPz4e+
vj7s7e0xfvx4mJmZCR2PqEUrKyvD9evXcezYMVy6dAkAd7AkIiKi2rEwRo3GG0EiIiISQnFxMX77
7TckJCTgwoULKCgoQLdu3eDs7AwnJydYWloKHZGIiIjUHAtjREREjVRSUlJl0/1Xx/zwww+YM2eO
ilIRtUy5ubm4cOECEhISkJiYCIVCgV69esHJyQlOTk6QSqVCRyQiIqJmhIUxarDvvvsO7u7u6Nmz
Z7Vjzpw5g5KSEowZM0aFyYiIVGvevHn4+OOPq52dkp6ejm+//RYZGRlc2kXUSL6+vgCAgQMHYsiQ
IXBwcEDbtm0FTkVERETNFXelpAaLiorCw4cPaxzz/PlzhISEqCgREZEwRCIRvvzySxw+fBhlZWUV
zp0+fRrLli3D48eP8dFHHwmUkKjl6NOnD9q0aYMLFy4gMjISsbGxePz4sdCxiIiIqJnSEDoAtWx5
eXkoLCwUOgYRUZPasGEDAgMDcfjwYVy6dAkff/wx9PT08M9//hPnzp2DlZUVPvnkExgbGwsdlajZ
W7ZsGQoLC3H58mUkJCRg//79+P7772FhYQEnJyc4OzvD3Nxc6JhERETUTHApJdXLd999B5FIBIVC
gaioKNjY2MDU1LTSOIVCgezsbCQlJcHBwQHLly8XIC0RkWrduHED3333HXJyctCuXTs8fvwYkyZN
wpQpUyAWc5I2UVN48eIFrl27hoSEBJw/fx5yuRwdO3aEk5MTPvjgA6HjERERkZpjYYzqxd/fX/m1
XC6HRCKptq+HlpYWrK2t8fbbb0NPT09VEYmIBPXrr79i06ZNAIBx48bh7bffFjgRUetQUlKClJQU
HD9+HL/99hsAsKcfERER1YqFMWowX19fzJ07F66urkJHISISXHFxMfbu3Yvw8HCYm5ujU6dOOHv2
LIYPH473338fOjo6QkckalEUCgVu3bqFxMREJCYm4vr16ygtLYWenh769esHR0dHDBo0SOiYRERE
pObYY4waRSQSCR2BiEhwv//+O7Zt24aHDx9i9OjRePvtt6GhoYG+ffvihx9+QHJyMubOnQt7e3uh
oxI1e6dPn0ZiYiKSkpLw7NkzAICZmRnGjRsHR0dHWFpacukyERER1RlnjBERETXS1KlToauriw8/
/BBOTk4Vzj18+BCbN29GamoqfHx84OfnJ1BKopbB19cXWlpasLe3h6OjIxwdHdGxY0ehYxEREVEz
xcIY1UlpaSlevHgBbW1toaMQEamdgIAAfPzxxzA0NKzyfGlpKQ4cOIDjx4+z5xFRI128eBH29vbQ
0tKqcDwvLw/t2rVDmzZtBEpGREREzRELY1QnixcvxuPHj7Ft2zZln5yAgIA6X79y5cqmikZEJDiF
QlGnpeVXrlyBg4ODChIRtRyhoaEYOHAgjI2NK50rKyvDgQMHcPLkSZSUlEBLSwvDhg3DjBkzqt0c
iIiIiKg8NmCgOunQoQP09PQqPIV9WVNVKBQ1/iMiaunq2m+RRTGi+klOTsb+/furnWm5Z88ehIaG
QlNTEwMGDIClpSV+/vlnrF27VsVJiYiIqLnijDEiIqJG+u6772otjikUChQWFmLRokUqSkXU/H3z
zTe4ceMGvvnmG0gkkgrn5HI5PvroIxgaGuKrr76CVCoFAMhkMuzYsQPz5s3D4MGDhYhNREREzQh3
pSQiImqkq1evVjpWVlaGgoIClJSUAACMjIwq9UQioprduHEDI0aMqFQUA4DIyEgoFApMmzZNWRQD
AFdXV8TFxeHEiRMsjBEREVGtWBgjIiJqpO3bt1d77saNG9izZw8MDAywcOFCFaYiav7y8/Or7C0G
ANHR0dDT06uy+OXg4MCNLoiIiKhOWBijRktJScG9e/eQm5tb7ZjJkyerMBERkfqwtrbGypUrsXTp
Uvz444+YMGGC0JGImg1dXV1kZ2dXOn7r1i1kZWXB3d0dYnHllrlVHSMiIiKqCgtj1GB5eXn45ptv
kJKSUutYFsaIqDXT0tKCq6srwsPDWRgjqoeePXsiJiYGkydPrrAB0NGjRwEAw4YNq/K6mzdvwsjI
SCUZiYiIqHljYYwabN++fbh+/TrGjh2LESNGQCqVQldXV+hYRERqSUtLC3K5XOgYRM3K6NGjsXr1
anz99deYOnUqNDU1ERERgYSEBFhZWcHW1rbSNampqfj1118xatQoARITERFRc8PCGDXY5cuXMWLE
CLzzzjtCRyEiUmtlZWWIi4uDoaGh0FGImhV7e3v4+voiMDAQy5cvVx43NDTEnDlzKo1/9uwZ1qxZ
A7FYjHHjxqkyKhERETVTLIxRgxUVFcHKykroGEREgktOTq7yeHFxMeRyOWQyGW7evIk333xTxcmI
mr8333wTDg4OOHfuHAoKCmBqago3Nzfo6elVGqurqwtvb29YWVmhY8eOAqQlIiKi5oaFMWqwbt26
VdkQl4iotQkICKjxvJaWFiZOnMh+i0QNZGlpCUtLyzqNnTJlShOnISIiopZEpFAoFEKHoOYpPj4e
33//PdauXVvtVupERK3B1atXqzwuEomgr68PY2NjaGlpqTgVERERERHVhoUxarC8vDyEhIQgKioK
48aNQ+/evaGnp1flFulSqVSAhERE6iMwMBBHjx5FYGCg0FGIiIiIiOhPXEpJDTZz5kzl1wcOHMCB
AweqHcsbQSJq7fgcioiIiIhI/bAwRg32/vvvQ1tbW+gYREREREREREQNwsIYNZiXl5fQEYiIiIiI
iIiIGqxyMygiIiIiIiIiIqJWgDPGqE6Sk5NrHSMSiaCnpwepVIq2bduqIBURERERERERUcOxMEZ1
EhAQUK/x5ubmmDBhAgYPHtxEiYiIiIiIiIiIGoeFMaqTBQsW1GlcUVER7t69i/j4eGzevBm///47
/Pz8mjgdEZHqrF+/vkHXZWRkvOYkRERERETUWCyMUZ0MHDiwXuOnTp2KHTt2ICwsDL169YKzs3MT
JSMiUq309PQGXyuVSl9jEiIiIiIiaiyRQqFQCB2CWqYXL15g4cKFMDExwbJly4SOQ0RERERERERU
AXelpCbTpk0bDBkyBGlpaUJHISIiIiIiIiKqhIUxalKGhoZ4+vSp0DGIiIiIiIiIiCphYYya1KNH
j6Cnpyd0DCIiIiIiIiKiSlgYoyZTUlKC6OhoWFlZCR2FiIiIiIiIiKgSFsaoSRQUFGDDhg3IycnB
6NGjhY5DRERERERERFSJhtABqHn48ccfIRKJah1XVFSEu3fv4vLlyygqKsL06dPRq1cvFSQkIiIi
IiIiIqofkUKhUAgdgtSfr69vncdKJBLY2Nhg3LhxsLGxacJUREREREREREQNx8IY1UlWVlatY0Qi
EfT09NC2bVsVJCIiIiIiIiIiahwWxoiIiIiIiIiIqFVi830iIiIiIiIiImqVWBgjIiIiIiIiIqJW
iYUxIiIiIiIiIiJqlVgYIyIiIiIiIiKiVomFMSIiIiIiIiIiapVYGCMiIiIiIiIiolaJhTEiIiIi
IiIiImqVWBgjIiIiIiIiIqJWiYUxIiIiIiIiIiJqlTSEDkBERETUGhUWFuKXX37BpUuXcOfOHTx5
8gRisRiGhoawtbXFgAED0KdPH6FjEhEREbVoIoVCoRA6BBEREVFrcuLECRw+fBgFBQXQ1NREjx49
YGBggOLiYty5cwfZ2dkAABsbG/j7+8PY2FjgxEREREQtEwtjRERERCpSUlKCrVu34ty5c2jfvj3+
+te/YujQoWjbtm2FcVeuXMHevXtx9+5dGBgYYM2aNejYsaNAqRvv6tWrSE5OhqurK4yMjISOQ0RE
RKTEHmNEREREKrJjxw6cO3cOVlZW2LRpEzw8PCoVxQDAwcEB69atg5OTE8aOHdusi2IAkJycjMOH
D+PRo0dCRyEiIiKqgD3GiIiIiFQgOjoacXFxMDExwfLly6Gjo1PjeA0NDXz22WcqSkdERETUOnHG
GBEREVETe/HiBQIDAwEAM2fOrLUoRkRERESqwRljRERERE0sOTkZcrkc5ubm6N27d6N/XmlpKSIi
IhAXF4f09HQUFxejffv2sLW1hZeXF6ytrau8ztfXF3Z2dli5cmWV57OysvDxxx9jxIgR+PDDD5XH
T5w4gX//+99YvHgx+vXrh7CwMMTExCAjIwNt27aFtbU1/vKXv8DS0rLSzyovICBA+XX5HKtWrcKj
R4+wfft2XLhwAceOHcOdO3dQVFQEb29vnDx5EgMHDsSCBQuqzF1QUIBZs2ZBJBJh586dkEgkdfsP
SURERK0eC2NERERETezKlSsAACcnp0b/rMzMTGzYsAH37t2Drq4ubGxsoKOjg4cPHyI2NhaxsbEY
PXo0/Pz8IBKJGvS/8ep1L/ug5eXlYcWKFUhPT4ednR26du2K9PR0XLx4EVf+f3v3EhLl24dx/PI0
aKnjAbUsEgw8FGmWG1EyNUpCUxchFdK2pE2ELQpqEbawTRQtJDIXYYF0sIVpgh00hX9p+c+sxNSJ
JBXRMp00D/MuXsb3tdHMUbOa72f53Iff/eyGi3t+z7//6uTJk9qwYYMkycPDQ4mJiXJyclJHR4dM
JpM2b94sHx8fSVJwcLBN3fv37+vKlSsKDAxUTEyM3N3dlZ6ersrKSjU0NGh4eFgrV660WVdXV6eJ
iQnFxcURigEAgHkhGAMAAFhivb29kqR169YtaB+z2az8/Hz19PQoLS1N2dnZMhgMU+MfPnzQhQsX
dO/ePRkMBu3fv39B9aysQdn169dlNBp1/vz5aV+XvH37tm7cuKHi4mIVFBRIkry8vKZunZWWlspk
MikjI2MqOJvp3a5du6a0tDTl5ORMG4uOjtaLFy/05MkT7dy502ZtTU2NJCk5OXnhLwsAABwKPcYA
AACW2PDwsCTNeNtpPm7duqWenh6lpqYqJydnWigmSWvXrtWpU6fk5+enu3fvqqura0H1vjc6Oqrj
x49PC8UkKSMjQ97e3jKZTPr06ZNde5vNZkVHR9uEYpK0Y8cOSdKjR49sxrq7u9Xa2qqAgABFRUXZ
VRsAADgugjEAAIAlZg3ErAGZPSYnJ/XgwQO5ublp7969s87z9PRUZmamLBaLqqur7a43k61btyoo
KMjmubOz81TvtL6+Prv337Nnz6x1fXx81NbWZhP2WW+LJSUl2V0XAAA4LoIxAACAJRYYGChJev/+
vd17fPz4UUNDQ1q/fv2cfbRiYmIkSa2trXbXm0loaOisY76+vpKkb9++2b1/SEjIjM+dnZ2ngq/v
b43V1NRMGwcAAJgPgjEAAIAlFh0dLUlqaGiwe4+hoSFJktFonHOudc6XL1/mVcNisfxw3Nvbe9Yx
a4P+hfj+r6H/LyUlRZL0+PFjTU5OSpLevn2rnp4eRUVFyc/Pb8H1AQCA4yEYAwAAWGKRkZHy9/dX
Z2enmpub7drDekvs8+fPc861zvHy8rIZ+9GNrrmCNHu/crkYrD3EBgYG9PLlS0n/Dcmk/4VmAAAA
80UwBgAAsMRcXFyUnZ0tSbp8+bJGRkZ+em13d7ckKTg4WJ6ennr37t3U7bHZNDY2SpLCw8OnPXd1
df1hsNbe3v7T51oO1ib8Dx8+1Pj4uOrr62U0GhUbG7vMJwMAAH8qgjEAAIBfIDExUXFxceru7lZ+
fv6c4ZYkVVRU6OjRo6qoqJCTk5OSk5M1Njam0tLSWdcMDQ2prKxsxr5b/v7+6uvr08DAgM268fFx
VVZWzv/FfoL1ptn4+PiC9omNjZXRaNTTp09VW1ur4eFhJSYmytmZn7QAAMA+/IoAAAD4RXJzcxUb
G6vW1lYdO3ZM1dXVGh0dtZnX39+vS5cu6erVq3J3d1dkZKQkKSsrS0FBQaqoqFBJSYnN3yK7urp0
5swZ9ff3Kz09XWvWrJk2vmXLFlksFhUVFWlsbGzq+cjIiC5evDhjYLYYrL3JWlpapp5Z+4TNh4uL
i7Zv366xsTEVFxdLkpKTkxfljAAAwDG5LvcBAAAAHIXBYFBeXp7Ky8t18+ZNFRYWqqioSKGhofL1
9dXk5KR6e3vV2dkpSQoLC9Phw4cVHBwsSVqxYoVOnDihgoIClZWVqaqqSuHh4fLw8FBvb6/a2tok
Sampqdq3b59N/czMTNXX1+uff/7RkSNHFBYWJovFopaWFrm4uCg3N1fnzp2zK7T6kZiYGLm6uurO
nTtqb2+Xm5ubzGazTp8+Pe+9UlJSVFZWpq9fvyoiIkKrV69e1LMCAADHQjAGAADwi+3evVvJycmq
ra3V8+fPZTKZ1NHRocnJSfn7+yspKUnx8fHatGmTzdpVq1apoKBA1dXVqqurU2trq0ZHR2U0GpWQ
kKBdu3YpLCxsxro+Pj46e/asSktL1dTUpMbGRvn4+Gjbtm3Kysqa+suj2Wxe1PcNCAhQXl6eSkpK
9OrVK3l6eiohIWFqfD5N/YOCghQREaE3b95wWwwAACyYk2Wu73IDAAAAv4mJiQkdOnRI4+PjKiws
lMFgWO4jAQCAPxg9xgAAAPDHaGpq0uDgoOLj4wnFAADAghGMAQAA4I9RVVUliab7AABgcRCMAQAA
4I/Q3NysxsZGbdy4UaGhoct9HAAA8Beg+T4AAAB+W69fv1Z5ebmcnJzU0NAgg8GggwcPLvexAADA
X4JgDAAAAL+twcFBPXv2TAaDQevXr9eBAwcUEhKy3McCAAB/Cb5KCQAAAAAAAIdEjzEAAAAAAAA4
JIIxAAAAAAAAOCSCMQAAAAAAADgkgjEAAAAAAAA4JIIxAAAAAAAAOCSCMQAAAAAAADgkgjEAAAAA
AAA4JIIxAAAAAAAAOCSCMQAAAAAAADgkgjEAAAAAAAA4JIIxAAAAAAAAOCSCMQAAAAAAADgkgjEA
AAAAAAA4JIIxAAAAAAAAOKT/AMzqdd3ZqwcRAAAAAElFTkSuQmCC
' width=611 height=452/>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p><strong>NOTE:</strong> these bar graphs should not be interpreted as fractions of a total,
as the two data sources do not appear to be comparable.
But the red and blue bar graphs should still be internally comparable.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>The US is easily #1 of 30 wealthiest countries in Gun Homicides per capita,
by a factor of 4:1</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Adding USA, Canada, and Mexico to all of Europe,
USA is a strong #2 behind Mexico in total gun homicides per-capita</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[13]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">index</span> <span class="o">=</span> <span class="p">(</span><span class="n">data</span><span class="p">[</span><span class="s">&#39;Region&#39;</span><span class="p">]</span> <span class="o">==</span> <span class="s">&#39;Europe&#39;</span><span class="p">)</span> <span class="o">+</span> \
<span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">index</span> <span class="o">==</span> <span class="s">&#39;United States&#39;</span><span class="p">)</span> <span class="o">+</span> \
<span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">index</span> <span class="o">==</span> <span class="s">&#39;Canada&#39;</span><span class="p">)</span> <span class="o">+</span> \
<span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">index</span> <span class="o">==</span> <span class="s">&#39;Mexico&#39;</span><span class="p">)</span>
<span class="n">selected</span> <span class="o">=</span> <span class="n">data</span><span class="p">[</span><span class="n">index</span><span class="p">]</span>
<span class="k">print</span> <span class="s">&quot;By Total Gun Homicides&quot;</span>
<span class="n">sys</span><span class="o">.</span><span class="n">stdout</span><span class="o">.</span><span class="n">flush</span><span class="p">()</span>
<span class="n">by_guns</span> <span class="o">=</span> <span class="n">selected</span><span class="o">.</span><span class="n">sort</span><span class="p">(</span><span class="s">&quot;Gun Homicides&quot;</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span>
<span class="c">#by_guns[&#39;Gun Homicides&#39;].plot(kind=&#39;bar&#39;)</span>
<span class="n">plot_percapita</span><span class="p">(</span><span class="n">by_guns</span><span class="p">,</span> <span class="n">limit</span><span class="o">=</span><span class="mi">25</span><span class="p">)</span>
<span class="n">display_relevant</span><span class="p">(</span><span class="n">selected</span><span class="p">,</span> <span class="n">limit</span><span class="o">=</span><span class="bp">None</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>By Total Gun Homicides
</pre>
</div>
</div>
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<img src='
AAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xt8z/X///H7e0eNyTZjC3MIiWgzxxyy2HyaQyr7+iR0
IHOoKLE+VA6Rw6RP35hDSEkskqRimGoRkxELSciEGGObjZ3evz98t19r59l7b3vtdr1cXD6Xz+t5
eD1eLy77XHb/PF/Pp8lsNpsFAAAAAAAAGJCNtQsAAAAAAAAALIXwCwAAAAAAAIZF+AUAAAAAAADD
IvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAA
AAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCw7KxdgKXs3r1b8+fPV8uW
LRUSEpJvn7Nnz2rt2rU6ePCgrl+/Lg8PD/n5+SkwMFA2NuSCAAAAAAAAFZ0hw6/169crPDy80D7n
z5/XxIkTZWtrq+7du8vFxUUHDhzQypUrdezYMb388svlVC0AAAAAAAAsxVDhV0ZGhhYtWqSoqCj5
+/srJiamwL5LliyRyWTSrFmz5O7uLkl6+OGHtWrVKm3cuFEHDhyQt7d3eZUOAAAAAAAACzDUt32R
kZGKiopSUFCQhg0bJpPJlG+/jIwM/fLLL+rQoUNO8JWtT58+kqSDBw9avF4AAAAAAABYlqFWfvn7
+8vd3V0+Pj5F9rWxsVGVKlXyXHd0dJTJZCowOAMAAAAAAEDFYaiVXyaTqVjBl52dnZo2baqYmBil
p6fnatu7d6/MZrNatmxpqTIBAAAAAABQTgwVfpXEU089pStXrmjmzJk6evSozp49qy1btmjp0qVq
3749+30BAAAAAAAYgKE+eyyJRo0aKSQkRLNmzdLkyZNzrnt7e+vFF18s1Zzbt28vq/IAAAAAAADw
N927dy/VuEobfu3atUvz589Xw4YN5e/vL2dnZ508eVJfffWVJk2apEmTJql69erWLhMAAAAAAAC3
oFKGX5cvX9aCBQvUtm1bvfTSSznXfX191a1bN40fP17vv/++xo0bV6r5W7duXVal5ggODtbixYvL
fF5LoV7Lqmj1ShWvZuq1LOq1vIpWM/VaFvVaXkWrmXoti3otr6LVTL2WRb2WZ+2aY2Jibml8pdzz
KyoqShkZGRo8eHCetpo1a6pXr16Kjo5WUlKSFaoDAAAAAABAWamU4deFCxdka2urmjVr5tvu4eGR
0w8AAAAAAAAVV6UMv6pXr67MzEydPXs23/Y//vhDkuTs7FyeZQEAAAAAAKCMVcrwq1OnTrKxsdHy
5cuVkZGRq+2PP/7QN998o6ZNm6pWrVpWqhAAAAAAAABloVJueF+3bl0NGTJEK1as0CuvvKIHHnhA
1atX1+nTp/Xdd9+pWrVqGj16tLXLBAAAAAAAwC2qlOGXJD388MOqX7++vvzyS23ZskWpqamqWbOm
evbsqX79+ql69erWLhEAAAAAAAC3yNDh14IFCwptb968uZo3b15O1QAAAAAAAKC8Vco9vwAAAAAA
AFA5EH4BAAAAAADAsGynTJkyxdpFGMXJkyclSZ6enhaZ/5577rHIvJZCvZZV0eqVKl7N1GtZ1Gt5
Fa1m6rUs6rW8ilYz9VoW9VpeRauZei2Lei3PmjWfO3dOktSoUaNSjTeZzWZzWRZUmW3fvl2S1Lp1
aytXAgAAAACld+3aNcXHx+vq1avKyMiwdjkAKjBbW1s5OTmpRo0acnFxkZ1dybefj4mJkSR17969
VDUYesN7AAAAAEDJJCQkKC4uTrVq1VKzZs1kb28vk8lk7bIAVEBms1mZmZlKSkrSlStXdP78eTVp
0kRVqlQp1zrY8wsAAAAAIEm6fv264uLi1LhxY3l4eMjBwYHgC0CpmUwm2dnZycXFRQ0bNpSHh4d+
++23cl9RSvgFAAAAAJB0c9WXq6urnJycrF0KAANyd3dX1apVdeXKlXK9L+EXAAAAAECSlJiYqOrV
q1u7DAAG5uLiooSEhHK9J+EXAAAAAECSlJqayqovABbl7OyslJSUcr0n4RcAAAAAQJKUlZUlW1tb
a5cBwMBsbW2VmZlZrvck/AIAAAAA5GCDewCWZI2fMYRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAA
AAAMi/ALAAAAAAAAhkX4BQAAAAAosfR0a1dQ9oz4TDA2Nzc39e3b19pl3PbsrF0AAAAAAKDisbeX
XF1drF1Gmbp8OaHc7pWcnKzPP/9cERER+uWXX3Tx4kWZzWbVqFFDd999tzp37qyBAweqTp065VbT
rfrhhx/0yCOP6NFHH9XSpUuL7H/ixAm1bdtWnTp10saNG8uhwlu3Zs0ahYSEaM6cORowYMBtMRcn
tBaNlV8AAAAAAJSjJUuWyMfHR2PHjlVkZKQ8PDzk7+8vf39/1a1bV3v27NGsWbPk6+ur1157TekV
bElaScOYihTebNiwQcnJyfriiy9uq7lQOFZ+AQAAAABQDq5fv67g4GBt2rRJ7u7umjt3roKCglSt
WrVc/ZKTk/XJJ59o7ty5Wrhwoe699149+eSTVqoafxccHKzLly9r+PDht9VcKBzhFwAAAAAA5eCF
F17Qpk2b1KZNG61evVqurq759qtWrZqGDx+u3r17Kyoq6pY/r0PZ8fPzk5+f3203FwpH+AUAAAAA
gIWFh4dr/fr1atiwodatWydnZ+cix9x1110EX0AZYM8vAAAAAAAsKCMjQ2+99ZZMJpPefvvtYgVf
AMoO4RcAAAAAABa0c+dOnTlzRi1bttSDDz5YJnOOHj1abm5uOnPmTIF9+vTpIzc3t1zXkpKS5Obm
pkGDBkmSvvvuOw0YMEB333236tatq27dumnx4sUym81lUuetio+P14wZM9S1a1d5eXmpXr166tix
oyZNmlTgs2/evFlubm6aPXu20tLSNG/ePHXs2FGenp5q1aqVXn/9daWkpEiSMjMztXjxYnXu3Fl3
3XWXmjRpooEDB2rfvn35zv3JJ5/Izc1Nq1evzrc9LS1NK1as0COPPKImTZrI09NTrVu3VkhIiM6e
PVuiuRITEzVv3jz16NFDDRo0UL169fTggw9q7ty5Sk5OLvLdpaena+nSperZs6fq16+vevXqqUuX
LgoNDVVSUlKB47755hv1799fzZs3V926ddWpUyeFhobqxo0bRd7zdkX4BQAAAACABe3YsUOS1LNn
zzKdtzinJP6zT/bm+mlpaXrnnXf0+OOP6+zZs+rRo4fatWunX3/9VRMnTtTLL79cprWWxvbt29W2
bVvNmzdPV69eVffu3eXv76+MjAwtWrRI7dq109q1a/OMq1q1qiQpNTVV//rXvzRv3jw1atRIDz/8
sLKyshQWFqY+ffooJSVFgwYN0muvvSZXV1f16dNHDRs21JYtW9S7d2/t3LmzwNrye/enT5/WQw89
pHHjxunAgQPy9vZWnz595OzsrKVLl6pjx445/xaKmismJkYdO3bUjBkzFBcXpy5duqhnz57KzMzU
zJkz1aFDBx0+fLjA+s6fPy9/f3+FhIToxIkT6tq1qx5++GFJ0qxZs/TAAw/o6NGjecZNnDhRgwYN
0t69e+Xj4yN/f3+dO3dOs2bNUr9+/ZSZmVngPW9n7PkFAAAAAIAFnT59WpJ07733Ftpv/fr1eu65
5/JtO3funBwcHHJdK83qrOygZf/+/YqKitKiRYvUv3//nPajR48qMDBQH330kYYOHar77ruvxPf4
6aefNHr06CL7FbZ66cCBAxo8eLBsbW0VFhaWZ++zLVu2aNSoURo1apRcXFzUo0ePnLbsZ1y6dKnq
1aunPXv2qE6dOpJuroYaMmSIIiIi1K9fP/3666/65ptv1KZNm5zx69atU3BwsCZOnKjvvvuuWM+c
nJysoKAgHT9+XM8884ymTJmS6xTPiIgIBQcHKzY2tshN7k+fPq2goCAlJydr6tSpGjlypGxtbXPa
9+3bp+eff16PP/54vuNv3LihJ554QrGxsXrppZf0yiuvqEqVKjntO3bs0LPPPquBAwcqKioqJyw8
duyYFi9erIYNG2rz5s2qWbOmJOnq1asKCgpSZmamLl26pFq1ahXrndxOCL8AAAAAALCgq1evSpJq
1KhRaL/69etr4MCBua598cUXOZ/olaXLly/rtddeyxV8SVKzZs305JNPKiwsTNu2bStV+HX69Omc
wK+0xo8frxs3bmjFihXq06dPnvaePXtqzZo1CgwM1CuvvKK9e/fK3t4+V5+0tDQtX748J/iSJHt7
e02YMEERERHat2+fJk2alCv4kqT+/fvr7bff1i+//KILFy4UK+xZtGiRjh8/rscff1xz587N0x4Q
EKCff/5Z1atXL3KuN954Q1euXNGbb76pUaNG5Wn39fXV119/XWCItnz5ch08eFATJkxQSEhInnY/
Pz+FhoYqODhYH374Yc49YmNjJUkPPfRQTvAlSXfeeafCw8NVo0aNYq02vB3x2SMAAAAAABZ05513
SpKuXLlSaD9fX1+99957uf64uLhYpCZHR0cNHTo037aHHnpIkvTnn3+Wau7HHntMly5dKvLPTz/9
lO/42NhYxcTEqHXr1vkGX9natm2r3r17Ky4uLt/PCdu1a5fvajtvb2/Z2dnJZDLpiSeeKHBus9lc
6J5qf7d27VqZTCZNnDixwD7FCb4SEhL01VdfydPTU8HBwQX2c3FxKfBeq1atkpubm8aPH1/g+L59
+8rBwUGbNm3KuZYd8m3fvj3P/mQuLi4VNviSWPkFAAAAAIBFeXl5SZKOHDmiRx55xMrV3NSgQYMC
wxgPDw9J0vXr1y1aQ0Gfbe7du1eS1L179yLn8Pf318aNGxUdHa2AgIBcbQWtWjOZTHJ3d1dSUpI8
PT3z7VO7dm1JxXsH165d0/Hjx+Xl5aUGDRoU2b8wMTExysrKUteuXXN96pifXr165bmWmpqqI0eO
yMXFRS+88EKh400mk44cOZLz3zt16qSAgABFRETI19dXDz74oLp27ar27dvL19e3dA90myD8AgAA
AADAgh566CG999572rJli1599dVyu29WVlaBbf88BfLvsveAspaEhARJyvXpXUHc3d0l3fyM858K
WzVna2srV1fXAtvt7Iofl2R/1lrYOy2ukjx71apVc+0rJv3/1YUJCQlas2ZNgWNNJpPMZrPS0tJy
Xfvwww+1ePFiffjhh9q6dau2bt0q6WaAO3fu3GIFkrcjPnsEAAAAAMCCHnjgAdWpU0cHDx7U999/
X6ZzF7YfWH6BUDYbm9s3DsgOrS5evFhk3wsXLkhSvkFWeX2ml72XW3x8/C3Plf3sxZkrOTk5z6EB
2bXcf//9hX5yGh8fn/Off+fg4KAXXnhBP/30kw4ePKglS5aod+/eOnPmjP79739r3759t/yM1nD7
/msHAAAAAMAA7OzscvZnGjduXKGnHBaXo6OjpIJDkqtXr+rkyZO3fB9raNeunaSbe08VZdu2bZKk
9u3bW7Smwjg5Oalp06aKi4u75Xfu6+srGxsbff/998rIyCi071dffZXn2h133KGWLVvq0KFDpd6z
LVudOnX0+OOP68MPP9SsWbOUlZWlFStW3NKc1kL4BQAAAACAhf373/9Wv379dOLECQUFBRW6Kqs4
6tatK0mKjo7Ot33ZsmVKT0+/pXtYS4sWLdS6dWvt378/14bs/7R3715t2rRJXl5eBZ58WF7+53/+
R5I0ffr0AvsU5++8Ro0a6t27t86dO6clS5YU2C8hIUEzZ87Mt23w4MHKysrSK6+8UuD4v/76S2Fh
YXmu79mzJ9/+2YFkWaxuswbCL2uy1A+iCvoDDgAAAACMbMGCBerVq5eio6PVqVMnffTRR7p27Vqe
fllZWdq1a5eGDh1a4Oodf39/SVJYWJh+/fXXXG1r165VaGhozimTFVFoaKgcHR01cuRIrVu3Lk/7
tm3bck5qDA0NLdEeXZYwfPhwNW3aVBs2bNDYsWOVlJSUq33r1q3y8fHRvHnzipxr6tSpqlGjhqZM
maKwsLA8e7cdOHBAvXv3zrVf19899dRT8vHxUUREhEaOHJmzJ1m2n3/+WY888ohef/11ffvttznX
Z86cqcDAQL3xxhu5Vp3duHFDb7/9tiTJx8enyPpvR2x4b0329nIpZIO90kq4xf8HAQAAAABQ9qpU
qaKPPvpIS5Ys0dy5c/XSSy/pP//5j+6//37Vrl1bJpNJFy9eVGxsrBITEyVJnp6eCg4OloODQ665
WrZsqSeffFKrVq1St27d1KFDB9WsWVOHDx/Wr7/+qkmTJmnHjh3auXOnNR71lnl7e2vlypUaNmyY
goODNX36dHl7e8tkMunw4cM6fvy4qlSpovnz56tHjx7WLldVq1bVp59+qoEDB2rlypX6/PPP1bZt
W7m4uOi3337ToUOH5OzsnLOCqjBeXl769NNPNWTIEL3++ut677335OvrK0dHR/3222/65Zdf5OHh
obVr16pr1655xtvZ2WnVqlUaOHCgPv30U33zzTfq0KGDqlatqhMnTujgwYNydHTU7Nmz1a1bt5xx
gwYN0urVq7VgwQJ99tlnatOmjTIzM7V7924lJCSoefPmGjVqVFm+tnJD+AUAAAAAKLH0dOny5QRr
l1Gm0tMle3vL32f48OF68skntX79em3dulWxsbE6dOiQzGazatSoIW9vb91///3y9/dXx44dC9yc
/t1339W9996rNWvWaO/evXJ0dFSbNm00e/Zsde7cWXv27JHJZNLVq1cr5Cqw7t27a+/evVqyZIk2
b96syMhISTf3ohoxYoRGjhyZ8/lnSRVnM/z8+phMpgLH1qtXTzt27NCqVav0+eef6+eff9a1a9fk
4eGh5557TmPHjpWHh0ex5vL19dXu3bu1dOlSffXVV/rhhx+UmZmpRo0aacKECRo1apScnZ0LrL12
7dqKiIjQqlWrtG7dOkVHR+vGjRvy9PTUM888o+DgYDVp0iRP/Tt37tSCBQv01VdfKTIyUvb29qpf
v76GDx+u0aNHW/0k0NIymc1ms7WLMIrszfhat25d7DGs/AIAAABwu4iJiSnR7zMAUBol/VkTExMj
6WYgWhrs+QUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIv
AAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCw
CL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAA
AMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAABAscyePVtubm7atWuXtUtBIT755BO5ublp9erV
1i7ltkD4BQAAAAAoufR0a1dQ9izwTKNHj5abm1uJ//Tt27fMa7Gm7Pewffv2YvWfMWNGhQtvBgwY
IF9fX/3111+3zVwmk+mWazECO2sXAAAAAACogOzt5eLqau0qylTC5ctlPmeHDh1kY5N33cnvv/+u
PXv2qHnz5vL29s7T3qRJkzKv5XZQ0jCmooQ3ly5d0rZt22QymRQdHa0+ffrcFnPhJsIvAAAAAAAs
ZPDgwRo8eHCe66tXr9aePXsUEBCg119/vczvm5iYqIULF6ply5YKDAws8/mRm5ubm0aMGKHff/9d
3bp1u23mwk2EXwAAAAAAlDOz2WzR+a9cuaI5c+Zo4MCBhF/lZMaMGbflXDDwnl+7d+/WoEGDNHv2
7GL1Dw8P14ABA9i0DwAAAAAAwEAMufJr/fr1Cg8PL3b/c+fOaePGjWrbtq0eeOABC1YGAAAAAED5
sfQKM6AiMNTKr4yMDM2fP1/h4eHy9/eXm5tbscYtX75cjo6OGjZsmIUrBAAAAACg+OLj4zVjxgx1
7dpVXl5eqlevnjp27KhJkybpzJkzefr36dNHbm5u8vHxkXRzb7G/nyL59zFXr17VO++8o169eqlp
06aqXbu27rnnHo0YMUInTpwot2csrejoaA0fPlwtW7aUh4eHGjdurL59++qDDz5QegEndz711FNy
c3NTXFycfvvtN40YMULNmjVTnTp15O/vrw0bNuT0/fPPPzV27Fi1aNFCnp6eat26tV577TUlJibm
O3f2uy/ImTNnNGnSJHXs2FFeXl6qX7++AgICtHz5cmVlZZVorl9++UUvvviifHx85OnpqaZNm2rA
gAH6+uuvC3tlOeLi4hQSEiJfX195enqqSZMmCgoK0ldffVXgmKtXr2revHk5/xbvvvtu9e/fX9u2
bSvWPa3JUCu/IiMjFRUVpaCgIPXv31+jR48ucsyuXbt08OBBjRw5UjVq1CiHKgEAAAAAKNr27ds1
bNgwJSYmqm7duurevbtMJpMOHTqkRYsW6YMPPtC7776roKCgnDE9evRQgwYNlJycrI0bN6pRo0bq
0KFDTruTk5Mkad++fXriiSd06dIleXp6qn379rK3t9evv/6qtWvXasuWLfrmm2/UrFmzMn2msliJ
lpmZqYkTJ2rp0qWysbGRj4+POnbsqMTERP3444/auXOnli1bptWrV6tevXq5xlatWlWSFBUVpfHj
x6t27drq0qWLrly5op07d2ro0KE6c+aMevToob59+yorK0udO3eWjY2NoqOjtXDhQn3//feKiIhQ
lSpV8tRW0OmUa9eu1ZgxY3Tjxg01aNBA3bt3l9ls1q5duzR+/HitWbNGa9eu1Z133lnkXHPnztXM
mTMlSffdd5/atGmj1NRU7dmzR9u2bVOfPn300EMPFfj+Nm3apODgYF2/fl3NmzdXnz59lJKSoujo
