##// END OF EJS Templates
Merge pull request #9875 from rounakbanik/master...
Merge pull request #9875 from rounakbanik/master Fix typos in README

File last commit:

r22751:b6a880d3
r22819:40bd6610 merge
Show More
test_pretty.py
536 lines | 15.0 KiB | text/x-python | PythonLexer
# coding: utf-8
"""Tests for IPython.lib.pretty."""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from __future__ import print_function
from collections import Counter, defaultdict, deque, OrderedDict
import types, string, ctypes
import nose.tools as nt
from IPython.lib import pretty
from IPython.testing.decorators import (skip_without, py2_only, py3_only,
cpython2_only)
from IPython.utils.py3compat import PY3, unicode_to_str
if PY3:
from io import StringIO
else:
from StringIO import StringIO
class MyList(object):
def __init__(self, content):
self.content = content
def _repr_pretty_(self, p, cycle):
if cycle:
p.text("MyList(...)")
else:
with p.group(3, "MyList(", ")"):
for (i, child) in enumerate(self.content):
if i:
p.text(",")
p.breakable()
else:
p.breakable("")
p.pretty(child)
class MyDict(dict):
def _repr_pretty_(self, p, cycle):
p.text("MyDict(...)")
class MyObj(object):
def somemethod(self):
pass
class Dummy1(object):
def _repr_pretty_(self, p, cycle):
p.text("Dummy1(...)")
class Dummy2(Dummy1):
_repr_pretty_ = None
class NoModule(object):
pass
NoModule.__module__ = None
class Breaking(object):
def _repr_pretty_(self, p, cycle):
with p.group(4,"TG: ",":"):
p.text("Breaking(")
p.break_()
p.text(")")
class BreakingRepr(object):
def __repr__(self):
return "Breaking(\n)"
class BreakingReprParent(object):
def _repr_pretty_(self, p, cycle):
with p.group(4,"TG: ",":"):
p.pretty(BreakingRepr())
class BadRepr(object):
def __repr__(self):
return 1/0
def test_indentation():
"""Test correct indentation in groups"""
count = 40
gotoutput = pretty.pretty(MyList(range(count)))
expectedoutput = "MyList(\n" + ",\n".join(" %d" % i for i in range(count)) + ")"
nt.assert_equal(gotoutput, expectedoutput)
def test_dispatch():
"""
Test correct dispatching: The _repr_pretty_ method for MyDict
must be found before the registered printer for dict.
"""
gotoutput = pretty.pretty(MyDict())
expectedoutput = "MyDict(...)"
nt.assert_equal(gotoutput, expectedoutput)
def test_callability_checking():
"""
Test that the _repr_pretty_ method is tested for callability and skipped if
not.
"""
gotoutput = pretty.pretty(Dummy2())
expectedoutput = "Dummy1(...)"
nt.assert_equal(gotoutput, expectedoutput)
def test_sets():
"""
Test that set and frozenset use Python 3 formatting.
"""
objects = [set(), frozenset(), set([1]), frozenset([1]), set([1, 2]),
frozenset([1, 2]), set([-1, -2, -3])]
expected = ['set()', 'frozenset()', '{1}', 'frozenset({1})', '{1, 2}',
'frozenset({1, 2})', '{-3, -2, -1}']
for obj, expected_output in zip(objects, expected):
got_output = pretty.pretty(obj)
yield nt.assert_equal, got_output, expected_output
@skip_without('xxlimited')
def test_pprint_heap_allocated_type():
"""
Test that pprint works for heap allocated types.
"""
import xxlimited
output = pretty.pretty(xxlimited.Null)
nt.assert_equal(output, 'xxlimited.Null')
def test_pprint_nomod():
"""
Test that pprint works for classes with no __module__.
