##// END OF EJS Templates
Remove references to add/remove_class methods.
Remove references to add/remove_class methods.

File last commit:

r17508:913443ff
r17730:339e1289
Show More
Old Custom Display Logic.ipynb
943 lines | 64.3 KiB | text/plain | TextLexer
/ examples / IPython Kernel / Old Custom Display Logic.ipynb

Defining Custom Display Logic for Your Own Objects

Overview

In Python, objects can declare their textual representation using the __repr__ method. IPython expands on this idea and allows objects to declare other, richer representations including:

  • HTML
  • JSON
  • PNG
  • JPEG
  • SVG
  • LaTeX

This Notebook shows how you can add custom display logic to your own classes, so that they can be displayed using these rich representations. There are two ways of accomplishing this:

  1. Implementing special display methods such as _repr_html_.
  2. Registering a display function for a particular type.

In this Notebook we show how both approaches work.

Before we get started, we will import the various display functions for displaying the different formats we will create.

In [1]:
from IPython.display import display
from IPython.display import (
    display_html, display_jpeg, display_png,
    display_javascript, display_svg, display_latex
)

Implementing special display methods

The main idea of the first approach is that you have to implement special display methods, one for each representation you want to use. Here is a list of the names of the special methods and the values they must return:

  • _repr_html_: return raw HTML as a string
  • _repr_json_: return raw JSON as a string
  • _repr_jpeg_: return raw JPEG data
  • _repr_png_: return raw PNG data
  • _repr_svg_: return raw SVG data as a string
  • _repr_latex_: return LaTeX commands in a string surrounded by "$".

Model Citizen: pandas

A prominent example of a package that has IPython-aware rich representations of its objects is pandas.

A pandas DataFrame has a rich HTML table representation, using _repr_html_.

In [2]:
import io
import pandas
In [3]:
%%writefile data.csv
Date,Open,High,Low,Close,Volume,Adj Close
2012-06-01,569.16,590.00,548.50,584.00,14077000,581.50
2012-05-01,584.90,596.76,522.18,577.73,18827900,575.26
2012-04-02,601.83,644.00,555.00,583.98,28759100,581.48
2012-03-01,548.17,621.45,516.22,599.55,26486000,596.99
2012-02-01,458.41,547.61,453.98,542.44,22001000,540.12
2012-01-03,409.40,458.24,409.00,456.48,12949100,454.53
Writing data.csv
In [4]:
df = pandas.read_csv("data.csv")
pandas.set_option('display.notebook_repr_html', False)
df
Out[4]:
         Date    Open    High     Low   Close    Volume  Adj Close
0  2012-06-01  569.16  590.00  548.50  584.00  14077000     581.50
1  2012-05-01  584.90  596.76  522.18  577.73  18827900     575.26
2  2012-04-02  601.83  644.00  555.00  583.98  28759100     581.48
3  2012-03-01  548.17  621.45  516.22  599.55  26486000     596.99
4  2012-02-01  458.41  547.61  453.98  542.44  22001000     540.12
5  2012-01-03  409.40  458.24  409.00  456.48  12949100     454.53

rich HTML can be activated via pandas.set_option.

In [5]:
pandas.set_option('display.notebook_repr_html', True)
df
Out[5]:
Date Open High Low Close Volume Adj Close
0 2012-06-01 569.16 590.00 548.50 584.00 14077000 581.50
1 2012-05-01 584.90 596.76 522.18 577.73 18827900 575.26
2 2012-04-02 601.83 644.00 555.00 583.98 28759100 581.48
3 2012-03-01 548.17 621.45 516.22 599.55 26486000 596.99
4 2012-02-01 458.41 547.61 453.98 542.44 22001000 540.12
5 2012-01-03 409.40 458.24 409.00 456.48 12949100 454.53
In [6]:
lines = df._repr_html_().splitlines()
print "\n".join(lines[:20])
<div style="max-height:1000px;max-width:1500px;overflow:auto;">
<table border="1" class="dataframe">
  <thead>
    <tr style="text-align: right;">
      <th></th>
      <th>Date</th>
      <th>Open</th>
      <th>High</th>
      <th>Low</th>
      <th>Close</th>
      <th>Volume</th>
      <th>Adj Close</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td> 2012-06-01</td>
      <td> 569.16</td>
      <td> 590.00</td>

Exercise

Write a simple Circle Python class. Don't even worry about properties such as radius, position, colors, etc. To help you out use the following representations (remember to wrap them in Python strings):

For HTML:

&#x25CB;

For SVG:

&lt;svg width="100px" height="100px"&gt;
    &lt;circle cx="50" cy="50" r="20" stroke="black" stroke-width="1" fill="white"/&gt;
&lt;/svg&gt;

For LaTeX (wrap with $ and use a raw Python string):

\bigcirc

After you write the class, create an instance and then use display_html, display_svg and display_latex to display those representations.

Tips : you can slightly tweek the representation to know from which _repr_*_ method it came from. For example in my solution the svg representation is blue, and the HTML one show "HTML" between brackets.