aA0ZMkSPPvqoFi5cKHt7+5wxly9flr+/v06dOqW7775bAQEBunDhgr799lvt2LFDoaGhevbZZwu8
p7UZKvzy9/eXu7t7TsJdlNTUVH300Udq1aoVJygAAAAAAG4bBw4c0ODBg2Vra6uwsDANGDAgV/uW
LVs0atQojRo1Si4uLurRo4ckacyYMZJuruzZuHGjOnTooPfeey/P/HXr1lWDBg00d+5c9e3bN1fb
+++/r1dffVWvv/661q5dW6bPFRYWpvXr1xfZ7+DBgwW2TZ06VUuXLpW3t7cWLVqkJk2a5LSlpKRo
xowZWrRoUc6qJGdn55z27EBpwoQJevrpp/Xmm2/KxubmR3HHjh2Tv7+/Zs6cqbVr16pFixZauXKl
qlWrJklKT0/XkCFDFBERoRUrVmjEiBHFeubt27dr5MiRcnZ21uLFi9WnT5+cths3bmjixInaunWr
4uLicoVf+Vm8eLFmzpyp+vXra8mSJWrTpk1OW0ZGhpYtW6YpU6YoOjo63/HR0dEaOnSoateurblz
5yogICCnLS0tTdOmTdPChQt11113adq0aTlt7733nk6dOqXg4GC99dZbOdd/+OEHPfHEE/rrr7+K
9S6sxVDhl8lkKnbwJd1MXlNTUxUcHGzBqgAAAAAAKJnx48frxo0bWrFiRa6wJFvPnj21Zs0aBQYG
6pVXXtHevXtzrdQpaoVV7dq1FRERkW/bc889pxUrVuj7779XWlqaHBwcbu1h/ubbb78tso/JZCqw
/iNHjigsLEx16tTR559/rurVq+dqd3Jy0owZM5SWlqbly5frv//9r15//fU88zRv3jzPiYrZnw4u
W7ZMR44c0f79+3OCL0myt7fXhAkTFBERoe3btxcr/MrKytJ//vMfSTe3XPLz88vV7ujoqLfffluJ
iYl5nuWfLl68qOnTp8vZ2VlffPFFnlVtdnZ2Cg4Olqenp5555pk8481msyZMmKAqVaro008/zbOq
z8HBQdOnT9eRI0f0/vvv6/nnn1etWrUkSYcOHZKkXKsMJalz5846cOBAsbedshZD7flVEqdPn9Y3
33wjV1dXTZ8+XYMGDdLIkSO1fPlyXblyxdrlAQAAAAAqqdjYWMXExKh169b5Bl/Z2rZtq969eysu
Lk47duwo0xruueceZWRkKD4+vkznXbt2rS5dulTon/j4eI0bNy7f8R9//LHMZrPGjh1baFg0ceJE
OTg45PT/p6eeeirfcdkrqbp06aI6derkaff29padnV2++63lZ9++ffr999/Vvn37PMHX3xUVfEnS
Z599ppSUFD399NN5gq+/69u3r7p27Zrn+sGDB3Xo0CENGjSo0M9Z+/fvr7S0NG3ZsiXnWu3atSVJ
a9asUWZmZq7+t3vwJRls5VdJfPLJJ8rKytKVK1fUrl07tW3bVidPntSWLVu0Z88eTZs2LecvFwAA
AACA8rJ3715JUvfu3Yvs6+/vr40bNyo6OjrXJ2zFYTabtXXrVm3atEkHDx7U+fPnde3aNaWmpsps
NstkMuXZiL28FLTyq7jvxsXFRb6+vvrxxx/1+++/q3Hjxrna77vvvnzHZa90+mf/bCaTSe7u7rp+
/Xqh98+W/fnmgw8+WKz+hSnJv4vevXvr+++/z3Vt3759OfMUtkf6uXPnJElHjx7NuTZmzBht2bJF
S5cu1ZdffqmAgAA98MAD6tSpU74h4e2mUoZfJ06c0P79+9WgQQOFhITI1dU1py06Olrz5s1TWFiY
pk6dasUqAQAAAACVUUJCgiSpZs2aRfZ1d3eXdHND8pK4dOmShgwZot27d8vR0VE+Pj7q1q1bzqeT
P/74o06ePFnCyi0vISFBJpOpRO8m+33+nYuLS75j7OxuxiSFrWaytbUtTqmSlPNlWVmsjsqeK/u5
CpMd4uU3ft++fTlB2D9lf3JqMpmUlJSUc71p06baunWrQkND9fXXX2vlypVauXKlTCaTevbsqf/+
97/FqstaKmX4tXPnTknSqFGjcgVfktSuXTsFBARoy5YtOnv2rO666y5rlAgAAAAAqKSyg5mLFy8W
2ffChQuSlOd326K88sor2r17t4KCgjRz5sw8YVBwcPBtGX65uLjo5MmTunjxYs7JjQXJfn/5vZvs
Te4trUaQ+94wAAAgAElEQVSNGpJUJp+PZs914cKFIk/hzG8D+uy/41mzZum5554r8f0bNmyosLAw
ZWZmKjY2VlFRUVq1apU2b96s/v37KzIyskTBYHmqlHt+/fnnn6pZs6bq16+fb3vbtm0l3dwXDAAA
AACA8tSuXTtJN08JLMq2bdskSe3bty/2/Onp6dq0aZM8PDy0cOHCfFdB/fHHH8Werzy1bdtWZrO5
yHdz+fJl7du3T+7u7rr77rvLqbq8vL29JUnffffdLc9Vkn8XmzZtKnD83/fyKg1bW1vdf//9ev75
5/XDDz+obdu2io2N1Z49e25pXkuqlOFXVlZWoSlvdlKZfQQqAAAAAADlpUWLFmrdurX279+fb4iR
be/evdq0aZO8vLzybKae/TtvWlpannGXL19WVlaWqlSpku/vvefOndPPP/98W/5OPHjwYNnY2Ojd
d99VYmJigf1mzpyptLQ0DRo0qByry6t169Zq0qSJ9uzZU2hold+nmf/02GOPycnJSStWrFBcXFyB
/b788ktFRUXlud6iRQv5+Phox44d2rhxY4HjN2zYkOezyGvXruWc+Ph3tra2at26taSyWd1mKZUy
/Kpbt64uXLhQ4F9MbGysJMnLy6s8ywIAAAAAQJIUGhoqR0dHjRw5UuvWrcvTvm3bNj3xxBM5fbP3
qsqW/YlcdHS0MjIycq5nZWWpVq1acnd316lTpxQeHp5r3IkTJzRw4EA5OTlJUp6T/aytWbNmGjly
pP7880899thj+v3333O1p6am6o033tDy5cvVuHFjjRkzxkqV3mQymTRz5kzZ2Njo2Wef1YYNG3K1
37hxQ+PGjVPnzp1zNscviLu7uyZNmqTk5GQ9+uij2r9/f672jIwMLV26VMOHDy/wAL85c+bIwcFB
L7zwglatWpVn/Pvvv68RI0Zo+PDhSk9Pl3Tznfr5+alfv355QrWjR4/qs88+k42NTc4qt9tRpdzz
y8/PT19//bUWL16s8ePHy8HBIaft5MmT2rhxo1q0aCFPT08rVgkAAAAAqKy8vb21cuVKDRs2TMHB
wZo+fbq8vb1lMpl0+PBhHT9+XFWqVNH8+fPVo0ePPOOrVasmPz8/7dixQ126dFHz5s115MgRLVmy
RPfdd5/mzZunIUOGaNSoUZo/f77uueceXblyRT/++KM6dOignj17KjQ0VCkpKVZ4+sJNmTJFqamp
Wr58uTp06CBfX1/Vq1dPiYmJ2rNnj5KSktSsWTOtXr1azs7O5VpbfqdU+vn5aeHChRozZoyGDh2q
adOmqVWrVjKbzfrxxx916dIltW/fXg0bNixyrhEjRigxMVFz5sxRjx491KpVK919991KTU3V3r17
denSJQUGBiogIEBjx47NM75169ZatmyZRowYoRdffFHvvvuuWrZsqdTUVB04cEB//fWXGjVqpE8+
+STn8IM77rhDL7zwgsaNG6d+/frJx8dHDRo00Pnz57Vnzx6ZzWaNHz/+tl5AVCnDr3r16unpp5/W
Bx98oPHjx8vPz0/VqlXTH3/8oe3bt8vV1bXQYz8BAAAAoNJLT1dCCU8YvO2lp0v/9wu/pZlMpiI/
K+zevbv27t2rJUuWaPPmzYqMjJQk1alTRyNGjNDIkSNVt27dAseHhYXp1VdfVWRkpM6dO6cWLVrk
nJIYGBioL7/8Uu+8844OHjyoP/74Q/Xr11dISIhGjx6tFStWyGQy6a+//tK9996bp3ZLPG9x+9vY
2Cg0NFRBQUFatmyZdu3apZ9//llVq1ZVq1at9Oijj2rw4MF5VsOVpo6Caitpzf3791fHjh21cOFC
RUZGKjIyUiaTSffcc49effVVPfPMM7nGFjbXhAkTFBgYqCVLligqKkpff/21qlWrJh8fHz355JPq
27evPvnkkwLHBwYGavfu3Vq4cKG2bdumzZs3y9HRUY0bN9bo0aM1bNgwOTo65hozePBgtWrVSmFh
Ydq5c6cOHz4sV1dXPfjggxo6dKgefvjh4rw6qzGZ84sSDWL06NHy8vJSSEhIvu1Hjx7Vl19+qaNH
jyo1NVXu7u5q166d+vXrV+SpEfnJ/n43+3vX4nAp4YkcxWG4/wECAAAAUC5iYmJK9PsMAJRGSX/W
xMTESLoZCJeGoVd+LViwoND2Zs2aFXk8KAAAAAAAACquSrnhPQAAAAAAACoHwi8AAAAAAAAYFuEX
AAAAACCHgbeFBnAbsMbPGMIvAAAAAICkm6foZWZmWrsMAAaWmZkpW1vbcr0n4RcAAAAAQJJ0xx13
KCUlxdplADCwpKQkOTk5les9Cb8AAAAAAJKk6tWrKzEx0dplADCwhIQEubi4lOs9Cb8AAAAAAJIk
FxcXXb58mdVfACzi4sWLunbtmmrUqFGu97Ur17sBAAAAAG5bVapUUb169XT8+HHVqlVLrq6usre3
l8lksnZpACogs9mszMxMJSUlKSEhQdeuXVOTJk1kZ1e+cRThFwAAAAAgh4uLixwcHBQfH6+jR48q
IyPD2iUBqMBsbW3l5OQkFxcXeXl5lXvwJRF+AQAAAAD+oWrVqqpataq1ywCAMsGeXwAAAAAAADAs
wi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAA
wLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAA
AAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcA
AAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiE
XwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACA
YRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAA
AACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAA
AAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/
AAAAAAAAYFiEXwAAAAAAADAsw4Zfu3fv1qBBgzR79uxi9U9PT9fYsWM1YMAAffnllxauDgAAAAAA
AOXBztoFWML69esVHh5eojEbNmxQUlKSJMlkMlmiLAAAAAAAAJQzQ638ysjI0Pz58xUeHi5/f3+5
ubkVa9zZs2e1YcMGDRw40MIVAgAAAAAAoDwZKvyKjIxUVFSUgoKCNGzYsGKv4Hr//ffVtm1btWrV
ysIVAgAAAAAAoDwZ6rNHf39/ubu7y8fHp9hjvv32W504cULvvPOOMjIyLFgdAAAAAAAAypuhVn6Z
TKYSBV9JSUlauXKl+vfvL1dXVwtWBgAAAAAAAGswVPhVUh9//LFq1KihXr16WbsUAAAAAAAAWECl
Db8OHz6sb7/9VkOHDpWNTaV9DQAAAAAAAIZWKVOfjIwMvf/+++rcubOaN29u7XIAAAAAAABgIZUy
/NqwYYMSEhI0ePBga5cCAAAAAAAACzLUaY/F9e2336p27dravHlzruspKSmSpP379ys5OVmNGjVS
u3btrFEiAAAAAAAAykClDL/MZrNOnTqlU6dO5dseGxur2NhYdevWjfALAAAAAACgAquU4deCBQvy
vX7x4kU9//zzGjx4sHr37l3OVQEAAAAAAKCsVco9vwpiNputXQIAAAAAAADKEOEXAAAAAAAADIvw
CwAAAAAAAIZl6D2/CtrbqyC1atVSeHi4haoBAAAAAABAeWPlFwAAAAAAAAyL8AsAAAAAAACGRfgF
AAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW
4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAA
YFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAA
AACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsA
AAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzC
LwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADA
sAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAA
AADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAA
AAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRf
AAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBh
2Vm7AEvZvXu35s+fr5YtWyokJCTfPmfOnNG6det07NgxXb16Va6urvL19dWjjz6qO++8s5wrBgAA
AAAAQFkzZPi1fv16hYeHF9rn8OHDmj59upycnNS9e3e5ubnp1KlT2rp1q3bv3q3p06erZs2a5VQx
AAAAAAAALMFQ4VdGRoYWLVqkqKgo+fv7KyYmJt9+WVlZevfdd3XnnXfqrbfekouLS06bn5+fJk+e
rFWrVmnMmDHlVToAAAAAAAAswFB7fkVGRioqKkpBQUEaNmyYTCZTvv3+/PNPubq66rHHHssVfElS
kyZN1LJlS/3888/lUTIAAAAAAAAsyFArv/z9/eXu7i4fH59C+9WrV08zZ84ssL1atWpKT08v6/IA
AAAAAABQzgy18stkMhUZfBUlIyNDv/zyi7y8vMqoKgAAAAAAAFiLocKvsrBx40YlJCSoZ8+e1i4F
AAAAAAAAt4jw6292796t8PBwNWnSRJ07d7Z2OQAAAAAAALhFhF//JyYmRv/7v/8rV1dXvfzyy7Kx
4dUAAAAAAABUdCQ8kmJjY/X222/rzjvv1OTJk+Xq6mrtkgAAAAAAAFAGKn34dezYMc2ePVvOzs6a
PHmyPDw8rF0SAAAAAAAAykilDr9OnDiht956S05OTnrjjTcIvgAAAAAAAAym0oZfcXFxmjFjhhwc
HDR58mTddddd1i4JAAAAAAAAZaxShl/nzp3Tm2++KRsbG73xxhsEXwAAAAAAAAZlZ+0CrGH58uW6
evWqevfurePHj+v48eP59uvQoYOqVKlSztUBAAAAAACgrFTK8CsjI0OStGnTpkL73XfffYRfAAAA
AAAAFZihw68FCxbke33y5MnlXAkAAAAAAACsoVLu+QUAAAAAAIDKgfALAAAAAAAAhkX4BQAAAAAA
AMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAAAAAYFuEXAAAA
AAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAAAAAAAGBYhF8A
AAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8AgAAAAAAgGER
fgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAMi/ALAAAAAAAA
hkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFiEXwAAAAAAADAswi8AAAAA
AAAYFuEXAAAAAAAADIvwCwAAAAAAAIZF+AUAAAAAAADDIvwCAAAAAACAYRF+AQAAAAAAwLAIvwAA
AAAAAGBYhF8AAAAAAAAwLMIvAAAAAAAAGBbhFwAAAAAAAAyL8AsAAAAAAACGRfgFAAAAAAAAwyL8
AgAAAAAAgGERfgEAAAAAAMCwCL8AAAAAAABgWIRfAAAAAAAAMCzCLwAAAAAAABgW4RcAAAAAAAAM
i/ALAAAAAAAAhkX4BQAAAAAAAMMi/AIAAAAAAIBhEX4BAAAAAADAsAi/AAAAAAAAYFhWD79SUlKs
XQIAAAAAAAAMqszDr2PHjhW7b3Jyst58882yLgEAAAAAAACQZIHw66233tKJEyeK7JeYmKipU6cW
qy8AAAAAAABQGmUefqWmpmrGjBk6ffp0gX0uX76syZMn6/Tp02ratGlZlwAAAAAAAABIskD49cwz
z+R8znj27Nk87RcvXtTkyZN19uxZtWrVSq+99lpZlwAAAAAAAABIkuzKesJ//etfMplMWr58uaZN
m6YpU6bIw8NDknT+/HlNmzZNly5dUrt27TRmzBjZ2ZV5CZKk3bt3a/78+WrZsqVCQkLy7RMfH6+1
a9fq4MGDSkpKkqurqzp06KB+/frJycnJInUBAAAAAACg/FgkeerZs6dMJpOWLVumN998U1OmTNGN
Gzf05ptv6sqVK+rWrZuCg4NlY2OZwybXr1+v8PDwQvucP39ekydPVkZGhnr06CE3NzedOXNGX3/9
tQ4cOKApU6YQgAEAAAAAAFRwlll2JSkgIECStGzZMk2bNk2pqalKSkrSww8/rKefftoi98zIyNCi
RYsUFRUlf39/xcTEFNh34cKFMpvNmjNnjtzc3HKud+7cWVOnTtXq1as1dOhQi9QJAAAAAACA8mGZ
pVf/JyAgQMOGDdOFCxeUlJSk/v37Wyz4kqTIyEhFRUUpKChIw4YNk8lkyrff8ePHdfToUfXv3z9X
8CVJTZs2lZ+fn3bs2KFr165ZrFYAAAAAAABYXqlWfh0+fLjYfevUqaMuXbroxo0batGiRb5jmzdv
Xpoy8vD395e7u7t8fHwK7bdv3z6ZTCY98MAD+bZ36tRJW7du1aFDh9ShQ4cyqQ0AAAAAAADlr1Th
19SpU0t1s+jo6HyvF7U/V3GZTKYigy9JOnXqlGrVqqVq1arl296wYUNJUlxcHOEXAAAAAABABVaq
8Kt///5lXUe5SkpKUo0aNQpsr1KlihwdHZWYmFiOVQEAAAAAAKCslSr8CgoKKus6ytW1a9fk7u5e
aJ877rhDSUlJ5VQRAAAAAAAALMFipz1WdGaz2fI3SU9XwuXLFplX9vZlPy8AAAAAAEAFU2bhV3p6
uk6cOKFTp04pPj5eycnJSktLk4ODg6pVq6aaNWuqYcOGatSokezsrJu5Va1aVdevXy+0T2pqqpyd
nS1biL29XF1dynzay5cTynxOAAAAAACAiuiWU6jExEStW7dOUVFRSklJKbK/k5OTOnfurKCgIFWv
Xv1Wb18qzs7OOnPmTIHt169fV1pamtXqAwAAAAAAQNm4pfDr6NGjCg0NVXJyspydndWlSxd5eXmp
Zs2acnJykp2dnTIyMpSSkqL4+HidPn1a+/fvV0REhHbt2qVx48apefPmZfUsxVa/fn3t379fycnJ
+Z74eOLECUmSl5dXeZcGAAAAAACAMlTq8Cs+Pl6zZ89WWlqannrqKQUEBBTrc8aMjAxFRETo448/
1pw5czRnzhzVqlWrtGWUSps2bfT5559r586d6tmzZ572nTt3yt7eXvfdd1+51gUAAAAAAICyZVPa
gV988YVSUlI0ZswYBQYGFnsfLzs7OwUGBmrs2LFKTU3VF198UdoSSq1x48Zq1qyZ1q1bp/j4+Fxt
x44d044dO+Tn56eqVauWe20AAAAAAAAoO6Ve+XXo0CF5eXmpXbt2pRrfrl07eXl5KTY2trQl3JKR
I0dq8uTJCgkJUY8ePeTm5qa4uDjt2LFDdevW1RNPPGGVugAAAAAAAFB2Sh1+Xbp0Sb6+vrd087vu
uksxMTG3NEdpeXh4aMaMGVq3bp2+//57JSYmys3NTYGBgerXr5+cnJysUhcAAAAAAADKTqnDr6pV
q+rq1au3dPPExESLhkwLFiwotL1mzZoaMWKExe4PAAAAAAAA6yr1nl/16tXT8ePH8+yZVVwXL17U
b7/9xomKAAAAAAAAsJhSh1+9evVSWlqaQkNDdenSpRKNvXTpkubOnav09HQFBgaWtoT/x96dRklV
HmrDvummARERWgSniCABNYAToIBGUDAKDomaGDVGjV8SPTke9WhMNDFqfM86xwxvEo1Ro3mVOE9I
1OAEioKKiDMiKqLibLDBpgUVaL4fHDoSBhGqu7qrr2st1pLau56+7VXs2nXXs58NAAAAAGu0zpc9
7rTTTjnooINy++2355RTTsmQIUPSr1+/bLPNNtl4441X2v/DDz/Mq6++mieeeCITJkzIp59+mgMO
OCA777zzev0PAAAAAMDqrHP5lSRHHXVUttxyy1xzzTW59957c++99yZJysvLs8EGG6S8vDxLlizJ
woULs2TJkrrnbbTRRvne976XoUOHrl96AAAAAFiD9Sq/kmTIkCEZPHhwpk6dmmnTpuX1119PdXV1
ampqMn/+/GywwQbp1KlT2rdvn65du6ZPnz7p169fWrZc7x8NAAAAAGtUkAaqoqIiAwcOzMCBAwsx
HAAAAAAUxDoveL82amtr63N4AAAAAFijgsz8WrRoUaZMmZJp06bltddey5w5c1JTU5Pa2tqUlZWl
Xbt26dSpU7p165bevXtnwIABLnsEAAAAoN6tdwN1//3359prr01NTc0/B23ZMhtttFHdgvcfffRR
Zs2alVmzZmX8+PFp165djjzyyOyzzz7r++MBAAAAYLXWq/y6+uqrc+edd6ZVq1bZb7/90r9//2y9
9dZp3779SvtWV1dn9uzZefzxx3P//ffnz3/+c958880cc8wx6xMBAAAAAFZrncuvp59+OnfeeWe6
deuWM844I5WVlWvcv3379undu3d69+6dgw8+OBdccEHGjh2bPn36ZJdddlnXGAAAAACwWuu84P3f
//73tGrVKqeffvrnFl//qrKyMj/+8Y9TUVGRu+66a10jAAAAAMAarXP59cYbb6RHjx7p1KnTOj2/
U6dO+fKXv5zZs2evawQAAAAAWKN1Lr9qampWubbXF9G+ffssWLBgvcYAAAAAgNVZ5/KrU6dOefvt
t9frh7/11ltf+JJJAAAAAFhb61x+9enTJ7Nnz87kyZPX6fmTJ0/OG2+8kb59+65rBAAAAABYo3Uu
vw4++OC0bds2F110Ue64444sWrRorZ63aNGi3HHHHbnwwguzwQYb5KCDDlrXCAAAAACwRi3X9Ymd
OnXKmWeemQsuuCDXXHNNxowZk759+2abbbbJJptskg022CDl5eVZsmRJFi5cmA8++CCvvfZann32
2dTU1KRdu3b58Y9/nE033bSQ/z8AAAAAUGedy68k6dmzZ373u9/l1ltvzUMPPZRHHnkkjzzyyBqf
07Zt2+y333459NBD13vBfAAAAABYk/Uqv5Jld2w87rjjcvTRR2fWrFmZPXt2qqurU1NTk4ULF2aD
DTZIu3bt0r59+3Tt2jXdunVLy5br/WMBAAAA4HMVrIVq2bJlevbsmZ49exZqSAAAAABYL+u84D0A
AAAANHbKLwAAAABKlvILAAAAgJKl/AIAAACgZCm/AAAAAChZ63y3xx/84Adp0aJFQUJcdtllBRkH
AAAAAD5rncuv+fPnp7a2tpBZAAAAAKCg1rn8Ov7443P55Zdnm222ybnnnpsNNtigkLkAAAAAYL2t
85pfw4YNy/7775/XXnstv/nNb7JkyZJC5gIAAACA9bZeC95/97vfzY477php06blj3/8Y6EyAQAA
AEBBrFf5VVZWllNOOSVbbrllnnrqqbz11luFygUAAAAA622d1/xarm3btvnJT36SxYsXZ8sttyxE
JgAAAAAoiPUuv5KkS5cuhRgGAAAAAApqvS57BAAAAIDGTPkFAAAAQMlSfgEAAABQspRfAAAAAJQs
5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACUrIKXX1deeWWeeuqpQg8LAAAAAF9Ywcuve+65
J5MmTSr0sAAAAADwhRW8/OrUqVPmzZtX6GEBAAAA4AsrePm16667Zvr06Zk9e3ahhwYAAACAL6Tg
5dehhx6aLl265IILLsjrr79e6OEBAAAAYK21LPSATz31VIYPH5477rgjP/nJT9K3b9907do1rVu3
Xu1zDjvssELHAAAAAIDCl19/+tOfVvj7M888k2eeeWaNz1F+AQAAAFAfCl5+/eIXvyj0kAAAAACw
Tgpefn3lK18p9JAAAAAAsE4KvuA9AAAAADQWBZ/59VmLFi3KCy+8kDfffDMLFiywthcAAAAADare
yq+77747t956a6qrq+seW15+vfvuu7nkkkty6qmnpkOHDvUVAQAAAIBmrl4ue/zrX/+aK6+8Mhtt
tFEOO+yw9OjRY4Xt06ZNy4wZM3LBBRdk6dKl9REBAAAAAAo/82v69On5+9//nkGDBuXf//3fU15e
nvfffz8zZ86s22fYsGH54IMPMnr06IwfPz7Dhg0rdAwAAAAAKPzMr7vuuisbbLBBfvCDH6S8vHy1
+33jG99I27Zt8/DDDxc6AgAAAAAkqYfy68UXX0yvXr2ywQYbrHG/Vq1apWfPnpk9e3ahIwAAAABA
knoov2pqatKuXbu12rdt27b5+OOPCx0BAAAAAJLUQ/m18cYb55133lmrfd96661UVlYWOgIAAAAA
JKmHBe/79OmTBx98MC+99FJ69uy52v2eeOKJvP7660Vf7P7pp5/O3/72t7zyyitZunRptt122xx4
4GsQEtwAACAASURBVIHZddddi5oLAAAAgPVX8JlfBxxwQFq0aJHLLrss8+bNW+U+L7/8cv785z+n
rKwsI0eOLHSEtTZ58uT893//d6qrq3PIIYfk0EMPTU1NTX71q1/l7rvvLlouAAAAAAqj4DO/tt56
6xx77LG58sor85Of/CQHH3xwqqqqkiyb7fXEE0/kgQceSG1tbY4//vhsscUWhY6wVhYuXJhLL700
2267bX75y1+mZctlv4oDDzww5513Xq699trssccea71+GQAAAACNT8FnfiXJfvvtl1NPPTVJMmrU
qEybNi1J8qtf/Srjx49Phw4dctppp2Xfffetjx+/Vl5++eUsXLgw+++/f13xlSTl5eUZMWJEPv30
08yYMaNo+QAAAABYfwWf+bXc7rvvnl122SVPPfVUZs6cWXcXyF69emWnnXZaoXAqhhYtWiRJ2rRp
s9K25Y+VldVLNwgAAABAA6nXBqpVq1bZbbfdsttuu9Xnj1kn2267bdq0aZPHHnss/fv3X2HbY489
ltatW69xwX4AAAAAGr/iTr8qorZt2+boo4/O5Zdfng033DBDhw5NixYt8uCDD+b+++/PcccdZ70v
AAAAgCauXsuvqVOnZvz48XnxxRfz0UcfZcMNN0yvXr2yzz77pF+/fvX5o9fKsGHDsnDhwlxzzTUr
3N3xm9/8Zvbbb78iJgMAAACgEOql/Prkk09y0UUX5fHHH1/2Q1q2TIcOHVJTU5Mnn3wyTz75ZPr1
65f/+I//SOvWresjwloZNWpUxo4dm0GDBmXAgAEpLy/P008/nVtuuSXvv/9+TjjhBOt+AQAAADRh
9VJ+XXjhhZk6dWp69OiRb3/729lhhx1SXl6eJUuW5Pnnn8+NN96YqVOn5g9/+EPOOOOM+ojwuR59
9NGMHTs2xx57bPbff/+6xwcMGJCdd945v/nNb9KtW7cVtgEAAADQtBR8WtPUqVMzderU7LTTTvnl
L3+ZPn36pLy8PElSXl6evn375pe//GV23nnnPPHEE5k6dWqhI6yVCRMmpEuXLqsst/r3758ddtgh
48aNK0IyAAAAAAql4OXXAw88kPLy8vzwhz+sK73+1We3P/DAA4WOsFbef//9dOnSZbXbN9tss7z/
/vsNmAgAAACAQit4+fXyyy+nV69eqaysXON+HTt2TK9evTJz5sxCR1gr7du3z5tvvpna2tpVbp89
e3bat2/fwKkAAAAAKKSCl18fffTR5xZfy3Xs2DE1NTWFjrBW9txzz1RVVeXmm29eadv48eMzc+bM
7LnnnkVIBgAAAEChFHzB+/bt2+fDDz9cq33nz59ftNlV++yzT5577rmMHj06L774Yvr27ZuWLVtm
+vTpeeKJJ7LddtvlkEMOKUo2AAAAAAqj4OVX7969M3ny5Hz00UfZcMMNV7vfggULMmPGjAwYMKDQ
EdZKixYtcuqpp+aBBx7I+PHjM3r06NTW1mbLLbfMd7/73ey///4pKyv4xDgAAAAAGlDBy6/9998/
EydOzHXXXZfvf//7q93v+uuvz6JFi1Z5t8WGNHTo0AwdOrSoGQAAAACoHwWf2tS9e/ccccQRGTdu
XK688sp8+umnK2z/5JNPctVVV+Xee+/Nt7/97fTo0aPQEQAAAAAgST3M/PrTn/6UJOnQoUPuvvvu
TJo0KX379k2HDh0yb968PPvss6mpqcnGG2+cd955J5dccskaxzvxxBMLHREAAACAZqLg5deDDz64
wt9ramryyCOPrLTfhx9+mAkTJnzueMovAAAAANZVwcuviy66qNBDAgAAAMA6KXj51blz50IPCQAA
AADrpOAL3gMAAABAY6H8AgAAAKBkKb8AAAAAKFnKLwAAAABKlvILAAAAgJKl/ILGYtGipjk2AAAA
NGItix0A+F8VFelYWVkvQ8+tqqqXcQEAAKCxM/MLAAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAA
SpbyCwAAAICSpfwCAAAAoGQpvwAAAAAoWcovAAAAAEqW8gsAAACAkqX8AgAAAKBkKb8AAAAAKFnK
LwAAAABKlvILAAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAASpbyCwAAAICSpfwCAAAAoGQpvwAA
AAAoWcovAAAAAEqW8gsAAACAkqX8AgAAAKBkKb8AAAAAKFnKLwAAAABKlvILAAAAgJKl/AIAAACg
ZCm/AAAAAChZyi8AAAAASpbyCwAAAICSpfwCAAAAoGQpvwAAAAAoWcovAAAAAEqW8gsAAIDiW7So
aY0LNBktix0AAAAAUlGRjpWVBR92blVVwccEmhYzvwAAAAAoWcovAAAAAEqW8gsAAACAkqX8AgAA
AKBkKb8AAAAAKFnKLwAAAABKlvILAAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAASpbyCwAAAICS
pfwCAAAAoGQpvwAAAAAoWcovAAAAAEqW8uszzjnnnBx99NF5//33ix0FAAAAgAJQfv2vBx98MDNm
zMgRRxyRzp07FzsOAAAAAAWg/Ery0Ucf5ZprrknPnj0zYsSIYscBAAAAoECUX0muv/76LFy4MCee
eGKxowAAAABQQM2+/HrllVcybty4HHbYYdliiy2KHQcAAACAAmrW5VdtbW2uuOKKbLPNNjnooIOK
HQcAAACAAmtZ7ADFNG7cuMyaNSs9evTIj370o1RXV6dLly7Za6+9MnLkyLRs2ax/PQAAAABNXrOd
+fXJJ5/k5ptvTpJUV1dnwIAB+drXvpYWLVrkuuuuy/nnn5/FixcXOSUAAAAA66PZTm269957U11d
na9+9av5wQ9+kIqKiiTLLoW89tprc+edd2b06NH51re+VeSkAAAAAKyrZjvz6+GHH05lZWW+//3v
1xVfSVJWVpajjjoqW2+9dcaPH1/EhAAAAACsr2Zbfr311lvp3bt3WrVqtdK2srKy9OvXL/Pmzcv8
+fOLkA4AAACAQmi25dfSpUvXuKB9eXl5kqRFixYNFQkAAACAAmu25deWW26Z6dOnp7a2dpXbn3vu
uXTs2DHt2rVr4GQAAAAAFEqzLb/22WefvPvuu7nllltW2nbfffdlxowZGTZsWBGSAQAAAFAozfZu
j8OHD8/06dNz66235oUXXkj//v1TXl6eZ599NlOnTs2OO+6Yb3zjG8WOCQAAAMB6aLblV4sWLXLK
Kadk5513zrhx43LjjTemtrY2W265ZY477rjsu+++KStrthPjAAAAAEpCsy2/lttrr72y1157FTsG
AAAAAPXA1CYAAAAASpbyCwAAAICSpfwCAAAAoGQpvwAAAAAoWcovAAAAAEqW8gsAAACAkqX8AgAA
AKBkKb8AAAAAKFnKLwAAAABKlvILAAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAASpbyCwAAAICS
pfwCAAAAoGQpvwAAAAAoWcovAAAAAEqW8gsAAACAkqX8AgAAAKBkKb8AAAAAKFnKLwAAAABKlvIL
AABKwaJFxq3PcQFosloWOwAAAFAAFRXpWFlZ8GHnVlUVfMwkTS8vAE2WmV8AAAAAlCzlFwAAAAAl
S/kFAAAAQMlSfgEAAABQspRfAAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACULOUX
AEBTtGhR0xoXAKBIWhY7AAAA66CiIh0rKws+7NyqqoKPCQBQTGZ+AQAAAFCylF8AAAAAlCzlFwAA
AAAlS/kFAAAAQMlSfgEAAABQspRfAAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACU
LOUXAAAAACVL+QUAAABAyVJ+AQAAAFCylF8AAAAAlCzlFwAAAAAlS/kFAAAAQMlSfgEAAABQspRf
AAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAFDqFi1qWuNCAbUsdgAAAACgnlVUpGNl
ZcGHnVtVVfAxodDM/AIAAACgZCm/AAAAAChZyq9/8fbbb+eoo47K4YcfnlmzZhU7TuPiGnEAAACg
ibHm17+4/PLL06ZNm9TU1BQ7SuPjGnEAAACgiTHz6zMmTJiQ1157LQcffHCxowAAAABQAGZ+/a/5
8+fn6quvzhFHHJFWrVoVOw4AAAAABWDm1/+6+uqr07lz5+y7777FjgIAAABAgSi/kkyfPj0PPfRQ
jj/++GJHAQAAAKCAmn35tXjx4lx++eXZe++906NHj2LHAQAAAKCAmn35NWbMmMyfPz9HHnlksaMA
AAAAUGDNuvx65513MmbMmBxxxBFp165dseMAAAAAUGDNuvy64oor0rVr1+y9997FjgIAAABAPWhZ
7ADFMmfOnEybNi39+/fPjTfeuMK2119/PUly7733pkOHDtl9992zzTbbFCElAAAAAOuj2ZZftbW1
SZLHH388jz/++Cr3eeCBB5Ikm2++ufILAAAAoAlqtuVX586dV5rxtdyECRNyySWX5L//+7/TvXv3
Bk4GAAAAQKE06zW/AAAAAChtyi8AAAAASpbyCwAAAICS1WzX/FqTIUOGZMiQIcWOAQAAAMB6MvML
AAAAgJKl/AIAAACgZLnskbW3aFHmVlXVy7ipqCj8uAAAAECzp/xi7VVUpLKyY8GHraqaW/AxAQAA
ABKXPQIAAABQwpRfAAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACULOUXpWvRoqY1
LgAAAFBwLYsdAOpNRUU6VlYWfNi5VVUFHxMAAACoH2Z+AQAAAFCylF8AAAAAlCzlFwAAAAAlS/kF
AAAAQMlSfgEAAABQspRfAAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACULOUXAAAA
ACVL+QUAAABAyVJ+AQAAAFCylF8AAAAAlCzlFwAAAAAlS/kFAAAAQMlSfgEAAABQspRfAAAAAJQs
5RcAAAAAJUv5BQAAAEDJUn4BAAAAULKUXwAAAACULOUXAAAAACVL+QUAAABAyVJ+AQAAAFCylF8A
AAAAlCzlFwAAAAAlS/kFAAAAQMlSfgEAAABQspRfAAAAAJQs5RcAAAAAJUv5BQAAAEDJUn4BAAAA
ULKUXwAAAACULOUXAAAAACVL+QUAAABAyVJ+ATRWixY1rXEBAAAaoZbFDgDAalRUpGNlZcGHnVtV
VfAxAQAAGiszvwAAAAAoWcovAAAAAEqW8gsAAACAkqX8AgAAAKBkKb8AAAAAKFnKLwAAAABKlvIL
AAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAASlbLYgcotqeeeiq333573njjjXz88cfZcssts8ce
e2T//fdPy5bN/tcDAAA0RYsWJRUVTWdcgHrUrNudMWPG5Prrr89WW22VAw44IK1atcq0adNyzTXX
5Mknn8zZZ5+dsjKT4wAAgCamoiIdKysLPuzcqqqCjwlQ35pt+fXGG2/k+uuvT58+fXLWWWfVlVwj
RozInXfemauvvjr3339/hg0bVuSkAAAAAKyrZjut6bXXXsvWW2+do446aqXZXSNHjkzr1q3zzDPP
FCkdAAAAAIXQbGd+7bnnntlzzz1Xua1FixZp27ZtPv300wZOBQAAAEAhNdvya03efPPNzJ07d7Xl
GE3EokX1syaBRT4BAACgyVB+/YulS5dm1KhRKSsry/Dhw4sdh/VRUZHKyo4FH7aqam7BxwQAAADq
