##// END OF EJS Templates
allow setting Tuple traitlet with list...
allow setting Tuple traitlet with list matches traits behavior

File last commit:

r13354:5d199385
r15472:3f5527a7
Show More
pickleshare.py
370 lines | 10.2 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
""" PickleShare - a small 'shelve' like datastore with concurrency support
Like shelve, a PickleShareDB object acts like a normal dictionary. Unlike
shelve, many processes can access the database simultaneously. Changing a
value in database is immediately visible to other processes accessing the
same database.
Concurrency is possible because the values are stored in separate files. Hence
the "database" is a directory where *all* files are governed by PickleShare.
Example usage::
from pickleshare import *
db = PickleShareDB('~/testpickleshare')
db.clear()
print "Should be empty:",db.items()
db['hello'] = 15
db['aku ankka'] = [1,2,313]
db['paths/are/ok/key'] = [1,(5,46)]
print db.keys()
del db['aku ankka']
This module is certainly not ZODB, but can be used for low-load
(non-mission-critical) situations where tiny code size trumps the
advanced features of a "real" object database.
Installation guide: easy_install pickleshare
Author: Ville Vainio <vivainio@gmail.com>
License: MIT open source license.
"""
from __future__ import print_function
from IPython.external.path import path as Path
import os,stat,time
import collections
try:
import cPickle as pickle
except ImportError:
import pickle
import glob
def gethashfile(key):
return ("%02x" % abs(hash(key) % 256))[-2:]
_sentinel = object()
class PickleShareDB(collections.MutableMapping):
""" The main 'connection' object for PickleShare database """
def __init__(self,root):
""" Return a db object that will manage the specied directory"""
self.root = Path(root).expanduser().abspath()
if not self.root.isdir():
self.root.makedirs()
# cache has { 'key' : (obj, orig_mod_time) }
self.cache = {}
def __getitem__(self,key):
""" db['key'] reading """
fil = self.root / key
try:
mtime = (fil.stat()[stat.ST_MTIME])
except OSError:
raise KeyError(key)
if fil in self.cache and mtime == self.cache[fil][1]:
return self.cache[fil][0]
try:
# The cached item has expired, need to read
with fil.open("rb") as f:
obj = pickle.loads(f.read())
except:
raise KeyError(key)
self.cache[fil] = (obj,mtime)
return obj
def __setitem__(self,key,value):
""" db['key'] = 5 """
fil = self.root / key
parent = fil.parent
if parent and not parent.isdir():
parent.makedirs()
# We specify protocol 2, so that we can mostly go between Python 2
# and Python 3. We can upgrade to protocol 3 when Python 2 is obsolete.
with fil.open('wb') as f:
pickled = pickle.dump(value, f, protocol=2)
try:
self.cache[fil] = (value,fil.mtime)
except OSError as e:
if e.errno != 2:
raise
def hset(self, hashroot, key, value):
""" hashed set """
hroot = self.root / hashroot
if not hroot.isdir():
hroot.makedirs()
hfile = hroot / gethashfile(key)
d = self.get(hfile, {})
d.update( {key : value})
self[hfile] = d
def hget(self, hashroot, key, default = _sentinel, fast_only = True):
""" hashed get """
hroot = self.root / hashroot
hfile = hroot / gethashfile(key)
d = self.get(hfile, _sentinel )
#print "got dict",d,"from",hfile
if d is _sentinel:
if fast_only:
if default is _sentinel:
raise KeyError(key)
return default
# slow mode ok, works even after hcompress()
d = self.hdict(hashroot)
return d.get(key, default)
def hdict(self, hashroot):
""" Get all data contained in hashed category 'hashroot' as dict """
hfiles = self.keys(hashroot + "/*")
hfiles.sort()
last = len(hfiles) and hfiles[-1] or ''
if last.endswith('xx'):
# print "using xx"
hfiles = [last] + hfiles[:-1]
all = {}
for f in hfiles:
# print "using",f
try:
all.update(self[f])
except KeyError:
print("Corrupt",f,"deleted - hset is not threadsafe!")
del self[f]
self.uncache(f)
return all
def hcompress(self, hashroot):
""" Compress category 'hashroot', so hset is fast again
hget will fail if fast_only is True for compressed items (that were
hset before hcompress).
