##// END OF EJS Templates
Move method increment_filename from FileNotebookManager to NotebookManager...
Move method increment_filename from FileNotebookManager to NotebookManager The implementation requires only a minor change (call notebook_exists rather than checking for file existence) to be universally usable in other notebook managers.

File last commit:

r8674:f4047bfd
r15292:480bdb67
Show More
_jsonschema.py
734 lines | 22.6 KiB | text/x-python | PythonLexer
"""
An implementation of JSON Schema for Python
The main functionality is provided by the validator classes for each of the
supported JSON Schema versions.
Most commonly, the :function:`validate` function is the quickest way to simply
validate a given instance under a schema, and will create a validator for you.
"""
from __future__ import division, unicode_literals
import collections
import itertools
import operator
import re
import sys
import warnings
__version__ = "0.7"
FLOAT_TOLERANCE = 10 ** -15
PY3 = sys.version_info[0] >= 3
if PY3:
basestring = unicode = str
iteritems = operator.methodcaller("items")
from urllib.parse import unquote
else:
from itertools import izip as zip
iteritems = operator.methodcaller("iteritems")
from urllib import unquote
class UnknownType(Exception):
"""
An unknown type was given.
"""
class InvalidRef(Exception):
"""
An invalid reference was given.
"""
class SchemaError(Exception):
"""
The provided schema is malformed.
The same attributes exist for ``SchemaError``s as for ``ValidationError``s.
"""
validator = None
def __init__(self, message):
super(SchemaError, self).__init__(message)
self.message = message
self.path = []
class ValidationError(Exception):
"""
The instance didn't properly validate with the provided schema.
Relevant attributes are:
* ``message`` : a human readable message explaining the error
* ``path`` : a list containing the path to the offending element (or []
if the error happened globally) in *reverse* order (i.e.
deepest index first).
"""
# the failing validator will be set externally at whatever recursion level
# is immediately above the validation failure
validator = None
def __init__(self, message):
super(ValidationError, self).__init__(message)
self.message = message
# Any validator that recurses must append to the ValidationError's
# path (e.g., properties and items)
self.path = []
class Draft3Validator(object):
"""
A validator for JSON Schema draft 3.
"""
DEFAULT_TYPES = {
"array" : list, "boolean" : bool, "integer" : int, "null" : type(None),
"number" : (int, float), "object" : dict, "string" : basestring,
}
def __init__(self, schema, types=()):
"""
Initialize a validator.
``schema`` should be a *valid* JSON Schema object already converted to
a native Python object (typically a dict via ``json.load``).
``types`` is a mapping (or iterable of 2-tuples) containing additional
types or alternate types to verify via the 'type' property. For
instance, the default types for the 'number' JSON Schema type are
``int`` and ``float``. To override this behavior (e.g. for also
allowing ``decimal.Decimal``), pass ``types={"number" : (int, float,
decimal.Decimal)} *including* the default types if so desired, which
are fairly obvious but can be accessed via the ``DEFAULT_TYPES``
attribute on this class if necessary.
"""
self._types = dict(self.DEFAULT_TYPES)
self._types.update(types)
self._types["any"] = tuple(self._types.values())
self.schema = schema
def is_type(self, instance, type):
"""
Check if an ``instance`` is of the provided (JSON Schema) ``type``.
"""
if type not in self._types:
raise UnknownType(type)
type = self._types[type]
# bool inherits from int, so ensure bools aren't reported as integers
if isinstance(instance, bool):
type = _flatten(type)
if int in type and bool not in type:
return False
return isinstance(instance, type)
def is_valid(self, instance, _schema=None):
"""
Check if the ``instance`` is valid under the current schema.
Returns a bool indicating whether validation succeeded.
"""
error = next(self.iter_errors(instance, _schema), None)
return error is None
@classmethod
def check_schema(cls, schema):
"""
Validate a ``schema`` against the meta-schema to see if it is valid.
"""
for error in cls(cls.META_SCHEMA).iter_errors(schema):
s = SchemaError(error.message)
s.path = error.path
s.validator = error.validator
# I think we're safer raising these always, not yielding them
raise s
def iter_errors(self, instance, _schema=None):
"""
Lazily yield each of the errors in the given ``instance``.
"""
if _schema is None:
_schema = self.schema
for k, v in iteritems(_schema):
validator = getattr(self, "validate_%s" % (k.lstrip("$"),), None)
if validator is None:
continue
errors = validator(v, instance, _schema) or ()
for error in errors:
# if the validator hasn't already been set (due to recursion)
# make sure to set it
error.validator = error.validator or k
yield error
def validate(self, *args, **kwargs):
"""
Validate an ``instance`` under the given ``schema``.