R7Nd82t1rrrqqjz77LMZOXJkOnfuXOw4AAAANEaLFjWtcaEZM/PrM2644Ybcfffd6dOnT4488shi
xwEAAKCxqqhIx8rKgg9bL0u3QDNn5tf/uu2223Lbbbdlhx12yBlnnLHSHSABAAAAaHo0PEnGjh2b
G264Idtvv33OPPPMtGrVqtiRAAAAACiAZl9+3X///Rk1alS22247xRcAAABAiWnW5dekSZNy2WWX
pVevXjnrrLPSunXrYkcCAAAAoICabfk1ZcqUXHzxxenZs6fiCwAAAKBENdu7Pf7+979Py5YtM2jQ
oEyePHmV+7Rp0ya77757AycDAAAAoFCabfm1ZMmSLFmyJFddddVq99l0002VXwAAAABNWLMtv268
8cZiRwAAAACgnjXbNb8AAAAAKH3KLwAAAABKlvILAADg8yxa1LTGBaBOs13zCwAAYK1VVKRjZWXB
h51bVVXwMQFYkZlfAAAAAJQs5RcAAAAAJUv5Baw7a18AAADQyFnzC1h31r4AAACgkTPzCwAAAICS
pfwCoDBcBgsAADRCLnsEoDBcBgsAADRCZn4BAAAAULKUXwAAAACULOUXAM2TNcoAAKBZsOYXAM2T
NcoAAKBZMPMLAAAAgJKl/AIAAACgZCm/AAAAAChZyi8AAAAASpbyCwAAAICSpfwCAAAAoGQpv4Dm
Y9GipjUu0LAcI+qX3y8AUCQtix0AoMFUVKRjZWXBh51bVVXwMYEicIyoX36/AECRmPkFAAAAQMlS
fgEAAABQspRfAAAAAOujKa5t2RQzryNrfgEAAACsj6a4tmVTzLyOlF/QWCxaVH8HiUWLkoqK+hkb
AAAAGjHlFzQWFRWprOxYL0NXVc2tl3EBAACgsbPmFwBQP5rROhIAADReZn4BAPWjGa0jAQBA42Xm
FwAAAAAlS/kFAACr4tJdgOJxDKaAXPYIAACr4tJdgOJxDKaAzPwCAAAAoGQpvwAAAAAoWcovAAAA
AEqW8gsAAACAkmXBe2DdLVpUPwtGLlqUVFQUflwAAACaHeUXsO4qKlJZ2bHgw1ZVzS34mAAAADRP
LnsEgKZi0aKmNS4AADQCZn4BQFNRUZGOlZUFH7ZeLl8GAIBGwswvAAAAAEqWmV9A82GBfgAAgGZH
+QU0H01tgf6mVtY1tbwAAECzoPwCaKyaWlnX1PIq6wAAoFlQfgHQPDW1sg4AAFgnyi8AaCrMVgMA
gC9M+QUATYXZagAA8IUpvwCA+tHUZqo1tbwAAKwV5RcAUD+a2ky1ppYXAIC1UlbsAAAAAABQX8z8
AgBoilymCQCwVpRfAABNUVO7TLMplnVNLXNTywsADUT5BQBA/WtqZV3S9DI3tbwA0ECUXwAAQMMz
Uw2ABqL8AgAAGl5Tm6mmrANospRfAAAAn0dZVzeusg5oapRfAAAApaaplXVJ0yvs5K0bV940vbzN
jPILAACA4mtqhZ28SeSt09TyJs2qsFN+JXnxxRczevTozJo1K5988kk222yzDB8+PMOHDy92NAAA
AIDCa4qF3Tpq9uXXlClT8rvf/S5bbLFFRo4cmTZt2uT555/PFVdckZkzZ+bEE08sdkQAAAAA1lGz
Lr+qq6tz6aWXZrvttsvPf/7zlJeXJ0n222+/3Hnnnbn66quz8847Z/fddy9yUgAAAADWRVmxAxTT
Aw88kI8++ijHH398XfG13AEHHJCtttoqd9xxR5HSAQAAALC+mnX59cQTT6Rr167ZaqutVrl94MCB
mTlzZmpqaho4GQAAAACF0KzLr9dffz3bbrvtard369atbj8AAAAAmp4WS5cuXVrsEMWwePHiHHXU
UTnkkENy+OGHr3KfV155JWeddVZOPfXUtVr3a/z48YWOCQAAAECSffbZZ52e12xnfi2/lLF169ar
3WeDDTZIsmxhfAAAAACanmZ9t8dCW9cGEgAAAID60WxnfrVr1y5J8sknn6x2n4ULFyZJ2rdv3yCZ
AAAAACisZlt+tWzZMm3atMm8efNWu8/ybRtttFFDxQIAAACggJpt+ZUkXbt2zcyZM1e7/dVXX63b
DwAAAICmp1mXX7vuumtmz56dN998c6VtS5cuzSOPPJIePXrUXSIJAAAAQNPSrMuvoUOHZsMNN8wV
V1yRxYsXr7DtzjvvzFtvvZUDDjigSOkAAAAAWF8tli5durTYIYppypQp+d3vfpctttgie+65Z1q3
bp3p06dnypQp2WuvvfJv//ZvxY4IAAAAwDpq9uVXkrz00ku59dZb88orr+TTTz/N5ptvnmHDhmX4
8OHFjgYAAADAelB+AQAAAFCymvWaXwAAAACUNuUXAAAAACVL+QUAAABAyWpZ7ACUlg8++CAdO3ZM
Wdk/e9VHH300U6dOTZs2bbL//vtnq622KmJCGtrHH3+cCRMm5M0338yiRYtW2v7pp5+muro6Z599
dhHSwdr58MMP1/j63W677YqQCmDdLViwIDNnzkx1dXV22GGHVFZWFjsSUCS1tbV5+umn88Ybb6z2
fGf+/Pn54Q9/WIR0q1dbW7vC587Vee6559KnT58GSERjpvxqIubNm5fq6uq0b98+HTp0KHacVZo9
e3bOPvvsHHLIITn44IOTJGPHjs2oUaPSpk2bfPLJJ3n44Ydz7rnnZptttilq1nfffTd///vf89xz
z2X+/Plp3759evfunZEjR2azzTYrarY1aWpF0pw5c3LOOedkzpw5adeuXWpqatK+ffssXrw4CxYs
SJJ8+ctfTvv27YucdEULFizI22+/nU8//XSlbYsWLUp1dXX23HPPIiRbZvr06Wu1X1lZWTbeeONs
uummadmy8Rzu33333YwbNy4vvvhiqqurc8IJJ2T77bfP22+/nY4dO2aDDTYodsQ6d911V0aPHp3q
6uo17nfjjTc2UKJlJkyYkBYtWqzXGHvttVeB0hRGYygY//SnP6337/XEE08sUJr6tXjx4pSXl6/3
/++6OO+889Z7jHPOOacASZqnjz76KH/9618zceLELFmyJEly1llnpbKyMjfddFM233zzor7HfVGL
Fy9OdXV1oyjvFi9enPfffz8ffvhhVndPsR122KGBU63fsW3p0qVp0aJFkzm2JY3jNdGUztlramry
X//1X5k1a9Zq96msrEy7du0aMNXaufjii3PSSSetcZ+pU6fm97//fa655poGSvX5mtK5cLLqkvEf
//hHnnvuubRp0yb9+vVLq1atipRu7TWeT0Os0qRJkzJ69Oi89dZbdY9tueWWOeSQQ7LHHnsUMdnK
rr/++rRq1Sr9+vVLsuyN59Zbb03Pnj1zzjnnpLq6Oj//+c8zevTo/Od//mfRck6ZMiUXXXRRlixZ
kl69eqV79+6pqqrKuHHjMmHChJx00kkZMGBA0fKtTlMskq699tp88sknueCCC9KxY8f84Ac/yI9+
9KPstNNOef/993Pttddm/vz5OeWUU4odNcmyA/s111yTu+66K7W1tWvct5gfDL7oB8fy8vLsuuuu
+c53vpMuXbrUU6q1M27cuFx55ZVp1apVNttss7z77rt1JeNll12WxYsX5/zzz1+rb/Hq27hx43LV
VVelX79+6dGjR2644YYccMAB2WSTTfLqq6/m4YcfzgEHHJCBAwc2eLZLLrlkvcdoLOVXYyoYn3/+
+Xr/GQ1t7Nix2X333es+BNbU1OSiiy7KM888k4qKinz961/PoYce2qCZln+YXlU5sHTp0syYMSNJ
stVWW6VTp06ZM2dO3nzzzSTJdtttV/Tjw0knnZShQ4dmr732yiabbFLULF/Uxx9/nHPOOSdVVVX5
1re+lc6dO+cPf/hD3faamppccskl6dq1a7beeusiJv2nqVOn5tZbb83s2bOzePHi1e7X0F9CfFZt
bW1uvPHGjB07dpVfnH1WMXJ+3rFtzpw5SZK2bdumY8eOqaqqysKFC5MknTp1qvd8X1Rjf000tXP2
a6+9Nm+99VZOP/30dO3aNSeddFLOPPPM9OzZM6+++mpuuOGGbLbZZo2yAJ00aVLKy8vzb//2b6vc
/vDDD+ePf/xjoyjHl2tK58LJsveF888/P9/85jfrPudPmzYtF1xwQV3urbfeOmeffXajeU2vjvKr
Ebv22mtz++23Z6uttsphhx2Wjh07Zu7cuZk8eXIuuuiivP766znqqKOKHbPOjBkzMnLkyGy55ZZJ
kldeeSU1NTU5+OCD07Jly1RWVmbvvffOvffeW7SMb7/9di688MJ07949J5988gonrR988EF+//vf
56KLLsoFF1yQLbbYomg5V6WpFUnJstfEPvvsk2222abuJGr5N4+dO3fOySefnHPOOSc33nhjjj76
6GJGTZLcfvvt+fvf/54RI0akW7duufjii3PUUUdl8803z2uvvZa77ror++67bw444ICi5vzFL36R
l156KTfccEN22223DBo0KJWVlZk7d24effTRPProozn44IOz4447Zt68eZk9e3bGjx+fn//85zn/
/POLNrvx+eefz+WXX54RI0bkiCOOyIIFC1aYPv+9730vZ511Vu66666MHDmyKBk/a9y4cdlpp53y
4x//OPPnz88NN9yQvn37Zscdd0yS7L///jnvvPOy0047NXi2iy66aLXbHnnkkdxwww3Zd999M2TI
kGyyySb54IMPMmHChNx33305/PDDM3jw4AZMu3qNrWC8+OKLG+TnNJRx48Zl1KhRmT9/fg4//PAk
yeWXX55nnnkmQ4cOTVVVVW666aZ07Ngxe++9d4PlOvfcc1f5eG1tbX77299ms802y8knn5zu3bvX
bZs1a1b+8Ic/ZMMNN8zpp5/eQElX78Ybb8xNN92UPn36ZMiQIRkwYEAqKiqKHetz3XbbbfnHP/6R
X//61+ncuXPmzZu3wvZjjz0206ZNy5gxY/If//EfRUr5T1OmTMlvf/vbdOvWLUOHDs19992XPfbY
I+3bt8+rr76aF154ISNGjMj2229f1Jw333xzxowZkx133LGubG5Mr4c1Hdv+8pe/ZPLkyTn++OMz
YMCAlJWVpba2NlOmTMkVV1yRXXbZJccff3wDpl2zpvCaaGrn7M8991z23nvv9O/fv66ca9GiRdq2
bZuvfOUrOfvss3PmmWdmzJgxOeSQQ4qcdkWHHHJIRo8enfLy8pUuybz//vvz5z//OZtvvnl+/vOf
FynhiprauXCybILL7NmzV5jBeMUVV6R9+/Y5+eSTM2fOnFx66aUZPXp0jj322OIFXQvKr0bqWMrh
UwAAIABJREFUmWeeye23355999033/ve91aYqnzooYfmyiuvzO23354+ffqkb9++RUz6T0uXLl2h
7X3uuefSokWL9O7du+6x9u3b56OPPipGvCTJ3/72t7Rt2zann376Ss30JptsktNPPz2nn356/va3
vzW6bzeaWpGUJNXV1encuXOSpHXr1mnRokXmz59ft72srCwDBw7MnXfe2SgyT5w4MYMGDcoxxxyT
mpqaJEnXrl2z4447pn///tlrr71y5plnplu3btltt92KlnOTTTbJbbfdlqOPPnqlIm633XZLz549
c/XVV2fAgAEZPHhwBg8enP322y8/+9nPctVVV+WnP/1pUXKPGTMmO+ywQ4455pgkqTvBWq5r164Z
NGhQJk6c2Cje8N9666189atfTZK0adMmSeouEUqS7t27Z/jw4bnppptW+2G+viz/d/WvZs2alRtv
vDH/3//3/2XYsGF1j2+88cbp3r17vvSlL+Uvf/lL+vbtm0033bSh4q5WYy4YS8E999yT7bbbLt/8
5jeTLDsmT5kyJfvvv3/dv8P/+q//yn333deg5dfqjB8/Pk8//XQuuOCCldYH7d69e04//fT89Kc/
zfjx4zN8+PAipVxWPr/00kuZNGlSHn300Vx44YVp27ZtBg8enCFDhqRHjx5Fy/Z5Hnnkkey9996r
PYaUlZVl0KBBue+++xo42ardcccd6dmzZ84777zU1NTkvvvuy1e/+tW6Y8TUqVPzxz/+MUOGDClq
zokTJ2bnnXcu2vvrunr00Udz33335bzzzkuvXr3qHi8rK8vuu++eDh065Nxzz83222+fQYMGFTHp
PzWF10RTO2efO3du3TF3+fnO8txJ0qpVqwwZMiTjxo1rdOXX4YcfnvLy8tx8880pKyvL97///ST/
XHqne/fuOeuss7LRRhsVOekyTe1cOFn2b2rfffet+yJy9uzZeeedd/L9738/PXv2TM+ePfPSSy9l
6tSpjb78ahxz6VjJXXfdla233jrHHnvsStfol5WV5ZhjjsnWW2+du+66q0gJV7b11lvnscceS7Ls
A+KkSZPSvXv3uoNokrz88surPeFqCM8++2yGDh262imZG2+8cfbee+88++yzDZzs861tkfToo48W
K+JK2rdvX3cpU1lZWTp37pw33nhjhX2WLl36uZc7NZT33nuv7uRv+ev2s99ydO7cOV/72tcyZsyY
ouRb7uabb86222672hloI0aMSI8ePXLrrbfWPdaxY8cccsgheeaZZ+qKvYb28ssv152crs622267
wmXexdSyZcu6b+4rKirStm3bvPfeeyvs06VLlzWukdHQbrvttvTs2XOF4uuzhg8fnl69euW2225r
4GSr9tZbb9W9Jj6vYOSLe+eddzJ48OC6SydeeOGF1NbWrnDZ9i677JK33367WBFX8MADD2TIkCGr
vTHOl770pey1114ZP358AydbWc+ePfO9730vl156ac4888zssssueeihh/Kzn/0sp512Wu644458
+OGHxY65kqqqqs+d2d6hQ4eivU/8q9mzZ6d///4pKyurO0Z89nLZfv36ZY899sh1111XrIhJlpUH
TbGkv+eeezJo0KAViq/P2m677TJo0KDcc889DZxs9ZrCa6KpnbO3a9euroQpKyvLJptsUnep+XIV
FRV1l8c2NocddliOOOKIjBs3Lv/v//2/3HrrrRk1alR69+6dc845p9EUX0nTOxdOlhV0X/rSl+r+
vnzt4V133bXusS233DJz585t8GxflPKrkXr55ZczePDglJeXr3J7y5YtM3jw4Lz00ksNnGz1Djro
oEybNi2nnXZa/vM//zPvvPNORowYUbd90qRJmThxYlHXKvvsm9HqbLrppo3yhLWpFUlJ0qtXrzz1
1FN1f99xxx3z0EMP1b3BLl68OI888kjR16FarnXr1nX/3bJly7Rr126lsqNjx44rnRA0tGeffbbu
mvvV2W233erWzVluhx12SG1tbd599936jLdatbW1K5Thq9unsaxxsPxy1+W6deuWadOmrbDP22+/
3agW+HzhhRfSv3//Ne7Tv3//RrO2VVMqGGtra/Pkk0/mb3/7W2655ZaV/lx33XW57LLLih1zBe3a
tVvhA9fTTz+dNm3apFu3bnWPLVmypCiL3q/KG2+8sUK2VenWrVvRj8GfVV5enp122iknnXRSLr/8
8px00klp3759rrnmmpxwwgn51a9+lSlTpqxQ6hZT+/bt8/77769xn3fffTcdO3ZsoESfr23btkmW
zT5p3br1Svm32Wabop8Pd+nSpahXNqyrV1999XNvJtKrV69GcQz+rMb+mmhq5+zbbrvtCuc3vXv3
zqRJk1ZYT+2JJ55olOu/Lff1r3893/nOd3LPPffkpptuyoABA3LmmWd+7nlnQ2tq58LJsi//X3nl
lbq/P/bYY+nSpcsK7xPvvfdeo1/vK1F+NVoff/zx595Ro127dvn4448bKNHn69evX0455ZS0atUq
FRUVOf7441coul588cVsv/32dXeCLIZ27dqlqqpqjftUVVU1qm8IlmtqRVKS7LfffnnxxRczc+bM
JMmBBx6Yjz76KGeccUYuueSS/OQnP8nMmTOz//77FznpMltttdUKB/cvf/nLmTp16gr7zJo1q+6k
q1gWLFjwuXdvbNmy5Up3F1r+nM9bjLe+dO3atW526OpMnTp1hXV+iql///555JFH6mZADBkyJFOn
Ts3YsWMzZ86cTJw4MePGjVvh0u5i+/jjj1cocVelVatWRXsN/KumUjDW1NTkZz/7WS644IJcd911
ufnmm1f6M3HixLpjXWPRt2/fjBs3LjNnzsz06dPz8MMPZ+edd64ru5YsWZKJEydm2223LXLSZSoq
Kla41GZVFi5c2KjWUlpu+UL9Tz31VN3rYLPNNsvrr7+e3/72tznxxBNz5513rvYOgA1ll112yX33
3bfaGRzV1dUZP378537B0lA6d+68wszErl27rlRq/OMf/2joWCs58MADM3bs2JUKjsauRYsWa1ww
Pll2nGhsH8Qb+2uiqZ2zDxs2LM8880xdyTly5Mi89957Oeecc3LLLbfk//yf/1N39UyxzJkz53P/
7L777hk5cmR23HHHHH300Zk3b94K2xuDpnYunCRDhw7N/fffn7/85S/505/+lOnTp9ctC5Ikb775
ZsaNG5edd965iCnXjjW/GqlOnTp97hvoG2+80ega+IEDB652YeKjjz46ZWVln/uhvT717t07Dzzw
QEaOHLnKAmPBggV54IEHGtWH2eX222+/nHPOOZk5c2Z69OiRAw88MA8++GDOOOOMfOUrX8nMmTPz
5ptv1l3r3hhst912Ofvss+vWP+ncuXPOOuusXH311XnkkUey4YYb5phjjlntJVoNbeDAgbn22mtz
+OGHp1OnThk2bFh+/etfZ9SoUenfv39mzJiRCRMmFPXNP1n2e3z66afzta99bbX7PPfcc3U3n1hu
+TejxfpmZvjw4bn44oszZsyYfP3rX19p+7hx4/L888/n1FNPLUK6le233351l4m2a9cue+yxR6ZM
mZJRo0Zl1KhRSZbNFD3yyCOLnPSfunTpkpkzZ65xPaRXXnmlaDc9+Ff9+/fP7bffniOOOCLt2rXL
kCFDcvHFF2fs2LEZMGBAXnjhhYwbN26FqfXF0FTvhHXYYYfl+eefz89+9rMky74A+ta3vlW3/dJL
L81rr72Ws846q1gRV7Dttttm8uTJOeCAA1Y5G23p0qWZPHlyo1pT67XXXsvEiRMzadKkzJs3L23a
tMkee+yRoUOHpmfPnlm6dGnd6/jqq6/OK6+8kpNPPrloeb/xjW/k0Ucfzfnnn5+TTjpphfPIt956
KxdeeGHKy8tXeYwuhl122SUTJkzIt7/97bRq1SqDBw/OqFGjsttuu6Vfv3558cUXM27cuPTs2bOo
OYcOHZrq6ur84he/yC677JJu3bqlXbt2q3wdN5Y77SbLPog/+eSTK1yp8a+eeOKJbLPNNg0X6nM0
hddEUztn32WXXXLiiSema9euSZa9Lk4++eRceeWVufnmm1NeXp4RI0bkwAMPLFrGH/3oR19o/5NO
Ommlx4p5R9jlmtq5cLJsOZX33nsv9913X5YuXZrdd999hcks119/fVq1arXC+UVj1WJpsb+CYpWu
ueaa3HPPPfmf//mflT7AJssa1jPPPDNf+9rX8p3vfKcICZum119/PT/96U+zww475MQTT1zhpG/O
nDm55JJL8sILL+R//ud/Gs0tvj9r2rRpKxRzM2bMyNVXX53Zs2dnww03zEEHHbTGExjWbPHixbns
ssty1FFHpUOHDkmSUaNGZezYsXX7bLvttvnpT39a1Km9t956a2666ab88Ic/XOUi1RMmTMgll1yS
7373uysslnnppZfm8ccfz1/+8peGjLuCP/7xj5k4cWJ22mmn9O3bN3/9618zYsSIujtVDh06NCec
cELR8q2Np59+uu7f3MCBA4s+E/Czbrnlltx6660577zzVnni/+KLL+bcc8/NYYcdlkMPPbQICVe0
cOHCXHDBBTnhhBOy2Wabpba2Nv/3//7fPP7443X7bLrppvnFL35R1PUi//3f/z39+vXLsccemwUL
FuS4447LWWedVbdux6effpozzzwzgwcPbnSLAVdXV+fRRx/Np59+moEDB67wvjdlypRUV1c3mi8g
pk6dml//+tc56KCDcuSRR65QHCxdujTXXXddbr/99pxxxhlFLUSrqqoyadKkPPTQQ3VfVPbq1St7
7713Bg4cuNrZl/fff38uu+yyXHTRRUV9Pc+cOTO//e1vU1VVVXcn8Xbt2qWmpiadOnXKaaed1mhm
HVRXV+fss8/Oaaedlq233jqLFi3Keeedl5dffjktWrTI0qVL07Zt25xzzjlFLWgWL16ciy66KJMn
T/7cfRvDB/Dllp8vHHfccdlvv/1W2n733XfnyiuvzI9+9KMVZnoUU1N5TZTKOXt1dXVat279ubPK
69uECRPWe4xi3xhjuaZ6Lrxw4cIsXrx4pSukls+qa2yTclZF+dVIffjhhzn99NNTUVGR7373u9l9
992TLDv5e+yxxzJq1KgsWbIkv/nNbxrd9bXTp0/PPffckxkzZqS6ujo//elPs+OOO+all15Kp06d
UllZWdR8EyZMyGWXXZaWLVv+/+ydeVxN+f/HX2032rQroUWyFIVKorQp0pAsZewz38nMmDHWsUti
7GuMnzGGrE1JTYjqym1RyT6tmmRJEWm5pZLc+/ujxz3fru6SwT2f49vzL3POyX1rzj3n83m93+/X
G1ZWVtDW1kZlZSVycnLw9u1bzJ07l6isXAf0U1paSi1WLC0txXrxyYrXr19j7dq1ePjwIZydneHl
5QVdXV1UVFQgISEBycnJMDc3R3BwMFVpefv2bWzZsgUTJkyAv78/bbHz+XxcunQJMTExqK6upo5r
a2tjwoQJ8PT0pC22z4GGhgYsX74cNTU1mDRpElxdXaGqqopXr17hypUriIyMhKamJrZs2UKcD0Zr
SBMYp02bhjlz5sDDwwM8Hg9Tp07FwoULqXcz0DKBjM1mY8+ePTRGynx+++03XL58GSYmJnB2dqbE
mZSUFDx8+BAeHh60V0sEBASAz+ejS5cuGDlyJFxdXaWayAPAy5cv8f3332Pt2rWwtLSUQaTief36
NVJTU5Gbm4va2lqoq6tjwIABGDFiBO1txu/S3Nws1DXQ1NSE5ORk6hnh7u5O+/TaEydO4Ny5c/Dw
8MCwYcOgra0tttOBTuHzXXg8HrZu3Yrbt29jyJAhcHFxob5zHA4HN2/exODBg/Hzzz8T4w0IMOOe
6EA2cLlc4vbC0uhYC9NHh/hFMA8ePMD27dtRUVEBFRUVaGpqorq6GvX19dDV1cXSpUuJKkMGgPDw
cERHR6Nbt24wMjLC9evXqez4unXrUFVVha1bt9KePXj06BFiY2ORk5NDLfqsrKwwfvx4Iiu+gJYp
biNHjqRdPBQFh8P54EVRh+D4frx69QqHDx/G1atX25xzdHREYGAgOnfuTB07fPgwioqKEBwcTMTG
hs/n4+nTp9T3rz0bxw7ax4sXL7B7927Kd0hRUZHydDE3N8fChQuJyc5VVFRATU1NohBXXV1NDaCg
i7lz52Ls2LEYN24cAOD777+Hm5sbJk2aRF1z6dIlHD9+HCdPnqQrzM+GhIQEREdHC3l0krQp2LJl
C9zc3DBkyJD38kKqqKhAdHQ0fH19Ozbmnxlz585F//79aW1p/bc0Nzfjzz//xMWLF4W8QpWUlDBm
zBj4+/vTalnSwceFy+Xi9evXn80zyN/fX2wnBOmQthb+GL5opKwvxdEhfhFOU1MT0tLSkJ2dLZSZ
c3JyIs7wNTMzE7t27cKsWbPg7e2N6upqzJ07lxK/KioqsHjxYvj4+GDy5Mm0xBgbGwt7e3ti/G7e
B39/f8jLy2PgwIFwdXWFra0tMYuRj1FJRFIbAJMoLy9HTk4OampqoKGhASsrK7H3d0NDg5AgRgel
paUwMDAQWT3X3NyM8vJyka3en5qDBw/i5cuX+Pnnn6nvVWRkZLtF3dYiCClkZ2cjJyeHyopaWVlh
wIABdIclhL+/P77//nuJ4vfx48eRk5ODLVu2yDAyYbZu3Yrm5mbKG+vXX39FYWEhtm/fTt0vGzdu
xPPnz4mq/Pr111+l3sN8Ph8NDQ1YvHixjKJqP2VlZcRsCjroQBIzZszA9OnTJXpxkk5jYyPu3btH
fef69OlDdIUwKZSUlKChoYF237n28v3334PL5eL//u//qKTSvHnzqJZRUQjOycnJYd++fbIMVyqB
gYEYN24cfHx86A6l3ZC6Fv5f2M+RsXPuQCwsFgtubm6MULPj4uIwZMgQsf3rurq6cHJyQmZmJm3i
1+nTp6GmpsZI8WvHjh1IS0vD1atXsWvXLsqA29XVlfYKwNDQULHn0tPTER4eDk9PT7i4uEBHRwcv
X74Eh8NBYmIi/P39MXz4cBlG28LGjRtRUVGBLVu2UJVQ7dkoCqDT2HrmzJn49ttv4ejoiK5du7Z7
WhDdwtfLly+xZs0ajBkzRuQzIDIyEmw2G9u2bZN5heOdO3fA5XKFJu2eOXOm3T9Povg1YMAA4sSu
f0PXrl0RHx9PawweHh7YsmULiouLYWZmhrFjxyI1NRVBQUEYNGgQCgoKkJ2djalTp9Ia57vk5ua2
Ocbj8VBXV0dN/NTT0yOiGlQUHYLXp6OiogKlpaWoqakRu+GVdUX22bNn8fLlS3z99ddURd37VJbT
WUFubm5O+4TBD6VTp06UjyEpMOGeWLduHerr63Hw4EGq/e59RARZiwWCgoTWwmb//v3b9bMktb4K
GDRoEJKTk+Hp6Unsu6w1JK+FJe1tSktLERsbi549e8LZ2Znaz6WkpODx48cYN24cLYLd+9IhfhHM
oUOH4OLigt69e7c5d+/ePaSlpeHrr7+mITLRPHz4UOqUh549e34Uw8J/i4GBAZ4+fUrb538I3bt3
R0BAAAICAlBYWIi0tDSkp6fj0qVLMDExgYuLC5ycnGhpDRLnX1FcXIw///wT//nPf4QMlbt06QIz
MzP06NEDhw8fxsCBA2Vefl1VVQUul4u3b99Sx0RtFElESUkJXC6X7jDem8jISCgpKYnNjI8ZMwZX
rlxBRESEzI0+N23ahKamJqHvD+nZK6YiKKsXbLhra2tFltrz+Xy8fPkSSUlJUFVVlWmM78KESVii
2L9/v9hzhYWFCAsLg5aWFhYtWiTDqJiDtGoIcZBcJfH69WscOnQIqampUq+VtZh04cIFvHr1Cv7+
/pSIcODAgXb/PJ3i1+TJk7FlyxYMHjy43UJCB9Jhwj3h7e2NyspKIRNwEhNiAubOndvm2PtOUiSJ
GTNmYOPGjdi8eTNmz55NrH2NAJLXwuIGAlRXV+PEiRNwc3NDYGCgkAg6duxY/Pbbb0hKSsKOHTtk
FOm/p0P8IpTk5GSw2Wz06tVLpPj16NEjJCQkoHfv3sRMX2mP70VjYyOtqvzYsWMRFhaGYcOGETPJ
6N9gYWEBCwsLzJ49G3///TfS0tIQHh6OEydOwNbWlpjxuNHR0bCwsBA7SWzUqFFIS0tDdHS0zFtu
Nm3ahLdv3wplviRtFEnC0tIS6enp8PLyIjILJ47bt2/D3d1drDGppqYm3N3dkZSUJOPIQE33/Bxo
bm5Geno6SktLhYxU34Wu6sV3F9nHjx/H8ePHxV4vLy8vcrEua95dFDo4OMDBwYGYSVjvi4WFBYKC
grB8+XKcO3dOaGw5neTk5CA6OholJSWoqakRe50sxOkPFTFIfD6fOnUKqampsLe3x8iRI6Gnp0d7
VbCAoKAg1NfXC70jJFWWk8Tz588xZMgQrF+/nhLA1NTURN4DpHmclpWVITY2Fk+ePEF1dbWQ2Eu3
kMuEe0LU5GS6Olz+F9m6dSsUFRWRn5+PpUuXQk1NDZ07d6buY7rv4XcheS0sjqioKKioqGDOnDlt
nmny8vL46quvkJubi6ioKKIKc0TRIX4RSnx8PGxtbcW2O3p6euLOnTuIj48nRvzq1asXUlNT4e3t
LVII4/P5yMjIoLUn3srKCu7u7li/fj3c3d3Rr18/sVPEmJC5k5eXh42NDUxNTdG9e3dERka2a8y2
rMjPz4evr6/Ea+zs7HD27FkZRfRflJSUiPPNay8zZszAunXrsG/fPsyaNYsxU27q6uqklnDr6Oig
rq5ORhFJJjg4GL6+vhLbQGJiYlBXV4fp06fLMDLxlJeXY8OGDXj+/DkAQFVVlZiNrYDWotuBAwfg
5uaGPn36iLxWSUkJvXr1IrpVnSnfP1GwWCy4uLiAzWYTIX6lp6djz549UFJSwqBBg6Crq0vrpE8m
V0OIIysrC/b29kR6vImq2CBpMqIkWlcj3bx5Ezdv3hR7LUniV3Z2Nn755RfweDyYmJjAxMRE5DuD
LiGXqffEpk2b4Ovri379+tEdymdP165dIScnJ3WdQEoygmlrYQC4desWXF1dxRawsFgsODs7Iykp
qUP86uDfUVJSIrb0UIC1tTVOnDghm4DagY+PDzZv3owjR45gzpw5bc5HRESguLgYa9asoSG6FlpP
4Tl//jzOnz8v9lrSW54aGxtx7do1pKWlIScnBwAoM3xSaGxslFoNwWKxKO8ZkmhubkZxcTFqa2uh
oaEBMzMzkcaUdBAeHg4TExOkp6fj2rVrMDIyErtBDAoKknF04tHW1kZpaanEa0pLS6GlpSWjiCST
l5cn9TncqVMnxMbGEiN+nThxApWVlZgzZw6cnZ1pFQ7E0fp3euDAAfTt25eozaAo8vLy2nWdvLw8
unTpAj09PWIGkkiDxWJ9lAlPH4O//voLBgYGCAkJYbSoSDJcLhcDBw6kO4zPjh07djDCb+hdIiIi
oKGhgVWrVhHfLsYk8vLyYGdnxxjxS9Di3RpBtVTr/5aXl4empiYMDAwwdOhQ2NrayjrUNjAtScG0
tTDQ0vYoLR4tLS2J1dqkwIyV2f8gioqKUgWBpqYmohbXgwYNwoQJExAdHY2CggLKaDk5ORkREREo
KirC5MmTYWVlRVuMa9eupe2zPwZv377F7du3kZaWhps3b6KpqQmGhobw9/fHyJEjiXpQAi3ZmKKi
IowaNUrsNffv3yeqqoPH4yE6Ohrnz59HfX09dVxFRQU+Pj7w8/OjPXv08uVLyMnJCVXLiPKkoTvO
dxk8eDCSkpIwevRokSb9z549Q1JSEjHVrO3hyZMnQqPh6SY3NxceHh4YPXo03aG0i0mTJlE+WiQT
HBz8XtcrKChgyJAhmD59ersHUtABj8dDenq6zE11xVFaWopJkyZ1CF+fkG7duqG2tpbuMP4Vb968
kbi50tXVlWE0wnTv3p22z/4QHj58iPHjxzNW+CL1njAxMUFBQYFY2w/S6N+/P968eYOMjAywWCxY
WVlBS0sLVVVVyMnJQVNTE+zs7NC5c2dUV1cjOzsbKSkpsLe3x4IFC4hJDjMBJq6FNTU18ezZM4nX
lJeXE7cPFQU5ykkHQpiYmCArK0vi2NasrCziNg0BAQEwNzdHTEwM4uLiALS0MVhYWGD58uUYNGgQ
rfFZWlrS+vkfwqFDh5CZmYm6ujp06tSJmvRI8mjlYcOGISoqCu7u7iLjvHfvHlJSUogyBt2zZw8y
MzPRt29fuLq6QltbG5WVleBwOIiIiEBJSQkWLFhAa4zr1q2j9fP/LV988QWSk5OxYcMGzJ49G0OG
DKHO3bp1C0eOHIG8vDyt7VfvihwxMTFih3S8fPkS5eXlcHR0lEFk7aO5uZlRmxim+KKsXbsWhYWF
CA8Px9ChQ+Ho6AhtbW1UVVUhIyMDGRkZGD9+PKytrVFdXY3Hjx/j8uXLWL16NUJCQmgT+MVVrL1+
/RoVFRXgcDgoKiqCn5+fjCMTjaqqKpHViqKoqKjAxYsX8eTJE5HJyqamJtTW1mLv3r00RCceLy8v
REVFwdPTk5YBOf+GpKQkREdHU+3c4iC9Yp9EWCwWIz0vSb8npk6dio0bN6JPnz4SE8CkEBgYiJCQ
EPTv3x8LFy4USkBwuVzs2bMHT58+RUhICFRUVMDn83HlyhUcOnQIUVFRUgeedfBfmLAWfhcbGxsk
JSVhzJgxIpNllZWVSEpKwrBhw2iI7v2Q47/vCJsOZEJaWhpCQ0MxadIksWNQz5w5gx9++AFOTk40
RCidpqYm1NXVQU1NjZGl4KTh7+8PS0tLuLi4wMHBgRG/04aGBixfvhw1NTWYNGkSXF1doaqqilev
XuHKlSuIjIyEpqYmtmzZImQ8TxeC793UqVNFepVFR0cjPDwc8+fPx/Dhw2mIkPnk5+dj586d4HK5
UFVVRZcuXVBdXU0Z2i5evBh9+/alLb5169ZR5qj5+fno1q0bunTpIvJaJSUl9OnTB+NGcHJSAAAg
AElEQVTHjyfGPy44OBimpqaYOXMm3aEI8T6j6cVBZ2vks2fP8PPPP2PKlCkik1JxcXE4fvw4QkJC
YG5uDqBloqyglWj58uWyDhlAy3tDEiwWC97e3pgyZQoRmftDhw7hxYsXWLlyJd2hSOTx48cICgpC
c3MzDAwM8PjxY/Ts2RNycnJ4+vQpVSWho6Mj0gaCbsLCwnDz5k0EBATAysqK6Eq7S5cu4ciRI9DW
1oaDgwP09PTECqTS2tQ/Jb/++qvUZxyfz0dDQwNRfmt79uwBn8+nPan3PjDhnkhKSkJxcTEuX74M
ExMTiR7DJCSAY2JicOnSJWzbtk1oaqWA2tpaLFq0CM7OzpgxYwZ1PCwsDCkpKTh06FC7Bp99KoqL
ixETE4OSkhKR1fhNTU149eoVTp48SUN0bSF9Lfwuz58/x5IlS2BgYIBvv/1WaGhccXExDhw4gOfP
n2P79u3Q09OjMVLpdIhfhMLn87F7925kZmbCzMwMTk5O0NTURHV1NVJTU1FcXAwHBwdipvoBLYKc
vb29xGq09PR0AKCtUqK9GzA5OTmqp50UY83nz58TE8v78OLFC+zevRtFRUUAWlp6m5ubAQDm5uZY
uHAhra0KrQkODgafzxdbWSU4Jy8vT5SXFtNoaGhASkoK8vPzUVtbC3V1dfTr1w8jR44kQgQV4O/v
j++++47WDdX7kpOTg23btmHNmjWUCEMC0kSY9kBnVUdoaCgqKyslfu/XrFkDNTU1LFu2jDrGZrNx
+PBhHDp0iJYqm9zcXJHH5eTkoKGhAX19faISKVwuF6tWrYKtrS2mTZtGlLVDa7Zs2YLHjx8jJCQE
CgoKCAwMxIoVK2BjY4PGxkZERETgzp07WL9+PXHVVTNmzGi3zyYJlVQLFy6EsrIy1q9fT9S9+i6i
fId4PB7q6uqo37eenh5YLBZ27twp6/DE8vz5c6xYsQITJ06Et7c33eG0CybcE+/zziPhe7Zo0SIM
HTpUYtynT5/G1atXhSYm/vPPP1i9ejW2bdtGW9V5Xl4eNm7cCA0NDZiYmODWrVsYMGAAlJWV8ejR
I7x48QKurq7o3r27xI4qWcOUtbCAu3fvYteuXWhoaEDPnj2pttjHjx+jc+fOWLRoESP8JMlcVXQA
OTk5/PTTTzAzM8P58+cRFhZGndPQ0MCXX36JL774gsYI23LmzBno6+tLFL8EbQJ0iV+tp/G0FxMT
E/znP/9B7969P0FE7ae18EWyGfu76OnpYePGjcjOzkZOTg64XC40NDRgZWVF+cKRwoMHDySWbsvJ
ycHe3h4REREyjKot7fUfamhowObNmz9xNO9P586d4eXlBS8vL7pDkYiuri5xkxKl0alTJ7i5uSEo
KAguLi4YMGAA1NXVRYr+spxoS9po+vfl77//ljq5dujQoYiKihI61r9/f/B4PDx79owWMVJZWRk9
e/YkdoP4LpGRkTA2NkZcXBw4HA769OkDdXV1kRUFraeGypqioiJ4eXlBW1sbjY2NAP7rsdipUyfM
nDkTpaWlOHnyJObOnUtbnKLw8vKSOoiGJJ4/f44vv/yS+Ht4//79Ys8VFhYiLCwMWlpaWLRokQyj
kk5mZiaGDBmCsLAwJCYmUpWAot4ZJFQoAcy4J0gQtN6H8vJyqYloPT09VFVVCR0TeDzR6SMYFRUF
AwMDbNy4EU1NTfjmm2/g4+MDGxsb8Hg8XLp0CTExMcTcvwKYshYWYG1tjd27dyM+Ph7Z2dkoLy+H
hoYG/Pz84OXlxZj26Q7xi2AE/b7jxo1DWVkZpQobGRnRHdq/5u3bt+ByubR9fmhoKLKysnDy5El4
e3tj+PDhlHKdkZGBCxcuYPz48XBzc6PU7AsXLmD9+vUIDg4WKvOkAz6fj+joaJw7d66NGfsXX3yB
CRMmEGdyLmDAgAHEiV3vwufzpbavKSkpgcfjySgi0Qgm8LQu3OXz+eByuSgrKwMAWFhYiG3XI4Vn
z56hpqYGRkZGxFVHAJI3M6SyatUq6s9sNhtsNlvstbJcnDOxarU19fX1UquQFBUV27RbCH6Grom2
q1atwjfffMMY0+WMjAwoKytTm7CSkhKaIxJNQ0MDtelTVlaGvLw8qqurha4ZPHhwGzGUBEiZTNte
unTpQms71cfAwsICQUFBWL58Oc6dO0eUl0/rNrCysjJqDSEKUsSDz+GeIA0VFRWJ/++BljXbuy3S
dXV1AEBrpdKDBw8wbtw4dOrUqc0eSF5eHt7e3igqKsLx48eJ6phiIpqamvD39/8o1fx00SF+MQA5
OTliBa/IyEihTfj169fx4sWLNtfx+XxUVlYiLS2NVgGprq4OJ0+exI8//ihUfaalpQUzMzP06tUL
u3btQp8+fWBjYwMLCwuMGDECq1atQlhY2HtP/PrY7N27F+np6bCxscGwYcMoM/aMjAz8+eefePLk
