##// END OF EJS Templates
Merge pull request #3756 from minrk/wiredoc...
Merge pull request #3756 from minrk/wiredoc document the wire protocol in the messaging doc also update the digest scheme to use sha256 and make this configurable, since md5 is the previous default and has been shown to be bad. More messaging docs to update here: - [x] remove get/setattr on kernel - [x] remove crash messages - [x] completion requests do not behave as documented - [x] object_info is misdocumented (`name` is actually `oname` in object_info_request)

File last commit:

r9190:20a102a5
r11721:42034aaf merge
Show More
Typesetting Math Using MathJax.ipynb
258 lines | 8.3 KiB | text/plain | TextLexer
/ examples / notebooks / Typesetting Math Using MathJax.ipynb

The Markdown parser included in IPython is MathJax-aware. This means that you can freely mix in mathematical expressions using the MathJax subset of Tex and LaTeX. Some examples from the MathJax site are reproduced below, as well as the Markdown+TeX source.

Motivating Examples


The Lorenz Equations

Source

\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned}

Display

\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}

The Cauchy-Schwarz Inequality

Source

\begin{equation*}
\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)
\end{equation*}

Display

\begin{equation*} \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) \end{equation*}

A Cross Product Formula

Source

\begin{equation*}
\mathbf{V}_1 \times \mathbf{V}_2 =  \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial X}{\partial u} &  \frac{\partial Y}{\partial u} & 0 \\
\frac{\partial X}{\partial v} &  \frac{\partial Y}{\partial v} & 0
\end{vmatrix}  
\end{equation*}

Display

\begin{equation*} \mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix} \end{equation*}

The probability of getting (k) heads when flipping (n) coins is

Source

\begin{equation*}
P(E)   = {n \choose k} p^k (1-p)^{ n-k} 
\end{equation*}

Display

\begin{equation*} P(E) = {n \choose k} p^k (1-p)^{ n-k} \end{equation*}

An Identity of Ramanujan

Source

\begin{equation*}
\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} =
1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}}
{1+\frac{e^{-8\pi}} {1+\ldots} } } } 
\end{equation*}

Display

\begin{equation*} \frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \end{equation*}

A Rogers-Ramanujan Identity

Source

\begin{equation*}
1 +  \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots =
\prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})},
\quad\quad \text{for $|q|<1$}. 
\end{equation*}

Display

\begin{equation*} 1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}. \end{equation*}

Maxwell's Equations

Source

\begin{aligned}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\   \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0 
\end{aligned}

Display

\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}

Equation Numbering and References


Equation numbering and referencing will be available in a future version of IPython.

Inline Typesetting (Mixing Markdown and TeX)


While display equations look good for a page of samples, the ability to mix math and formatted text in a paragraph is also important.

Source

This

Display

This expression $\sqrt{3x-1}+(1+x)^2$ is an example of a TeX inline equation in a Markdown-formatted sentence.

Other Syntax


You will notice in other places on the web that $$ are needed explicitly to begin and end MathJax typesetting. This is not required if you will be using TeX environments, but the IPython notebook will accept this syntax on legacy notebooks.

Source

$$
\begin{array}{c}
y_1 \\\
y_2 \mathtt{t}_i \\\
z_{3,4}
\end{array}
$$
$$
\begin{array}{c}
y_1 \cr
y_2 \mathtt{t}_i \cr
y_{3}
\end{array}
$$
$$\begin{eqnarray} 
x' &=& &x \sin\phi &+& z \cos\phi \\
z' &=& - &x \cos\phi &+& z \sin\phi \\
\end{eqnarray}$$
$$
x=4
$$

Display

$$ \begin{array}{c} y_1 \\\ y_2 \mathtt{t}_i \\\ z_{3,4} \end{array} $$$$ \begin{array}{c} y_1 \cr y_2 \mathtt{t}_i \cr y_{3} \end{array} $$$$\begin{eqnarray} x' &=& &x \sin\phi &+& z \cos\phi \\ z' &=& - &x \cos\phi &+& z \sin\phi \\ \end{eqnarray}$$$$ x=4 $$