"""
for error in self.iter_errors(*args, **kwargs):
raise error
def validate_type(self, types, instance, schema):
types = _list(types)
for type in types:
# Ouch. Brain hurts. Two paths here, either we have a schema, then
# check if the instance is valid under it
if ((
self.is_type(type, "object") and
self.is_valid(instance, type)
# Or we have a type as a string, just check if the instance is that
# type. Also, HACK: we can reach the `or` here if skip_types is
# something other than error. If so, bail out.
) or (
self.is_type(type, "string") and
(self.is_type(instance, type) or type not in self._types)
)):
return
else:
yield ValidationError(_types_msg(instance, types))
def validate_properties(self, properties, instance, schema):
if not self.is_type(instance, "object"):
return
for property, subschema in iteritems(properties):
if property in instance:
for error in self.iter_errors(instance[property], subschema):
error.path.append(property)
yield error
elif subschema.get("required", False):
error = ValidationError(
"%r is a required property" % (property,)
)
error.path.append(property)
error.validator = "required"
yield error
def validate_patternProperties(self, patternProperties, instance, schema):
for pattern, subschema in iteritems(patternProperties):
for k, v in iteritems(instance):
if re.match(pattern, k):
for error in self.iter_errors(v, subschema):
yield error
def validate_additionalProperties(self, aP, instance, schema):
if not self.is_type(instance, "object"):
return
extras = set(_find_additional_properties(instance, schema))
if self.is_type(aP, "object"):
for extra in extras:
for error in self.iter_errors(instance[extra], aP):
yield error
elif not aP and extras:
error = "Additional properties are not allowed (%s %s unexpected)"
yield ValidationError(error % _extras_msg(extras))
def validate_dependencies(self, dependencies, instance, schema):
if not self.is_type(instance, "object"):
return
for property, dependency in iteritems(dependencies):
if property not in instance:
continue
if self.is_type(dependency, "object"):
for error in self.iter_errors(instance, dependency):
yield error
else:
dependencies = _list(dependency)
for dependency in dependencies:
if dependency not in instance:
yield ValidationError(
"%r is a dependency of %r" % (dependency, property)
)
def validate_items(self, items, instance, schema):
if not self.is_type(instance, "array"):
return
if self.is_type(items, "object"):
for index, item in enumerate(instance):
for error in self.iter_errors(item, items):
error.path.append(index)
yield error
else:
for (index, item), subschema in zip(enumerate(instance), items):
for error in self.iter_errors(item, subschema):
error.path.append(index)
yield error
def validate_additionalItems(self, aI, instance, schema):
if not self.is_type(instance, "array"):
return
if not self.is_type(schema.get("items"), "array"):
return
if self.is_type(aI, "object"):
for item in instance[len(schema):]:
for error in self.iter_errors(item, aI):
yield error
elif not aI and len(instance) > len(schema.get("items", [])):
error = "Additional items are not allowed (%s %s unexpected)"
yield ValidationError(
error % _extras_msg(instance[len(schema.get("items", [])):])
)
def validate_minimum(self, minimum, instance, schema):
if not self.is_type(instance, "number"):
return
instance = float(instance)
if schema.get("exclusiveMinimum", False):
failed = instance <= minimum
cmp = "less than or equal to"
else:
failed = instance < minimum
cmp = "less than"
if failed:
yield ValidationError(
"%r is %s the minimum of %r" % (instance, cmp, minimum)
)
def validate_maximum(self, maximum, instance, schema):
if not self.is_type(instance, "number"):
return
instance = float(instance)
if schema.get("exclusiveMaximum", False):
failed = instance >= maximum
cmp = "greater than or equal to"
else:
failed = instance > maximum
cmp = "greater than"
if failed:
yield ValidationError(
"%r is %s the maximum of %r" % (instance, cmp, maximum)
)
def validate_minItems(self, mI, instance, schema):
if self.is_type(instance, "array") and len(instance) < mI:
yield ValidationError("%r is too short" % (instance,))
def validate_maxItems(self, mI, instance, schema):
if self.is_type(instance, "array") and len(instance) > mI:
yield ValidationError("%r is too long" % (instance,))
def validate_uniqueItems(self, uI, instance, schema):
if uI and self.is_type(instance, "array") and not _uniq(instance):
yield ValidationError("%r has non-unique elements" % instance)
