##// END OF EJS Templates
Initial version of working refactored ipcluster....
Initial version of working refactored ipcluster. This new version uses Twisted's cross platform process management API and provides: * New command line parsing using argparse. This allows for different subcommands (ipcluster local, ipcluster pbs, ipcluster mpirun, etc). * Currently working local and mpirun stating of clusters. * Almost working pbs starting. This has no docs and no tests as of yet and should be considered a tech preview.

File last commit:

r1606:a579fd1d
r1770:49f63bba
Show More
rmt.ipy
57 lines | 1.6 KiB | text/plain | TextLexer
#-------------------------------------------------------------------------------
# Driver code that the client runs.
#-------------------------------------------------------------------------------
# To run this code start a controller and engines using:
# ipcluster -n 2
# Then run the scripts by doing irunner rmt.ipy or by starting ipython and
# doing run rmt.ipy.
from rmtkernel import *
from IPython.kernel import client
def wignerDistribution(s):
"""Returns (s, rho(s)) for the Wigner GOE distribution."""
return (numpy.pi*s/2.0) * numpy.exp(-numpy.pi*s**2/4.)
def generateWignerData():
s = numpy.linspace(0.0,4.0,400)
rhos = wignerDistribution(s)
return s, rhos
def serialDiffs(num, N):
diffs = ensembleDiffs(num, N)
normalizedDiffs = normalizeDiffs(diffs)
return normalizedDiffs
def parallelDiffs(rc, num, N):
nengines = len(rc.get_ids())
num_per_engine = num/nengines
print "Running with", num_per_engine, "per engine."
rc.push(dict(num_per_engine=num_per_engine, N=N))
rc.execute('diffs = ensembleDiffs(num_per_engine, N)')
# gather blocks always for now
pr = rc.gather('diffs')
return pr.r
# Main code
if __name__ == '__main__':
rc = client.MultiEngineClient()
print "Distributing code to engines..."
r = rc.run('rmtkernel.py')
rc.block = False
# Simulation parameters
nmats = 100
matsize = 30
%timeit -n1 -r1 serialDiffs(nmats,matsize)
%timeit -n1 -r1 parallelDiffs(rc, nmats, matsize)
# Uncomment these to plot the histogram
# import pylab
# pylab.hist(parallelDiffs(rc,matsize,matsize))