"""
output = pretty.pretty(NoModule)
nt.assert_equal(output, 'NoModule')
def test_pprint_break():
"""
Test that p.break_ produces expected output
"""
output = pretty.pretty(Breaking())
expected = "TG: Breaking(\n ):"
nt.assert_equal(output, expected)
def test_pprint_break_repr():
"""
Test that p.break_ is used in repr
"""
output = pretty.pretty(BreakingReprParent())
expected = "TG: Breaking(\n ):"
nt.assert_equal(output, expected)
def test_bad_repr():
"""Don't catch bad repr errors"""
with nt.assert_raises(ZeroDivisionError):
output = pretty.pretty(BadRepr())
class BadException(Exception):
def __str__(self):
return -1
class ReallyBadRepr(object):
__module__ = 1
@property
def __class__(self):
raise ValueError("I am horrible")
def __repr__(self):
raise BadException()
def test_really_bad_repr():
with nt.assert_raises(BadException):
output = pretty.pretty(ReallyBadRepr())
class SA(object):
pass
class SB(SA):
pass
def test_super_repr():
# "<super: module_name.SA, None>"
output = pretty.pretty(super(SA))
nt.assert_regexp_matches(output, r"<super: \S+.SA, None>")
# "<super: module_name.SA, <module_name.SB at 0x...>>"
sb = SB()
output = pretty.pretty(super(SA, sb))
nt.assert_regexp_matches(output, r"<super: \S+.SA,\s+<\S+.SB at 0x\S+>>")
def test_long_list():
lis = list(range(10000))
p = pretty.pretty(lis)
last2 = p.rsplit('\n', 2)[-2:]
nt.assert_equal(last2, [' 999,', ' ...]'])
def test_long_set():
s = set(range(10000))
p = pretty.pretty(s)
last2 = p.rsplit('\n', 2)[-2:]
nt.assert_equal(last2, [' 999,', ' ...}'])
def test_long_tuple():
tup = tuple(range(10000))
p = pretty.pretty(tup)
last2 = p.rsplit('\n', 2)[-2:]
nt.assert_equal(last2, [' 999,', ' ...)'])
def test_long_dict():
d = { n:n for n in range(10000) }
p = pretty.pretty(d)
last2 = p.rsplit('\n', 2)[-2:]
nt.assert_equal(last2, [' 999: 999,', ' ...}'])
def test_unbound_method():
output = pretty.pretty(MyObj.somemethod)
nt.assert_in('MyObj.somemethod', output)
class MetaClass(type):
def __new__(cls, name):
return type.__new__(cls, name, (object,), {'name': name})
def __repr__(self):
return "[CUSTOM REPR FOR CLASS %s]" % self.name
ClassWithMeta = MetaClass('ClassWithMeta')
def test_metaclass_repr():
output = pretty.pretty(ClassWithMeta)
nt.assert_equal(output, "[CUSTOM REPR FOR CLASS ClassWithMeta]")
def test_unicode_repr():
u = u"üniçodé"
ustr = unicode_to_str(u)
class C(object):
def __repr__(self):
return ustr
c = C()
p = pretty.pretty(c)
nt.assert_equal(p, u)
p = pretty.pretty([c])
nt.assert_equal(p, u'[%s]' % u)
def test_basic_class():
def type_pprint_wrapper(obj, p, cycle):
if obj is MyObj:
type_pprint_wrapper.called = True
return pretty._type_pprint(obj, p, cycle)
type_pprint_wrapper.called = False
stream = StringIO()
printer = pretty.RepresentationPrinter(stream)
printer.type_pprinters[type] = type_pprint_wrapper
printer.pretty(MyObj)
printer.flush()
output = stream.getvalue()
nt.assert_equal(output, '%s.MyObj' % __name__)
nt.assert_true(type_pprint_wrapper.called)