Solution

Here is my simple MyCircle class:

In [8]:
%load soln/mycircle.py

Now create an instance and use the display methods:

In [11]:
c = MyCircle()
In [12]:
display_html(c)
○ (html)
In [13]:
display_svg(c)
No description has been provided for this image
In [14]:
display_latex(c)
$\bigcirc \LaTeX$
In [15]:
display_javascript(c)
SandBoxed(IPython.core.display.Javascript object)

Adding IPython display support to existing objects

When you are directly writing your own classes, you can adapt them for display in IPython by following the above example. But in practice, we often need to work with existing code we can't modify. We now illustrate how to add these kinds of extended display capabilities to existing objects. To continue with our example above, we will add a PNG representation to our Circle class using Matplotlib.

Model citizen: sympy

SymPy is another model citizen that defines rich representations of its object. Unlike pandas above, sympy registers display formatters via IPython's display formatter API, rather than declaring _repr_mime_ methods.

In [16]:
from sympy import Rational, pi, exp, I, symbols
x, y, z = symbols("x y z")
In [17]:
r = Rational(3,2)*pi + exp(I*x) / (x**2 + y)
r
Out[17]:
3*pi/2 + exp(I*x)/(x**2 + y)

SymPy provides an init_printing function that sets up advanced $\LaTeX$ representations of its objects.

In [18]:
from sympy.interactive.printing import init_printing
init_printing()
r
Out[18]:
$$\frac{3}{2} \pi + \frac{e^{\mathbf{\imath} x}}{x^{2} + y}$$

To add a display method to an existing class, we must use IPython's display formatter API. Here we show all of the available formatters:

In [6]:
ip = get_ipython()
for mime, formatter in ip.display_formatter.formatters.items():
    print '%24s : %s' % (mime, formatter.__class__.__name__)
               text/html : HTMLFormatter
              image/jpeg : JPEGFormatter
           image/svg+xml : SVGFormatter
               image/png : PNGFormatter
  application/javascript : JavascriptFormatter
              text/latex : LatexFormatter
        application/json : JSONFormatter
              text/plain : PlainTextFormatter

Let's grab the PNG formatter:

In [20]:
png_f = ip.display_formatter.formatters['image/png']

We will use the for_type method to register our display function.

In [21]:
png_f.for_type?

As the docstring describes, we need to define a function the takes the object as a parameter and returns the raw PNG data.

In [22]:
%matplotlib inline
import matplotlib.pyplot as plt
In [23]:
class AnotherCircle(object):
    def __init__(self, radius=1, center=(0,0), color='r'):
        self.radius = radius
        self.center = center
        self.color = color
    
    def __repr__(self):
        return "<%s Circle with r=%s at %s>" % (
                    self.color,
                    self.radius,
                    self.center,
                )
    
c = AnotherCircle()
c
Out[23]:
<r Circle with r=1 at (0, 0)>
In [24]:
from IPython.core.pylabtools import print_figure

def png_circle(circle):
    """Render AnotherCircle to png data using matplotlib"""
    fig, ax = plt.subplots()
    patch = plt.Circle(circle.center,
                       radius=circle.radius,
                       fc=circle.color,
                       )
    ax.add_patch(patch)
    plt.axis('scaled')
    data = print_figure(fig, 'png')
    # We MUST close the figure, otherwise IPython's display machinery
    # will pick it up and send it as output, resulting in a double display
    plt.close(fig)
    return data
In [27]:
c = AnotherCircle()
print repr(png_circle(c)[:10])
'\x89PNG\r\n\x1a\n\x00\x00'

Now we register the display function for the type:

In [28]:
png_f.for_type(AnotherCircle, png_circle)

Now all Circle instances have PNG representations!

In [29]:
c2 = AnotherCircle(radius=2, center=(1,0), color='g')
c2
Out[29]:
No description has been provided for this image
In [30]:
display_png(c2)
No description has been provided for this image

return the object

In [ ]:
# for demonstration purpose, I do the same with a circle that has no _repr_javascript method
class MyNoJSCircle(MyCircle):
    
    def _repr_javascript_(self):
        return

cNoJS = MyNoJSCircle()

Of course you can now still return the object, and this will use compute all the representations, store them in the notebook and show you the appropriate one.

In [ ]:
cNoJS

Or just use display(object) if you are in a middle of a loop

In [ ]:
for i in range(3):
    display(cNoJS)

Advantage of using display() versus display_*() is that all representation will be stored in the notebook document and notebook file, they are then availlable for other frontends or post-processing tool like nbconvert.

Let's compare display() vs display_html() for our circle in the Notebook Web-app and we'll see later the difference in nbconvert.

In [ ]:
print "I should see a nice html circle in web-app, but"
print "nothing if the format I'm viewing the notebook in"
print "does not support html"
display_html(cNoJS)
In [ ]:
print "Whatever the format I will see a representation"
print "of my circle"
display(cNoJS)
In [ ]:
print "Same if I return the object"
cNoJS
In [ ]:
print "But not if I print it"
print cNoJS