##// END OF EJS Templates
Keep original function names.
Keep original function names.

File last commit:

r4910:0dc49390
r6532:47c768ca
Show More
rmt.ipy
146 lines | 3.3 KiB | text/plain | TextLexer
# <nbformat>2</nbformat>
# <markdowncell>
# # Eigenvalue distribution of Gaussian orthogonal random matrices
# <markdowncell>
# The eigenvalues of random matrices obey certain statistical laws. Here we construct random matrices
# from the Gaussian Orthogonal Ensemble (GOE), find their eigenvalues and then investigate the nearest
# neighbor eigenvalue distribution $\rho(s)$.
# <codecell>
from rmtkernel import ensemble_diffs, normalize_diffs, GOE
import numpy as np
from IPython.parallel import Client
# <markdowncell>
# ## Wigner's nearest neighbor eigenvalue distribution
# <markdowncell>
# The Wigner distribution gives the theoretical result for the nearest neighbor eigenvalue distribution
# for the GOE:
#
# $$\rho(s) = \frac{\pi s}{2} \exp(-\pi s^2/4)$$
# <codecell>
def wigner_dist(s):
"""Returns (s, rho(s)) for the Wigner GOE distribution."""
return (np.pi*s/2.0) * np.exp(-np.pi*s**2/4.)
# <codecell>
def generate_wigner_data():
s = np.linspace(0.0,4.0,400)
rhos = wigner_dist(s)
return s, rhos
# <codecell>
s, rhos = generate_wigner_data()
# <codecell>
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $\rho(s)$')
# <markdowncell>
# ## Serial calculation of nearest neighbor eigenvalue distribution
# <markdowncell>
# In this section we numerically construct and diagonalize a large number of GOE random matrices
# and compute the nerest neighbor eigenvalue distribution. This comptation is done on a single core.
# <codecell>
def serial_diffs(num, N):
"""Compute the nearest neighbor distribution for num NxX matrices."""
diffs = ensemble_diffs(num, N)
normalized_diffs = normalize_diffs(diffs)
return normalized_diffs
# <codecell>
serial_nmats = 1000
serial_matsize = 50
# <codecell>
%timeit -r1 -n1 serial_diffs(serial_nmats, serial_matsize)
# <codecell>
serial_diffs = serial_diffs(serial_nmats, serial_matsize)
# <markdowncell>
# The numerical computation agrees with the predictions of Wigner, but it would be nice to get more
# statistics. For that we will do a parallel computation.
# <codecell>
hist_data = hist(serial_diffs, bins=30, normed=True)
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $P(s)$')
# <markdowncell>
# ## Parallel calculation of nearest neighbor eigenvalue distribution
# <markdowncell>
# Here we perform a parallel computation, where each process constructs and diagonalizes a subset of
# the overall set of random matrices.
# <codecell>
def parallel_diffs(rc, num, N):
nengines = len(rc.targets)
num_per_engine = num/nengines
print "Running with", num_per_engine, "per engine."
ar = rc.apply_async(ensemble_diffs, num_per_engine, N)
diffs = np.array(ar.get()).flatten()
normalized_diffs = normalize_diffs(diffs)
return normalized_diffs
# <codecell>
client = Client()
view = client[:]
view.run('rmtkernel.py')
view.block = False
# <codecell>
parallel_nmats = 40*serial_nmats
parallel_matsize = 50
# <codecell>
%timeit -r1 -n1 parallel_diffs(view, parallel_nmats, parallel_matsize)
# <codecell>
pdiffs = parallel_diffs(view, parallel_nmats, parallel_matsize)
# <markdowncell>
# Again, the agreement with the Wigner distribution is excellent, but now we have better
# statistics.
# <codecell>
hist_data = hist(pdiffs, bins=30, normed=True)
plot(s, rhos)
xlabel('Normalized level spacing s')
ylabel('Probability $P(s)$')