def validate_pattern(self, patrn, instance, schema):
if self.is_type(instance, "string") and not re.match(patrn, instance):
yield ValidationError("%r does not match %r" % (instance, patrn))
def validate_minLength(self, mL, instance, schema):
if self.is_type(instance, "string") and len(instance) < mL:
yield ValidationError("%r is too short" % (instance,))
def validate_maxLength(self, mL, instance, schema):
if self.is_type(instance, "string") and len(instance) > mL:
yield ValidationError("%r is too long" % (instance,))
def validate_enum(self, enums, instance, schema):
if instance not in enums:
yield ValidationError("%r is not one of %r" % (instance, enums))
def validate_divisibleBy(self, dB, instance, schema):
if not self.is_type(instance, "number"):
return
if isinstance(dB, float):
mod = instance % dB
failed = (mod > FLOAT_TOLERANCE) and (dB - mod) > FLOAT_TOLERANCE
else:
failed = instance % dB
if failed:
yield ValidationError("%r is not divisible by %r" % (instance, dB))
def validate_disallow(self, disallow, instance, schema):
for disallowed in _list(disallow):
if self.is_valid(instance, {"type" : [disallowed]}):
yield ValidationError(
"%r is disallowed for %r" % (disallowed, instance)
)
def validate_extends(self, extends, instance, schema):
if self.is_type(extends, "object"):
extends = [extends]
for subschema in extends:
for error in self.iter_errors(instance, subschema):
yield error
def validate_ref(self, ref, instance, schema):
if ref != "#" and not ref.startswith("#/"):
warnings.warn("jsonschema only supports json-pointer $refs")
return
resolved = resolve_json_pointer(self.schema, ref)
for error in self.iter_errors(instance, resolved):
yield error
Draft3Validator.META_SCHEMA = {
"$schema" : "http://json-schema.org/draft-03/schema#",
"id" : "http://json-schema.org/draft-03/schema#",
"type" : "object",
"properties" : {
"type" : {
"type" : ["string", "array"],
"items" : {"type" : ["string", {"$ref" : "#"}]},
"uniqueItems" : True,
"default" : "any"
},
"properties" : {
"type" : "object",
"additionalProperties" : {"$ref" : "#", "type": "object"},
"default" : {}
},
"patternProperties" : {
"type" : "object",
"additionalProperties" : {"$ref" : "#"},
"default" : {}
},
"additionalProperties" : {
"type" : [{"$ref" : "#"}, "boolean"], "default" : {}
},
"items" : {
"type" : [{"$ref" : "#"}, "array"],
"items" : {"$ref" : "#"},
"default" : {}
},
"additionalItems" : {
"type" : [{"$ref" : "#"}, "boolean"], "default" : {}
},
"required" : {"type" : "boolean", "default" : False},
"dependencies" : {
"type" : ["string", "array", "object"],
"additionalProperties" : {
"type" : ["string", "array", {"$ref" : "#"}],
"items" : {"type" : "string"}
},
"default" : {}
},
"minimum" : {"type" : "number"},
"maximum" : {"type" : "number"},
"exclusiveMinimum" : {"type" : "boolean", "default" : False},
"exclusiveMaximum" : {"type" : "boolean", "default" : False},
"minItems" : {"type" : "integer", "minimum" : 0, "default" : 0},
"maxItems" : {"type" : "integer", "minimum" : 0},
"uniqueItems" : {"type" : "boolean", "default" : False},
"pattern" : {"type" : "string", "format" : "regex"},
"minLength" : {"type" : "integer", "minimum" : 0, "default" : 0},
"maxLength" : {"type" : "integer"},
"enum" : {"type" : "array", "minItems" : 1, "uniqueItems" : True},
"default" : {"type" : "any"},
"title" : {"type" : "string"},
"description" : {"type" : "string"},
"format" : {"type" : "string"},
"maxDecimal" : {"type" : "number", "minimum" : 0},
"divisibleBy" : {
"type" : "number",
"minimum" : 0,
"exclusiveMinimum" : True,
"default" : 1
},
"disallow" : {
"type" : ["string", "array"],
"items" : {"type" : ["string", {"$ref" : "#"}]},
"uniqueItems" : True
},
"extends" : {
"type" : [{"$ref" : "#"}, "array"],
"items" : {"$ref" : "#"},
"default" : {}
},
"id" : {"type" : "string", "format" : "uri"},
"$ref" : {"type" : "string", "format" : "uri"},
"$schema" : {"type" : "string", "format" : "uri"},
},
"dependencies" : {
"exclusiveMinimum" : "minimum", "exclusiveMaximum" : "maximum"
},
}
class Validator(Draft3Validator):
"""
Deprecated: Use :class:`Draft3Validator` instead.
"""
def __init__(
self, version=None, unknown_type="skip", unknown_property="skip",
*args, **kwargs
):
super(Validator, self).__init__({}, *args, **kwargs)
warnings.warn(
"Validator is deprecated and will be removed. "
"Use Draft3Validator instead.",
DeprecationWarning, stacklevel=2,
)
class ErrorTree(object):
"""
ErrorTrees make it easier to check which validations failed.