# This is only run on Python 2 because in Python 3 the language prevents you
# from setting a non-unicode value for __qualname__ on a metaclass, and it
# doesn't respect the descriptor protocol if you subclass unicode and implement
# __get__.
@py2_only
def test_fallback_to__name__on_type():
# Test that we correctly repr types that have non-string values for
# __qualname__ by falling back to __name__
class Type(object):
__qualname__ = 5
# Test repring of the type.
stream = StringIO()
printer = pretty.RepresentationPrinter(stream)
printer.pretty(Type)
printer.flush()
output = stream.getvalue()
# If __qualname__ is malformed, we should fall back to __name__.
expected = '.'.join([__name__, Type.__name__])
nt.assert_equal(output, expected)
# Clear stream buffer.
stream.buf = ''
# Test repring of an instance of the type.
instance = Type()
printer.pretty(instance)
printer.flush()
output = stream.getvalue()
# Should look like:
# <IPython.lib.tests.test_pretty.Type at 0x7f7658ae07d0>
prefix = '<' + '.'.join([__name__, Type.__name__]) + ' at 0x'
nt.assert_true(output.startswith(prefix))
@py2_only
def test_fail_gracefully_on_bogus__qualname__and__name__():
# Test that we correctly repr types that have non-string values for both
# __qualname__ and __name__
class Meta(type):
__name__ = 5
class Type(object):
__metaclass__ = Meta
__qualname__ = 5
stream = StringIO()
printer = pretty.RepresentationPrinter(stream)
printer.pretty(Type)
printer.flush()
output = stream.getvalue()
# If we can't find __name__ or __qualname__ just use a sentinel string.
expected = '.'.join([__name__, '<unknown type>'])
nt.assert_equal(output, expected)
# Clear stream buffer.
stream.buf = ''
# Test repring of an instance of the type.
instance = Type()
printer.pretty(instance)
printer.flush()
output = stream.getvalue()
# Should look like:
# <IPython.lib.tests.test_pretty.<unknown type> at 0x7f7658ae07d0>
prefix = '<' + '.'.join([__name__, '<unknown type>']) + ' at 0x'
nt.assert_true(output.startswith(prefix))
def test_collections_defaultdict():
# Create defaultdicts with cycles
a = defaultdict()
a.default_factory = a
b = defaultdict(list)
b['key'] = b
# Dictionary order cannot be relied on, test against single keys.
cases = [
(defaultdict(list), 'defaultdict(list, {})'),
(defaultdict(list, {'key': '-' * 50}),
"defaultdict(list,\n"
" {'key': '--------------------------------------------------'})"),
(a, 'defaultdict(defaultdict(...), {})'),
(b, "defaultdict(list, {'key': defaultdict(...)})"),
]
for obj, expected in cases:
nt.assert_equal(pretty.pretty(obj), expected)
def test_collections_ordereddict():
# Create OrderedDict with cycle
a = OrderedDict()
a['key'] = a
cases = [
(OrderedDict(), 'OrderedDict()'),
(OrderedDict((i, i) for i in range(1000, 1010)),
'OrderedDict([(1000, 1000),\n'
' (1001, 1001),\n'
' (1002, 1002),\n'
' (1003, 1003),\n'
' (1004, 1004),\n'
' (1005, 1005),\n'
' (1006, 1006),\n'
' (1007, 1007),\n'
' (1008, 1008),\n'
' (1009, 1009)])'),
(a, "OrderedDict([('key', OrderedDict(...))])"),