CebPn09rjEzG2NgYhYWFEs1J//nnH5iYmMguKBFIMryvrKzEH3/8gaqqKuIyzEBL1WJMTAzi4+Mp
IXzlypWwtrYGm82GgYEBrRNhxVFTUyPWR4LL5RLjzbBs2TJGVXUwBX19fdy5c0dihjY7O7vNu1pg
xkyXp5K2tja1OWECv//+O90htAstLS1UVlYCaFmjGRoa4tGjR0LXvH79Gg0NDXSE91kxfPhwpKWl
YcyYMXSH8kGwWCy4uLiAzWYTJX4dO3aMce+Mz+WeIIkBAwaAzWZj1KhRIge0lJeXg81mtzE0z87O
hry8PLp16yarUNvw5s0byqdMWVkZioqK1PNZQL9+/RAeHk5HeGKpqKhAaWkpampqRE5sB+j1Ov1c
6RC/CKC5uRlv375l3MsHaGl1bM3169dx/fp1kdcqKirCwsKC1haAqKgoDB48WGzbpYODA2xsbBAb
GwsbGxsALdmMCRMmIDQ0FNXV1bSVdV69ehXp6ekizdhdXFwoM3ZbW1uips8xaSKWl5cXQkNDMWrU
KJHTKQsLC5GWlibS24MUtLW1sWjRIqxZswZRUVH48ssv6Q6Jorm5Gb/88gsKCgrg6uqKrl27CmWd
c3NzcezYMezcuZMYH7iLFy/i7NmzUitWSWlxGDx4MN0h/Cvq6+tRVlYm8hnx5s0bcLlcWoe7jBgx
AhEREUhKSoKbm1ub8xwOBzdu3GgzaCAtLQ1qamro3r27rEIVYtiwYUhMTIS7u7tIE+MO/h39+/dH
VlYWNZBoyJAhSEpKgre3N3R1dVFfX48rV67Q9v9dQElJCRoaGoieCi2NyZMnIzg4GDt27MBXX31F
VdwxERaLhYqKCrrDEIKJew+m3BM8Hg937tyRaMJeW1tLRGu0n58fsrKy8MsvvyAwMFAoCZmXl4eD
Bw+Cz+djwoQJ1PG6ujqcO3cONjY2tFpE6OrqCk397N69O+7fvy/0rq6pqaH8hunm9evXOHToEFJT
U6VeS5r49TkIdh3iFwEsX74cVVVV2LdvH/XweJ8KIzqNt1tv+JhgDp2Xl4eAgACJ19jY2LTJDgi8
Wp4/f06b+HX58mX07dtXrO+Mr68vbt++DTabTYz41d6JWKQYcw8fPhwFBQXYsmULZs+eTW22+Xw+
0tLScPToUXh4eGDEiBE0RyoZeXl5DB8+HOfOnSNK/Lpw4QLu3buH9evXw9zcHNXV1ULi13fffYeF
CxciKiqKiMUgm83G0aNHYWtrC3Nzc4SHh8PHxwc6Ojp48OABrl69Ch8fH0aMdiYVHo+HEydO4OLF
i1LbiekUv3x8fJCVlYWDBw8iPz8fXl5e0NXVRUVFBRISEpCcnAxzc3OhyrDbt2+Dw+EIbRZkTUBA
AF68eIHg4GBMnToV/fv3Z5yPHYmMHTsWK1asQFFREczNzeHj4wMOh4OlS5fCxMQEJSUlqK2tpX2q
37p161BfX4+DBw9S1YdMM+LesWMHFBQUkJWVhRs3bqBbt25ifQxJHkTD4/GQnp4ObW1tukNhPEy4
J+rq6rBx40YUFxeLvUZbW5sYy4fu3btjyZIl2LNnD0JCQmBkZES940pLS6GiooIlS5YIWRgcOHAA
DQ0NmDZtGo2RAwMHDkRGRgb8/f0hLy+PoUOHIjo6Gu7u7jAzM0NFRQU1dZMETp06hdTUVNjb22Pk
yJHQ09Mj/r3MZMHuXTrELwLQ1NREc3OzkGG5KE8fUZDm70RaPO8iqLKTBJ/Pb/N7F/y76MwaPHjw
QKLfgsCM/d1qPDo5ffo0VFRUhCZiTZs2rc1ErG+//Vamcc2bN0/k90twrK6uDvv27cORI0coT7hX
r14BAG7duoXbt28LTbshER6Ph5qaGrrDECI5ORkuLi5ixU4WiwUnJ6d2vVxlAZvNho2NDZYuXYra
2lqEh4dj4MCBsLa2BgCMGTMGwcHBVJUoKTAp2xwbG4sLFy7A29sbpqam2L9/P6ZNmwZDQ0M8fPgQ
Fy9ehKenJ+0TmpSVlbF27VocPnwYKSkpSElJETrv6OiIwMBAIV+wW7duwdTUlFbx66effgIAVFdX
Y+vWrRKvJUHoAJgxsr5nz57Ytm0b1erTpUsXBAcHIzIyEo8ePYKhoSHmzp0LOzs72mIEAG9vb1RW
VgpV/ZHi29ReuFwuOnXqhH79+gkdF7dOo4u8vDyRx1+/fo2KigpwOBwUFRXBz89PxpFJh0kV+gAz
7omTJ0+itLQUS5YsgbGxMX788UesWLECFhYWePDgAcLDw2FgYEDr4I53sbGxaWNorq6uDj8/P4we
PbqNj+xXX32F0tJS2itcx44di9TUVDx8+BBmZmYYM2YMkpOTsWrVKujo6ODly5eQl5fHjz/+SGuc
ArKysmBvb097cuR9YKJgJ44O8YsAVq9e3eaYJE8fUgkNDaXN16S9dOvWDdeuXZM4zjkrK6vNxEqB
CSSdGbs3b95InWzDYrGIKesFyJ2I9aFT7uheZEujsbERHA4HXbt2pTsUIcrLyzF69GiJ1+jq6rYx
jqaL0tJSODs7A/ivmWtr8dzMzAyjRo1CREQEMc9spmWbU1NT4ejoiFmzZlHeVMbGxrC2toadnR1G
jhyJFStWwNTUFEOHDqU1VlVVVcyfPx/+/v7IyclBTU0NNblWlEfK119/jYaGBlonkolq0SSZ9xlZ
Tzfvetx069aNEhtJYeLEiW2OCVo1mcKmTZvoDqFdSOvYYLFY8PX1JU58ZFqFPsCMeyI7Oxtubm6w
s7OjBlTJyclBRUUFlpaWWLNmDVasWIGYmBgiBNHff/8d7u7uMDU1xZQpUyROPhego6MDHR0dGUQn
GX19fezdu5da13Tu3BkhISE4f/48Hj16hD59+sDb2xu9evWiOdIWuFwuBg4cSHcY7wUTBTtxdIhf
DIfL5RIjODFhmpeLiwuOHj2KyMhIkQvAM2fOID8/v00mJikpCdra2iI3OLKia9euKCoqkmjGfv/+
fVpjfBdSJ2KR7NnVHjgcjkgBTpBhvnr1KioqKjBr1iwaohOPioqK1Gq0d6sU6ERRUZGa/qmkpAQV
FRWUl5cLXdO1a1ckJCTQEZ5ImJZtLi8vp55pAoGxdbWPvr4+vLy8EBMTQ7v4JaBr167tFpbpzowy
Tehgysj64OBg+Pr6UlWgooiJiUFdXR3jpit28O9Yu3atyONycnLQ0NCAvr4+rUK4OEit0Gc6VVVV
lEgveLe1HoDRegACCeLXlStXYGpqClNTU7pD+Ve8m9DT0NAgyvajNd26dUNtbS3dYbwXTBTsxNEh
fhHK33//LfUmy8nJQWhoKA4ePCijqKRDeruCp6cnbt26hTNnziA3N7eNb0teXh5sbW2F+pUvX76M
rKysNkbGsmbYsGGIioqCu7u7SPPae/fuISUlhfZNQWuYNhFr0aJFmD59OvGm4QcOHJB4Xl9fH998
8w08PDxkFFH7GDhwINhsNsaMGSOy8qixsRFJSUkSN5SyRNB6J8DU1BQ5OTlCE6bKysqI2tAwLdvc
2mxZUVERampqbQRGLS0tPHnyRNahdUADTBlZn5eXJ9XftFOnToiNje0Qvz4SPB4P165dQ05ODpX4
tbKywtChQyEvL093eLC0tKQ7hH8FqRX6H0pzczO4XC5tHRtqamrUO1heXh46Ojpt3mNKSkrEDEDo
3r270Hqng0+Hl5cXoqKi4OnpSUwVvjSYKNiJo0P8IpSNGzdi9OjRmD59OlV5IIDH4+HPP//EX3/9
1ab/mk6Y0K6goKCAZcuWITIyEnFxcdi9ezd1TklJCb6+vpgyZYrQorumpgY2Nja0j1QW9LT/8ssv
8PPzg5ubG9TU1FBXV4ekpCRERUVBX18fY8eOpTXO1jBlIpaAyspKvHz5ku4wpBIaGiryuJycHLp0
6UKUGNOaCRMmIDMzE1u2bMFPP/0k5I9UV1eHvXv34tWrV7R6JLXGzs4OsbGxmDp1KtTU1ODi4oL9
+/cjLi4O9vb2yM/PB5vNxpAhQ+gOlYJp2WbBVCYBvXv3xo0bN4SeY8XFxVBRUaEjPIr2DqFpaGjA
5s2bP3E0Hxe6N4mtYerIelE8efJEZBKQBEhPVL5LWVkZtm/fjtLSUkokr6urA5vNhpGREZYuXQpD
Q0O6w2QkpFboS+PGjRuIiorC48ePJdp90OVl2KtXL+Tk5GDcuHEAACsrK6SlpcHX15da+9y8eZOY
ydYTJ07E7t27MXjwYAwaNIjucP4VBQUFePLkiUTrDBIKBDw8PFBaWoqVK1ciICAAVlZWxHRxiYOJ
gp04OsQvQpk4cSKio6ORnZ2NH3/8kSpDraiowJ49e1BYWIjBgwcT07oCMKddQVFREVOnTsWECRNQ
WFgILpcLdXV19OnTh9ostsbPzw88Ho/2zGLnzp2xevVq7N69GydPnsTJkyehqKhIvfTNzc2xcOFC
kf8GumDKRCwBvXv3xq1btyS2lpIAE1qMRdG9e3csWrQIe/fuxYIFCyhvvWPHjqG8vByKiopYvHgx
Ma27o0ePxt27d1FXVwc1NTWMGDECWVlZCAsLQ1hYGABAT0+PqNJ6pmWbhw0bhpMnT8Lf3x+6urrw
8PDAtm3bEBYWBjs7OxQUFIDD4cDV1ZXWOEUNoeHz+eByuZQnpIWFBVEJKQGkbxJbQ/LI+ncF0JiY
GHA4HJHXvnz5EuXl5cRMXm4NExKVramrq8OGDRvw9u1b/PTTT7Czs4OSkhLevHmD69ev4+jRo9iw
YQO2bt0KVVVVmcSUnZ2N2tpaof+/7/NMJUXwAJhXoQ+0+A/t2LEDpqamcHV1RWJiIkaMGAENDQ08
ePAA+fn58Pb2bmOIL0s8PDywZcsWFBcXw8zMjEpgBwUFYdCgQSgoKEB2djamTp1KW4yt6dy5M0aN
GoWtW7fC1tYW/fv3F5t0Im2aX01NDbZv347CwkKp19K9BwWAGTNmUIMl9uzZI/FaEt7LADMFO3F0
iF+EMmXKFNjb22P//v1YtWoVJk+eDENDQ/z2229oamrCnDlzpBpHyxqmtCsI6NSpU7v7l+kWvgTo
6elh48aNyM7OblP6P2DAALrDawNTJmIJmD59OtatW4dTp05hypQpQpVJJFNdXU3dC5qamnSHI5Eh
Q4Zg165diI+PR05ODgwMDKCiooIvvvgCXl5eRMXfuXNnISN7eXl5LFmyBHfu3MHjx4+hqqqKYcOG
0V6V1BqmZZs9PDxw//59KjZbW1t4e3sjLi4OcXFxAFr+TQEBAXSGKXGgQWVlJf744w9UVVVh0aJF
sguqHTBhk9gakkfWixNARdG1a1c4Oztj/Pjxsgqv3TAlUSng/PnzqK6uxoYNG2BmZkYdV1JSgqOj
IwwMDLB69WqcO3dOZs+JHTt2oKGhAf3796feWe/jJUrKhhZgXoU+AJw7dw4WFhYIDg5GXV0dEhMT
4ezsTFkm3LhxA/v27ZPamvwpERQoCJJ8xsbG+Omnn3DkyBFERkZCQUEB3t7e+OKLL2iLsTUbNmyg
/pyVlYWsrCyx15Imfh0/fhz//PMPpk6dimHDhkFbW7tN1xRJeHl5CVk+MAEmCnbiYMbO7n8UExMT
bNq0CWfPnsWff/4JPp+Pnj17Yv78+ejRowfd4bWBSe0KPB4Pd+7cQWFhIWpqauDt7Y0ePXqgsbGR
qMopcQwYMIBIsUsUTJiIJSAzMxO2trY4d+4ckpOTYWFhIVbYIKHqMi0tDWfPnkVpaSl1zMjICH5+
fhgxYgSNkUlGW1ubmGznv8HGxgY2NjZ0hyESpmWbFRUV22waZ82aBQ8PD0pgtLS0hIKCAk0RSkdb
WxuLFi3CmjVrEBUVRVQlIBM2ia0heWR9awHU398f48ePJ+b39j4wLVF57do1uLq6CglfrTEzM4OL
iwuuXbsmM/Fr9uzZqK6uFkrWkLAm+DcwrUIfaJlQOXHiRMjLy1Nr9tZCtK2tLUaMGIFTp05hxYoV
dIXZ5vng4OAABwcHcLlcKCsrEyWAiLPTYAJ37tyBh4cHfH196Q6lXTDRB5KJgp04OsQvwmlsbERp
aSn1UNfR0SG2zJDkdoXWFBcXY8+ePXj27Bl1zMHBAT169EBoaCi0tLTwn//8h8YIO6CLlJQUAKC8
b4qLi+kMRyInT55EbGwsunfvjkmTJkFLSwtVVVXIzMxEaGgoHj16hGnTptEdpkTevHmD2tpaqKmp
EetTJqCqqgr5+flUhV3rjD9JMC3bLA4jIyMYGRnRHUa7kZeXx/Dhw3Hu3DmixC+mbBIFMGVkva6u
LiMSZaJgUqISAF68eCF1Ap2pqSmSk5NlFFFbUUPcMSbAtAp9AYLEJIvFgrKystD+A2gpILh69Sod
oUmFxH0cU+00gJa23J49e9IdxmcNEwU7cXSIXwRz9+5dHDhwAFwuF9OmTUPPnj2xf/9+LFmyBN98
8w3s7e3pDlEIktsVBDx//hwhISHo3r075s2bBy0tLfzwww/UeQcHB+zbtw/W1ta0vejba6wsiaCg
oI8QycejubkZz58/R01Njdg2kf79+8s4qrbs37+f7hDaxd27dxEbGwtPT0989dVXQtn7iRMn4siR
I4iNjcWAAQOIHE2cnJyMS5cu4cGDB+Dz+Vi5ciWsra1x48YN6OvrE7WIaWpqwpEjR8DhcMDj8ajj
8vLycHFxwZw5c4gT7kjNNkdGRrapNHkfSGnDEgePx0NNTQ3dYbSBaZtEJoysZ8q7QhRMSVQKYLFY
Uv2mGhoaPpuqBDpgUoU+0CLUCLwWgZYkT2FhITw9PaljL168oCM0iry8vHZdJy8vjy5dukBPT484
qw2mdMP06tVLqAOCKdTX16OsrIxqJ2zNmzdvwOVy4eTkRENknzdkfcs6oDh8+DASEhKgr6+P9evX
w9zcHACwfft27N+/Hzt27MDIkSMxZ84cdO7cmeZoWyC5XUFAREQENDQ0sHr1aigrK7eZCOLk5ITk
5GTEx8fTJn6J8hVpfa6goABAy4JVV1cXFRUVlKF13759ifEnA1o2g5GRkTh//rzIh3trSO8RJ4mL
Fy+iZ8+emD17tsi2lVmzZqGgoAAXL14kTvwKDQ1FWloaBg4cCC8vL1y6dIk6l5CQgAcPHmDnzp1U
ZQKd8Hg8bNq0Cfn5+fDw8ICjoyNlDpyRkQE2m43y8nKsXr2aqO+dOOjONp85c+aDfp5k8auxsREc
Dgddu3alOxQhmLBJJJ0tW7Z80M8vW7bsI0XycWBCorI1vXr1QmZmJnx8fESK53w+H5mZmbRXA7bX
8F4wlZk0oYNJDB48GBwOBwEBAWCxWBg+fDjCwsIwdOhQ2Nra4t69e2Cz2bCwsKAtxvdNZCsoKGDI
kCGYPn06re+RgoICREdHIycnB83NzVBSUoKlpSUmTJiAvn370haXJAICArBx40YYGxsLifikwuPx
cOLECVy8eFEoqSoK0sSvz0Gw63jyEkpCQgIcHR0RGBgoJG516dIFK1aswIULF3Dq1Cnk5uYSk4Fk
QrvC3bt34eHhITFDaGNjQ+tIZ3HGyjweDzt27ICBgQF++uknIf8LQSunqqoqlixZIqNIpRMVFYWz
Z8/CzMwMzs7O0NPTI0aslcarV69w//59cLlc9O/fn2qFJIF//vkHX3zxhVgfJEVFRaoFiyTYbDbS
0tKwZMkS2NnZobq6Wkj8mj9/PhYsWIDo6GjMnDmTxkhbuHz5MvLy8jBv3jw4OztTxw0NDWFpaQkL
Cwvs378fSUlJ8PDwoDFSZtGzZ0+MGjUK9vb2UFBQEFsNShIcDkfkxvv169eoqKjA1atXUVFRgVmz
ZtEQnXhI3SSK+32+D7IyXX78+LFMPkdWMCFR2RovLy9s27YNp06dwpdffil03/B4PJw6dQr379/H
zz//TGOU72d4D7TYmDg4OMDPz69NteOnoL2VSJIgoUIfaLmHMzMz8ezZM/Ts2RPu7u5IS0vD9u3b
qeSxiooKrd6Wa9euRWFhIcLDwzF06FA4OjpCW1sbVVVVyMjIQEZGBsaPHw9ra2tUV1fj8ePHuHz5
MlavXo2QkBBapl5funQJR48ehaqqKhVvZWUlbt26hXXr1mHOnDnw8vKSeVzS6Nu3LxYvXoxt27Yh
MjISpqamUFNTE/mOIcGbLzY2FhcuXIC3tzdMTU2xf/9+TJs2DYaGhnj48CEuXrwIT09P+Pj40B0q
BZMFu3fpEL8IZe7cuWLVazk5Ofj4+MDS0hJ79+6VcWSSIb1dob6+Hjo6OhKvYbFYePPmjYwiaj+X
L1/GnTt3sGXLljZTd8zMzLBkyRIsX74cly9fxqhRo2iKUpiUlBRYWlpizZo1H7zRkRWvXr3CsWPH
kJqairdv3wIAVq5cCW1tbURERMDQ0JD2B3tjY6PUxbKamhoaGxtlFFH7EEyaE1dVqaamBmdnZ9y8
eZMI8YvD4WDQoEFCwldrnJ2dkZ6eDg6HI3Pxy9/f/4P/DllXW4aGhiIxMREcDgeHDx9GVFQU3Nzc
4OHhIfW5TDcHDhyQeF5fXx/ffPMNcSIoqZtEab/P9iAr8YuUBOPHggmJytbY2gQHggQAACAASURB
VNrC3d0dsbGxuHPnDkaOHEltypOTk/H48WN4eHhgyJAhtMb53Xff4enTp4iJiYGZmRlVKVxdXY2M
jAwUFRXB29sbxsbGlNgRHx+PmzdvYv369ejSpcsnje9jWGqQUqGvoaGBHTt2UNVzSkpKWLt2LXU/
qKqqwt3dHXp6erTFqKOjg+joaMyYMaONiDF06FBYWFjg+PHjsLe3x/DhwzF8+HCMHj0aq1atwtGj
R7F8+XKZxltUVISjR4/Czs4OP/zwg1CRQGNjI/bv34+jR4/C3NycmGeDgMrKSvz+++9obm5GVVUV
eDwe0ZWVqampcHR0xKxZs1BXVwegpSpbYLkzcuRIrFixAqamphg6dCjN0bbARMFOHOTeGf/jtKds
09TUFJs2bZJBNO1j3rx5mDlzpsQv6unTp/H8+XPavAT09fVx7949iRuUf/75B4aGhjKMqn1cuXIF
Li4uYsdN9+jRAyNHjiRK/KqsrMTYsWMZI3w1NjYiKCgIlZWVmDJlCvT19YVG+tbV1eHAgQMwNjam
1ZdKV1cXJSUlEq8pKSmBrq6ujCJqH2VlZXB1dZV4jaGhYbvbRz41T548kSoKWFtb4/Tp0zKK6L+Q
3AIoDn19fUybNg3+/v7IyspCYmIizp49i+joaAwePBienp7ETtEUNwlL0MJEmu+bAFI3iUyeLMZ0
MjIy2lTwkJaofJfAwECYmJggOjoax48fp45ra2vj66+/FmrjpQsbGxucPHkSY8eObZO88fHxwYkT
J5CYmIjNmzdTa8ySkhIEBQXh2LFjn7zSbu3atZ/075c174obLBaLmLUv0OJx2atXL7FigLe3NzIy
MhAVFUW1RmtpacHPzw+HDx9GXV2dTCoCBZw7dw56enqYN29em+6YTp06Yd68eVi6dCliY2OJmALb
mqNHj6K6uhrz58+Hg4MD0dOhAaC8vJy6VwWeaq2LLvT19eHl5YWYmBhixC8mCnbi6BC/COfVq1dI
S0vDvXv3wOVyMXXqVPTq1QvV1dVQU1MjyoiwoqJCaqWJjo6OUJuTrHFycsKff/4JFxcXWFpatjlf
XFyMtLQ0WkulxVFSUiJVFDU1NaUmFpKArq4ukVV04oiOjsaLFy+wbds26Ovrt/GEmz17NnJychAT
E4P58+fTFCVgZ2eH+Ph4eHp6ipyI9+TJEyQlJRFXns5isaQ+I2praymDbrrh8/lSvbzE+fN9aiZP
nizzz/xYKCoqwtHREY6OjigrKwObzUZycjJu3rwJfX19uLu7w83NjXaPstYweRIWiZtEJv8+mc6e
PXsQGBjICG+c1nh6esLT0xNlZWWora2Furp6G6N2Ojlz5gx0dHTETkWbOnUq7t69i4iICCoB3KNH
D/j5+eH06dP45ptvPumaXtSat4NPx99//w1fX1+J1wwdOrSNzUr//v3B4/Hw7Nkzyu9ZFuTl5cHL
y0vsPdipUyeMHDkSCQkJMoupvdy9exeenp4YPnw43aG0i9bioqKiItTU1FBeXi50jZaWFuXnTAJM
FOzE0SF+EcytW7ewf/9+1NXVQUNDA1wulxpPHxoaCmVlZdo9Dt6H5uZm5Obm0hrD2LFjkZGRgU2b
NmHy5MnUYqCqqgoJCQk4deoUjI2NMWbMGFrjFIWSklK7Jh4pKSnJKCLpuLq64sqVKxg9ejRRcYkj
PT0dbm5uYjdm8vLycHR0RGJioowjE+aLL75AcnIyNm7ciJkzZ8LBwQFAi1hz7do1hIWFoXPnzhg3
bhytcb5L3759ceXKFXh7e4uslGlubkZKSgoxviJGRkbIycmRWFWQm5srthqTDjZt2gRfX1/069eP
7lDaRbdu3TBz5kwEBAQgMzMTiYmJOH36NCIjI2Fvb49Ro0YRcT8wobK5gw7ag56eHl6+fEl3GO0m
OTkZffr0oTyQRAleOTk5kJeXp/VZcfPmTYwZM0ZswkRBQQHDhw/HhQsXhI4PHDgQx48fR1lZmZCX
awfi+fXXX6V2FPD5fDQ0NGDx4sUyikqY+vp6qa13ioqKbRLEgp+RNiTqY1NfXw8tLS2J12hqalJV
PyShoKBAZMeOOAQTdgX07t0bN27cwNixY6ljxcXFxCSCAWYKduLoEL8I5eHDh9ixYwdsbW2piW5z
586lzk+YMAEbNmwAh8NpM9ZelsybN0+o8uHYsWOIjIwUWQnB5XLR1NSE0aNHyzpMCmVlZaxduxa/
/fYbTp06RR0X+I84ODggMDCQSKGmvROPZJkpksa4ceNQVFSE4OBgzJo1C71796Y7JIlUVlZKzSST
8PLv0qULVq5cie3bt2PXrl1QUVGBpqYmqqurUV9fD11dXSxbtoyoyhkAGD9+PNasWYO9e/e2MQdu
bm7GoUOHUF5eTmtVXWucnJwQFhaG69evi/Qpy8rKQlZWFmbPni374MSQl5cHOzs7xohfAlgsFpyd
neHs7IzHjx+DzWYjNTUV6enpMDIygoeHB7y9vWmLj/TK5sjIyA9uLyeplTYvLw/x8fEoKCgAl8vF
8uXLYW1tjcLCQujq6hI1gIRpuLq6Ii4uDiNHjmREBd6vv/6K77//XqIBeGFhIa5cuUJrOy2Xy5U6
0EdFRQX19fVtjgGQmtzs4L+ISqTzeDzU1dVRopGenh6t7ej6+vq4c+eOxAr87OzsNtX7z58/ByD7
6cyampp49uyZxGvKy8ulCmR0YG1tjfz8fNormtvLsGHDcPLkSfj7+0NXVxceHh7Ytm0bwsLCYGdn
h4KCAnA4HKk2IbKEiYKdODrEL0I5c+YMunfvjp9++gny8vJt2q+srKxgZ2eHpKQkWsWv1lm2lJQU
GBkZiR3Ry2KxYGFhITOTWnGoq6tj8eLFKCsrQ25uLmpra6GhoQErKytapqu0F0kTj/h8PjETj1qz
ZMkSNDU14cWLF1i9ejWUlZWhrq5OnRcIp3Jycti3bx+NkbagoaFBLTzE8ezZMyJe/qampti1axfS
0tKQnZ2N2tpamJiYYMCAAXByciJSwLWwsMA333yDw4cPY8GCBdTY7NjYWBw8eBBVVVUIDAwkJvs9
atQopKWlYefOnfDw8ICrqytltHzlyhWw2WyYm5sTteAyMTFBQUEBccbr70PPnj3h6upKtf2XlpaC
w+HQKn5Jg+7K5jNnznzw30GK+BUeHo7o6Gh069YNvXv3xvXr16lzp06dQlVVFbZu3SpxanMH4hk3
bhy4XC7WrVuHcePGoX///mI3LKT5RoqDxWKhsrKS1hi0tbVRUFAg8X1QWFjYRnAUeFy2XhvJmpyc
HERHR6OkpAQ1NTViryPF8F7SEIrCwkKEhYVBS0sLixYtkmFUwowYMQIRERFISkoS2WLM4XBw48aN
Nv5waWlpUFNTk3lFuY2NDZKSkjBmzBiRyYXKykokJSVh2LBhMo2rPUybNg0rV67EmTNn4OfnJ9Wu
gm48PDxw//59qsrP1tYW3t7eiIuLQ1xcHICWgoeAgAA6wxSCiYKdODrEL0LJz8+XWD4NAP369aP9
RdS6eiMlJQXu7u60i1vtpVu3bkT5RUij9cSjv//+G87OztDS0kJVVRVSUlLw8OFDIiYetaZHjx5Q
VlaW6olEiiH+4MGDkZiYCC8vL5GLfi6Xi8uXLxNzj7NYLLi5uTHKu8XDwwO9evVCbGwscnNzIS8v
jydPnsDKygrjxo2DsbEx3SFSKCkpYdWqVTh06BASEhLaeF0MGzYMgYGBRE0Vmjp1KjZu3Ig+ffoQ
Jcq1h9evX+Pq1atITExEcXExlJSU4OzsjFGjRsHCwkLm8TCpspnutcDHIjMzE9HR0Zg1axa8vb1R
XV0tJH798MMPWLx4MWJjYxnte0cn06ZNo/585MgRidfSdV9xOByh715BQYHI6/h8PiorKxEXF0f7
es7e3h7nz5+Hk5OTyMEdd+/eRWpqahuROSsrC506dRLp3ykL0tPTsWfPHigpKWHQoEHQ1dVlRPWG
OCwsLBAUFITly5fj3LlzGD9+PC1x+Pj4ICsrCwcPHkR+fj61rqyoqEBCQgKSk5Nhbm4uVBl2+/Zt
cDgcTJgwQebxjh8/Hqmpqdi0aRPmzp0r1EVSVFSEgwcPorm5mbbfpyQiIiJgbGyMyMhIXLx4ERYW
FlBTUxO5h/7uu+9oiFAYRUXFNt0Ps2bNgoeHBzWIxtLSkijjfiYKduIgZ8XegRBNTU1SS17l5eXB
4/FkFJF0+vXr98lHNf+v03ri0bFjx6jjJE08ag1pE2GkMWHCBGRkZCAkJAQ//vijkABWWlqKvXv3
QkFBQaqJqSx5+/YtiouLweVyoaGhATMzM6JemK2JjY2Fvb09TE1NGeOLpKqqigULFiAgIAA5OTnU
75nUStFnz57B1dUVf/zxB5KSktCvXz+xGxlSKn1KSkqQmJiI1NRU1NfXw9DQEDNmzICLi4tMp129
CxMrm5lOXFwchgwZIrbKT1dXF05OTsjMzOwQv/4lJGz+pCGwohCQlJSEpKQksdfr6+sLWYPQwYQJ
E3Dt2jVs27YN48ePx+jRoym/3vj4eMTExMDAwIDy7gVa2oTi4+Ph7u5O23v7r7/+goGBAUJCQoiz
Svi3sFgsuLi4gM1m0ybWCGxWDh8+jJSUlDbDqBwdHdskz27dugVTU1NaxC99fX0sXrwYu3btwqpV
q9CjRw+q0r2kpASdO3fG4sWLZT4ZuD3cvn0bLBaLWrM/fvyY5ogkI86b1cjIiDYRXBpMFOzE0SF+
EUq3bt2o6RXiyMnJQc+ePWUYlWTWrVtHdwjtorm5Genp6SgtLW3TTtoaUheIpE88YjK6urpYuXIl
duzYgVWrVlHtjXv37kVdXR11XlNTk+ZIW/wtoqOjcf78eSEPERUVFfj4+MDPz4+YijoBp0+fhpqa
GpGikShmzpyJb7/9Fo6OjjAwMGBE3AcPHqT+XFxcjOLiYrHX0il+vXnzBhkZGUhMTERhYSHk5eUp
g3srKyva4mrNu5XNbm5utNoMfAzevHmD2tpaqKmp0eqHI46HDx9iypQpEq/p2bMnOByObAL6DGHC
Pdzau+vHH3/E9OnTxQ6bYLFYRLyT1dTUEBQUhL179yIqKgpRUVFQVFREc3MzgJaKpAULFghN0zt/
/jy0tbWl3vOfktLSUkyaNOmzEb4EsFgsqqWULlRVVTF//nz4+/sjJycHNTU1EpNnX3/9NRoaGmh7
NltbW2P37t2Ij49HdnY2ysvLoaGhAT8/P3h5eRHxPRPFoUOH6A7hvWCqN6soSBbsxNEhfhGKq6sr
jhw5grS0NIwYMaLN+du3b+P69esIDAykIboW8vLy0KtXL7G+G7dv38bFixdRUVEBLS0tuLq6ivy3
yJLy8nJs2LCB8nVSVVWValBKKkwTvGpqatpMtQFaqhy5XC7l/0Q35ubm2L17N1JTUylPOHV1dQwY
MAAjRowgZsO4Z88eZGZmom/fvkJeVBwOBxERESgpKcGCBQvoDlMIAwMDPH36lO4w2o2SkhK4XC7d
YbwXpLe/lZWVgc1mIzk5GXV1ddDR0YG/vz9cXV2J8NITR7du3YiOTxrJycm4dOkSHjx4AD6fj5Ur
V8La2ho3btyAvr4+MYm09ni1NDY2EvMcZiKvX79ul19aSkoKnJ2dZRBRW971xdLQ0GCEOb+enh5C
QkKQk5PTRuwYMGBAm+u///571NTU0Frhqqqqyug2R1HweDykp6cTMxija9euYquG34XuPYmmpib8
/f3h7+9PaxyfM5+DNyuT6RC/CGXUqFG4fv06QkNDUVBQQGXCHzx4gJycHJw/fx7W1ta0GcuVl5dj
8+bNGDFihEgBjsPhUGXrampqeP78OXJycnD//n3MmjVL1uFSnDhxApWVlZgzZw6cnZ0/uxc+iVy8
eBFnz56VKiKQtGlXVlaGh4cHPDw8wOfzweVyoaamRkw5b1paGjIzMzF16tQ2LZguLi6Ijo5GeHg4
7OzsMHz4cJqibMvYsWMRFhaGYcOGEWNqLwlLS0ukp6fDy8uLuCo6JhIcHIy8vDzIycnB2toanp6e
GDRoEPHmtECLaPfy5Uu6w/hXhIaGIi0tDQMHDoSXl5fQRMqEhAQ8ePAAO3fupNVwW0CvXr2QmpoK
b29vkfcFn89HRkYGLR5wnwtbt27F8uXLJQ5FSUhIwB9//EGb+NWatWvXMq6ywMrKql0VrIqKitDR
0ZFBROKxtbXFjRs3iLPNkEReXp7I469fv0ZFRQU4HA6Kiorg5+cn48g+H0ivEmYyJHuzBgcHf/Df
ERQU9BEi+XR0iF+EoqCggOXLl+P06dOIj49HYmIigJa2ISUlJfj4+MDf35+2TUNsbCzevn0rUrVu
bGzEkSNHoKioiIULF8LW1hZNTU34448/EBcXh+HDhwsZKcqS3NxceHh40GZK3B4+RraFFCGJzWbj
6NGjsLW1hbm5OcLDw+Hj4wMdHR08ePAAV69ehY+PD23TY2JjY+Hg4CAyo8zj8ajv3+vXr8FiseDk
5ISZM2cKtS3QweXLl9GvXz+x3mO+vr64c+cO2Gw2UeKXlZUV3N3dsX79eri7u0v0o2rtt0QXM2bM
wLp167Bv3z7MmjWLkW0hT58+BZfLhZGREa3VBcB/NyxGRkaQl5cHm80Gm81u988vW7bsU4UmlS5d
ugi1FzMFNpuNtLQ0LFmyBHZ2dqiurhYSv+bPn48FCxYgOjq6zdQxOvDx8cHmzZtx5MgRzJkzp835
iIgIFBcXY82aNTRE93mQk5ODrVu3YtmyZSKHdfz11184deoUTExMZB+cCCwtLVFcXAxVVVVKsOPx
eDh//jyuX7+Ozp07Y9y4ccS0SzMNf39/rFq1CmFhYZg2bRpRA1zEIW2DzmKx4OvrK5PW/l9//fWD
k2Mk2awwpUr4Xerq6hAfH48nT56gpqZG7KAtEoQZkr1Z+Xy+0LCR94UJiWLyn3D/wygpKWHmzJmY
NGkSCgsLUVdXB3V1dVhYWNBeFiuYNiiqeiM1NRWNjY2YOnUqbG1tAbS8iAIDA/HPP/8gOjoaS5cu
lXXIAFr8vkh9cAsgxYT6Y8Bms2FjY4OlS5eitrYW4eHhGDhwIKytrQEAY8aMQXBwsMjJSJ+avLw8
nDx5Eo8ePcKPP/7Y5nxYWBguXboEVVVV2NjYoLa2FpcvX0ZpaelHyYx8CA8ePJDoESInJwd7e3tE
RETIMCrptDa5P3/+PM6fPy/2WhIE3PDwcJiYmCA9PR3Xrl2DkZGR2AUKCQsqAc3NzYiJiUF8fDxV
cSlYwLLZbBgYGNCyURSY0TY2NhJvSPsugwYNQnJyMjw9PRmVBU9MTMSIESNgZ2cn8ryamhqcnZ1x
8+ZNIsSvQYMGYcKECYiOjkZBQQHVKpacnIyIiAgUFRVh8uTJHULHBzB37lwcPHgQ27Ztw9KlS4XE
jj///BNnz55F3759aRWbW5OXl4eQkBD4+vpSycHIyEicPXsWhoaGePr0KX755ResXr1aJkmTyMjI
D97gkbTOi4yMhLGxMeLi4sDhcNCnTx+oq6sTOykPaKkGFIWcnBzVIiur53Rubq5MPkcWMKlKuDXF
xcUICQlBfX091NTUoKurK3KfTIowQ7I3K1P8uz+EDvGLAaioqNAiDkiisrJSbNsSh8OBkpJSmxJq
eXl5ODo6UiNR6aBXr14oLS2l7fPbw+c0waq0tJRqmxBUS719+5Y6b2ZmhlGjRiEiIkLmD9yLFy9C
U1NTZHVBRUUF4uPjoaOjg/Xr11ObdkE7b3p6OhwdHWUab2v4fL7ElhWgRTwnaRosIH7BSiovX76E
nJwc+vTpQx0TlQ0jZUEFtAhfv/zyCwoKCuDq6oquXbvi5MmT1Pnc3FwcO3YMO3fuFJpmKgv2798v
08/7mMyYMQMbN27E5s2bMXv2bOKTKALKysqk2iMYGhrSbgzdmoCAAJibmyMmJoZaL6Snp8PCwgLL
ly/HoEGDaI6Q2bi5uUFeXh4HDhzAzp07sXjxYigoKCAsLAxxcXEYPHgwFi5cSIzIGxkZCV1dXYwZ
MwZAi0+oIM5ly5ahsbERK1euRExMjEzErzNnznzw30GS+JWRkQFlZWXqfVBSUkJzRNKxtLSkOwQK
Jr/XWsO0KuHWnD59Gnw+Hz///DMjrBRISO6+L4Jp7UwY/CSNDvGLAD40i0THS1RRURGvXr1qc7yi
ogJFRUWwtbUVWSGhrq6OxsZGWYQokokTJ2Lbtm1wdHSkrfXyfwlFRUVKpFFSUoKKigrKy8uFruna
tSsSEhJkHlthYSFGjhwpshXsypUr4PP5+PLLL4UEAhcXF6Snp+PixYu0il/GxsYoLCyU6BXwzz//
ENO2IoCkBWt7YGIG7MKFC7h37x7Wr18Pc3NzVFdXC4lf3333HRYuXIioqCjMnTuXxkiZxdatW6Go
qIj8/HwsXboUampq6Ny5MyWGCtoE5OTksG/fPpqj/S8sFkvqO7e2tpYY/8uMjAz0798ftra2lGVC
XV1dh+/MR8bFxQUKCgr49ddfsWvXLqirqyMpKQlOTk74/vvvido8FhcXY+LEiVTbeWFhIRobGykx
rFOnTnB2dsa5c+dkEg8TN66S+P333+kOoQMCYFqVcGsKCwsxevRoDBkyhO5Q2hAZGQl7e3sYGxvT
HcoHwbRp7ZLoEL8I4EOzSHSIX8bGxrh582YbzyFBlsDJyUnkz5WVldE6KrdTp05wc3NDUFAQXFxc
MGDAAKirq4sUH0nwHBJHUVERcnJyqEmEVlZWRIp5hoaGePjwIfXfpqamyMnJoRatQMs9Qcempra2
Vuz0qJSUFKirq4sUuAYOHEj74tfLywuhoaEYNWqUSOPnwsJCpKWlYd68eTRE1wGdJCcnw8XFRezz
QOBdl5qaKuPImE3Xrl0hJycndeFHUhUgAPTt2xdXrlyBt7e3yOdsc3MzUlJSiHnf7dmzB4GBgXBz
cwPQcr+SMrHtc8PJyQkKCgoIDQ0Fj8fDmDFjMHv2bLrDaoOioqJQa2Z29v+3d+dRUZ3Z2sAfikFE
ZgHHRiOKoAhh0BgHBMUB2jkxtBpjOrYxGlGjae3WGEVbOzHXdBzQ9ho1MdcYAyIaFZRqBkEkBJUw
ibRDRAVFBIRSoSzh+8NFfZIqZqhzqnh+a9210nXOobZegTrPed+9M6Cvr19rQrSxsTHkcrkQ5ZGA
FAoFCgsL6+3xJJafbWKnjauEa0gkEtja2gpdhlphYWGws7NTCb9KS0uxYMECZUsKsdO2ae31Yfgl
Ivb29hg7diyGDBkCfX39Zjeb0wQfHx/s2bMHR44cwYwZMyCRSJCcnIxTp07B2tpa2evrZWVlZUhI
SBD0m3zNmjXK/26o2bLQAYc6jx49ws6dO5Genq5ybNCgQViyZImomnIPHjwYJ06cwMyZM2Fqagof
Hx+EhITg9OnTGDJkCK5cuQKpVCrI0xoTExO109uuX7+OwsJCjBkzRu3TbzE8ER8+fDhycnLw+eef
491331WGzdXV1UhMTMQ333wDPz8/jBgxQuBKtUt1dTWuXr1a66aqLkVFRTh69CjmzZsnqgbB9+/f
b3Cgh42NDUpLSzVUkW7Q1iB5ypQpWLt2LbZv367yZ1AoFNi7dy/u37+PJUuWCFRhbba2tlo7VVNs
6pqI9zJLS0uMGzcOBQUFGDJkiMo1YggO+vTpg4SEBIwbNw5yuRznzp1D//79a4W5GRkZ6N69u4BV
quK0vLZTVVWF0NBQnDx5ssHQU6jP8o3d1fP06VPMmTNHAxXVT9tWCb/MyckJ169fVzuEjVqHtk1r
r494PrG3Yzt27EB0dDTi4uKwb98+HD16FKNHj4afn5/gI5Dr4uPjg59//hnh4eE4ffo09PX18fjx
Y0gkErU3g0+fPsXmzZshk8kEnbS4atUqdOjQQbD3bwm5XI5//OMfuHfvHmbNmoVhw4bBysoKxcXF
uHDhAsLCwrBx40Zs2rRJNB+0JkyYgF9//VW5bWXEiBFISUnBt99+i2+//RbAi5udWbNmaby2/v37
IyEhAW+++Sb09fWVr4eHhwOoe/XitWvXNPaE6cMPP1Q7daXmNZlMhp07d+LAgQOwsrJCSUmJcjvy
