##// END OF EJS Templates
add dirty trick for readline import on OSX...
add dirty trick for readline import on OSX also made the libedit warning extremely loud, so people don't miss it. We still get reports of people never having noticed the warning, and getting confused when readline is broken on OSX. The reason for the dirty trick: pip installs to site-packages by default, but site-packages dirs always come *after* lib-dynload (and extras, etc.), which is where the system readline is installed. That means that a non-setuptools install (pip or setup.py install) *cannot* override any package that ships with OSX, including: numpy, readline, twisted, pyobjc without installing to a non-standard path (not even user site-packages via `--user`). The method for the dirty trick: 1. remove lib-dynload from sys.path before trying to import readline the first time 2. after import, restore lib-dynload to its place in sys.path 3. if import failed without lib-dynload, try it one more time

File last commit:

r4155:a82262e5
r5206:387dcd6a
Show More
map.py
165 lines | 5.1 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""Classes used in scattering and gathering sequences.
Scattering consists of partitioning a sequence and sending the various
pieces to individual nodes in a cluster.
Authors:
* Brian Granger
* MinRK
"""
#-------------------------------------------------------------------------------
# Copyright (C) 2008-2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-------------------------------------------------------------------------------
#-------------------------------------------------------------------------------
# Imports
#-------------------------------------------------------------------------------
from __future__ import division
import types
from IPython.utils.data import flatten as utils_flatten
#-------------------------------------------------------------------------------
# Figure out which array packages are present and their array types
#-------------------------------------------------------------------------------
arrayModules = []
try:
import Numeric
except ImportError:
pass
else:
arrayModules.append({'module':Numeric, 'type':Numeric.arraytype})
try:
import numpy
except ImportError:
pass
else:
arrayModules.append({'module':numpy, 'type':numpy.ndarray})
try:
import numarray
except ImportError:
pass
else:
arrayModules.append({'module':numarray,
'type':numarray.numarraycore.NumArray})
class Map:
"""A class for partitioning a sequence using a map."""
def getPartition(self, seq, p, q):
"""Returns the pth partition of q partitions of seq."""
# Test for error conditions here
if p<0 or p>=q:
print "No partition exists."
return
remainder = len(seq)%q
basesize = len(seq)//q
hi = []
lo = []
for n in range(q):
if n < remainder:
lo.append(n * (basesize + 1))
hi.append(lo[-1] + basesize + 1)
else:
lo.append(n*basesize + remainder)
hi.append(lo[-1] + basesize)
result = seq[lo[p]:hi[p]]
return result
def joinPartitions(self, listOfPartitions):
return self.concatenate(listOfPartitions)
def concatenate(self, listOfPartitions):
testObject = listOfPartitions[0]
# First see if we have a known array type
for m in arrayModules:
#print m
if isinstance(testObject, m['type']):
return m['module'].concatenate(listOfPartitions)
# Next try for Python sequence types
if isinstance(testObject, (types.ListType, types.TupleType)):
return utils_flatten(listOfPartitions)
# If we have scalars, just return listOfPartitions
return listOfPartitions
class RoundRobinMap(Map):
"""Partitions a sequence in a roun robin fashion.
This currently does not work!
"""
def getPartition(self, seq, p, q):
# if not isinstance(seq,(list,tuple)):
# raise NotImplementedError("cannot RR partition type %s"%type(seq))
return seq[p:len(seq):q]
#result = []
#for i in range(p,len(seq),q):
# result.append(seq[i])
#return result
def joinPartitions(self, listOfPartitions):
testObject = listOfPartitions[0]
# First see if we have a known array type
for m in arrayModules:
#print m
if isinstance(testObject, m['type']):
return self.flatten_array(m['type'], listOfPartitions)
if isinstance(testObject, (types.ListType, types.TupleType)):
return self.flatten_list(listOfPartitions)
return listOfPartitions
def flatten_array(self, klass, listOfPartitions):
test = listOfPartitions[0]
shape = list(test.shape)
shape[0] = sum([ p.shape[0] for p in listOfPartitions])
A = klass(shape)
N = shape[0]
q = len(listOfPartitions)
for p,part in enumerate(listOfPartitions):
A[p:N:q] = part
return A
def flatten_list(self, listOfPartitions):
flat = []
for i in range(len(listOfPartitions[0])):
flat.extend([ part[i] for part in listOfPartitions if len(part) > i ])
return flat
#lengths = [len(x) for x in listOfPartitions]
#maxPartitionLength = len(listOfPartitions[0])
#numberOfPartitions = len(listOfPartitions)
#concat = self.concatenate(listOfPartitions)
#totalLength = len(concat)
#result = []
#for i in range(maxPartitionLength):
# result.append(concat[i:totalLength:maxPartitionLength])
# return self.concatenate(listOfPartitions)
def mappable(obj):
"""return whether an object is mappable or not."""
if isinstance(obj, (tuple,list)):
return True
for m in arrayModules:
if isinstance(obj,m['type']):
return True
return False
dists = {'b':Map,'r':RoundRobinMap}