]
for obj, expected in cases:
nt.assert_equal(pretty.pretty(obj), expected)
def test_collections_deque():
# Create deque with cycle
a = deque()
a.append(a)
cases = [
(deque(), 'deque([])'),
(deque(i for i in range(1000, 1020)),
'deque([1000,\n'
' 1001,\n'
' 1002,\n'
' 1003,\n'
' 1004,\n'
' 1005,\n'
' 1006,\n'
' 1007,\n'
' 1008,\n'
' 1009,\n'
' 1010,\n'
' 1011,\n'
' 1012,\n'
' 1013,\n'
' 1014,\n'
' 1015,\n'
' 1016,\n'
' 1017,\n'
' 1018,\n'
' 1019])'),
(a, 'deque([deque(...)])'),
]
for obj, expected in cases:
nt.assert_equal(pretty.pretty(obj), expected)
def test_collections_counter():
class MyCounter(Counter):
pass
cases = [
(Counter(), 'Counter()'),
(Counter(a=1), "Counter({'a': 1})"),
(MyCounter(a=1), "MyCounter({'a': 1})"),
]
for obj, expected in cases:
nt.assert_equal(pretty.pretty(obj), expected)
@py3_only
def test_mappingproxy():
MP = types.MappingProxyType
underlying_dict = {}
mp_recursive = MP(underlying_dict)
underlying_dict[2] = mp_recursive
underlying_dict[3] = underlying_dict
cases = [
(MP({}), "mappingproxy({})"),
(MP({None: MP({})}), "mappingproxy({None: mappingproxy({})})"),
(MP({k: k.upper() for k in string.ascii_lowercase}),
"mappingproxy({'a': 'A',\n"
" 'b': 'B',\n"
" 'c': 'C',\n"
" 'd': 'D',\n"
" 'e': 'E',\n"
" 'f': 'F',\n"
" 'g': 'G',\n"
" 'h': 'H',\n"
" 'i': 'I',\n"
" 'j': 'J',\n"
" 'k': 'K',\n"
" 'l': 'L',\n"
" 'm': 'M',\n"
" 'n': 'N',\n"
" 'o': 'O',\n"
" 'p': 'P',\n"
" 'q': 'Q',\n"
" 'r': 'R',\n"
" 's': 'S',\n"
" 't': 'T',\n"
" 'u': 'U',\n"
" 'v': 'V',\n"
" 'w': 'W',\n"
" 'x': 'X',\n"
" 'y': 'Y',\n"
" 'z': 'Z'})"),
(mp_recursive, "mappingproxy({2: {...}, 3: {2: {...}, 3: {...}}})"),
(underlying_dict,
"{2: mappingproxy({2: {...}, 3: {...}}), 3: {...}}"),
]
for obj, expected in cases:
nt.assert_equal(pretty.pretty(obj), expected)
@cpython2_only # In PyPy, types.DictProxyType is dict
def test_dictproxy():
# This is the dictproxy constructor itself from the Python API,
DP = ctypes.pythonapi.PyDictProxy_New
DP.argtypes, DP.restype = (ctypes.py_object,), ctypes.py_object
underlying_dict = {}
mp_recursive = DP(underlying_dict)
underlying_dict[0] = mp_recursive
underlying_dict[-3] = underlying_dict
cases = [
(DP({}), "dict_proxy({})"),
(DP({None: DP({})}), "dict_proxy({None: dict_proxy({})})"),
(DP({k: k.lower() for k in string.ascii_uppercase}),
"dict_proxy({'A': 'a',\n"
" 'B': 'b',\n"
" 'C': 'c',\n"
" 'D': 'd',\n"
" 'E': 'e',\n"
" 'F': 'f',\n"
" 'G': 'g',\n"
" 'H': 'h',\n"
" 'I': 'i',\n"
" 'J': 'j',\n"
" 'K': 'k',\n"
" 'L': 'l',\n"
" 'M': 'm',\n"
" 'N': 'n',\n"
" 'O': 'o',\n"
" 'P': 'p',\n"
" 'Q': 'q',\n"
" 'R': 'r',\n"
" 'S': 's',\n"
" 'T': 't',\n"
" 'U': 'u',\n"
" 'V': 'v',\n"
" 'W': 'w',\n"
" 'X': 'x',\n"
" 'Y': 'y',\n"
" 'Z': 'z'})"),
(mp_recursive, "dict_proxy({-3: {-3: {...}, 0: {...}}, 0: {...}})"),
]
for obj, expected in cases:
nt.assert_is_instance(obj, types.DictProxyType) # Meta-test
nt.assert_equal(pretty.pretty(obj), expected)
nt.assert_equal(pretty.pretty(underlying_dict),
"{-3: {...}, 0: dict_proxy({-3: {...}, 0: {...}})}")