pUuXcPnyZUG3YF2/fh2VlZW1bqBqnnbVZdCgQfjkk080UZ6KAwcOIDY2Fl988UWDK3zS0tIQExMD
iUSC+fPna6jChpmYmODRo0f1nlNcXCy6hrXUNhwdHTF//nzs27cPy5YtUwa7J06cwJ49e1BSUoL3
339fNB9mfX19cfr0aYwaNarOlbnUOE0dzPLrr7+qvCaGh4DTp0/Hxo0b8f7776O6uhpPnz7FBx98
oDx+/PhxpKamqu3fKQQxT8vbtGkTioqK8Pnnnys/JzZlWqFYGt4fPXoU4eHh6NOnD7y9vWFrayv4
ILDfa+yuHiMjI1GEX9q2SvhlgYGBWLduHdzd3TFkyBChy9FJ2jatvT4Mv0TAzs4Os2fPRmBgIFJS
UhAdHY3w8HAcO3YMHh4eGDdunOga3kskEvz1r39FZGQkkpOTIZPJ0K9fP0ybNk3tqomOHTvCwsIC
M2bMULtNS1M8PDwEe++WioyMRF5eHtasWQNXV1fl63Z2dpgyZQpeeeUVbNq0CVFRUZg8ebKAlf5/
HTt2rNU3SSKR4OOPP0ZaWhry8vJgYmKCYcOGCfIkyd/fHxs3bsTmzZsxc+ZMGBoaIiYmBqmpqejX
rx+cnZ1Vrrlx4wZ+/vnnentttaaW/gIRcguWQqHAl19+CeBFwP/7FXOenp4q4f6dO3eQkZGB27dv
4w9/+IPGagVeTNA8c+YMvLy8GhVu+vn5oaysDEeOHIGvr69oth27urpCKpXC399fbT+7iooKxMTE
aMUye7HSlm3nNfz8/ODg4IATJ04gKysLEokEd+7cgYuLCyZPniyqXiSTJ09GWVkZ1q9fj8mTJ2PA
gAF1/n7Q9MAGbaNtA0bq4uzsjE8//RSRkZGQy+Xw8/Or9fPr2bNnGD58JvXjGAAAIABJREFUOMaP
Hy9glS+IfVpeSUkJysrKag0e0sZphefOncPAgQOxdu1a0W01r6EuOK6qqkJ5eTkyMzPxww8/wMvL
C3PnzhWgOlXatkr4ZQUFBfD29sbWrVvh5uYGFxcXmJubq/23MWrUKAEq1H7aNq29PnrVYt5b147l
5+dDKpUiPj4eMpkMdnZ2GDNmDEaPHi2qbW1NIZfLRbMiqca9e/fw6NEj9OjRQ+2NopisXLkSPXv2
rPcXz/bt23H37l18/vnnGqxMe4WHh6v8kLa2tsaaNWvQs2fPWq8/efIEQUFBkMvl+Oqrr0S7KlMs
pFIp9u7dixUrVtR6Eldfn4OioiIsXrwYb775psZ7Ge7duxcJCQkICQlp9I1JVVUVli9fDmdnZ9E0
j79z5w5WrVqFPn36YOnSpTAwMFD+fTs4OGD79u24cuVKo1a3UW3atu1cGwUGBjb6XLF/wCbNqK6u
xvPnzyGXywXdklXzO+/laXkv/66TyWRYtmwZvL29BWsYrlAooFAolNO3tdXs2bMxZ84cQXeStFRZ
WRn+9re/4Y033sCYMWOELgfAi3/D+/btg7m5OZycnJCcnAwXFxcUFBQoVwk31BdMCGL+vREYGIhF
ixaphG7a1vOrKSG52IdbceWXSHXv3h3vvPMO/vSnPyE5ORnR0dE4fPiwcmrE2LFjRb+s8PfEEnwp
FApERETgzJkzKCsrAwDlDx+pVIquXbvCxcVF4CpVFRQUNLifvX///vjll180VJEqbeuZNH36dLi6
uiIlJQUymQxdu3aFr6+v2vDDxMQEEyZMQL9+/Rh8NUJqairs7e2btATdxsYGrq6uuHLlShtWpl5W
VhZee+21Jj2Rl0gkGDx4MFJTU9uwsqbp2bMnli9fju3bt2PZsmXKVT0HDx7E/fv3YWBggBUrVjD4
aiJt3HauTkFBAVJSUlBUVARbW1uMGDFCVA3lxbKtSlc0pu+Xnp4ezMzMYGNjI3gosnLlSgQGBqr0
AVUoFMjNzYW9vb3Kg0o9PT0kJiZi9+7dggai2jAtLyIiAoMHDxbVas/msLGxwbNnz4Quo0XMzc0x
ZswYREZGiib80qZVwi/bunWrqH/v6gKxB1pNwfBL5IyMjODt7Q1vb2/k5eVBKpUiISEBSUlJ6NGj
B/z8/BAQECB0mVpDoVBg8+bNyMnJga+vL7p06YJDhw4pj2dlZeHgwYP48ssvRbelQl9fHwqFot5z
nj9/LmhDdm3smdS3b99Gb1maMWNGG1ejO3777bdmLS93dHSsdxBFW3n48GGzniLb2tqKbvqRp6cn
/vWvf+HMmTPIzMxE165dYWJigkmTJmH8+PGCTtzVVtqy7byyshKRkZHIzc2FoaEh3Nzc4OPjA4lE
gpiYGHz99de1tjwdPXoUQUFBaofUCMHHx0foEnRKU/t+9e7dG1OmTFE76VgTbt26BZlMpvK6TCZD
cHCwqFdJaMO0vNDQUNja2mr95DlfX1/ExsZiwoQJMDQ0FLqcZjMzMxPdBL1XXnml1hY3bfD7nRpE
9WH4pUXs7e3h6+uLx48fIzExEXfv3kVcXBzDryY4deoUrl69ig0bNqBv374oLS2tFX4tXLgQH330
EY4ePSqabUw1evXqhUuXLtX7/++LFy+id+/emivqJbrSM0lbpKen4/jx47h9+3a9Dc6FehJeXl6u
NkA2NTXF3//+9zobbFtaWqK8vLyty1NhYGCAqqqqJl+nUChEMQH096ytrTFz5kyhy9AZ58+fx/Dh
w2sFXy9zdXXF8OHDcf78ecHCr4qKCqxduxZ5eXnK15KTk5Geno63334b+/fvR+/evTF9+nTl2PJD
hw5h27Zt2Lp1KxvM66CPPvqoUedVVFTg9u3bSE5OxrZt2/Df//5XNL2ItIU2T8vTNpMnT8a1a9cQ
HByMuXPnol+/fkKX1CyXL18WfcsVbfPkyRNcu3YNZWVlGDBggChWNp8+fRrJycm1XqtZufjjjz/W
6g34e6tWrWrT2poqOzsbZ86cQU5OjnLrrpubG3Jzc2FjYyOKv++GMPzSApWVlTh//jyio6Nx48YN
GBoawtvbG2PHjhW0ebw2io+Ph4+PT51Bi5GREUaOHImEhAQNV9YwX19f7N69G1FRUWpXqERFRSEz
M1OlUaWmSKVSdOjQAR988EGt6Yn1mTp1Ks6dO4f//Oc/DL+aIDExETt27ICpqSk8PDxgZWUluqef
hoaGarclGBgY1DvAQy6XC7IN1traGvn5+U2+7u7du6JaJRofHw9nZ+d6g4ycnBzExsZyi1kTaMO2
81OnTiEvLw/jx4/H1KlTYWJigsTERBw4cAAdOnSAhYUFNmzYoPz+6tmzJxwcHBAUFISTJ0/ivffe
02i9Le1NKbabAjEaOnRok86fOXMmdu/ejdOnT2PgwIGiWRGoDbR5Wp5YNTTxuqioCJ988gk6dOhQ
q2VBzXE9PT3BJl7XtcKvoqICRUVFiImJwaVLl0QxqEEXPH78GAcPHkRCQoJydfPq1athbW2NH3/8
Ed26datzintbsrGxgUwmU7ui1cbGBqWlpSgtLdV4Xc3xww8/4NixY+jevTv69etX6/PO999/j5KS
EmzZsgUdOnQQsMqGMfwSsdu3byM6OhoJCQl48uQJunXrhjlz5sDHx4dPCprp/v37DW5tqvlhJDbe
3t5ITk7GgQMHkJaWBl9fX1hbW6O4uBixsbG4fPkyPDw8BPnhDuhOzyRtcPz4cdjb22Pjxo2C92ip
i7W1dbOW8xcUFAjSU23QoEG4cOEC3n333UaHb8+ePcMvv/zS5BvMtrRr1y507NgRf/7zn+vcdnrv
3j3ExcUx/GoCbdh2npqaCmdn51oh1ssrbAMDA1X+bVtbW2PYsGFqm/i3tZdXqJE4GBgYYNGiRbh2
7RrOnj3L8KsJtHlanlhp88TrxjyIHj58OGbNmqWBalRdv34dlZWVtf6Oa7a/1mXQoEH45JNPNFFe
k1RUVGDdunUoLi7GW2+9BTs7O2zbtk15XCaTYffu3ejVqxfs7e01WltISIhG36+tJCcn49ixY5g7
dy4CAgJQWlpaK/xavHgxVqxYgRMnToi+RQzDL5F59uwZLly4gOjoaOTm5kIikSgb3IuxCbu2MTEx
qXeLGAAUFxcLNoa6PhKJBB9//DGOHDmCyMhIXL58WXnM0NAQkydPRmBgoGC/7HWpZ5LY5efnY8aM
GaINvoAXH5KSk5Mxd+7cRodJCoUCKSkpTWqS31p8fHwQGRmJY8eONfoXd0REBB49eiS66UdVVVXY
tWsXLl++jPfff5/bbFqB2LedA8CDBw8wdepUlde9vLxw5MiROvsw2tvb4+eff27r8lToyk2BrtHX
18fw4cMRHR0tdClaxdHREfPnz8e+ffuwbNky5eCfEydOYM+ePcppeXVt+SdVQu1kaA31PVyysLBA
z549G9UipC0oFAp8+eWXAIAdO3aoPLTx9PRUeQh5584dZGRk4Pbt2/jDH/6gsVob49ixY3jw4AG+
+OIL2NnZqSxgePfdd5GZmYmIiAiGz810+vRpeHp61vkZyMbGBiNHjkRycjLDL2qc/Px8SKVSxMfH
QyaToXPnzggMDISvry+srKyELk9nuLq6QiqVwt/fX+3quYqKCsTExIi24aeBgQFmz56NN954A1ev
XkV5eTnMzMzg6OiIjh07Cl6bLvVMEjMzMzPRT7bx9fVFVFQUjh8/jjfeeKNR10RERKC0tFSQMKl3
797w8fFBWFgYbG1tG2y8HRsbi7CwMIwcORKvvPKKZopspHfeeQcFBQU4efIkcnNzsXjxYm61aSGx
bzsHoPx98Hvm5uYAgE6dOqm9zszMDJWVlW1aG2kXa2trPH78WOgytI62TsvTNvHx8XByckKXLl3q
PCczMxMSiUSw331iHt4RFxeHoqIirFixQu3n7/Hjx6vcBxUVFWHx4sX4+eefRRd+JSUlYfTo0XW2
e5BIJBg2bBgD/Rb47bff8NZbb9V7jr29PeLi4jRTUAsw/BKB4OBgZGdnQ09PD25ubhg3bhzc3d0Z
CLSBadOmITk5GZ9//jmWLl1aa0WKTCbD9u3b8fjxY0ybNk3AKhtmbGwsuoBOV3omaQNvb2/ExsbC
19dX8NCzLr1794a3t7dyupS3t3e958fHxyMsLAwjRowQ7Mn4e++9h7y8POzevRuXL1/GlClTVGq5
ceMGjh8/juTkZPTu3VvQSaV1MTQ0xJw5c+Dh4YGdO3di48aNypWh/L3SPGLfdk7Umh48eCDKFfDa
QBun5WmbXbt2YdGiRfWGX7m5uYiNjcWOHTs0WFnd8vPzkZKSgocPH8LW1hYjRowQrDl4amoq7O3t
m7TK3sbGBq6urrhy5UobVtY8xcXF6N69e73nWFpaqu27RY3TmM+OFRUVon8wDzD8EoXs7GwAQI8e
PSCRSCCVSiGVSht9vaabvgYGBrb4awg1ga5nz55Yvnw5tm/fjmXLlimfwh08eBD379+HgYEBVqxY
Uef2EE0JDQ1t0fbFN998sxWraRxd6ZmkDWbMmIFbt27hk08+QUBAAPr06QNTU1O1/2aEDBbnzZuH
vLw8hISE4NKlS5g8eXK9YVKvXr0EDZM6dOiAdevWYc+ePUhKSkJycjLMzc2VTxMLCwtRVlYGAHj9
9dfxwQcfiLqx58CBA/E///M/+PrrrxEREYH09HQu+W8msW87J2otcrkc586dE2yCXnMmoz18+FAj
tTVFQUEBUlJSUFRUJHjY8TJdmjxXHyMjIxQXF2vs/SorKxEZGYnc3FwYGhrCzc0NPj4+kEgkiImJ
wddff61sxA4AR48eRVBQkCB99X777bc6e4LWx9HRsUn3p5pibm6OwsLCes+5d+8ed1K1gIODAxIS
EhAQEKA2CKuursaFCxe0YhAfwy8RqLk5raio0IoGsPUFK6WlpZBKpbCwsMBrr70GGxsbPHz4EMnJ
yXj06BH8/PxgaWmpwWpVeXp64l//+hfOnDmDzMxMdO3aFSYmJpg0aRLGjx8veH0AEBYW1qLrhQi/
dKlnktgZGhrC09MT3377Lf73f/+33nOFCpqBFysUg4ODlWHShQsX6gyThg4dioULFwrex8zY2BhL
ly6Fv78/4uLikJWVpfy5bG1tDS8vL/j4+KB///6C1tlYnTp1wtKlS+Hh4YF9+/Zh1apV3ALZTHVt
O+/fv7/g/25r6EpwQMKQyWT46quvUFxcjMWLF2v8/VsyGU3TD3q0Keyooc2T5+Li4mpNfszJyVF7
XnV1NYqLi3H69OkGVwO1loqKCqxdu7bWPVxycjLS09Px9ttvY//+/ejduzemT5+Orl27oqCgAIcO
HcK2bduwdevWeqczt4Xy8nK13y+mpqb4+9//Xufqe0tLS5SXl7d1eU3m4eGB6OhojB8/Xu2fq6ys
DP/5z3+aFfjRCxMnTsRnn32GAwcO4M9//rPK8R9//BE3btzA2rVrBaiuaRh+iYC2NX2tK9h4+vQp
Vq1aBQ8PDyxbtqzWiohZs2Zh27ZtSE9Px5YtWzRVap2sra0xc+ZMoctokL29PcaOHYshQ4ZAX19f
ZdyzmOhSzySxi4mJwb59+9CzZ0+89tprsLKygqGhodBlqdWYMGnUqFHK5sBi4ejoqBVPsBpr5MiR
cHZ2xs6dO2utWiL15HI5zp49i5ycHDx79gz29vbw9/eHtbW1KLedA9oVHJBm/PTTT41ajVhRUYHb
t28jLS0NFRUVmD17NgYOHKiBCmvTls/D2hZ21NCWv191du/eXet/x8TEICYmps7z7ezs6p1c2JpO
nTqFvLw8jB8/HlOnToWJiQkSExNx4MABdOjQARYWFtiwYYNyV0TPnj3h4OCAoKAgnDx5staEXk0w
NDRUPhR5mYGBAV599dU6r5PL5Y3e2aFJ06ZNw4ULF7Bx40YEBQXV+n129+5dbN++Hfr6+moHwlDj
uLu7Y9q0aTh27BhycnIwaNAgAC9alvz444+4du0aZsyYoRXD+fSqxXw3TVrl8OHDiIuLw9atW9U2
k5fJZFi+fDl8fX0FC56Cg4MxderUem9cIiIiIJPJ8Pbbb2uwstoKCwsRHR2NuLg4lJWVwdLSEqNH
j4afn5/KBBYxqaysxPr163Hjxg0MHTq0UT2TNmzYIOqtY2L00UcfwdTUFOvXr4e+vr7Q5ZCIhIaG
YvDgwXVOHayqqsJPP/2EtLQ0rFu3TrPFaQmFQoFPP/0U169fr/W6qakpgoOD0bNnT4EqI2qaprSp
MDU1hZOTEyZNmiS6hxFic/ToUfz4449qw44RI0YgMzMT27ZtqxUUFBcXIygoCGPGjNF42KELXt7W
FhQUhLfffhuvvfaa2nONjIw0uovj73//Ozp06ID169fXej08PBxHjhxBYGAgpk+frnJdSEgI/vvf
/+Krr77SUKUvLF++HAMHDsS8efOadN2+ffuQlZWlnBQpJteuXcPWrVtRXFwMKysrlJSUwNTUFDKZ
DDY2NlixYgUnrbaC1NRURERE4Nq1a6iuroaenh4cHR0xbdo0uLu7C11eo4gvviWtlZycDB8fH7XB
F/Dig5Wvry+SkpIEC7+ys7MbXJFkbGyMEydOCBp+2dnZYfbs2QgMDERKSgqio6MRHh6OY8eOwcPD
A+PGjav36YxQdK1nklg9ePAAY8aMYfBFKmxtbevdgieRSODg4CBYPx9tEBUVhevXr8Pf3x8TJ06E
sbExfvnlF3z99df45ptv8MknnwhdIlGjNKbZt56eHszMzESzdVcbpKamwtnZuVaI5efnh7KyMmXY
8fsVMtbW1hg2bBjS09M1Xa5O+P1quZc/WwrtwYMHalcVeXl54ciRI3X2Eba3t8fPP//c1uWpGDRo
EJKTkzF37txGr+RSKBRISUlpUpN8Terbty+++uorJCQkICsrS9mWYNCgQRgxYoRWNGLXBl5eXvDy
8oJcLodMJoOpqanW/d0y/KJWU1RU1OAvIltbW402oGyOO3fuqF0OLAQDAwMMGzYMw4YNQ35+PqRS
KeLj43Hx4kXY2dlhzJgxGD16tHKUvRjoWs8kMeratSsUCoXQZZAI7d69G4sWLap3aIfYpmCJzYUL
F9C3b1+8++67ytd8fX1x79495crguh7yEImJWMIBXaNtYYeu+fTTT9GjRw+hy1CqCVp+r+azeadO
ndReZ2ZmhsrKyjatTR1fX19ERUXh+PHjeOONNxp1TUREBEpLS0Xbo7e0tBQlJSVwcHCAl5eXKPo3
6zIjIyNRDPBoDoZf1GpMTU0bDLaKi4s1ftMQHBxc639HREQgLi5O7bkPHz7E/fv3MWzYMA1U1jTd
u3fHO++8gz/96U9ITk5GdHQ0Dh8+jNDQUAwZMgRjx44VVSNrXeuZJCb+/v44evQofH19YWFhIXQ5
pGU0PQVL29y9exeTJ09WeX3w4MGIiIhAfn4+f7YRtWPaFnboGiH60emS3r17w9vbG6GhobC1tYW3
t3e958fHxyMsLAwjRowQ1dbBZ8+e4dSpU4iLi0NBQUGtY926dcOoUaMwceJE0fbEJWEw/KJW4+Li
gtjYWPzxj3+EiYmJyvEnT54gNjZW483wavYkv9zerq5Wd126dIG3tzemTJmiqfKazMjICN7e3vD2
9kZeXh6kUikSEhKQlJSEHj16wM/PDwEBAUKXSW3I1dUVV65cwcqVKzFp0iQMGDAApqamascPs5G1
7hPzFCxt9PTpU7VPjWvGpFdUVGi6JCKidmnPnj14+PAhVq5cqdyiFxoa2qhBDoAw08+1wbx585CX
l4eQkBBcunQJkydPrrdHb69evTB//nyBqlV19+5dfPbZZygsLESnTp0wZMiQWi1WMjMz8cMPPyAm
JgZ/+9vfRLVSUFtlZmbi2LFjuH37Nh49elTneUJOmW8Mhl/UaiZPnoykpCRs3boVH374Ya3lkMXF
xQgJCcGjR480Hiy93IAyMDAQU6ZMabDvl7awt7eHr68vHj9+jMTERNy9exdxcXEMv3TcyyPov/vu
u3rPFfsvIWo5MU/B0lbq+unVvMY5QUREmpGWloaysjJUVFQod46EhYU1+npNhV+nT59GcnJyrddq
Wqj8+OOPiIqKUrnm4cOHGqlNHWNjYwQHByt79F64cKHOHr1Dhw7FwoULRdMXsLCwEOvWrUNlZSXm
zp2LsWPHqqzuksvlkEql+P7777F+/Xps3rwZtra2AlWs/ZKSkrBt2zYYGhrC3d0dNjY2ahe6aAOG
X9RqevXqhQULFmDPnj1YtmwZBg0aBEtLS5SWliI9PR3Pnz/HggULYG9vL1iNNjY26Nixo2Dv31oq
Kytx/vx5REdH48aNGzA0NIS3tzfGjh3L7TjtwLx587SuwSS1nZd7d4ltChYRkS7StrBDW/3zn/+E
XC6v1TJFbA/1bGxsIJPJIJPJ1B4rLS1FaWlpndcKpTE9ekeNGiW66a8hISGorKzEunXr0LdvX7Xn
GBkZISAgAP369cOGDRsQEhKiMo2TGu/48ePo2rUrNm7cKKo+083B8ItalY+PD1555RWcOHECmZmZ
yr4IQ4YMwZQpUwQNvoAXPzC12e3btxEdHY2EhAQ8efIE3bp1w5w5c+qdskm6Z9y4cUKXQCIi5ilY
2qo5N7Y1Vq1a1aa1EZGwtDXs0EbNfVhz5MgRhIeHayQo0/Z7C23q0ZuZmYmcnBzMmzevzuDrZf36
9cPbb7+N/fv3IzMzU+Otd3TF3bt38eabb2p98AUw/KI20KtXLwQFBQldhs549uwZLly4gOjoaOTm
5kIikSgb3POHOAEv/o2Ul5dr5chhal1im4KljVpyY0tEuk/bw472gNvTdVNCQgIsLS3h5+fX6Gv8
/PwQHh6OxMRE3jc1U6dOnbR2m+PvMfyiNiPWG3JtadiXn58PqVSK+Ph4yGQydO7cGYGBgfD19VU2
Xqb2LT4+HlFRUbh58yaqq6uxevVquLm5ITU1FXZ2doKvtCTN4xSsluONLRERkfjk5OTAw8ND7YCn
uujr68PDwwPZ2dltWJlu8/LyQmpqqk7sPGH4Ra1OzDfk2tKwLzg4GNnZ2dDT04ObmxvGjRsHd3f3
Jv2wJ922Y8cOJCYmwtXVFePHj6+1Devs2bO4efMmvvzyS7Xj2Ek3cAoWERERtRfFxcXNmlbdrVs3
JCYmtkFF7UNgYCDWrFmDb7/9FrNnz1Z+5tRG2ls5iZLYb8i1pWFfzdOJHj16QCKRQCqVQiqVNvp6
9pzRbVKpFImJifj4448xePBglJaW1vpeW7JkCZYtW4Zjx47hnXfeEbBSakvaMgWLiIiIqKXkcnmz
7iFNTU0hl8vboCLdsmvXrjofoNrb2+P06dOIi4tD//79YWZmpnZRxsKFC9u6zBZh+EWtRhtuyLWl
YV9NQ9SKigrl5BWiGtHR0RgxYgQGDx6s9ripqSm8vb1x8eJFhl86TBumYBERERG1lsaubn8Zd840
TlZWVr3Ha+5Pb9++rYly2gTDL2o12nBDri0N+9hzhuqTn58PX1/fes/p1q0bioqKNFQRCaG5U7CI
iIiIiF7WHu4/GX5Rq9GGG3JdathH7ZeRkREqKirqPae8vFwrgl5qXVu3boWnpyfc3d1hYWEhdDlE
RETN9vnnnzfruvz8/FauhMQiLS0N5eXlTbrm+vXrbVRN+1BUVARTU1MYGxvXeU5paSkMDAxq7UYQ
I4Zf1Gq04YZclxr2Ufvl5OSE2NhYBAQEqJ2kqlAocO7cOQwYMECA6khIqampSElJAQA4ODjAw8MD
np6eeOWVVwSujIiIqGla0vqjZosW6ZakpCQkJSUJXUa78uGHH2LRokUYNWpUnef89NNPyMzMbHZg
rSm886dWow035KGhoejVq5dONOyj9mvKlClYu3Yttm/fjg8//LDWMYVCgb179+L+/ftYsmSJQBWS
UA4cOIDs7GxkZGQgPT0doaGhCA0NhZWVFdzd3eHp6YlBgwahQ4cOQpdKRERUr/awDYsab8eOHUKX
QHXo0qULzpw5I3QZDWL4Ra1GG27IL1y4gA4dOuhEwz5qvxwdHTF//nzs27cPy5Ytg5OTEwDgxIkT
2LNnD0pKSvD++++jT58+AldKmmZsbAwPDw94eHgAeLEMPSMjAxkZGUhLS0NMTAwMDQ0xYMAArF69
WuBqiYiIiBrHzs5O6BLajZo2RdXV1QBe7N5S17qouroaDx8+RExMDDp16qTRGptDr7rmT0TUCqRS
Kfbt2wdzc3M4OTkhOTkZLi4uKCgoUN6QN9QXjIga5+bNmzhx4gSysrJQXl4Oc3NzuLi4YPLkyejV
q5fQ5ZGIVFVV4erVqzh+/DguX74MgJMhiYiIiEhVYGBgk86XSCRYsGABfHx82qagVsLwi1odb8iJ
iIRXWVmJX3/9Fampqbh48SJkMhns7e3h5eUFT09P9O3bV+gSiYiIiEhk4uLilP+9e/dujB49Gv37
91d7rqGhIRwcHNC1a1cNVdd8DL+o3bp27RoyMzNRXl4OMzMzuLi48GaQtIJcLlfbV+/35+zfvx8f
fPCBhqoiMSgtLcXFixeRmpqKjIwMVFdXY+DAgfD09ISnpycbABMRERFRowUGBjbY8F5bMPyiVrNr
1y6MGTOmzlQYAKKjoyGXy/HHP/5Rg5XV9ujRI+zcuRPp6ekqxwYNGoQlS5bA3NxcgMqIGmfp0qUI
CgqqM6zNy8vDv/71L+Tn53NrWztTs0x96NChGD58OFxdXesdTU1EREREVJfQ0FAMHjwYvXv3FrqU
FlMdcUfUTPHx8bh371695zx79gwREREaqkiVXC7HP/7xD+Tk5GDWrFnYuXMnDh06hB07dmDWrFm4
evUqNm7cCLlcLliNRA3R09PDp59+irCwMFRVVdU6dvbsWaxevRolJSVYvHixQBWSUNzc3KCvr4+L
Fy8iNjYWiYmJKCkpEbosIiIiItJCM2bMqBV8FRQU4OrVq5DJZMIVARsRAAAXrklEQVQV1Uyc9kga
VVZWhqdPnwr2/pGRkcjLy8OaNWvg6uqqfN3Ozg5TpkzBK6+8gk2bNiEqKgqTJ08WrE6i+mzZsgVH
jhxBWFgYLl++jKCgIJiZmeHf//43UlJS0K9fPyxZsoRTcdqh1atX4+nTp0hLS0NqaioOHTqEvXv3
ok+fPvD09ISXl5dOPLkjIiIiIs1QKBSIiIjAmTNnUFZWBuDFZ043NzdIpVJ07doVLi4uAlfZMIZf
1CK7du2Cnp6ecgxqTEwMsrOzVc6rGYOamZlZK3TStPPnzyu3Aqnj6uqK4cOH4/z58wy/SLSMjIww
Z84cvPbaa9i1axdWrlyJTp06oaSkBNOnT8eMGTMgkXBhb3vVsWNHvP7663j99dfx/PlzXLlyBamp
qYiNjUVoaCg6d+4MT09PzJs3T+hSiYiIiEjEFAoFNm/ejJycHPj6+qJLly44dOiQ8nhWVhYOHjyI
L7/8UvS9ZXl3RC2SlZWFzMxMZGVlAQDu3LmDzMxMlf/LyspCcXExfHx8sGTJEsHqLSgogJOTU73n
9O/fH/n5+RqqiKj5HB0dMXPmTFRWVqK4uBgTJ05EYGAggy9S0tfXh4uLC2bNmoUFCxbAzc0NDx8+
xNmzZ4UujYiIiIhE7tSpU7h69So2bNiA+fPnw9vbu9bxhQsXwszMDEePHhWowsbjyi9qkZCQEOV/
BwYGYs6cOfDx8RGuoAbo6+tDoVDUe87z588ZHpDoVVZW4uDBg5BKpejduze6deuGn376CY8ePcJ7
772Hjh07Cl0iCai6uhrXr19HRkYGMjIycPXqVSgUCpiZmcHb2xseHh5Cl0hEREREIhcfHw8fH586
B20ZGRlh5MiRSEhI0HBlTcfwi1qVnp6e0CXUq1evXrh06RICAgLqPOfixYvsiUOi9t///hc7d+7E
vXv34O/vj7fffhsGBgZ49dVXsX//fmRnZ2PhwoVasfeeWtfZs2eRkZGBzMxMPHnyBMCLn3uTJk2C
h4cH+vbty3CfiIiIiBrl/v37mDBhQr3n2NjYoLS0VEMVNR/DL2o1R44cEbqEBvn6+mL37t2IiopS
+00cFRWFzMxMfPjhhwJUR9Q4n376KUxMTLBy5Up4enoqX/fx8YGTkxO2bduGjRs3IiAgAHPnzhWw
UtK0ffv2wcjICC4uLvDw8ICHhwc6d+4sdFlEREREpIVMTEzw6NGjes8pLi6GmZmZhipqPoZf1CwK
hQLPnz9Hhw4dhC6lSby9vZGcnIwDBw4gLS0Nvr6+sLa2RnFxMWJjY3H58mV4eHhg5MiRQpdKVCcn
JycEBQXB2tpa5VjXrl2xceNGHD58GCdPnmT41c6sWrUKLi4uMDIyqvV6WVkZOnXqBH19fYEqIyIi
IiJt4+rqCqlUCn9/f5iamqocr6ioQExMDNzc3ASormn0qmvG9BE1wccff4ySkhLs3LlT2VsoODi4
0devW7eurUprkEKhwJEjRxAZGYlnz54pXzc0NIS/vz8CAwNhYMBcmMSrurq6UVuM09PTBZ2uSm3v
xIkTGDp0KOzs7FSOVVVV4fDhw4iKioJcLlf2ZHjnnXdgbGwsQLVEREREpE3u3LmDVatWoU+fPli6
dCkMDAywYMECrF69Gg4ODti+fTuuXLmCL774Al27dhW63HrxDp+axdLSEgqFotYqgpob8obyVKH7
ghkYGGD27Nl44403cPXqVZSXl8PMzAyOjo5sEk5aobHfQwy+dFt2djYOHTqEW7duISgoSOX4t99+
i6ioKHTq1Anu7u4oLy/Hf/7zH9y9e7dJDyuIiIiIqH3q2bMnli9fju3bt2PZsmXo1asXAODgwYO4
f/8+DAwMsGLFCtEHXwBXfhERaZ1du3Y1GIBVV1fj6dOnWLFihYaqIk3bunUrcnNzsXXrVpVl6EVF
RVi8eDGsra2xYcMG2NjYAADi4uKwe/duLF26FMOGDROibCIiIiLSMsXFxThz5gwyMzMhk8lgbm4O
FxcXjB8/HpaWlkKX1yhc+UU6KzQ0tEWrzN58881WrIao9WRlZam8VlVVBZlMBrlcDgCwtbVV6ftE
uiU3NxejRo1S238hNjYW1dXVmDVrljL4Al4MRUhKSkJkZCTDLyIiIiJqFGtra8ycOVPoMlqE4Rfp
rLCwsBZdz/CLxCokJKTOY7m5ufj2229hZWWF5cuXa7Aq0rTy8nK1vb4A4Ny5czAzM1MbcLm6umrF
dF4iIiIiotbC8ItaXU5ODu7cuYPS0tI6z9FksGRvb4+xY8diyJAh0NfXb7AnGZE2c3R0xLp16/C3
v/0NP/30E6ZMmSJ0SdRGTExM8PDhQ5XXr1+/jsLCQowZMwYSiUTluLrXiIiIiKh9CwwMbNH1Yn+4
yvCLWk1ZWRm2bt2KnJycBs/VRPi1Y8cOREdHIy4uDvv27cPRo0cxevRo+Pn5oXPnzm3+/kRCMTIy
go+PD6RSKcMvHda/f38kJCTgzTffrDV8JDw8HAAwcuRItdddu3YNtra2GqmRiIiIiLTDuHHjmnxN
WloaCgsL26Ca1sfwi1rNd999h6tXr2LixIkYNWoUbGxsYGJiIlg9dnZ2mD17NgIDA5GSkoLo6GiE
h4fj2LFj8PDwwLhx4/Dqq68KVh9RWzIyMkJRUZHQZVAb8vf3x8aNG7F582bMnDkThoaGiImJQWpq
Kvr16wdnZ2eVa27cuIGff/4ZY8eOFaBiIiIiIhKrefPmNfrcx48fY//+/SgsLIS5uTn+8pe/tGFl
rYPTHqnVzJ8/Hx4eHli4cKHQpdQpPz8fUqkU8fHxkMlksLOzw5gxYzB69GiYm5sLXR5Rq6iqqsL6
9etRXFyMnTt3Cl0OtaHw8HCVJebW1tZYs2YNevbsWev1J0+eICgoCHK5HF999RVXwBIRERFRk6Wl
peHf//43SkpKMGTIEMyfP18r7qUZflGrmTNnDubOnQs/Pz+hS2mQXC5HcnIyoqOjkZubCwMDAwwZ
MgRjx47FgAEDhC6PqF7Z2dlqX6+srERRURHi4uJw7do1TJ8+vcV790n8rl27hpSUFMhkMnTt2hW+
vr4wMzNTe25oaCj69evHVa9ERERE1CQVFRX47rvvIJVK0alTJ7z33nsYMWKE0GU1GsMvajVr1qyB
q6ur1t1s5+XlQSqVIiEhAU+ePEGPHj3g5+eHgIAAoUsjUquh7zEjIyMEBATgrbfeqtULioiIiIiI
qKlycnIQEhKCwsJCeHh4YMGCBbC0tBS6rCZh+EWtJjk5GXv37sU///lP2NnZCV1Ok9y8eRMnT55E
YmIiAKBXr17YsmWLwFURqZeVlaX2dT09PZibm8POzg5GRkYaroqIiIiIiHSJQqHA4cOHcerUKRgb
G+Pdd9+Fj4+P0GU1C8MvajVlZWWIiIhAfHw8Jk2ahEGDBsHMzAwSiUTlXBsbGwEqrK2yshLnz59H
dHQ0bty4AUNDQ7z++usYO3YsHB0dhS6PqEWOHDmith8UERERERFRQ27cuIGQkBDcuXMHrq6u+OCD
D7S6ZyynPVKrmT9/vvK/Dx8+jMOHD9d5rpA35Ldv30Z0dLRym2O3bt0wZ84c+Pj4wNTUVLC6iFoT
n2sQEREREVFTVVVVITw8HEePHoWRkRH+8pe/6MSkcIZf1Gree+89dOjQQegy1Hr27BkuXLigbHAv
kUiUDe5dXFyELo+IiIiIiIhIUHfv3sXOnTtx48YNODs7Y9GiRVrX0qguDL+o1YwfP17oElTk5+dD
KpUiPj4eMpkMnTt3RmBgIHx9fWFlZSV0eURERERERESCO3nyJH744Qfo6elh7ty5OjcAjuEX6azg
4GBkZ2dDT08Pbm5uGDduHNzd3dX2ICMiIiIiIiJqr7777jsAQI8ePZCRkYGMjIwmXb9q1aq2KKvV
MPyiZsnOzm7wHD09PZiZmcHGxgbGxsYaqKq2mhp79OgBiUQCqVQKqVTa6OvF/s1LRERERERE1Bpq
htJVVlYiLy9P4GpaH8Mvapbg4OAmnd+7d29MmTIFw4YNa6OKVNV881ZUVOjkNy8RERERERFRawgJ
CRG6hDalV82RYNQMycnJjTqvoqICt2/fRnJyMoqKihAQEIC5c+e2cXVEuuPzzz9v1nX5+fm4d++e
oJNViYiIiIiIxIArv6hZhg4d2qTzZ86cid27d+P06dMYOHAgvLy82qgyIt3SklWLNasfiYiIiIiI
2jOu/CKNef78OZYvX44uXbpg9erVQpdDRERERERERO0Ax96Rxujr62P48OG4efOm0KUQERERERER
UTvB8Is0ytraGo8fPxa6DCIiIiIiIiJqJxh+kUY9ePAAZmZmQpdBRERERERERO0Ewy/SGLlcjnPn
zqFfv35Cl0JERERERERE7QTDL9IImUyGLVu2oLi4GP7+/kKXQ0RERERERETthIHQBZB2+umnn6Cn
p9fgeRUVFbh9+zbS0tJQUVGB2bNnY+DAgRqokIiIiIiIiIgI0Kuurq4WugjSPoGBgY0+19TUFE5O
Tpg0aRKcnJzasCoiIiIiIiIiotoYflGzFBYWNniOnp4ezMzMYGxsrIGKiIiIiIiIiIhUMfwiIiIi
IiIiIiKdxYb3RERERERERESksxh+ERERERERERGRzmL4RUREREREREREOovhFxERERERERER6SyG
X0REREREREREpLMYfhERERERERERkc5i+EVERERERERERDqL4RcREREREREREekshl9ERERERERE
RKSzDIQugIiIiEgXPX36FOfPn8fly5dx69YtPHr0CBKJBNbW1nB2dsZrr70GNzc3ocskIiIi0nl6
1dXV1UIXQURERKRLIiMjERYWBplMBkNDQzg4OMDKygqVlZW4desWHj58CABwcnLChx9+CDs7O4Er
JiIiItJdDL+IiIiIWolcLseOHTuQkpICCwsLvPXWWxgxYgSMjY1rnZeeno6DBw/i9u3bsLKywqZN
m9C5c2eBqm65rKwsZGdnw8fHB7a2tkKXQ0RERFQLe34RERERtZLdu3cjJSUF/fr1w5dffgk/Pz+V
4AsAXF1d8dlnn8HT0xMTJ07U6uALALKzsxEWFoYHDx4IXQoRERGRCvb8IiIiImoF586dQ1JSErp0
6YI1a9agY8eO9Z5vYGCAlStXaqg6IiIiovaLK7+IiIiIWuj58+c4cuQIAGD+/PkNBl9EREREpDlc
+UVERETUQtnZ2SgqKkLv3r0xaNCgFn89hUKBmJgYJCUlIS8vD5WVlbCwsICzszPGjx8PR0dHtdcF
BgZiwIABWLdundrjhYWFCAoKwqhRo7Bo0SLl65GRkfjmm2/w8ccfw93dHadPn0ZCQgLy8/NhbGwM
R0dHvPHGG+jbt6/K13pZcHCw8r9frmP9+vV48OABQkJCcPHiRRw/fhy3bt1CRUUFJkyYgKioKAwd
OhQfffSR2rplMhnef/996OnpYc+ePTA1NW3cXyQRERERGH4RERERtVh6ejoAwNPTs8Vf6/79+9iy
ZQvu3LkDExMTODk5oWPHjrh37x4SExORmJgIf39/zJ07F3p6es16j99fV9OXrKysDGvXrkVeXh4G
DBiAnj17Ii8vD5cuXUJ6ejrWrFmDAQMGAAA6duyIUaNGQU9PDzdv3sStW7fw6quvwtLSEgDQvXt3
lfc9e/Ys9u3bBzs7O7i7u8PY2BiTJk3CmTNncPHiRTx+/BidOnVSuS4pKQnPnz/H66+/zuCLiIiI
mozhFxEREVELFRYWAgDs7e1b9HWePHmCTZs24f79+5g4cSICAwNhZGSkPH7nzh1s374dkZGRMDIy
wqxZs1r0fjVqwrDDhw/DwsICX331Va2pjceOHcMPP/yAb775Blu2bAEAmJmZKVePhYaG4tatW5gy
ZYoyHFP3Z/u///s/TJw4EXPmzKl1zM3NDWlpaTh//jzGjRuncm1CQgIAYPTo0S3/wxIREVG7w55f
RERERC30+PFjAFC7aqkpwsPDcf/+fUyYMAFz5sypFXwBQM+ePfHpp5/C2toaJ06cwN27d1v0fr9X
WVmJlStX1gq+AGDKlCkwNzfHrVu3UFpa2qyv/eTJE7i5uakEXwDg5+cHAIiPj1c5du/ePeTm5sLW
1haurq7Nem8iIiJq3xh+EREREbVQTehVE4I1R1VVFWJjY2FoaIgZM2bUeZ6pqSmmTp2K6upqxMTE
NPv91PH09ESXLl1UXpdIJMpeZkVFRc3++pMnT67zfS0tLXHt2jWVQK9m1Zevr2+z35eIiIjaN4Zf
RERERC1kZ2cHAMjLy2v21ygoKIBMJoODg0ODfa3c3d0BALm5uc1+P3X69OlT5zErKysAgFwub/bX
79Wrl9rXJRKJMtz6/eqvhISEWseJiIiImorhFxEREVELubm5AQAuXrzY7K8hk8kAABYWFg2eW3NO
eXl5k96jurq63uPm5uZ1Hqtpit8Sv9/G+bIxY8YAAM6dO4eqqioAwNWrV3H//n24urrC2tq6xe9P
RERE7RPDLyIiIqIWcnZ2RufOnfHbb78hMzOzWV+jZrXXo0ePGjy35hwzMzOVY/WtzGooLGvu9MjW
UNPTq6SkBBkZGQBeBGHA/w/GiIiIiJqD4RcRERFRC+nr6yMwMBAAsHfvXlRUVDT62nv37gEAunfv
DlNTU1y/fl25Cqwuly5dAgD079+/1usGBgb1hmc3btxodF1CqGl8HxcXB4VCgQsXLsDCwgJeXl4C
V0ZERETajOEXERERUSsYNWoUXn/9ddy7dw+bNm1qMMACgKioKHz00UeIioqCnp4eRo8ejWfPniE0