"""
hfiles = self.keys(hashroot + "/*")
all = {}
for f in hfiles:
# print "using",f
all.update(self[f])
self.uncache(f)
self[hashroot + '/xx'] = all
for f in hfiles:
p = self.root / f
if p.basename() == 'xx':
continue
p.remove()
def __delitem__(self,key):
""" del db["key"] """
fil = self.root / key
self.cache.pop(fil,None)
try:
fil.remove()
except OSError:
# notfound and permission denied are ok - we
# lost, the other process wins the conflict
pass
def _normalized(self, p):
""" Make a key suitable for user's eyes """
return str(self.root.relpathto(p)).replace('\\','/')
def keys(self, globpat = None):
""" All keys in DB, or all keys matching a glob"""
if globpat is None:
files = self.root.walkfiles()
else:
files = [Path(p) for p in glob.glob(self.root/globpat)]
return [self._normalized(p) for p in files if p.isfile()]
def __iter__(self):
return iter(self.keys())
def __len__(self):
return len(self.keys())
def uncache(self,*items):
""" Removes all, or specified items from cache
Use this after reading a large amount of large objects
to free up memory, when you won't be needing the objects
for a while.
"""
if not items:
self.cache = {}
for it in items:
self.cache.pop(it,None)
def waitget(self,key, maxwaittime = 60 ):
""" Wait (poll) for a key to get a value
Will wait for `maxwaittime` seconds before raising a KeyError.
The call exits normally if the `key` field in db gets a value
within the timeout period.
Use this for synchronizing different processes or for ensuring
that an unfortunately timed "db['key'] = newvalue" operation
in another process (which causes all 'get' operation to cause a
KeyError for the duration of pickling) won't screw up your program
logic.
"""
wtimes = [0.2] * 3 + [0.5] * 2 + [1]
tries = 0
waited = 0
while 1:
try:
val = self[key]
return val
except KeyError:
pass
if waited > maxwaittime:
raise KeyError(key)
time.sleep(wtimes[tries])
waited+=wtimes[tries]
if tries < len(wtimes) -1:
tries+=1
def getlink(self,folder):
""" Get a convenient link for accessing items """
return PickleShareLink(self, folder)
def __repr__(self):
return "PickleShareDB('%s')" % self.root
class PickleShareLink:
""" A shortdand for accessing nested PickleShare data conveniently.
Created through PickleShareDB.getlink(), example::
lnk = db.getlink('myobjects/test')
lnk.foo = 2
lnk.bar = lnk.foo + 5
"""
def __init__(self, db, keydir ):
self.__dict__.update(locals())
def __getattr__(self,key):
return self.__dict__['db'][self.__dict__['keydir']+'/' + key]
def __setattr__(self,key,val):
self.db[self.keydir+'/' + key] = val
def __repr__(self):
db = self.__dict__['db']
keys = db.keys( self.__dict__['keydir'] +"/*")
return "<PickleShareLink '%s': %s>" % (
self.__dict__['keydir'],
";".join([Path(k).basename() for k in keys]))
def test():
db = PickleShareDB('~/testpickleshare')
db.clear()
print("Should be empty:",db.items())
db['hello'] = 15
db['aku ankka'] = [1,2,313]
db['paths/nest/ok/keyname'] = [1,(5,46)]
db.hset('hash', 'aku', 12)
db.hset('hash', 'ankka', 313)
print("12 =",db.hget('hash','aku'))
print("313 =",db.hget('hash','ankka'))
print("all hashed",db.hdict('hash'))
print(db.keys())
print(db.keys('paths/nest/ok/k*'))
print(dict(db)) # snapsot of whole db
db.uncache() # frees memory, causes re-reads later
# shorthand for accessing deeply nested files
lnk = db.getlink('myobjects/test')
lnk.foo = 2
lnk.bar = lnk.foo + 5
print(lnk.bar) # 7
def stress():
db = PickleShareDB('~/fsdbtest')
import time,sys
for i in range(1000):
for j in range(1000):
if i % 15 == 0 and i < 200:
if str(j) in db:
del db[str(j)]
continue
if j%33 == 0:
time.sleep(0.02)
db[str(j)] = db.get(str(j), []) + [(i,j,"proc %d" % os.getpid())]
db.hset('hash',j, db.hget('hash',j,15) + 1 )
print(i, end=' ')
sys.stdout.flush()
if i % 10 == 0:
db.uncache()
def main():
import textwrap
usage = textwrap.dedent("""\
pickleshare - manage PickleShare databases
Usage:
pickleshare dump /path/to/db > dump.txt
pickleshare load /path/to/db < dump.txt
pickleshare test /path/to/db
""")
DB = PickleShareDB
import sys
if len(sys.argv) < 2:
print(usage)
return
cmd = sys.argv[1]
args = sys.argv[2:]
if cmd == 'dump':
if not args: args= ['.']
db = DB(args[0])
import pprint
pprint.pprint(db.items())
elif cmd == 'load':
cont = sys.stdin.read()
db = DB(args[0])
data = eval(cont)
db.clear()
for k,v in db.items():
db[k] = v
elif cmd == 'testwait':
db = DB(args[0])
db.clear()
print(db.waitget('250'))
elif cmd == 'test':
test()
stress()
if __name__== "__main__":
main()