##// END OF EJS Templates
Clean up output of %who
Clean up output of %who

File last commit:

r2346:69191c91
r2472:422c7f0d
Show More
mcdriver.py
71 lines | 2.2 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""Run a Monte-Carlo options pricer in parallel."""
from IPython.kernel import client
import numpy as np
from mcpricer import price_options
# The MultiEngineClient is used to setup the calculation and works with all
# engine.
mec = client.MultiEngineClient(profile='mycluster')
# The TaskClient is an interface to the engines that provides dynamic load
# balancing at the expense of not knowing which engine will execute the code.
tc = client.TaskClient(profile='mycluster')
# Initialize the common code on the engines. This Python module has the
# price_options function that prices the options.
mec.run('mcpricer.py')
# Define the function that will make up our tasks. We basically want to
# call the price_options function with all but two arguments (K, sigma)
# fixed.
def my_prices(K, sigma):
S = 100.0
r = 0.05
days = 260
paths = 100000
return price_options(S, K, sigma, r, days, paths)
# Create arrays of strike prices and volatilities
nK = 10
nsigma = 10
K_vals = np.linspace(90.0, 100.0, nK)
sigma_vals = np.linspace(0.1, 0.4, nsigma)
# Submit tasks to the TaskClient for each (K, sigma) pair as a MapTask.
# The MapTask simply applies a function (my_prices) to the arguments:
# my_prices(K, sigma) and returns the result.
taskids = []
for K in K_vals:
for sigma in sigma_vals:
t = client.MapTask(my_prices, args=(K, sigma))
taskids.append(tc.run(t))
print "Submitted tasks: ", len(taskids)
# Block until all tasks are completed.
tc.barrier(taskids)
# Get the results using TaskClient.get_task_result.
results = [tc.get_task_result(tid) for tid in taskids]
# Assemble the result into a structured NumPy array.
prices = np.empty(nK*nsigma,
dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
)
for i, price_tuple in enumerate(results):
prices[i] = price_tuple
prices.shape = (nK, nsigma)
K_vals, sigma_vals = np.meshgrid(K_vals, sigma_vals)
def plot_options(sigma_vals, K_vals, prices):
"""
Make a contour plot of the option price in (sigma, K) space.
"""
from matplotlib import pyplot as plt
plt.contourf(sigma_vals, K_vals, prices)
plt.colorbar()
plt.title("Option Price")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")