NLTOa2QyGY4fP662D1bnzp1RVFSEkpISlesUCgXOnDnT9D9YI9SsGFMoFC36Ol5eXrCwsMAvv/yC
xMREPH78GKNGjYJEwo+sRERE1Hz8JEFERETUShYtWgQvLy/k5uZixYoViImJQWVlpcp5xcXFCAkJ
wYEDB2BsbAxnZ2cAwLRp09ClSxdERUXh+++/V9nCePfuXWzcuBHFxcWYNGkSevToUeu4h4cHqqur
sX//fjx79kz5ekVFBXbs2KE2FGsNNb3CsrOzla/V9O1qCn19ffj4+ODZs2f45ptvAACjR49ulRqJ
iIio/TIQugAiIiIiXWFkZIS//vWvOH36NI4ePYo9e/Zg//796NOnD6ysrFBVVYXCwkL89ttvAABH
R0csXLgQ3bt3BwCYmJhg9erV2LJlC44fP47o6Gj0798fHTt2RGFhIa5duwYAmDBhAmbOnKny/lOn
TsWFCxeQkpKCxYsXw9HREdXV1cjOzoa+vj4WLVqEL774olnBVH3c3d1hYGCAiIgI3LhxA4aGhnjy
5AnWrVvX5K81ZswYHD9+HE+fPoWTkxO6devWqrUSERFR+8Pwi4iIiKiVBQQEYPTo0UhMTMTly5dx
69Yt3Lx5E1VVVejcuTN8fX0xfPhwDBo0SOXarl27YsuWLYiJiUFSUhJyc3NRWVkJCwsLjBgxAuPH
j4ejo6Pa97W0tMTmzZsRGhqKX3/9FZcuXYKlpSW8vb0xbdo05fbEJ0+etOqf19bWFn/961/x/fff
IysrC6amphgxYoTyeFMa6Xfp0gVOTk7Iycnhqi8iIiJqFXrVDc28JiIiIiLSkOfPn+ODDz6AQqHA
nj17YGRkJHRJREREpOXY84uIiIiIROPXX39FWVkZhg8fzuCLiIiIWgXDLyIiIiISjejoaABsdE9E
RESth+EXEREREYlCZmYmLl26hIEDB6JPnz5Cl0NEREQ6gg3viYiIiEgwV65cwenTp6Gnp4eLFy/C
yMgIc+fOFbosIiIi0iEMv4iIiIhIMGVlZUhNTYWRkREcHBwwe/Zs9OrVS+iyiIiISIdw2iMRERER
EREREeks9vwiIiIiIiIiIiKdxfCLiIiIiIiIiIh0FsMvIiIiIiIiIiLSWQy/iIiIiIiIiIhIZzH8
IiIiIiIiIiIincXwi4iIiIiIiIiIdBbDLyIiIiIiIiIi0lkMv4iIiIiIiIiISGcx/CIiIiIiIiIi
Ip3F8IuIiIiIiIiIiHQWwy8iIiIiIiIiItJZDL+IiIiIiIiIiEhnMfwiIiIiIiIiIiKdxfCLiIiI
iIiIiIh01v8Djj7hH+mKnOIAAAAASUVORK5CYII=
' width=607 height=452/>
</div>
</div>
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Homicides</th>
<th>Gun Homicides</th>
<th>Gun Data Source</th>
</tr>
<tr>
<th>Country</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Mexico</strong></td>
<td> 16.9</td>
<td> 10.0</td>
<td> UNODC 2011[4]</td>
</tr>
<tr>
<td><strong>United States</strong></td>
<td> 4.2</td>
<td> 3.7</td>
<td> OAS 2012[5][6]</td>
</tr>
<tr>
<td><strong>Montenegro</strong></td>
<td> 3.5</td>
<td> 2.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Moldova</strong></td>
<td> 7.5</td>
<td> 1.0</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Canada</strong></td>
<td> 1.6</td>
<td> 0.8</td>
<td> Krug 1998[13]</td>
</tr>
<tr>
<td><strong>Serbia</strong></td>
<td> 1.2</td>
<td> 0.6</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Luxembourg</strong></td>
<td> 2.5</td>
<td> 0.6</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Greece</strong></td>
<td> 1.5</td>
<td> 0.6</td>
<td> Krug 1998[13]</td>
</tr>
<tr>
<td><strong>Croatia</strong></td>
<td> 1.4</td>
<td> 0.6</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Switzerland</strong></td>
<td> 0.7</td>
<td> 0.5</td>
<td> OAS 2011[1]</td>
</tr>
<tr>
<td><strong>Malta</strong></td>
<td> 1.0</td>
<td> 0.5</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Portugal</strong></td>
<td> 1.2</td>
<td> 0.5</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Belarus</strong></td>
<td> 4.9</td>
<td> 0.4</td>
<td> UNODC 2002[7]</td>
</tr>
<tr>
<td><strong>Ireland</strong></td>
<td> 1.2</td>
<td> 0.4</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Italy</strong></td>
<td> 0.9</td>
<td> 0.4</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Ukraine</strong></td>
<td> 5.2</td>
<td> 0.3</td>
<td> UNODC 2000[11]</td>
</tr>
<tr>
<td><strong>Estonia</strong></td>
<td> 5.2</td>
<td> 0.3</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Belgium</strong></td>
<td> 1.7</td>
<td> 0.3</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Finland</strong></td>
<td> 2.2</td>
<td> 0.3</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Lithuania</strong></td>
<td> 6.6</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Bulgaria</strong></td>
<td> 2.0</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Georgia</strong></td>
<td> 4.3</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Denmark</strong></td>
<td> 0.9</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>France</strong></td>
<td> 1.1</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Netherlands</strong></td>
<td> 1.1</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Sweden</strong></td>
<td> 1.0</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Slovakia</strong></td>
<td> 1.5</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Austria</strong></td>
<td> 0.6</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Latvia</strong></td>
<td> 3.1</td>
<td> 0.2</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Spain</strong></td>
<td> 0.8</td>
<td> 0.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Hungary</strong></td>
<td> 1.3</td>
<td> 0.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Czech Republic</strong></td>
<td> 1.7</td>
<td> 0.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Germany</strong></td>
<td> 0.8</td>
<td> 0.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Slovenia</strong></td>
<td> 0.7</td>
<td> 0.1</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Romania</strong></td>
<td> 2.0</td>
<td> 0.0</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>United Kingdom</strong></td>
<td> 1.2</td>
<td> 0.0</td>
<td> WHO2012 [10]</td>
</tr>
<tr>
<td><strong>Norway</strong></td>
<td> 0.6</td>
<td> 0.0</td>
<td> WHO 2012[10]</td>
</tr>
<tr>
<td><strong>Poland</strong></td>
<td> 1.1</td>
<td> 0.0</td>
<td> WHO 2012[10]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Let's just compare US, Canada, and UK:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[15]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">select</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">ix</span><span class="p">[[</span><span class="s">&#39;United States&#39;</span><span class="p">,</span> <span class="s">&#39;Canada&#39;</span><span class="p">,</span> <span class="s">&#39;United Kingdom&#39;</span><span class="p">]]</span>
<span class="n">plot_percapita</span><span class="p">(</span><span class="n">select</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<img src='
AAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XlUl3X+///HGxEZkQQUhFAhUitXwNyCTEUwFZcm/Zqa
lWOJyzg2ldpYTqUxWJJNx0YSl0zHLc1MbRFRySUTEtFIy3HX0lAWWVzY3r8/+sAvYlfgjVz32zkc
z1yv5Xpeb+l9xsd5vV6XyWw2mwUAAAAAAAAYjJWlCwAAAAAAAAAsgWAMAAAAAAAAhkQwBgAAAAAA
AEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAA
AAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJCsLV1ATfnll180bdo0
5ebmKiwsTF5eXuWOiYmJUURERKntDz30kKZOnVqVZQIAAAAAAKCGGCYYW7x4sWxtbZWZmVnpscOH
D5ezs3Ox6y4uLlVRGgAAAAAAACzAEMFYTEyMzpw5o8cee0yrVq2q9HhfX98KrTADAAAAAADAnaPO
B2MZGRlauXKlRo4cKRsbG0uXAwAAAAAAgFqizh++v3LlSrm4uCgoKMjSpQAAAAAAAKAWqdPB2NGj
R7V7926NGzfutufKzc1VVlaWzGZzFVQGAAAAAAAAS6uzWylzc3O1ePFi9enTR61atbqtud59910l
JSVJkho2bCg/Pz+NGDFC9vb2lZpnx44dt1UHAAAAAAAAShYQEFDpMXU2GNu0aZMyMjI0atSo25rH
y8tL3bp1k6urq/Ly8pSQkKDo6GgdOXJEoaGhlQ7HAAAAAAAAUDvUyWDs4sWL2rRpk8aOHatGjRrd
8jz+/v7q1atXkWt+fn7q1KmTFixYoBUrVmjy5MmVntfX1/eWawJqSkhIiBYtWmTpMgCgTuG7FQCq
B9+vgLHFx8ff8tg6ecbYkiVL5OHhoT59+tzWPNbWJeeG/v7+8vb21v79+5WTk3Nb9wAAAAAAAIBl
1LkVY1euXFFiYqK6dOmidevWFWk7e/asJCkqKkoODg7q3r27PD09b+k+nTp1UkJCgpKSkuTu7n67
ZQMAAAAAAKCG1blgLD8/X5IUFxenuLi4Evvs2rVLkuTm5nbLwZiV1W+L7erVq3dL4wEAAAAAAGBZ
dS4Yc3FxKbZSrEBMTIwiIiIUFhYmLy+vcuc6c+aMnJ2dZWdnV6wtPj5ednZ2cnFxue2aAQAAAAAA
UPPq5BljlZWXl6fU1NQi1xITEzVjxgxFRkYWrkIrEBUVpcOHD6tfv36FK8cAAAAAAABwZ6lzK8Zu
RXh4uOLj4/XCCy+oW7dukqT27durV69eiomJ0aVLl+Tn5ycbGxsdOnRICQkJ8vb21rBhwyxcOQAA
AAAAAG4VwZikpk2bqmHDhrK3ty9yfeLEiWrXrp22b9+ujRs3Ki8vT56enho/frz69Okjk8lkoYoB
AAAAAABwuwwVjPXq1Uu9evUqdn3cuHEaN25ciWN69uypnj17VnNlAAAAAAAAqGkckAUAAAAAAABD
IhgDAAAAAACAIRGMAShRcHCwpUsAgDqH71YAqB58vwK4VYY6YwxAxQ0aNMjSJQBAncN3K4C6wGw2
Ky0tTampqcrIyFBeXp6lS5K7u7vi4+MtXQaAW1CvXj3Z29vL0dFRDg4ONf6iQ4IxAAAAAECFmM1m
/fzzz0pPT5eLi4tatGgha2vrGv+HLIC6wWw2Kzc3V1evXtXFixeVlZUld3f3Gv1OIRgDAAAAAFRI
Wlqa0tPT1aZNG1lb889JALfHZDKpfv36atq0qRwcHHT8+HHZ2dnJ0dGxxmrgjDEAAAAAQIWkpqbK
xcWFUAxAlbO2tpaLi4tSU1Nr9L4EYwAAAACACsnIyFDjxo0tXQaAOqpx48bKyMio0XsSjAEAAAAA
KiQvL4/VYgCqjbW1dY2/0INgDAAAAABQYRy0D6C6WOL7hWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMA
AAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAACAKpWTY+kKql5dfCbUfU2aNNHgwYMtXUat
Zm3pAgAAAAAAdUv9+pKTk6Oly6hSKSmpNXq/zMxMffrpp4qKitIPP/ygy5cvy2w2y8HBQffee6/8
/f01atQoubu712hdt2Pv3r0aMmSIHnvsMS1ZsqTc/qdOnVKXLl3k5+enzZs310CFt2/t2rWaMWOG
3n77bY0YMaJWzGUymW6rjrqOFWMAAAAAANQikZGR8vHx0fPPP6+dO3fK1dVVgYGBCgwMVPPmzXXg
wAHNnTtXnTt31quvvqqcO2w5W2WDmjsp2Nm0aZMyMzP12Wef1aq5UDpWjAEAAAAAUAvcuHFDISEh
2rp1q5ydnRUeHq7hw4erUaNGRfplZmZq9erVCg8PV0REhB544AGNHj3aQlXj90JCQpSSkqLx48fX
qrlQOoIxAAAAAABqgSlTpmjr1q168MEHtWbNGjk5OZXYr1GjRho/fryCg4O1Z8+e296yh6rTu3dv
9e7du9bNhdIRjAEAAAAAYGHr1q3Txo0bdc8992jDhg2yt7cvd8zdd99NKAbcJs4YAwAAAADAgnJz
c/Wvf/1LJpNJ77zzToVCMQBVg2AMAAAAAAAL2rdvny5cuKAOHTrokUceqZI5J0+erCZNmujChQul
9hk0aJCaNGlS5FpGRoaaNGmiJ598UpL09ddfa8SIEbr33nvVvHlz9erVS4sWLZLZbK6SOm/XlStX
FBoaqp49e6ply5Zq0aKFevTooVdeeaXUZ//qq6/UpEkTvfXWW8rOztb8+fPVo0cPubm5qWPHjpo1
a5auXbsmScrLy9OiRYvk7++vu+++W61bt9aoUaN08ODBEudevXq1mjRpojVr1pTYnp2dreXLl2vI
kCFq3bq13Nzc5OvrqxkzZuiXX36p1Fzp6emaP3+++vbtK09PT7Vo0UKPPPKIwsPDlZmZWe5nl5OT
oyVLlqhfv37y8PBQixYt9PDDD2vevHnKyMgoddyXX36pYcOGqW3btmrevLn8/Pw0b9483bx5s9x7
1kYEYwAAAAAAWNCuXbskSf369avSeSvyNsc/9ik46D87O1vvvvuuHn/8cf3yyy/q27evunbtqp9+
+kkzZ87UCy+8UKW13oodO3aoS5cumj9/vq5evaqAgAAFBgYqNzdXH3zwgbp27ar169cXG2dnZydJ
un79uh599FHNnz9fXl5e6t+/v/Lz87Vw4UINGjRI165d05NPPqlXX31VTk5OGjRokO655x5t27ZN
wcHB2rdvX6m1lfTZnzt3Tn369NGLL76ohIQEeXt7a9CgQbK3t9eSJUvUo0ePwt+F8uaKj49Xjx49
FBoaqvPnz+vhhx9Wv379lJeXp7CwMHXv3l1Hjx4ttb5Lly4pMDBQM2bM0KlTp9SzZ0/1799fkjR3
7lw99NBD+vHHH4uNmzlzpp588knFxcXJx8dHgYGBunjxoubOnauhQ4cqLy+v1HvWVpwxBgAAAACA
BZ07d06S9MADD5TZb+PGjXruuedKbLt48aJsbGyKXLuVVV0FIcyhQ4e0Z88effDBBxo2bFhh+48/
/qgBAwZoxYoVGjdunNq3b1/pe3z33XeaPHlyuf3KWvWUkJCgMWPGqF69elq4cGGxs9a2bdumSZMm
adKkSXJ0dFTfvn0L2wqeccmSJWrRooUOHDggd3d3Sb+tonrqqacUFRWloUOH6qefftKXX36pBx98
sHD8hg0bFBISopkzZ+rrr7+u0DNnZmZq+PDhOnHihMaOHavXX3+9yNtGo6KiFBISosTExHIP3D93
7pyGDx+uzMxMvfHGG5o4caLq1atX2H7w4EH99a9/1eOPP17i+Js3b2rkyJFKTEzU3//+d7300kuy
tbUtbN+1a5f+8pe/aNSoUdqzZ09hkHj8+HEtWrRI99xzj7766is1bdpUknT16lUNHz5ceXl5Sk5O
louLS4U+k9qCYAwAAAAAAAu6evWqJMnBwaHMfh4eHho1alSRa5999lnhtr+qlJKSoldffbVIKCZJ
999/v0aPHq2FCxcqOjr6loKxc+fOFYaBt2ratGm6efOmli9frkGDBhVr79evn9auXasBAwbopZde
UlxcnOrXr1+kT3Z2tpYtW1YYiklS/fr1NX36dEVFRengwYN65ZVXioRikjRs2DC98847+uGHH5SU
lFShIOiDDz7QiRMn9Pjjjys8PLxYe1BQkA4fPqy77rqr3Ln++c9/Ki0tTXPmzNGkSZOKtXfu3Flf
fPFFqQHbsmXLdOTIEU2fPl0zZswo1t67d2/NmzdPISEh+uijjwrvkZiYKEnq06dPYSgmSY0bN9a6
devk4OBQoVWKtQ1bKQEAAAAAsKDGjRtLktLS0srs17lzZy1YsKDIj6OjY7XU1KBBA40bN67Etj59
+kiSfv7551ua+89//rOSk5PL/fnuu+9KHJ+YmKj4+Hj5+vqWGIoV6NKli4KDg3X+/PkStyh27dq1
xFV63t7esra2lslk0siRI0ud22w2l3mG2++tX79eJpNJM2fOLLVPRUKx1NRUff7553Jzc1NISEip
/RwdHUu916pVq9SkSRNNmzat1PGDBw+WjY2Ntm7dWnitIADcsWNHsfPQHB0d78hQTGLFGAAAAAAA
FtWyZUtJ0rFjxzRkyBALV/MbT0/PUoMaV1dXSdKNGzeqtYbStoLGxcVJkgICAsqdIzAwUJs3b1Zs
bKyCgoKKtJW22s1kMsnZ2VkZGRlyc3MrsU+zZs0kVewzyMrK0okTJ9SyZUt5enqW278s8fHxys/P
V8+ePYtsnyzJwIEDi127fv26jh07JkdHR02ZMqXM8SaTSceOHSv8335+fgoKClJUVJQ6d+6sRx55
RD179lS3bt3UuXPnW3ugWoBgDAAAAAAAC+rTp48WLFigbdu26eWXX66x++bn55fa9se3Vf5ewZlT
lpKamipJRbbzlcbZ2VnSb1tD/6is1Xb16tWTk5NTqe3W1hWPUwq2ypb1mVZUZZ7dzs6uyDlm0v+/
KjE1NVVr164tdazJZJLZbFZ2dnaRax999JEWLVqkjz76SNu3b9f27dsl/RbuhoeHVyisrG3YSgkA
AAAAgAU99NBDcnd315EjR7R79+4qnbus88dKCosKWFnV3rigINC6fPlyuX2TkpIkqcSQq6a2/hWc
HXflypXbnqvg2SsyV2ZmZrEXGBTU0qlTpzK3sV65cqXwz9+zsbHRlClT9N133+nIkSOKjIxUcHCw
Lly4oCeeeEIHDx687WesabX3Nx0AAAAAAAOwtrYuPA/qxRdfLPNtjBXVoEEDSaUHKFevXtXp06dv
+z6W0LVrV0m/nXVVnujoaElSt27dqrWmsjRs2FBt2rTR+fPnb/sz79y5s6ysrLR7927l5uaW2ffz
zz8vdu1Pf/qTOnTooO+///6Wz4gr4O7urscff1wfffSR5s6dq/z8fC1fvvy25rQEgjEAAAAAACzs
iSee0NChQ3Xq1CkNHz68zNVcFdG8eXNJUmxsbIntS5cuVU5Ozm3dw1LatWsnX19fHTp0qMjh8H8U
FxenrVu3qmXLlqW+obGm/L//9/8kSW+++WapfSryd+7g4KDg4GBdvHhRkZGRpfZLTU1VWFhYiW1j
xoxRfn6+XnrppVLH//rrr1q4cGGx6wcOHCixf0FYWRWr4moawRgAAAAAALXAf/7zHw0cOFCxsbHy
8/PTihUrlJWVVaxffn6+vvnmG40bN67UVT+BgYGSpIULF+qnn34q0rZ+/XrNmzev8G2Yd6J58+ap
QYMGmjhxojZs2FCsPTo6uvCNkvPmzavUmWDVYfz48WrTpo02bdqk559/XhkZGUXat2/fLh8fH82f
P7/cud544w05ODjo9ddf18KFC4udFZeQkKDg4OAi54P93tNPPy0fHx9FRUVp4sSJhWegFTh8+LCG
DBmiWbNmKSYmpvB6WFiYBgwYoH/+859FVqvdvHlT77zzjiTJx8en3PprGw7fBwAAAACgFrC1tdWK
FSsUGRmp8PBw/f3vf9c//vEPderUSc2aNZPJZNLly5eVmJio9PR0SZKbm5tCQkJkY2NTZK4OHTpo
9OjRWrVqlXr16qXu3buradOmOnr0qH766Se98sor2rVrl/bt22eJR71t3t7eWrlypZ599lmFhITo
zTfflLe3t0wmk44ePaoTJ07I1tZW77//vvr27WvpcmVnZ6ePP/5Yo0aN0sqVK/Xpp5+qS5cucnR0
1P/+9z99//33sre3L1x5VZaWLVvq448/1lNPPaVZs2ZpwYIF6ty5sxo0aKD//e9/+uGHH+Tq6qr1
69erZ8+excZbW1tr1apVGjVqlD7++GN9+eWX6t69u+zs7HTq1CkdOXJEDRo00FtvvaVevXoVjnvy
ySe1Zs0a/ec//9Enn3yiBx98UHl5efr222+Vmpqqtm3batKkSVX5sdUIgjEAAAAAQJXKyZFSUlIt
XUaVysmR6tevmXuNHz9eo0eP1saNG7V9+3YlJibq+++/l9lsloODg7y9vdWpUycFBgaqR48epR6U
/9577+mBBx7Q2rVrFRcXpwYNGujBBx/UW2+9JX9/fx04cEAmk0lXr169I1ePBQQEKC4uTpGRkfrq
q6+0c+dOSb+dfTVhwgRNnDixcEtpZVXkYP6S+phMplLHtmjRQrt27dKqVav06aef6vDhw8rKypKr
q6uee+45Pf/883J1da3QXJ07d9a3336rJUuW6PPPP9fevXuVl5cnLy8vTZ8+XZMmTZK9vX2ptTdr
1kxRUVFatWqVNmzYoNjYWN28eVNubm4aO3asQkJC1Lp162L179u3T//5z3/0+eefa+fOnapfv748
PDw0fvx4TZ482eJvLL0VJrPZbLZ0EUZRcDCgr6+vhSsBAAAAgMqLj4/n3zMAqtWtfM/Ex8dL+i0s
rSzOGMOd7w49MBIGxe8rAAAAANQabKXEna9+fTk6OVm6CqBCUm/z7UIAAAAAgKrDijEAAAAAAAAY
EsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAA
AGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAA
AAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAoGrl5Fi6
gqpXF5+pGrz11ltq0qSJvvnmG0uXgjKsXr1aTZo00Zo1ayxdisVZW7oAAAAAAEAdU7++HJ2cLF1F
lUpNSamWeSdPnqy1a9dWepyfn582b95cDRVZRsHn8PHHHysgIKDc/qGhoZo/f77ef/99jRw5sgYq
vH0jRozQiRMn9MUXX6hZs2a1Yi6TyXRbddQFBGMAAAAAAFhI9+7dZWVVfDPXyZMndeDAAbVt21be
3t7F2lu3bl0T5dW4ygY1d0qwk5ycrOjoaJlMJsXGxmrQoEG1Yi4QjAEAAAAAYDFjxozRmDFjil1f
s2aNDhw4oKCgIM2aNavK75uenq6IiAh16NBBAwYMqPL5UVSTJk00YcIEnTx5Ur169ao1c4FgDAAA
AACAWsdsNlfr/GlpaXr77bc1atQogrEaEhoaWivnMjpDBGO//PKLpk2bptzcXIWFhcnLy6tC4zIy
MrRx40bFxcUpLS1NjRs3lo+Pjx5//HE5OjpWc9UAAAAAAACoToYIxhYvXixbW1tlZmZWeEx6erpe
e+01JScnKyAgQHfffbeSkpIUHR2tQ4cO6Y033lDTpk2rsWoAAAAAAKpXda9MA2q74if81TExMTE6
c+aMhgwZUqlxK1as0JUrVzR79mw9/fTTCgwM1OjRoxUWFqbr169ryZIl1VQxAAAAAAAVc+XKFYWG
hqpnz55q2bKlWrRooR49euiVV17RhQsXivUfNGiQmjRpIh8fH0m/nWXWpEmTwp/fj7l69areffdd
DRw4UG3atFGzZs103333acKECTp16lSNPeOtio2N1fjx49WhQwe5urqqVatWGjx4sD788EPl5OSU
OObpp59WkyZNdP78ef3vf//ThAkTdP/998vd3V2BgYHatGlTYd+ff/5Zzz//vNq1ayc3Nzf5+vrq
1VdfVXp6eolzF3z2pblw4YJeeeUV9ejRQy1btpSHh4eCgoK0bNky5efnV2quH374QX/729/k4+Mj
Nzc3tWnTRiNGjNAXX3xR1kdW6Pz585oxY4Y6d+4sNzc3tW7dWsOHD9fnn39e6pirV69q/vz5hb+L
9957r4YNG6bo6OgK3dNS6vSKsYyMDK1cuVIjR46UjY1NhcelpKRo3759Cg4OlqenZ5E2V1dXDRky
RKtXr9aFCxfUvHnzKq4aAAAAAIDy7dixQ88++6zS09PVvHlzBQQEyGQy6fvvv9cHH3ygDz/8UO+9
956GDx9eOKZv377y9PRUZmamNm/eLC8vL3Xv3r2wvWHDhpKkgwcPauTIkUpOTpabm5u6deum+vXr
66efftL69eu1bds2ffnll7r//vur9JmqYgVbXl6eZs6cqSVLlsjKyko+Pj7q0aOH0tPTtX//fu3b
t09Lly7VmjVr1KJFiyJj7ezsJEl79uzRtGnT1KxZMz388MNKS0vTvn37NG7cOF24cEF9+/bV4MGD
lZ+fL39/f1lZWSk2NlYRERHavXu3oqKiZGtrW6y20t6iuX79ek2dOlU3b96Up6enAgICZDab9c03
32jatGlau3at1q9fr8aNG5c7V3h4uMLCwiRJ7du314MPPqjr16/rwIEDio6O1qBBg9SnT59SP7+t
W7cqJCREN27cUNu2bTVo0CBdu3ZNsbGxeuqpp/TYY48pIiJC9evXLxyTkpKiwMBAnTlzRvfee6+C
goKUlJSkmJgY7dq1S/PmzdNf/vKXUu9pSXU6GFu5cqVcXFwUFBSkmJiYCo9LSEhQfn6+/Pz8Smz3
8/PT6tWrdejQIYIxAAAAAECNS0hI0JgxY1SvXj0tXLhQI0aMKNK+bds2TZo0SZMmTZKjo6P69u0r
SZo6daqk31YEbd68Wd27d9eCBQuKzd+8eXN5enoqPDxcgwcPLtK2ePFivfzyy5o1a5bWr19fpc+1
cOFCbdy4sdx+R44cKbXtjTfe0JIlS+Tt7a0PPvhArVu3Lmy7du2aQkND9cEHHxSuZrK3ty9sLwib
pk+frmeeeUZz5syRldVvm+2OHz+uwMBAhYWFaf369WrXrp1WrlypRo0aSZJycnL01FNPKSoqSsuX
L9eECRMq9Mw7duzQxIkTZW9vr0WLFmnQoEGFbTdv3tTMmTO1fft2nT9/vkgwVpJFixYpLCxMHh4e
ioyM1IMPPljYlpubq6VLl+r1119XbGxsieNjY2M1btw4NWvWTOHh4QoKCipsy87O1uzZsxUREaG7
775bs2fPLmxbsGCBzpw5o5CQEP3rX/8qvL53716NHDlSv/76a4U+C0uos8HY0aNHtXv3br355puV
Hnv27FlZW1vLw8OjxPamTZuqUaNGOnfu3O2WCQAAAABApU2bNk03b97U8uXLiwQpBfr166e1a9dq
wIABeumllxQXF1dkhU95K7OaNWumqKioEtuee+45LV++XLt371Z2dnaldmiVpyKLWkwmU6n1Hzt2
TAsXLpS7u7s+/fRT3XXXXUXaGzZsqNDQUGVnZ2vZsmX697//rVmzZhWbp23btsXe/FiwHXHp0qU6
duyYDh06VBiKSVL9+vU1ffp0RUVFaceOHRUKxvLz8/WPf/xDkrRs2TL17t27SHuDBg30zjvvKD09
vdiz/NHly5f15ptvyt7eXp999lmx1XDW1tYKCQmRm5ubxo4dW2y82WzW9OnTZWtrq48//rjYakAb
Gxu9+eabOnbsmBYvXqy//vWvcnFxkSR9//33klRkdaIk+fv7KyEhocxtn5ZWJ88Yy83N1eLFi9Wn
Tx+1atWq0uMLfuFKW5YoSQ4ODsrIyLidMgEAAAAAqLTExETFx8fL19e3xFCsQJcuXRQcHKzz589r
165dVVrDfffdp9zcXF25cqVK512/fr2Sk5PL/Lly5YpefPHFEsf/97//ldls1vPPP19mkDRz5kzZ
2NgU9v+jp59+usRxBSuwHn74Ybm7uxdr9/b2lrW1dYnnu5Xk4MGDOnnypLp161YsFPu98kIxSfrk
k0907do1PfPMM8VCsd8bPHiwevbsWez6kSNH9P333+vJJ58sc4vssGHDlJ2drW3bthVea9asmSRp
7dq1ysvLK9K/NodiUh1dMbZp0yZlZGRo1KhRtzQ+KyurxL3Av2dra0swBgAAAACocXFxcZKkgICA
cvsGBgZq8+bNio2NLbItriLMZrO2b9+urVu36siRI7p06ZKysrJ0/fp1mc1mmUymYofC15TSVoxV
9LNxdHRU586dtX//fp08ebLYopr27duXOK5ghVRpi3BMJpOcnZ1148aNMu9foGBL6COPPFKh/mWp
zO9FcHCwdu/eXeTawYMHC+eZPHlyqWMvXrwoSfrxxx8Lr02dOlXbtm3TkiVLtGXLFgUFBemhhx6S
n59fiQFibVLngrGLFy9q06ZNGjt2bJEljQAAAAAA1AWpqamSfjvmpzzOzs6SfjscvTKSk5P11FNP
6dtvv1WDBg3k4+OjXr16FW7H3L9/v06fPl3JyqtfamqqTCZTpT6bgs/z9xwdHUscY239W4xS1iqo
evXqVaRUSVJaWlq581V2roLnKktBwFfS+IMHDxaGZH9UsI3VZDIVWSzUpk0bbd++XfPmzdMXX3yh
lStXauXKlTKZTOrXr5/+/e9/V6guS6hzwdiSJUvk4eFR5hsWymNnZ1fu+WE3btyotX+pAAAAAIC6
qyC0uXz5crl9k5KSJElOTk6VusdLL72kb7/9VsOHD1dYWFixoCgkJKRWBmOOjo46ffq0Ll++XPiG
ydIUfH4pY5sUAAAgAElEQVQlfTYFB+5XNwcHB0mqki2pBXMlJSWV+7bQkg7DL/g7njt3rp577rlK
3/+ee+7RwoULlZeXp8TERO3Zs0erVq3SV199pWHDhmnnzp2VCg1rSp06Y+zKlStKTEyUo6Oj1q1b
p7Vr1xb+HDhwQJIUFRWltWvX6syZM6XOc9dddykjI6PMwwjT0tKKvLkCAAAAAICa0LVrV0m/vc2w
PNHR0ZKkbt26VXj+nJwcbd26Va6uroqIiChx9dTZs2crPF9N6tKli8xmc7mfTUpKig4ePChnZ2fd
e++9NVRdcd7e3pKkr7/++rbnqszvxdatW0sd//uzw25FvXr11KlTJ/31r3/V3r171aVLFyUmJhbm
MrVNnQrGCvY2x8XF6dNPPy3yEx8fL0natWuXPv300zL/I/bw8FBubm6pfa5cuaLMzMxS31oJAAAA
AEB1adeunXx9fXXo0KESA44CcXFx2rp1q1q2bFnsYPeCFVHZ2dnFxqWkpCg/P1+2trYlvpTu4sWL
Onz4cJkvrLOUMWPGyMrKSu+9957S09NL7RcWFqbs7Gw9+eSTNVhdcb6+vmrdurUOHDhQZqBV0nbP
P/rzn/+shg0bavny5Tp//nyp/bZs2aI9e/YUu96uXTv5+Pho165d2rx5c6njN23aVGyrZVZWVuGb
KX+vXr168vX1lVQ1q+KqQ50KxlxcXLRu3boSfyZOnCjpt1/+devWlXmwnbe3t6ysrLR3794S2wuu
+/j4VP1DAAAAAABQjnnz5qlBgwaaOHGiNmzYUKw9OjpaI0eOLOxbcDZWgYJtd7GxscrNzS28np+f
LxcXFzk7O+vMmTNat25dkXGnTp3SqFGj1LBhQ0kq9gZCS7v//vs1ceJE/fzzz/rzn/+skydPFmm/
fv26/vnPf2rZsmVq1aqVpk6daqFKf2MymRQWFiYrKyv95S9/0aZNm4q037x5Uy+++KL8/f0LD+ov
jbOzs1555RVlZmbqscce06FDh4q05+bmasmSJRo/fnzhWyT/6O2335aNjY2mTJmiVatWFRu/ePFi
TZgwQePHj1dOTo6k3z7T3r17a+jQocUCtx9//FGffPKJrKysClfH1TZ17oyxysrLy1N6enqRpaFO
Tk7y8/PTtm3b5O/vL09Pz8K2S5cu6bPPPpO3t3etf7MCAAAAAKBu8vb21sqVK/Xss88qJCREb775
pry9vWUymXT06FGdOHFCtra2ev/999W3b99i4xs1aqTevXtr165devjhh9W2bVsdO3ZMkZGRat++
vebPn6+nnnpKkyZN0vvvv6/77rtPaWlp2r9/v7p3765+/fpp3rx5unbtmgWevmyvv/66rl+/rmXL
lql79+7q3LmzWrRoofT0dB04cEAZGRm6//77tWbNmho/IqmkI5t69+6tiIgITZ06VePGjdPs2bPV
sWNHmc1m7d+/X8nJyerWrZvuueeecueaMGGC0tPT9fbbb6tv377q2LGj7r33Xl2/fl1xcXFKTk7W
gAEDFBQUpOeff77YeF9fXy1dulQTJkzQ3/72N7333nvq0KGDrl+/roSEBP3666/y8vLS6tWrC1/E
8Kc//UlTpkzRiy++qKFDh8rHx0eenp66dOmSDhw4ILPZrGnTpqlly5ZV9ClWLcMHY+Hh4YqPj9cL
L7xQZM/1008/rZMnT2rWrFnq27ev3NzcdPnyZW3fvl12dna3dBAdAAAAABhCTo5SK/kWxFovJ0f6
vyCgJphMpnK3KgYEBCguLk6RkZH66quvtHPnTkmSu7u7JkyYoIkTJ6p58+aljl+4cKFefvll7dy5