"""
def __init__(self, errors=()):
self.errors = {}
self._contents = collections.defaultdict(self.__class__)
for error in errors:
container = self
for element in reversed(error.path):
container = container[element]
container.errors[error.validator] = error
def __contains__(self, k):
return k in self._contents
def __getitem__(self, k):
return self._contents[k]
def __setitem__(self, k, v):
self._contents[k] = v
def __iter__(self):
return iter(self._contents)
def __len__(self):
child_errors = sum(len(tree) for _, tree in iteritems(self._contents))
return len(self.errors) + child_errors
def __repr__(self):
return "<%s (%s errors)>" % (self.__class__.__name__, len(self))
def resolve_json_pointer(schema, ref):
"""
Resolve a local reference ``ref`` within the given root ``schema``.
``ref`` should be a local ref whose ``#`` is still present.
"""
if ref == "#":
return schema
parts = ref.lstrip("#/").split("/")
parts = map(unquote, parts)
parts = [part.replace('~1', '/').replace('~0', '~') for part in parts]
try:
for part in parts:
schema = schema[part]
except KeyError:
raise InvalidRef("Unresolvable json-pointer %r" % ref)
else:
return schema
def _find_additional_properties(instance, schema):
"""
Return the set of additional properties for the given ``instance``.
Weeds out properties that should have been validated by ``properties`` and
/ or ``patternProperties``.
Assumes ``instance`` is dict-like already.
"""
properties = schema.get("properties", {})
patterns = "|".join(schema.get("patternProperties", {}))
for property in instance:
if property not in properties:
if patterns and re.search(patterns, property):
continue
yield property
def _extras_msg(extras):
"""
Create an error message for extra items or properties.
"""
if len(extras) == 1:
verb = "was"
else:
verb = "were"
return ", ".join(repr(extra) for extra in extras), verb
def _types_msg(instance, types):
"""
Create an error message for a failure to match the given types.
If the ``instance`` is an object and contains a ``name`` property, it will
be considered to be a description of that object and used as its type.
Otherwise the message is simply the reprs of the given ``types``.
"""
reprs = []
for type in types:
try:
reprs.append(repr(type["name"]))
except Exception:
reprs.append(repr(type))
return "%r is not of type %s" % (instance, ", ".join(reprs))
def _flatten(suitable_for_isinstance):
"""
isinstance() can accept a bunch of really annoying different types:
* a single type
* a tuple of types
* an arbitrary nested tree of tuples
Return a flattened tuple of the given argument.
"""
types = set()
if not isinstance(suitable_for_isinstance, tuple):
suitable_for_isinstance = (suitable_for_isinstance,)
for thing in suitable_for_isinstance:
if isinstance(thing, tuple):
types.update(_flatten(thing))
else:
types.add(thing)
return tuple(types)
def _list(thing):
"""
Wrap ``thing`` in a list if it's a single str.
Otherwise, return it unchanged.
"""
if isinstance(thing, basestring):
return [thing]
return thing
def _delist(thing):
"""
Unwrap ``thing`` to a single element if its a single str in a list.
Otherwise, return it unchanged.
"""
if (
isinstance(thing, list) and
len(thing) == 1
and isinstance(thing[0], basestring)
):
return thing[0]
return thing
def _uniq(container):
"""
Check if all of a container's elements are unique.
Successively tries first to rely that the elements are hashable, then
falls back on them being sortable, and finally falls back on brute
force.
"""
try:
return len(set(container)) == len(container)
except TypeError:
try:
sort = sorted(container)
sliced = itertools.islice(container, 1, None)
for i, j in zip(container, sliced):
if i == j:
return False
except (NotImplementedError, TypeError):
seen = []
for e in container:
if e in seen:
return False
seen.append(e)
return True
def validate(instance, schema, cls=Draft3Validator, *args, **kwargs):
"""
Validate an ``instance`` under the given ``schema``.
First verifies that the provided schema is itself valid, since not doing so
can lead to less obvious failures when validating. If you know it is or
don't care, use ``YourValidator(schema).validate(instance)`` directly
instead (e.g. ``Draft3Validator``).
``cls`` is a validator class that will be used to validate the instance.
By default this is a draft 3 validator. Any other provided positional and
keyword arguments will be provided to this class when constructing a
validator.
"""
meta_validate = kwargs.pop("meta_validate", None)
if meta_validate is not None:
warnings.warn(
"meta_validate is deprecated and will be removed. If you do not "
"want to validate a schema, use Draft3Validator.validate instead.",
DeprecationWarning, stacklevel=2,
)
if meta_validate is not False: # yes this is needed since True was default
cls.check_schema(schema)
cls(schema, *args, **kwargs).validate(instance)