UxcvXlS7du0K3+Y4YMAAbdmyRe+++66OHDmis2fPysPDQzNmzNDkyZO1fPlymUwm/frrr3rggQeK
1V4dz1vR/lZWVpo3b56GDx+upUuX6ptvvtHhw4dlZ2enjh076rHHHtOYMWOKraK7lTpKq62yNQ8b
Nkw9evRQRESEdu7cqZ07d8pkMum+++7Tyy+/rLFjxxYZW9Zc06dP14ABAxQZGak9e/boiy++UKNG
jeTj46PRo0dr8ODBWr16danjBwwYoG+//VYRERGKjo7WV199pQYNGqhVq1aaPHmynn32WTVo0KDI
mDFjxqhjx45auHCh9u3bp6NHj8rJyUmPPPKIxo0bp/79+1fko7MIk7msE+brkJiYGEVERCgsLExe
Xl6F15cuXaq9e/dq2rRpatu2bZExmZmZ+uSTT/Tdd98pJSVFDg4O8vHx0bBhwwqXnVZGwX7hgv21
qDqOlXzDCmApde7/IAIAAEOJj4/n3zMAqtWtfM8UnCsfEBBQ6fsZJhirDQjGqg/BGO4UBGMAAOBO
RjAGoLrVdDBWpw7fBwAAAAAAACqKYAwAAAAAAACGRDAGAAAAAKgwTuMBUF0s8f1CMAYAAAAAqJB6
9eopNzfX0mUAqKNyc3NVr169Gr0nwRgAAAAAoELs7e119epVS5cBoI66evWq7O3ta/SeBGMAAAAA
gApxdHRUUlISq8YAVLnc3FwlJSXJ0dGxRu9rXaN3AwAAAADcsRwcHJSVlaXjx4/LxcVFjRs3lrW1
tUwmk6VLA3AHMpvNys3N1dWrV5WUlKS77rpLDg4ONVoDwRgAAAAAoEJMJpPc3d1lZ2en1NRU/fzz
z8rLy7N0WQDuYPXq1ZO9vb3c3Nzk4OBQ40E7wRgAAAAAoMJMJpMcHR1rfLsTAFQHzhgDAAAAAACA
IRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAA
AACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAA
AAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjG
AAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABD
IhgDAAAAAACAIRGMAQAAAAAAwJCsLV0AcNtycpSakmLpKoCKycmR6te3dBUAAAAAABGMoS6oX19O
To6WrgKokJSUVEuXAAAAAAD4P2ylBAAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAA
MCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAA
AADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYA
AAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLB
GAAAAAAAAAzJ2tIFVJfc3Fxt2bJFe/fuVVJSkqytrdWqVSsNHDhQ3t7eFZojJiZGERERpbY/9NBD
mjp1alWVDAAAAAAAgBpUJ4OxnJwczZ49W8ePH1ePHj0UFBSk69ev68CBAwoLC9O4ceMUFBRU4fmG
Dx8uZ2fnYtddXFyqsmwAAAAAAADUoDoZjJ09e1YpKSmaMmWK/P39C68PHTpUoaGhWrlypfz9/dWw
YcMKzefr6ysvL6/qKhcAAAAAAAAWUCfPGGvVqpXef//9IqFYgd69eys7O1snTpywQGUAAAAAAACo
LepkMCZJJpOpxOs2NjZF/gQAAAAAAIAx1dlgrDRff/21HBwcKr01Mjc3V1lZWTKbzdVUGQAAAAAA
AGpSnTxj7Pdu3LihzMxMXbp0SVFRUUpISNC0adMqtWLs3XffVVJSkiSpYcOG8vPz04gRI2Rvb19d
ZQMAAAAAAKCa1flgbMuWLdqwYYMkydbWVjNmzFD79u0rPN7Ly0vdunWTq6ur8vLylJCQoOjoaB05
ckShoaGEYwAAAAAAAHcok7mO7w28dOmSzp07p6SkJO3Zs0dnzpzRM888o/79+5c7Njc3V9bWxbPD
vXv3asGCBerZs6cmT55c4Vp27Ngh6be3XKJqOTk5WroEoEJSUlItXQIAAAAA1Cnx8fGSpICAgEqP
rfNnjLm6uqpr164KDg7WW2+9pYEDB2r58uU6ffp0uWNLCsUkyd/fX97e3tq/f79ycnKqumQAAAAA
AADUgDofjP3RE088IRsbG+3cufO25unUqZNycnIKzx4DAAAAAADAncVwwZiNjY2cnJxuO9Cysvrt
o6tXr15VlAUAAAAAAIAaVueCsfz8fMXHx2v37t0ltl+7dk3JyclycHAod64zZ84oKyurxLb4+HjZ
2dnJxcXltuoFAAAAAACAZdS5YMxkMmnt2rWKjIwsdo5Yfn6+PvzwQ+Xk5MjPz6/wel5enlJTix6I
nZiYqBkzZigyMlL5+flF2qKionT48GH169evcOUYAAAAAAAA7iwlny5/BzOZTJo0aZJCQ0P12muv
qWfPnmrRooWysrIUGxur06dP69FHH1XHjh0Lx4SHhys+Pl4vvPCCunXrJklq3769evXqpZiYGF26
dEl+fn6ysbHRoUOHlJCQIG9vbw0bNsxSjwkAAAAAAIDbVOeCMUny9PTU3LlztXXrVsXHxysmJkb1
69eXl5dXkfCrQNOmTdWwYUPZ29sXuT5x4kS1a9dO27dv18aNG5WXlydPT0+NHz9effr0kclkqsnH
AgAAAAAAQBUymc1ms6WLMIodO3ZIknx9fS1cSd3j5ORo6RKACklJSS2/EwAAAACgwuLj4yVJAQEB
lR7LAVkAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAA
AAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAM
AAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAk
gjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACAIRGMAQAAAAAA
wJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAAAACGRDAGAAAA
AAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAAAAAAABgSwRgA
AAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAAAADAkAjGAAAAAAAAYEgE
YwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgDAAAAAACA
IRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJYAwAAAAA
AACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAAMCSCMQAA
AAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhmRt6QKqQ25urrZs2aK9e/cqKSlJ1tbWatWqlQYOHChv
b+8Kz5ORkaGNGzcqLi5OaWlpaty4sXx8fPT444/L0dGxGp8AAAAAAAAA1a3OBWM5OTmaPXu2jh8/
rh49eigoKEjXr1/XgQMHFBYWpnHjxikoKKjcedLT0/Xaa68pOTlZAQEBuvvuu5WUlKTo6GgdOnRI
b7zxhpo2bVoDTwQAAAAAAIDqUOeCsbNnzyolJUVTpkyRv79/4fWhQ4cqNDRUK1eulL+/vxo2bFjm
PCtWrNCVK1c0Z84ceXp6Fl4PCAjQzJkztWTJEr388svV9RgAAAAAAACoZnXujLFWrVrp/fffLxKK
Fejdu7eys7N14sSJMudISUnRvn379OijjxYJxSTJ1dVVQ4YM0aFDh3ThwoWqLB0AAAAAAAA1qM4F
Y5JkMplKvG5jY1Pkz9IkJCQoPz9ffn5+JbYXXD906NBtVAkAAAAAAABLqpPBWGm+/vprOTg4yMvL
q8x+Z8+elbW1tTw8PEpsb9q0qRo1aqRz585VR5kAAAAAAACoAXXujLHfu3HjhjIzM3Xp0iVFRUUp
ISFB06ZNK3fFWHp6uu66665SV55JkoODgzIyMqq6ZAAAAAAAANSQOh2MbdmyRRs2bJAk2draasaM
GWrfvn2547KysmRra1tmH1tbW4IxAAAAAACAO1idDsYefvhheXh4KCkpSXv27NGcOXP0zDPPqH//
/pYuDQAAAAAAABZWp4MxV1dXubq6SpKCg4O1YsUKLV++XPfff7/uueeeUsfZ2dmVe37YjRs35Ozs
XKX1AgAAAAAAoOYY6vD9J554QjY2Ntq5c2eZ/e666y5lZGTIbDaX2ictLU329vZVXSIAAAAAAABq
iKGCMRsbGzk5OSkpKanMfh4eHsrNzdXZs2dLbL9y5YoyMzNLfWslAAAAAAAAar86FYzl5+crPj5e
u3fvLrH92rVrSk5OloODQ5nzeHt7y8rKSnv37i2xveC6j4/P7RUMAAAAAAAAi6lTwZjJZNLatWsV
GRmp06dPF2nLz8/Xhx9+qJycHPn5+RVez8vLU2pqapG+Tk5O8vPz07Zt23TmzJkibZcuXdJnn30m
b29vubu7V9uzAAAAAAAAoHrVqcP3TSaTJk2apNDQUL322mvq2bOnWrRooaysLMXGxur06dN69NFH
1bFjx8Ix4eHhio+P1wsvvKBu3boVXn/66ad18uRJzZo1S3379pWbm5suX76s7du3y87OTs8995wl
HhEAAAAAAABVpE4FY5Lk6empuXPnauvWrYqPj1dMTIzq168vLy+vYuGXJDVt2lQNGzYsdpC+vb29
5syZo08++UTfffedUlJS5ODgIH9/fw0bNqzc7ZgAAAAAAACo3Uzmsl69iCq1Y8cOSZKvr6+FK6l7
nJwcLV0CUCEpKanldwIAAAAAVFh8fLwkKSAgoNJj69QZYwAAAAAAAEBFEYwBAAAAAADAkAjGAAAA
AAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYAAAAAAABDIhgD
AAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLBGAAAAAAAAAyJ
YAwAAAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABgSARjAAAAAAAA
MCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAAAIAhEYwBAAAA
AADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADIlgDAAAAAAAAIZEMAYA
AAAAAABDIhgDAAAAAACAIRGMAQAAAAAAwJAIxgAAAAAAAGBIBGMAAAAAAAAwJIIxAAAAAAAAGBLB
GAAAAAAAAAyJYAwAAAAAAACGRDAGAAAAAAAAQyIYAwAAAAAAgCERjAEAAAAAAMCQCMYAAAAAAABg
SARjAAAAAAAAMCSCMQAAAAAAABgSwRgAAAAAAAAMiWAMAAAAAAAAhkQwBgAAAAAAAEMiGAMAAAAA
AIAhEYwBAAAAAADAkAjGAAAAAAAAYEgEYwAAAAAAADAkgjEAAAAAAAAYEsEYAAAAAAAADMniwdi1
a9csXQIAAAAAAAAMqMqDsePHj1e4b2ZmpubMmVPVJQAAAAAAAADlqvJg7F//+pdOnTpVbr/09HS9
8cYbFeoLAAAAAAAAVLUqD8auX7+u0NBQnTt3rtQ+KSkpeu2113Tu3Dm1adOmqksAAAAAAAAAylXl
wdjYsWMLt0j+8ssvxdovX76s1157Tb/88os6duyoV199tapLAAAAAAAAAMplXdUTPvroozKZTFq2
bJlmz56t119/Xa6urpKkS5cuafbs2UpOTlbXrl01depUWVtXeQmSpEOHDmnz5s06f/68bty4IXd3
d/n7+6t///4VvmdMTIwiIiJKbX/ooYc0derUqioZAAAAAAAANahaUql+/frJZDJp6dKlmjNnjl5/
/XXdvHlTc+bMUVpamnr16qWQkBBZWVXPSzE3bdqkNWvWqHnz5goODpaNjY0SExP13//+V/Hx8Zo1
a1al7j18+HA5OzsXu+7i4lKVZQMAAAAAAKAGVc9yLUlBQUGSpKVLl2r27Nm6fv26MjIy1L9/fz3z
zDPVdVudP39ea9asUYcOHTRz5szCAGzAgAHaunWrVq5cqZ07d6pv374VntPX11deXl7VVTIAAAAA
AAAsoHqWbP2foKAgPfvss0pKSlJGRoaGDRtWraGYJJ05c0YtW7bU6NGji60KGzhwoBo0aKDDhw9X
aw0A/j/27j5K67re9/9rYLgbYBymgVDYgGToVlDAG9TBxJC8LU5HOHZq7ePpWO7jrnUqPam5NHO7
W3trrmU7a5tuW951IxWQaaaoSIk3R3EGjUwLCRDLowg4DHI3w/z+6OecTXLncDEXM9/HY63Wiuv7
+X6u97hslj39Xp8LAAAA9n8demLshRde2OO1w4YNy0knnZTNmzfniCOO2OG9hx9+eEfG2KGTTjop
J5100g6vVVRUpKqqKlu2bCnZ+wEAAADQNXUojF199dUderOnn356h6/PmjWrQ/u9V6tWrcratWt3
Gs52paWlJZs3b05VVVUqKir2wXQAAAAAdKYOhbEZM2aUeo59rq2tLXfccUd69OiRadOmvad7b7jh
hrz++utJkqqqqtTX1+fcc8/NwIED98WoAAAAAHSCDoWxmTNnlnqOfe7222/P888/n49+9KPv6dsk
R48enUmTJmXo0KFpbW3N4sWL8/DDD+f555/P17/+dXEMAAAAoIvaZ99KuT+5++6788ADD2TcuHH5
5Cc/ucf3TZ48OVOmTNnutfr6+hx11FG58cYbc+edd+Zzn/tciacFAAAAoDOULIxt3bo1y5Yty/Ll
y7N69eo0Nzdny5Yt6d27dwYMGJC6urocfPDBGT16dCorO6/HzZ07N3Pnzs3hhx+eSy655F3fVLkr
O5tz8uTJeeyxx/Lkk0/mggsuSK9evUo1LgAAAACdZK8LVVNTU37605/msccey9tvv73b9VVVVZk8
eXJmzpyZ6urqvX37Xbr//vtz991352//9m/zla98Jb179y7Z3kcddVQWL16c119/PcOGDSvZvgAA
AAB0jr0KYy+++GK+8Y1vpLm5OQMHDsxJJ52UESNGpK6uLlVVVamsrExLS0vefvvtrF69OitXrkxj
Y2PmzZuXJ554IhdffHEOP/zwUv0s25k/f37uuOOOHHbYYSWPYknanzzr2bNnSfcFAAAAoHN0OIyt
Xr061157bbZs2ZLzzjsvH/nIR/boI5ItLS2ZN29evv/97+e6667Ldddd954Ow98TCxcuzM0335xD
Dz00l19+efr06dOhfZYvX57Bgwenf//+77rW0NCQ/v37l3x2AAAAADrHnh+49VfuueeevP322/nC
F76QM888c4/PDausrMyZZ56ZL37xi9m4cWPuueeejo6wQ08//XS+853vZMyYMXscxVpbW7N27drt
XluyZEkuvfTS3HLLLdm2bdt21+bNm5fnnnsup5122ns6swwAAACA/UeHnxj7zW9+kxEjRuS4447r
0P3HHXdcRowYkSVLlnR0hB365je/mcrKypx44ol56qmndrimb9++Of7449v/fP3116ehoSEXXXRR
Jk2alCQZO3ZspkyZkgULFuS1115LfX19evfuncbGxixevDjjx4/PjBkzSjo7AAAAAJ2nw2HszTff
zNFHH71Xb37QQQeloaFhr/b4a62trWltbc3tt9++0zWDBw/eLoy9cybawIEDt1t34YUX5ogjjshD
Dz2UOXPmpLW1NaNGjcoFF1yQD3/4w6moqCjp7AAAAAB0ng6Hsf79++ett97aqzdvampKVVXVXu3x
12bNmvWe7zn//PNz/vnn7/Dahz70oXzoQx/a27EAAAAA2M90+ICsv/mbv8nSpUuzevXqDt3/xhtv
5A9/+ENGjBjR0REAAAAAoMM6HMbOOuusbNmyJd/4xjfy5ptvvqd733zzzVx//fXZunVrzjzzzI6O
AAAAAAAd1uGPUo4fPz4f+9jH8vOf/zxf/OIXM2XKlBxzzDEZNWpUDjjggHetf+utt/LHP/4xzz77
bBYsWJAtW7bk7LPPzoQJE/bqBwAAAACAjuhwGEuST33qUxk2bFi+//3vZ968eZk3b16SpGfPnunX
r1969uyZ1tbWbNy4Ma2tre33DRw4MP/jf/yPnHLKKXs3PQAAAAB00F6FsSSZMmVK6uvrs2jRoixZ
siQrVqxIU1NTmpubs379+vTr1y91dXWprq7OyJEjM27cuBxzzDGprNzrtwYAAACADitJnerVq1dO
OOGEnHDCCaXYDgAAAAD2uQ4fvr8ntm3bti+3BwAAAIAOK8kTY1u3bs3TTz+dJUuWZPny5Vm9enWa
m5uzbdu29OjRIwMGDEhdXV0OPvjgjB07Nscdd5yPUgIAAABQVntdp+bPn58f/OAHaW5u/n+bVlZm
4MCB7Yfvb9iwIcuWLcuyZcvyyCOPZMCAAfnkJz+ZqVOn7u3bAwAAAECH7FUYu+uuu3Lfffeld+/e
Of3003PsscdmxIgRqa6uftfapqamrFy5Ms8880zmz5+fW265JatWrcp55523NyMAAAAAQId0OIwt
Xrw49913Xw4++OBccsklqa2t3eX66urqjB07NmPHjs306dNz7bXX5v7778+4ceMyceLEjo4BAAAA
AB3S4cP3f/GLX6R379753//7f+82iv212trafPnLX06vXr3yy1/+sqMjAAAAAECHdTiMvfLKKznk
kA5MZCgAACAASURBVENSV1fXofvr6urywQ9+MCtXruzoCAAAAADQYR0OY83NzTs8S+y9qK6uzttv
v71XewAAAABAR3Q4jNXV1eVPf/rTXr35q6+++p4/hgkAAAAApdDhMDZu3LisXLkyTz31VIfuf+qp
p/LKK6/kyCOP7OgIAAAAANBhHQ5j06dPT1VVVW688cbce++92bp16x7dt3Xr1tx777351re+lX79
+uVjH/tYR0cAAAAAgA6r7OiNdXV1+cpXvpJrr7023//+9/Ozn/0sRx55ZEaNGpX3ve996devX3r2
7JnW1tZs3Lgxb775ZpYvX57nn38+zc3NGTBgQL785S9n8ODBpfx5AAAAAGCPdDiMJcmYMWNyww03
ZPbs2fn1r3+dJ554Ik888cQu76mqqsrpp5+ec845Z68P7wcAAACAjtqrMJb85ZslP/3pT+fv/u7v
smzZsqxcuTJNTU1pbm7Oxo0b069fvwwYMCDV1dUZOXJkDj744FRW7vXbAgAAAMBeKVmhqqyszJgx
YzJmzJhSbQkAAAAA+0yHD98HAAAAgK5MGAMAAACgkIQxAAAAAApJGAMAAACgkIQxAAAAAAqpw99K
ecEFF6SioqIkQ9x8880l2QcAAAAA9lSHw9j69euzbdu2Us4CAAAAAJ2mw2Hs/PPPz7//+79n1KhR
+drXvpZ+/fqVci4AAAAA2Kc6fMbYqaeemjPOOCPLly/P9ddfn9bW1lLOBQAAAAD71F4dvv/f/tt/
y1FHHZUlS5bk29/+dqlmAgAAAIB9bq/CWI8ePfLFL34xw4YNS2NjY1599dVSzQUAAAAA+1SHzxh7
R1VVVS699NK0tLRk2LBhpZgJAAAAAPa5vQ5jSfL+97+/FNsAAAAAQKfZq49SAgAAAEBXJYwBAAAA
UEjCGAAAAACFJIwBAAAAUEjCGAAAAACFJIwBAAAAUEjCGAAAAACFJIwBAAAAUEglD2O33XZbGhsb
S70tAAAAAJRUycPYgw8+mIULF5Z6WwAAAAAoqZKHsbq6uqxbt67U2wIAAABASZU8jB199NF54YUX
snLlylJvDQAAAAAlU/Iwds455+T9739/rr322qxYsaLU2wMAAABASVSWesPGxsZMmzYt9957by69
9NIceeSRGTlyZPr06bPTe2bMmFHqMQAAAABgl0oexv7t3/5tuz8/99xzee6553Z5jzAGAAAAQGcr
eRj76le/WuotAQAAAKDkSh7GjjjiiFJvCQAAAAAlV/LD9wEAAACgKyj5E2P/0datW/O73/0uq1at
yttvv+0sMQAAAAD2G/ssjD3wwAOZPXt2mpqa2l97J4y99tpruemmm/KlL30pNTU1+2oEAAAAANip
ffJRyjvvvDO33XZbBg4cmBkzZuSQQw7Z7vqSJUvy4osv5tprr01bW9u+GAEAAAAAdqnkT4y98MIL
+cUvfpETTzwxn//859OzZ8+8/vrrWbp0afuaU089NW+++WbmzJmTRx55JKeeemqpxwAAAACAXSr5
E2O//OUv069fv1xwwQXp2bPnTtd9/OMfT1VVVR5//PFSjwAAAAAAu1XyMPbSSy/l0EMPTb9+/Xa5
rnfv3hkzZkxWrlxZ6hEAAAAAYLdKHsaam5szYMCAPVpbVVWVTZs2lXoEAAAAANitkoexAw44IH/+
85/3aO2rr76a2traUo8AAAAAALtV8sP3x40bl1/96lf5/e9/nzFjxux03bPPPpsVK1bsk4P3Gxsb
8/Of/zyvvPJKNm3alGHDhmXy5Mk544wzUlm55z/y+vXrM2fOnDzzzDNZt25dDjjggEyYMCHnnHNO
Bg0aVPK5AQAAAOg8JX9i7Oyzz05FRUVuvvnmrFu3bodr/vCHP+SWW25Jjx49ctZZZ5X0/X/2s5/l
X/7lX9LU1JSzzz47n/zkJ/O+970v3//+9/P1r38927Zt26N9mpqa8tWvfjWPPPJIjj322Jx33nk5
8cQT8/jjj+eKK67I6tWrSzo3AAAAAJ2r5E+MjRgxIv/9v//33Hbbbbn00kszffr0rFmzJslfnhJ7
9tln8+ijj2bbtm05//zzc9BBB5XsvV955ZX86Ec/yrhx43L55ZenR4+/dL8zzzwz9913X+66667M
nz9/j55Su/POO7N69epcc801GTVqVPvrU6dOzeWXX55bb701l112WclmBwAAAKBzlfyJsSQ5/fTT
86UvfSlJcscdd2TJkiVJkuuuuy6PPPJIampqcvHFF+cjH/lISd93+fLlGTFiRD71qU+1R7F3nHXW
WenTp0+ee+653e6zZs2aPP744zn99NO3i2JJMnTo0EyfPj2NjY1ZtWpVKccHAAAAoBOV/Imxdxx/
/PGZOHFiGhsbs3Tp0vZvqzz00EMzfvz493TW15466aSTctJJJ+3wWkVFRaqqqrJly5bd7rN48eJs
27Yt9fX1O7xeX1+fH/7wh2lsbMzw4cP3amYAAAAAymOfhbEk6d27dyZNmpRJkybty7fZI6tWrcra
tWt3Gs7+oxUrVqSysjIjR47c4fW6uroMGDAgK1euLPWYAAAAAHSSffJRyv1NW1tb7rjjjvTo0SPT
pk3b7fqmpqZUV1enoqJip2tqamqyfv36Uo4JAAAAQCfap0+MLVq0KI888kheeumlbNiwIf3798+h
hx6aqVOn5phjjtmXb72d22+/Pc8//3w++tGPZsiQIbtdv2HDhvTt23eXa/r27SuMAQAAAHRh+ySM
bd68OTfeeGOeeeaZv7xJZWVqamrS3NychoaGNDQ05Jhjjsn/+l//K3369NkXI7S7++6788ADD2Tc
uHH55Cc/uU/fCwAAAICuY5+EsW9961tZtGhRDjnkkHziE5/I4Ycfnp49e6a1tTW//e1vM2vWrCxa
tCj/+q//mksuuWRfjJAkmTt3bubOnZvDDz88l1xyybu+qXJn+vfvv9vzwzZt2pTBgweXYkwAAAAA
yqDkZ4wtWrQoixYtyvjx4/OP//iPGTduXHr27Jkk6dmzZ4488sj84z/+YyZMmJBnn302ixYtKvUI
SZL7778/d999d/72b/82X/nKV9K7d+89vre6ujrr169PW1vbTtesW7cuAwcOLMWoAAAAAJRBycPY
o48+mp49e+bv//7v24PYX/uP1x999NFSj5D58+fnjjvuyGGHHfaeo1iSjBw5Mi0tLVmxYsUOr69e
vTrNzc07/dZKAAAAAPZ/JQ9jf/jDH3LooYemtrZ2l+sGDRqUQw89NEuXLi3p+y9cuDA333xzDj30
0Fx++eUdOsNs/Pjx6dGjRxYuXLjT90iSCRMm7NWsAAAAAJRPycPYhg0bdhvF3jFo0KA0NzeX7L2f
fvrpfOc738mYMWP2OIq1trZm7dq1271WW1ub+vr6PPjgg1m+fPl211577bXcc889GT9+fIYNG1ay
2QEAAADoXCU/fL+6ujpvvfXWHq1dv359qqurS/be3/zmN1NZWZkTTzwxTz311A7X9O3bN8cff3z7
n6+//vo0NDTkoosuyqRJk9pfP++88/Lyyy/nyiuvzKmnnpoDDzwwb7zxRh566KH0798/n/3sZ0s2
NwAAAACdr+RhbOzYsXnqqaeyYcOG9O/ff6fr3n777bz44os57rjjSvbera2taW1tze23377TNYMH
D94ujNXV1aWqqupdB+kPHDgw11xzTWbPnp1FixZlzZo1qampyeTJkzNjxozU1NSUbG4AAAAAOl9F
266+erEDli1blssvvzxTp07d5VNV3/ve9/LQQw/ln/7pn3LIIYeUcoT91iOPPJIkmThxYpkn6X5q
aweVewTYI2vWrN39IgAAAPZYQ0NDkmTq1Knv+d6SnzE2evTo/Nf/+l/z8MMP57bbbsuWLVu2u755
8+bcfvvtmTdvXj7xiU8UJooBAAAAsH8p+Ucp/+3f/i1JUlNTkwceeCALFy7MkUcemZqamqxbty7P
P/98mpubc8ABB+TPf/5zbrrppl3ud+GFF5Z6RAAAAAAofRj71a9+td2fm5ub88QTT7xr3VtvvZUF
Cxbsdj9hDAAAAIB9oeRh7MYbbyz1lgAAAABQciUPY0OGDCn1lgAAAABQciU/fB8AAAAAugJhDAAA
AIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRh
DAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAA
KCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYA
AAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBC
EsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAA
AIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAgB3burXc
E8Ce8fcqANBBleUeAADYT/XqlUG1teWeAnZr7Zo15R4BAOiiPDEGAAAAQCEJYwAAAAAUkjAGAAAA
QCEJYwAAAAAUkjAGAAAAQCEJYwAAAAAUkjAGAAAAQCFVlnuAfe2pp57Kt7/97YwbNy6XXnrpHt+3
YMGC3HTTTTu9fuKJJ+YLX/hCKUYEAAAAoAy6dRibM2dOZs2atVd7zJw5M4MHD37X60OGDNmrfQEA
AAAor24ZxlpaWvLd7343jz32WKZNm5aGhoYO7zVx4sSMHj26hNMBAAAAsD/olmeMzZ8/P4899lhm
zpyZz3zmM6moqCj3SAAAAADsZ7rlE2PTpk3L4MGDM2HChHKPAgAAAMB+qls+MVZRUVHSKNbS0pIN
Gzakra2tZHsCAAAAUF7d8omxUrrhhhvy+uuvJ0mqqqpSX1+fc889NwMHDizzZAAAAADsDWFsF0aP
Hp1JkyZl6NChaW1tzeLFi/Pwww/n+eefz9e//nVxDAAAAKALE8Z2YvLkyZkyZcp2r9XX1+eoo47K
jTfemDvvvDOf+9znyjMcAAAAAHutW54xVgqVlTtuhpMnT8748ePz5JNPZuvWrZ08FQAAAAClIox1
wFFHHZWtW7e2nz0GAAAAQNcjjHVAjx5/+cvWs2fPMk8CAAAAQEcJYzuxfPnybNiwYYfXGhoa0r9/
/wwZMqSTpwIAAACgVAofxlpbW7N27drtXluyZEkuvfTS3HLLLdm2bdt21+bNm5fnnnsup512WvuT
YwAAAAB0PYX/Vsrrr78+DQ0NueiiizJp0qQkydixYzNlypQsWLAgr732Wurr69O7d+80NjZm8eLF
GT9+fGbMmFHmyQEAAADYG4UPY3V1damqqsrAgQO3e/3CCy/MEUcckYceeihz5sxJa2trRo0alQsu
uCAf/vCHU1FRUaaJAQAAACiFira2trZyD1EUjzzySJJk4sSJZZ6k+6mtHVTuEWCPrFmzdveLYD8y
qLa23CPAbq1ds6bcIwAAZdTQ0JAkmTp16nu+1yFZAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABA
IQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYA
AABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSS
MAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAA
ABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQlj
AAAAABSSMAYAAABAIQljAAAAnWXr1nJPAHvO368UQGW5BwAAACiMXr0yqLa23FPAHlm7Zk25R4B9
zhNjAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYA
AABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSS
MAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABSSMAYAAABAIQljAAAAABRSZbkH2JeeeuqpfPvb
3864ceNy6aWXvqd7169fnzlz5uSZZ57JunXrcsABB2TChAk555xzMmjQoH00MQAAAACdpduGsTlz
5mTWrFkdurepqSlXXXVV3nzzzUydOjUHHXRQXn/99Tz88MNpbGzM1Vdfnbq6uhJPDAAAAEBn6nZh
rKWlJd/97nfz2GOPZdq0aWloaHjPe9x5551ZvXp1rrnmmowaNar99alTp+byyy/Prbfemssuu6yE
UwMAAADQ2brdGWPz58/PY489lpkzZ+Yzn/lMKioq3tP9a9asyeOPP57TTz99uyiWJEOHDs306dPT
2NiYVatWlXBqAAAAADpbt3tibNq0aRk8eHAmTJjQofsXL16cbdu2pb6+fofX6+vr88Mf/jCNjY0Z
Pnz43owKAAAAQBl1uyfGKioqOhzFkmTFihWprKzMyJEjd3i9rq4uAwYMyMqVKzv8HgAAAACUX7cL
Y3urqakp1dXVu/wIZk1NTdavX9+JUwEAAABQasLYX9mwYUP69u27yzV9+/YVxgAAAAC6OGEMAAAA
gEISxv5K//79s3Hjxl2u2bRpUwYOHNhJEwEAAACwLwhjf6W6ujrr169PW1vbTtesW7dOGAMAAADo
4oSxvzJy5Mi0tLRkxYoVO7y+evXqNDc37/RbKwEAAADoGoSxvzJ+/Pj06NEjCxcu3OH1d16fMGFC
Z44FAAAAQIkVOoy1trZm7dq1271WW1ub+vr6PPjgg1m+fPl211577bXcc889GT9+fIYNG9aJkwIA
AABQapXlHqCcrr/++jQ0NOSiiy7KpEmT2l8/77zz8vLLL+fKK6/MqaeemgMPPDBvvPFGHnroofTv
3z+f/exnyzg1AAAAAKVQ6DBWV1eXqqqqdx2kP3DgwFxzzTWZPXt2Fi1alDVr1qSmpiaTJ0/OjBkz
UlNTU6aJAQAAACiVirZdff0iJfXII48kSSZOnFjmSbqf2tpB5R4B9siaNWt3vwj2I4Nqa8s9AuzW
2jVryj0CvCd+t9JV+P1KV9HQ0JAkmTp16nu+t9BnjAEAAABQXMIYAAAAAIUkjAEAAABQSMIYAAAA
AIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIY
AAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQ
SMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEAAABQSMIYAAAAAIUkjAEA
AABQSJXlHgAA2E9t3Zq1a9aUewrYva1bk169yj0FANAFCWMAwI716pXa2kHlngJ2a82ateUeAQDo
onyUEgAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYA
AAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBC
EsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAA
AIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRhDAAAAIBCEsYAAAAAKCRh
DAAAAIBCqiz3APvSSy+9lDlz5mTZsmXZvHlzhg4dmmnTpmXatGl7dP+CBQty00037fT6iSeemC98
4QulGhcAAACATtRtw9jTTz+dG264IQcddFDOOuus9O3bN7/97W9z6623ZunSpbnwwgv3eK+ZM2dm
8ODB73p9yJAhpRwZAAAAgE7ULcNYU1NTvvvd7+awww7LFVdckZ49eyZJTj/99Nx333256667MmHC
hBx//PF7tN/EiRMzevTofTkyAAAAAJ2sW54x9uijj2bDhg05//zz26PYO84+++wMHz489957b5mm
AwAAAGB/0C3D2LPPPpuRI0dm+PDhO7x+wgknZOnSpWlubu7kyQAAAADYX3TLMLZixYp84AMf2On1
gw8+uH3dnmppacmGDRvS1ta21/MBAAAAUH7d7oyxlpaWbNq0KTU1NTtd88619evX79GeN9xwQ15/
/fUkSVVVVerr63Puuedm4MCBez8wAAAAAGXR7cLYOx+P7NOnz07X9OvXL8lfDunfndGjR2fSpEkZ
OnRoWltbs3jx4jz88MN5/vnn8/Wvf10cAwAAAOiiul0YK6XJkydnypQp271WX1+fo446KjfeeGPu
vPPOfO5znyvPcAAAAADslW53xtiAAQOSJJs3b97pmo0bNyZJqqurd7lXZeWOu+HkyZMzfvz4PPnk
k9m6dWsHJwUAAACgnLpdGKusrEzfvn2zbt26na5559refAzyqKOOytatW9vPHgMAAACga+l2YSxJ
Ro4cmaVLl+70+h//+Mf2dR3Vo8df/tL17Nmzw3sAAAAAUD7dMowdffTRWblyZVatWvWua21tbXni
iSdyyCGHtH/scmeWL1+eDRs27PBaQ0ND+vfvnyFDhpRkZgAAAAA6V7cMY6ecckr69++fW2+9NS0t
Ldtdu++++/Lqq6/m7LPPbn+ttbU1a9eu3W7dkiVLcumll+aWW27Jtm3btrs2b968PPfccznttNPa
nxwDAAAAoGvplt9KWV1dnf/5P/9nbrjhhlx66aU56aST0qdPn7zwwgt5+umnc/LJJ+eEE05oX3/9
9denoaEhF110USZNmpQkGTt2bKZMmZIFCxbktddeS319fXr37p3GxsYsXrw448ePz4wZM8r1IwIA
AACwl7plGEuS4447LldffXVmz56d++67L1u2bMmBBx6Yz3zmM5k2bdp2a+vq6lJVVfWuw/gvvPDC
HHHEEXnooYcyZ86ctLa2ZtSoUbngggvy4Q9/OBUVFZ35IwEAAABQQhVtbW1t5R6iKB555JEkycSJ
E8s8SfdTWzuo3CPAHlmzZu3uF8F+xO9XugK/W+lqBtXWlnsE2CNr16wp9wiwRxoaGpIkU6dOfc/3
OiALAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAA
AAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEIS
xgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAA
gEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEM
AAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAo
JGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAA
AAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEIS
xgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAoJGEMAAAAgEISxgAAAAAopMpyD7Cv
vPTSS5kzZ06WLVuWzZs3Z+jQoZk2bVqmTZu2x3usX78+c+bMyTPPPJN169blgAMOyIQJE3LOOedk
0KBB+3B6AACgW9q6NWvXrCn3FLBntm5NevUq9xSwT3XLMPb000/nhhtuyEEHHZSzzjorffv2zW9/
+9vceuutWbp0aS688MLd7tHU1JSrrroqb775ZqZOnZqDDjoor7/+eh5++OE0Njbm6quvTl1dXSf8
NAAAQLfRq1dqa/1LdrqGNWvWlnsE2Oe6XRhramrKd7/73Rx22GG54oor0rNnzyTJ6aefnvvuuy93
3XVXJkyYkOOPP36X+9x5551ZvXp1rrnmmowaNar99alTp+byyy/Prbfemssuu2xf/igAAAAA7EPd
7oyxRx99NBs2bMj555/fHsXecfbZZ2f48OG59957d7nHmjVr8vjjj+f000/fLoolydChQzN9+vQ0
NjZm1apVpR4fAAAAgE7S7cLYs88+m5EjR2b48OE7vH7CCSdk6dKlaW5u3ukeixcvzrZt21JfX7/D
6++83tjYuPcDAwAAAFAW3S6MrVixIh/4wAd2ev3ggw9uX7erPSorKzNy5MgdXq+rq8uAAQOycuXK
vRsWAAAAgLLpVmeMtbS0ZNOmTampqdnpmneurV+/fqdrmpqaUl1dnYqKil3us6s9dqWhoaFD97Fz
Dz9c7glgz/ifP12N3690BX630tX43UpX4fcrRdCtnhh75+ORffr02emafv36JflL/NqZDRs2pG/f
vrt8r759+3Y4jAEAAABQft3qibH93dSpU8s9AgAAAAD/v271xNiAAQOSJJs3b97pmo0bNyZJqqur
d7qmf//+7et2ZtOmTRk4cGAHpgQAAABgf9CtwlhlZWX69u2bdevW7XTNO9d2FbWqq6uzfv36tLW1
7XIfYQwAAACg6+pWYSxJRo4cmaVLl+70+h//+Mf2dbvao6WlZaffXLl69eo0Nzfvcg8AAAAA9m/d
LowdffTRWblyZVatWvWua21tbXniiSdyyCGHtH/sckfGjx+fHj16ZOHChTu8/s7rEyZMKM3QjRKn
qQAAIABJREFUAAAAAHS6bhfGTjnllPTv3z+33nprWlpatrt233335dVXX83ZZ5/d/lpra2vWrl27
3bra2trU19fnwQcfzPLly7e79tprr+Wee+7J+PHjM2zYsH32cwAAAACwb1W07eogrS7q6aefzg03
3JCDDjooJ510Uvr06ZMXXnghTz/9dE4++eT8wz/8Q/vaa6+9Ng0NDbnooosyadKk9tfXr1+fr371
q1m9enVOPfXUHHjggXnjjTfy0EMPpX///rn66qtTV1dXjh8PAAAAgBLolmEsSX7/+99n9uzZefnl
l7Nly5YceOCBOfXUUzNt2rTt1n3ve9/LwoUL8+UvfzmHH374dteam5sze/bsLFq0KGvWrElNTU0m
TJiQGTNmpKampjN/HAAAAABKrNuGMQAAAADYlW53xhgAAAAA7AlhDAAAAIBCEsYAAAAAKKTKcg8A
7F/efPPNDBo0KD16/L9u/uSTT2bRokXp27dvzjjjjAwfPryMEwJ0PZs2bcqCBQuyatWqbN269V3X
t2zZkqamplx55ZVlmA4AoLiEMaDdypUrc+WVV+Y//+f/nOnTpydJ7r///txxxx3p27dvNm/enMcf
fzxf+9rXMmrUqPIOC9BFrF69OldddVVWr16dAQMGpLm5OdXV1Wlpacnbb7+dJPngBz+Y6urqMk8K
0DU8//zzueeee/LKK6/krbfe2um6WbNmdeJUQFcljAHtfvSjH6V379455phjkiQtLS2ZPXt2xowZ
k6uuuipNTU254oorMmfOnFx00UVlnhaga/jBD36QzZs359prr82gQYNywQUX5HOf+1zGjx+f119/
PT/4wQ+yfv36fPGLXyz3qAD7vYULF+bGG2/MgAEDMnHixAwaNCi9evUq91hAFyaMAe1efPHFnHXW
WRk2bFiS5OWXX05zc3OmT5+eysrK1NbW5sMf/nDmzZtX5kkBuo4XX3wxU6dOzahRo7Jx48YkSUVF
RZJkyJAh+cIXvpCrrroqs2bNyt/93d+Vc1SA/d4999yTESNG5Jprrknfvn3LPQ7QDTh8H2jX1ta2
3Ud5fvOb36SioiJjx45tf626ujobNmwox3gAXVJTU1OGDBmSJOnTp08qKiqyfv369us9evTICSec
kCeffLJcIwJ0GX/6059SX18vigElI4wB7UaMGJH/83/+T5KktbU1CxcuzOjRo7f7B48//OEP7f8H
D4Ddq66uTlNTU5K/RLAhQ4bklVde2W5NW1tb+xoAdm7gwIHp3bt3uccAuhFhDGj3sY99LEuWLMnF
F1+ciy66KH/+859z5plntl9fuHBhHnvssUyePLmMUwJ0LYceemgaGxvb/3zUUUfl17/+dfvB+y0t
LXniiSfy/ve/v1wjAnQZH/rQh/Loo4+2fzQdYG/1/NrXvva1cg8B7B8OOuigDB8+PEuXLk2SzJw5
M6ecckr79Yceeih9+vTJZz/72fTooasD7Imampr89Kc/zYQJE1JbW5vhw4fnF7/4RX79619nxYoV
+fGPf5zly5fn3HPPzejRo8s9LsB+7bDDDktjY2Puu+++VFZWpqKiIi0tLdm4cWPefvvt7f5TVVVV
7nGBLqCira2trdxDAF3Dli1b0qNHj1RW+t4OgPdiyZIl253X+OKLL+auu+7KypUr079//3zsYx/b
7gldAHZu3rx5ueOOO9LS0rLLdbNmzeqkiYCuTBgDAACgS5g/f35uvvnmDB8+PJMmTcqgQYPSq1ev
Ha6dMmVK5w4HdEke+wDe5YUXXsiDDz6YF198MU1NTbnsssty1FFH5fe//33q6upSW1tb7hEBACig
e++9N2PGjMnXvva19OzZs9zjAN2AMAZs5+67787cuXNz0EEH5YMf/GCeeeaZ9ms//OEPs3bt2lx3
3XXp06dPGacE2P8sWLAgFRUVe7XHySefXKJpALqnN954I1OnThXFgJIRxoB2Tz31VObOnZvzzjsv
Z555ZtatW7ddGPv85z+fiy++OD//+c8zc+bMMk4KsP+56aab9noPYQxg14YOHbrbs8UA3gthDGh3
//335+ijj97pAdB1dXU56aST8tRTTwljAH/lxhtv3Om1J554InfffXc+8pGPZMqUKXnf+96XN998
MwsWLMhDDz2Uc889N/X19Z04LUDXdMYZZ2T27Nk55ZRTcsABB5R7HKAbEMaAdsuXL89/+S//ZZdr
RowYkQULFnTOQABdyJAhQ3b4+rJlyzJr1qx85jOfyamnntr++gEHHJDRo0fnb/7mb/K9730vRx55
ZAYPHtxZ4wJ0SUceeWR+97vf5ZJLLslHP/rRHH744RkwYEB69OjxrrV1dXVlmBDoaoQxoN2O/oHi
r23atCm9e/fuhGkAuoe5c+dmzJgx20Wx/2jatGlZuHBh5s6dm4svvriTpwPoWj7/+c+3//e77rpr
l2tnzZq1r8cBugFhDGj3gQ98II899ljOPPPMHUaytra2PPnkkxkzZkwZpgPomn73u9/lP/2n/7TL
Nccee2zmzJnTSRMBdF3nn3++f0kLlJQwBrQ7++yz8y//8i+57bbb8ulPf/pd13/84x9n2bJlufLK
K8swHUDXtGnTpt1+k2/v3r2zZcuWTpoIoOv6yEc+Uu4RgG5GGAPaTZgwIR//+Mczd+7cvPjiixk3
blyS5Fe/+lV+/OMfZ+nSpZk5c2bGjh1b5kkBuo73v//9Wbp0aaZNm7bTNS+//HKGDh3aiVMBdB+b
Nm1K3759yz0G0EUJY8B2PvGJT+SQQw7Jz372s9x///1J/vJtamPGjMlll12WCRMmlHlCgK7lhBNO
yOzZszN16tQdfhT9pZdeyq9//evMmDGjDNMBdE0vvvhi5s6dmyVLlqSlpSW9evXKEUcckY9//OM5
7LDDyj0e0IVUtLW1tZV7CGD/tGXLljQ3N2fAgAHOcgDooI0bN+ayyy7LW2+9lRkzZuSUU05J//79
s2HDhjz66KP5yU9+kpqamlx77bWeeADYAw888EBuv/329O/fPxMnTkxtbW3WrFmThoaGbNiwIZ/+
9Kdz2mmnlXtMoIsQxoB2P/nJT3Lcccdl5MiRO13zxBNPJElOPPHEzhoLoMt744038s1vfjNLly5N
klRWVqalpSVJcsghh+RLX/pS6urqyjkiQJewdOnSXHHFFTn22GPz+c9/frszHDdt2pTvfOc7WbRo
Uf7pn/4pH/jAB8o4KdBVCGNAu3PPPTf/8A//kJNPPnmna37+85/nl7/8ZW666aZOnAyge/jNb36T
JUuWpKmpKdXV1Rk7dmz7eY4A7N4NN9yQZcuW5Rvf+MYOn7LdtGlTvvzlL2f06NH50pe+VIYJga7G
GWPAe9La2pqmpqZyjwHQJY0bN04IA9gLL7zwQk477bSdfvS8b9++OfnkkzNv3rxOngzoqoQxKLif
/OQnqaioyDsPjz7zzDN544033rWura0ta9asycKFCzN69OjOHhMAAPL2229n0KBBu1xTU1OT5ubm
TpoI6OqEMSi4n/70p9v9+Zlnnskzzzyzw7WVlZUZM2ZM/v7v/74zRgPoNlavXp1f/vKXWbVqVbZs
2fKu61u2bMn69evzrW99qwzTAXQdNTU1ee2113a55v/+3/+723gG8A5hDApu1qxZ7f/93HPPzYUX
XpgpU6aUbyCAbmblypW56qqr0tLSkqFDh2blypUZMWJEKioq8uc//zlbtmzJsccem0MOOaTcowLs
98aPH5/58+fnjDPOSG1t7buur1mzJvPnz88JJ5xQhumArqhHuQcA9i8VFRXlHgGgW/nRj36Uqqqq
/Ou//muuuOKKJMmnPvWpXHfddfn3f//3nHXWWfnTn/6UmTNnlnlSgP3f9OnTs3Xr1vzzP/9z+zf9
vmPp0qX553/+57S0tGT69OllmvD/a+/ug6qs8zeOX4dnWA4SAWGaooWSIZYraqYCm2nhA9Xa0rOb
Oz7FrlbqtGVWjrvtamOmlua61u645pJrsmqpSILgKKltjIGjrUmGWuIBeVA5AnJ+fzSd37Ig4ibn
5j7n/ZpxRu7v53Yu/3Fur/M93xuA2bBjDIDTsmXLFBISYnQMAHArR48e1ahRoxQWFia73S7p/z+E
CAgI0JNPPqmTJ09q7dq1fFUdAK4gMjJSM2fO1OLFizVnzhzddNNNCgsLU0VFhUpLSxUYGKiZM2cq
IiLC6KgATIJiDIBTZGSk0REAwO3U1tY6z7rx9/eXl5eXKisrm8z0799fGzZsMCIeAJhOv3799Oab
b2r79u364osvdPr0aYWEhOjBBx/UqFGjFBoaanREACZCMQagiWPHjikzM1OlpaWqr69vtl5XV6fz
589r7dq1BqQDAPO57rrrVFFRIen7nWKdO3fW8ePHm8xcvHhRtbW1RsQDAFMKDQ1VWlqa0tLSjI4C
wOQ4YwyA06FDhzR37lz9+9//VlRUlM6cOaOoqCh1795dknTmzBn1799fjzzyiMFJAcA8+vTpo337
9jl//ulPf6pdu3bJZrNJki5cuKCcnBx17drVqIgAAAAeix1jAJw2bNigqKgo/f73v1ddXZ0mTZqk
MWPG6Pbbb1djY6O2bdumzMxMjR8/3uioAGAao0eP1gsvvKCjR4/qlltu0ZgxY5Sbm6vZs2crOjpa
paWlqqmp0cyZM42OCgAdxvr163/0S6F4ZgXQFhRjAJxKSko0btw4BQQENHsQ8fLyUkpKio4ePao1
a9bo2WefNSglAJhLt27d9Prrr+vGG2+UJHXq1Enz5s3T+vXrdfz4cXXu3FlTpkxRQkKCwUkBoOP4
xz/+0eZZPz8/1dXVNbtOMQagLSjGADjV19fLarVK+v6AaB8fH+e5OD+49dZb9fe//92IeABgWj+U
Yv/584wZMwxKAwAdX0ZGxmXXNm3apPXr1+sXv/iFkpKSZLVaVVNTo9zcXH3wwQd66KGHNG7cOBem
BWBmnDEGwCk8PFxlZWXOn7t27aqvvvqqyUxVVZUaGhpcHQ0AAADQF198obVr12rGjBkaO3as80Nd
q9WqsWPHavr06Vq7dq0OHjxocFIAZsGOMQBO8fHx2rt3r9LS0uTl5aVBgwZp48aNuvvuu9WzZ0/Z
bDZ98sknio6ONjoqAJhOQ0ODysrKVFVVJYfD0eJMnz59XJwKAMxly5Yt6t+/vwYMGNDiekJCgvr3
76/NmzcrPj7exekAmBHFGACn0aNHKz8/X19//bV69uyp++67T7t27dKcOXN0/fXXq7y8XF5eXvrN
b35jdFQAMI3GxkatX79eW7ZsafEMnP/U2leHAADSl19+qbS0tFZn4uPjOfoDQJtRjAFwioyM1NKl
SxUcHCxJCgwM1Pz587VlyxYdP35cvXv3VkpKim6++WaDkwKAeWzYsEEffvihevbsqeHDhysiIkKB
gYFGxwIAU7p06ZK8vFo/EchisaixsdFFiQCYHcUYgCZ+KMV+EBISokcffdSgNABgfnl5ebrttts0
d+7cZm/8BQBcnS5duqioqEgjR4687ExxcbG6du3qwlQAzIzD9wE4paen69NPP211Zt26dVqyZImL
EgGA+VVUVGjgwIGUYgBwDQwbNkyffvqp9u/f3+L6vn37tG/fPg0fPtzFyQCYFTvGADjZbDbZ7fZW
Z66//npt27bNRYkAwPzCw8NVX19vdAwAcAv33HOPdu/erTfeeEMjR45UcnKyQkNDVVlZqZycHGVl
ZemWW27RPffcY3RUACZBMQagzRoaGlRcXGx0DAAwleTkZOXk5Ojee++Vr6+v0XEAwNR8fX01Z84c
rVq1Stu2bWv2ge2dd96pyZMny8eH/+oCaBuL43LvCwfgEdLT02WxWORwOGSz2RQcHKzAwEC19E9D
dXW16urqdO+99+qpp54yIC0AmE9jY6PeeOMNVVZWasKECYqJiTE6EgC4he+++05FRUWqrq5WSEiI
4uLiFBUVZXQsACZDMQZ4uLffftv5+7y8PPXu3Vs33HBDi7N+fn7q1auXEhMTXRUPAEzvueeeU11d
nc6cOSNJ8vf3l9Vqda7/8OGExWLRW2+9ZVRMAAAAj8T+UsDDpaenO3+fl5enu+++m+ILAK6hm266
Sf7+/i3uxP1PHM4PAADgehRjAJxuvfVWderUyegYAOBWnn32WaMjAIDbSEtLa/NsaGiooqKiNHjw
YI0cOVLe3t7tmAyAWfFVSgAAAACAKaxfv17V1dXKyspSWFiYEhISdN1116myslL79+9XeXm5kpOT
df3116uyslLffPONvvzyS8XExOill15SQECA0X8FAB0MxRjgwQ4dOqSbb75Z/v7+La5//vnn2rp1
q2w2m6677jolJydr6NChLk4JAO6jqqpK9fX1za7X1dWpurpasbGxBqQCAPOora3VCy+8oB49eig9
Pb3J2ycbGhq0YsUKFRUVacGCBQoNDZUkHTx4UAsXLtTPfvYzTZw40ajoADooijHAQ50+fVqzZ8/W
0KFDNXny5Gbrubm5WrFihSQpODhYFy9eVH19vVJSUjRhwgRXxwUAU9u6das+/PBDVVdXtzqXkZHh
okQAYE7vv/++Pv30U73++uvy8/Nrtn7x4kXNnDlTffv21ZQpU5zX169fry1btujPf/6zfH19XRkZ
QAfnZXQAAMbYtGmTLl26pBEjRjRbs9vteu+99+Tj46PZs2dr9erVevfdd5WcnKyPP/5YR48eNSAx
AJhTdna2/vKXv6hXr156+OGHJUljxozRhAkTNHz4cHl7eys1NVV//OMfDU4KAB3f3r17lZiY2GIp
Jn3/5t+kpCQVFhY2uT5gwADZ7XadPHnSFTEBmAjFGOChDh48qOHDh6tnz57N1vLz82W32/XQQw9p
wIABkiQ/Pz9NnjxZXbt21caNG10dFwBMKzs7W7fffrtmz57t/DAiPj5eKSkpSk9P1+9+9ztt375d
tbW1BicFgI6voqJCISEhrc6EhoY226FrtVolSefPn2+3bADMiWIM8FAVFRUtlmLS91+j9PX11ciR
I5tc9/Ly0pAhQ3T48GFXRAQAt3Dy5En169dPkpyHPl+6dMm53rNnT91zzz364IMPDMkHAGYSEhKi
kpKSVmeOHz+usLCwJtcqKyslSUFBQe2WDYA5UYwBHsrHx6fFT8xsNpuOHj2qfv36tfjgYLVaZbfb
XRERANyCj4+P8zwbX19fBQUF6fTp001mbrjhBh07dsyIeABgKnfccYdyc3P11Vdftbh+7Ngx7dy5
UwkJCU2uf/755/L19VWXLl1cEROAiVCMAR6qe/fu+uyzz5pd37ZtmyRp2LBhLd536tQp5xt+AABX
1rlzZ3399dfOn3v06KGioqImM6dOnbrseTkAgP/34IMPKiAgQK+99ppycnLU2NgoSWpsbFRubq5e
e+01/eQnP9H999/vvKesrExbtmzRoEGD+LcWQDMUY4CHSkpK0pdffqmMjAznA0VBQYE++ugjhYWF
Oc8W+0/V1dXKz89X7969XR0XAEwrISFBe/bs0blz5yR9/+/vgQMH9PHHH8tmsyk/P1/Z2dmKi4sz
OCkAdHzh4eF66aWXFBgYqHfeeUcTJ07Us88+q6eeekorVqxQQECA5syZ0+Qcsr/+9a/y9fXVo48+
amByAB2VxeFwOIwOAcD1GhsbtWDBAhUWFiogIEDe3t46f/68vLy8NHPmzGbFWG1trebNm6eSkhLN
nz9fvXr1Mig5AJhLbW2tFixYoKlTpyoqKkqNjY164403tH//fudMRESEXn75ZUVGRhqYFADMo76+
Xrt371ZRUZGqqqpktVrVt29fDRs2zPn19R9cuHBBZWVlio6ONiYsgA6NYgzwYA0NDdq6dasKCgp0
7tw5RUVF6YEHHlBsbGyL83/4wx8UExOj8ePHuzgpALifwsJCffPNNwoKCtKQIUM4EBoAAMAAFGMA
2qyuro5zGQAAAAAAboNiDAAA4BpyOBw6cuTIZXff/iebzaYNGzboV7/6lXx8fFyQDgDcg81m08mT
J1VVVaXL/Zc2MTHRxakAmBFPYAAAANfQe++9p5ycHL3++uuKiopqdbawsFA7d+6Ul5eXJk2a5KKE
AGBeFy9e1KpVq5Sfn3/FWYoxAG1BMQYAAHCNlJSUaPv27RowYIAiIiKuOD9ixAhVV1crIyNDycnJ
uuWWW1yQEgDM6/3331d+fr4GDhyoxMRERUREKDAw0OhYAEyMYgwAAOAayc7Olr+/v6ZOnSpvb+82
3XP//fcrLy9Pn3zyCcUYAFzBvn37NHDgQM2cOdPoKADchJfRAQAAANxFcXGxBg0aJKvV2uZ7vLy8
lJCQoMOHD7djMgBwD9XV1YqPjzc6BgA3QjEGAABwjZSXl+vmm2++6vsiIiJks9naIREAuJcbb7xR
NTU1RscA4EYoxgAAAK4RHx8fNTY2XvV9DQ0N8vLisQwArmTUqFHasWOHzp07Z3QUAG6CJzAAAIBr
JCwsTKdOnbrq+06ePKnw8PB2SAQA7mXEiBEaPHiwXnzxRe3Zs0fV1dVGRwJgchy+D3igtLS0H/1n
ZGRkXIMkAOBe+vbtq7179+qXv/ylfHza9phVX1+v/fv3a/Dgwe2cDgDM74knnlBdXZ0kacmSJa3O
8rwKoC0oxgAPNH78+MuuVVZWKjs7W506ddKgQYMUHh6u8vJyFRQUqKqqSiNGjFBoaKgL0wKAeSQl
JWnr1q3auHGjHnrooTbdk5mZqaqqKiUnJ7dzOgAwv1GjRsnf39/oGADciMXhcDiMDgGgY6itrdXz
zz+vLl266Jlnnmny0GG327VkyRKdOHFCCxcuVGBgoIFJAaDjWrFihXJzczVt2jQlJSW1OpuTk6N3
3nlHw4YN069//WvXBAQAAIATZ4wBcMrMzNTFixeVnp7e7JO4gIAApaen6+LFi8rMzDQoIQB0fBMn
TlTPnj21YsUKLV68WMeOHWs2c+zYMS1evFjvvPOOoqOjNWnSJAOSAgAAgB1jAJxmzJihwYMH65FH
HrnszLp167Rnzx4tW7bMhckAwFzsdrtWrlypPXv2SJJCQkIUGRkpSSorK3MeFn3nnXdq6tSpCggI
MCwrAHRUpaWlqq2tVa9evYyOAsCNccYYACebzeb8j9vlREREqKKiwkWJAMCcAgICNGPGDN13333K
zc1VcXGxvvnmG0nfv7lywIABSkpKUu/evQ1OCgAd16uvvqoLFy5o5cqVCgkJkXR1L5Hi8H0AbUEx
BsApODj4iqVXRUWFgoODXZQIAMytV69e7HQAgP9RSkqKKioqZLVanddae4kUAPwvKMYAOMXFxSkn
J0ejR49WUFBQs/ULFy4oJydHcXFxBqQDAACAJ/n5z3/e7Fpb3/gLAG3F4fsAnMaNG6ezZ89q0aJF
zXaOVVRUaNGiRaqqqlJqaqpBCQEAAOAp6uvr/+d7i4qKrmESAO6Mw/cBNJGbm6uVK1fK19dXffv2
VWhoqCorK3Xw4EFdunRJU6ZMUWJiotExAQAA4OYWLFig2bNny8vr6vZzFBYWatGiRVqzZk07JQPg
TvgqJYAmkpKS1KNHD23atElFRUWqqamR1WrVwIEDlZqaqm7duhkdEQAAAB7gX//6l5YtW6YZM2a0
+Z4DBw5o8eLF8vf3b8dkANwJO8YAAAAAAB3O+++/r3/+859KTk7W1KlTrzi/d+9eLV26VEFBQZo7
d66io6PbPyQA02PHGIDLqq+vV01NjYKDg+Xn52d0HAAAAHiQRx99VLW1tcrKylJgYKAmTJhw2dn8
/HwtX76cUgzAVaMYA9DMrl27tG3bNpWUlMjhcOjFF19Uv379dODAAUVGRvJ1SgAAALjExIkTVVtb
q48//lgBAQFKS0trNrNz50796U9/UnBwsF5++WWeVQFcFd5KCaCJZcuWafny5QoODtaoUaOarGVl
ZWn+/PmqqakxKB0AAAA8icVi0dNPP62EhAR9+OGH2rRpU5P17du3a+XKlbJarZRiAP4nFGMAnLKz
s7V7927NmjVLc+bM0QMPPNBkffr06XI4HNq4caNBCQEAAOBpvLy89Mwzzyg+Pl5r165VVlaWJGnL
li169913FRISQikG4H9GMQbAaceOHRo6dKgSEhJaXA8ODtbw4cP12WefuTgZAAAAPJmPj49mzZql
3r17a/Xq1Vq8eLHWrFmjkJAQvfLKK7rpppuMjgjApCjGADidOnVKMTExrc507txZNpvNRYkAAACA
7/n7++u3v/2toqOjVVBQoE6dOumVV15R165djY4GwMQ4fB+Ak5+fn+x2e6szNTU1CgoKclEiAAAA
eKrNmzfLYrE0ux4XF6evv/5affv2VWFhoQoLC1u8f8yYMe0dEYAboBgD4BQbG6ucnBylpKTIz8+v
2XpDQ4Py8vLUp08fA9IBAADAk/ztb39rdX337t3avXv3ZdcpxgC0BcUYAKfU1FTNnTtXS5cuVXp6
epO1hoYGrVq1SqdPn9b06dMNSggAAABPsWzZMqMjAPAAFofD4TA6BICOIzs7W6tXr1ZISIhiY2NV
UFCguLg4ffvttzp79qwmT56s5ORko2MCAAAAAPCjUYwBaKakpESbNm1ScXGxampqFBISori4OI0b
N07du3c3Oh4AAAAAANcExRgAAAAAAAA8kpfRAQB0HMuXL9eRI0dandmxY4c++ugjFyUCAAAAAKD9
UIwBcNq1a5e+++67Vmfq6+uVmZnpokQAAAAAALQfijEAV6W6ulq1tbVGxwAAAAAA4EfzMToAAGMt
X75cFotFPxw3uHPnTh06dKjZnMPhUHl5uYqKihQfH+/qmAAAAAAAXHMUY4CHKy4ubvLziRMnZLPZ
Wpz18/NTUlKSHn/8cVdEAwAAAACgXfFWSgBOaWlpmjZtmpKSkoyOAgAAAABAu2PHGIAmLBaL0REA
AADg4dLS0n70n5GRkXENkgBwdxRjAJx4eAAAAEBHMH78+MuuVVZWKjs7W506ddKgQYNGHRG8AAAJ
0UlEQVQUHh6u8vJyFRQUqKqqSiNGjFBoaKgL0wIwM75KCXiohoYGXbp0Sf7+/kZHAQAAANqktrZW
zz//vLp06aJnnnmmybOs3W7XkiVLdOLECS1cuFCBgYEGJgVgFhRjgIeaNWuWzp49q7feesv50DBv
3rw23//KK6+0VzQAAACgRevWrVNubq4WLVqk4ODgZuvnzp3Tc889p+TkZD3yyCMGJARgNl5GBwBg
jNDQUFmtVnl7ezuv/dCTOxyOVn8BAAAARigoKFBSUlKLpZgkBQcHKzk5WXv27HFxMgBmxRljgId6
6aWXml179dVXXR8EAAAAaCObzabIyMhWZyIiIlRRUeGiRADMjh1jAAAAAABTCA4OvmLpVVFRcdkd
ZQDw3yjGAAAAAACmEBcXp5ycHF24cKHF9QsXLignJ0dxcXEuTgbArPgqJYBmDh8+rBMnTqiysvKy
M629QhsAAABoD+PGjdOePXu0aNEipaenKywszLlWUVGht99+W1VVVUpNTTUwJQAz4a2UAJyqq6u1
aNEiHT58+IqzGRkZLkgEAAAANJWbm6uVK1fK19dXffv2VWhoqCorK3Xw4EFdunRJU6ZMUWJiotEx
AZgExRgAp7ffflv5+fkaPXq0EhMTFR4erqCgIKNjAQAAAE0cP35cmzZtUlFRkWpqamS1WhUXF6fU
1FR169bN6HgATIRiDIDTpEmT1L9/f02bNs3oKAAAAAAAtDsO3wfgZLfbFRMTY3QMAAAAoE3q6+tV
UVGhuro6o6MAMCkO3wfg1K1bN5WXlxsdAwAAAGjVrl27tG3bNpWUlMjhcOjFF19Uv379dODAAUVG
RvJ1SgBtxo4xAE5jx45VVlaWysrKjI4CAAAAtGjZsmVavny5goODNWrUqCZrWVlZmj9/vmpqagxK
B8BsvF999dVXjQ4BoGMICQmR3W7X6tWr5XA45Ovrq4aGBtXW1urChQtNfnEoPwAAAFwtOztbmZmZ
mjVrlh5++GH16NFDW7Zs0bBhwxQVFaU77rhD27ZtU21trfr162d0XAAmwFcpAThNmjTJ+ft169Zp
3bp1l53NyMhwRSQAAADAaceOHRo6dKgSEhJaXA8ODtbw4cP12Wef6cknn3RxOgBmRDEGwGnixIny
9/c3OgYAAADQolOnTik5ObnVmc6dO8tms7koEQCzoxgD4PTfZzQAAAAAHYmfn5/sdnurMzU1NRz7
AaDNOHwfAAAAAGAKsbGxysnJUV1dXYvrDQ0NysvLU58+fVycDIBZsWMM8FCHDh264ozFYpHValV4
eLgCAgJckAoAAAC4vNTUVM2dO1dLly5Venp6k7WGhgatWrVKp0+f1vTp0w1KCMBsLA6Hw2F0CACu
l5aWdlXz0dHRSk1N1ZAhQ9opEQAAAHBl2dnZWr16tUJCQhQbG6uCggLFxcXp22+/1dmzZzV58uQr
nkMGAD+gGAM8VEFBQZvm7Ha7SktLVVBQIJvNppSUFE2YMKGd0wEAAACXV1JSok2bNqm4uFg1NTUK
CQlRXFycxo0bp+7duxsdD4CJUIwBaJOGhgatWLFCu3fv1uzZszVgwACjIwEAAAAA8KNw+D6ANvHx
8dHTTz+tqKgoZWVlGR0HAAAAHmj58uU6cuRIqzM7duzQRx995KJEAMyOYgxAm3l7e+uuu+5SSUmJ
0VEAAADggXbt2qXvvvuu1Zn6+nplZma6KBEAs6MYA3BVwsLCdP78eaNjAAAAAC2qrq5WbW2t0TEA
mISP0QEAmMuZM2dktVqNjgEAAAAPsXz5clksFv1wPPbOnTt16NChZnMOh0Pl5eUqKipSfHy8q2MC
MCmKMQBtVldXp7y8PMXExBgdBQAAAB6iuLi4yc8nTpyQzWZrcdbPz09JSUl6/PHHXRENgBvgrZQA
2uTcuXN688039cUXX+jll1/WbbfdZnQkAAAAeJi0tDRNmzZNSUlJRkcB4CbYMQZ4qM2bN8tisVxx
zm63q7S0VIWFhbLb7XrssccoxQAAAGCYtjzDAkBbsWMM8FBpaWltng0ODlZsbKzGjh2r2NjYdkwF
AAAAAIDrUIwBHqqsrOyKMxaLRVarVQEBAS5IBAAAAPy/hoYGXbp0Sf7+/kZHAeDGKMYAAAAAAB3O
rFmzdPbsWb311lsKDAyUJM2bN6/N97/yyivtFQ2AG+GMMQAAAABAhxMaGqqGhgZ5e3s7rzkcDlks
Fl1pfwfnkAFoK3aMAQAAAAAAwCN5GR0AAAAAAAAAMALFGAAAAAAAADwSZ4wBAAAAAEzl8OHDOnHi
hCorKy87M378eBcmAmBWFGMAAAAAAFOorq7WokWLdPjw4SvOUowBaAuKMQAAAACAKaxZs0ZHjhzR
mDFjlJiYqPDwcAUFBRkdC4CJUYwBAAAAAEyhsLBQiYmJeuKJJ4yOAsBNcPg+AAAAAMAU7Ha7YmJi
jI4BwI1QjAEAAAAATKFbt24qLy83OgYAN0IxBgAAAAAwhbFjxyorK0tlZWVGRwHgJiwOh8NhdAgA
AAAAAK6kurpamZmZ2rVrl8aOHau+ffvKarXKy6v5no/w8HADEgIwG4oxAAAAAIAppKWltXk2IyOj
HZMAcBe8lRIAAAAAYAoTJ06Uv7+/0TEAuBF2jAEAAAAAAMAjcfg+AAAAAAAAPBJfpQQAAAAAdDiH
Dh264ozFYpHValV4eLgCAgJckAqAu+GrlAAAAACADudqDtqXpOjoaKWmpmrIkCHtlAiAO6IYAwAA
AAB0OAUFBW2as9vtKi0tVUFBgWw2m1JSUjRhwoR2TgfAXVCMAQAAAABMr6GhQStWrNDu3bs1e/Zs
DRgwwOhIAEyAw/cBAAAAAKbn4+Ojp59+WlFRUcrKyjI6DgCToBgDAAAAALgFb29v3XXXXSopKTE6
CgCToBgDAAAAALiNsLAwnT9/3ugYAEyCYgwAAAAA4DbOnDkjq9VqdAwAJkExBgAAAABwC3V1dcrL
y1NMTIzRUQCYBMUYAAAAAMD0zp07p4ULF6qiokL33Xef0XEAmISP0QEAAAAAAPhvmzdvlsViueKc
3W5XaWmpCgsLZbfb9dhjj+m2225zQUIA7sDicDgcRocAAAAAAOA/paWltXk2ODhYsbGxGjt2rGJj
Y9sxFQB3QzEGAAAAAOhwysrKrjhjsVhktVoVEBDggkQA3BHFGAAAAAAAADwSh+8DAAAAAADAI1GM
AQAAAAAAwCNRjAEAAAAAAMAjUYwBAAAAAADAI1GMAQAAAAAAwCNRjAEAAAAAAMAjUYwBAAAAAADA
I1GMAQAAAAAAwCNRjAEAAAAAAMAjUYwBAAAAAADAI1GMAQAAAAAAwCNRjAEAAAAAAMAjUYwBAAAA
AADAI/0fNEF+U+cd/zAAAAAASUVORK5CYII=
' width=611 height=449/>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Normalize to the US numbers (inverse)</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[16]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="n">select</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">select</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">][</span><span class="s">&#39;United States&#39;</span><span class="p">]</span> <span class="o">/</span> <span class="n">select</span><span class="p">[</span><span class="s">&#39;Homicides&#39;</span><span class="p">]</span>
<span class="n">select</span><span class="p">[</span><span class="s">&#39;Gun Homicides&#39;</span><span class="p">]</span> <span class="o">=</span> <span class="n">select</span><span class="p">[</span><span class="s">&#39;Gun Homicides&#39;</span><span class="p">][</span><span class="s">&#39;United States&#39;</span><span class="p">]</span> <span class="o">/</span> <span class="n">select</span><span class="p">[</span><span class="s">&#39;Gun Homicides&#39;</span><span class="p">]</span>
<span class="n">display_relevant</span><span class="p">(</span><span class="n">select</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_display_data output_html rendered_html">
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>Homicides</th>
<th>Gun Homicides</th>
<th>Gun Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>United States</strong></td>
<td> 1.0</td>
<td> 1.0</td>
<td> OAS 2012[5][6]</td>
</tr>
<tr>
<td><strong>Canada</strong></td>
<td> 2.6</td>
<td> 4.9</td>
<td> Krug 1998[13]</td>
</tr>
<tr>
<td><strong>United Kingdom</strong></td>
<td> 3.5</td>
<td> 92.5</td>
<td> WHO2012 [10]</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>So, you are 2.6 times more likely to be killed in the US than Canada,
and 3.5 times more likely than in the UK.
That's bad, but not extreme.</p>
<p>However, you are 4.9 times more likely to be killed <em>with a gun</em> in the US than Canada,
and almost 100 times more likely than in the UK. That is pretty extreme.</p>
</div>
<div class="text_cell_render border-box-sizing rendered_html">
<p>Countries represented:</p>
</div>
<div class="cell border-box-sizing code_cell vbox">
<div class="input hbox">
<div class="prompt input_prompt">In&nbsp;[14]:</div>
<div class="input_area box-flex1">
<div class="highlight"><pre><span class="k">for</span> <span class="n">country</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">index</span><span class="p">:</span>
<span class="k">print</span> <span class="n">country</span>
</pre></div>
</div>
</div>
<div class="vbox output_wrapper">
<div class="output vbox">
<div class="hbox output_area">
<div class="prompt output_prompt"></div>
<div class="output_subarea output_stream output_stdout">
<pre>El Salvador
Jamaica
Honduras
Guatemala
Colombia
Brazil
Panama
Mexico
Paraguay
Nicaragua
United States
Costa Rica
Uruguay
Argentina
Barbados
Montenegro
Peru
Moldova
Israel
India
Canada
Serbia
Luxembourg
Greece
Uzbekistan
Croatia
Kyrgyzstan
Switzerland
Malta
Portugal
Belarus
Ireland
Italy
Kuwait
Ukraine
Estonia
Belgium
Finland
Lithuania
Cyprus
Bulgaria
Georgia
Denmark
France
Netherlands
Sweden
Slovakia
Qatar
Austria
Latvia
New Zealand
Spain
Hungary
Czech Republic
Hong Kong
Australia
Singapore
Chile
Germany
Slovenia
Romania
Azerbaijan
South Korea
United Kingdom
Norway
Japan
Poland
Mauritius
</pre>
</div>
</div>
</div>
</div>
</div>
</body>
</html>