##// END OF EJS Templates
darker
darker

File last commit:

r25853:6f42c1f7
r26626:4fd46973
Show More
test_completer.py
1278 lines | 46.0 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""Tests for the IPython tab-completion machinery."""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
import os
import sys
import textwrap
import unittest
from contextlib import contextmanager
import nose.tools as nt
from traitlets.config.loader import Config
from IPython import get_ipython
from IPython.core import completer
from IPython.external import decorators
from IPython.utils.tempdir import TemporaryDirectory, TemporaryWorkingDirectory
from IPython.utils.generics import complete_object
from IPython.testing import decorators as dec
from IPython.core.completer import (
Completion,
provisionalcompleter,
match_dict_keys,
_deduplicate_completions,
)
from nose.tools import assert_in, assert_not_in
# -----------------------------------------------------------------------------
# Test functions
# -----------------------------------------------------------------------------
def recompute_unicode_ranges():
"""
utility to recompute the largest unicode range without any characters
use to recompute the gap in the global _UNICODE_RANGES of completer.py
"""
import itertools
import unicodedata
valid = []
for c in range(0,0x10FFFF + 1):
try:
unicodedata.name(chr(c))
except ValueError:
continue
valid.append(c)
def ranges(i):
for a, b in itertools.groupby(enumerate(i), lambda pair: pair[1] - pair[0]):
b = list(b)
yield b[0][1], b[-1][1]
rg = list(ranges(valid))
lens = []
gap_lens = []
pstart, pstop = 0,0
for start, stop in rg:
lens.append(stop-start)
gap_lens.append((start - pstop, hex(pstop), hex(start), f'{round((start - pstop)/0xe01f0*100)}%'))
pstart, pstop = start, stop
return sorted(gap_lens)[-1]
def test_unicode_range():
"""
Test that the ranges we test for unicode names give the same number of
results than testing the full length.
"""
from IPython.core.completer import _unicode_name_compute, _UNICODE_RANGES
expected_list = _unicode_name_compute([(0, 0x110000)])
test = _unicode_name_compute(_UNICODE_RANGES)
len_exp = len(expected_list)
len_test = len(test)
# do not inline the len() or on error pytest will try to print the 130 000 +
# elements.
message = None
if len_exp != len_test or len_exp > 131808:
size, start, stop, prct = recompute_unicode_ranges()
message = f"""_UNICODE_RANGES likely wrong and need updating. This is
likely due to a new release of Python. We've find that the biggest gap
in unicode characters has reduces in size to be {size} charaters
({prct}), from {start}, to {stop}. In completer.py likely update to
_UNICODE_RANGES = [(32, {start}), ({stop}, 0xe01f0)]
And update the assertion below to use
len_exp <= {len_exp}
"""
assert len_exp == len_test, message
# fail if new unicode symbols have been added.
assert len_exp <= 137714, message
@contextmanager
def greedy_completion():
ip = get_ipython()
greedy_original = ip.Completer.greedy
try:
ip.Completer.greedy = True
yield
finally:
ip.Completer.greedy = greedy_original
def test_protect_filename():
if sys.platform == "win32":
pairs = [
("abc", "abc"),
(" abc", '" abc"'),
("a bc", '"a bc"'),
("a bc", '"a bc"'),
(" bc", '" bc"'),
]
else:
pairs = [
("abc", "abc"),
(" abc", r"\ abc"),
("a bc", r"a\ bc"),
("a bc", r"a\ \ bc"),
(" bc", r"\ \ bc"),
# On posix, we also protect parens and other special characters.
("a(bc", r"a\(bc"),
("a)bc", r"a\)bc"),
("a( )bc", r"a\(\ \)bc"),
("a[1]bc", r"a\[1\]bc"),
("a{1}bc", r"a\{1\}bc"),
("a#bc", r"a\#bc"),
("a?bc", r"a\?bc"),
("a=bc", r"a\=bc"),
("a\\bc", r"a\\bc"),
("a|bc", r"a\|bc"),
("a;bc", r"a\;bc"),
("a:bc", r"a\:bc"),
("a'bc", r"a\'bc"),
("a*bc", r"a\*bc"),
('a"bc', r"a\"bc"),
("a^bc", r"a\^bc"),
("a&bc", r"a\&bc"),
]
# run the actual tests
for s1, s2 in pairs:
s1p = completer.protect_filename(s1)
nt.assert_equal(s1p, s2)
def check_line_split(splitter, test_specs):
for part1, part2, split in test_specs:
cursor_pos = len(part1)
line = part1 + part2
out = splitter.split_line(line, cursor_pos)
nt.assert_equal(out, split)
def test_line_split():
"""Basic line splitter test with default specs."""
sp = completer.CompletionSplitter()
# The format of the test specs is: part1, part2, expected answer. Parts 1
# and 2 are joined into the 'line' sent to the splitter, as if the cursor
# was at the end of part1. So an empty part2 represents someone hitting
# tab at the end of the line, the most common case.
t = [
("run some/scrip", "", "some/scrip"),
("run scripts/er", "ror.py foo", "scripts/er"),
("echo $HOM", "", "HOM"),
("print sys.pa", "", "sys.pa"),
("print(sys.pa", "", "sys.pa"),
("execfile('scripts/er", "", "scripts/er"),
("a[x.", "", "x."),
("a[x.", "y", "x."),
('cd "some_file/', "", "some_file/"),
]
check_line_split(sp, t)
# Ensure splitting works OK with unicode by re-running the tests with
# all inputs turned into unicode
check_line_split(sp, [map(str, p) for p in t])
class NamedInstanceMetaclass(type):
def __getitem__(cls, item):
return cls.get_instance(item)
class NamedInstanceClass(metaclass=NamedInstanceMetaclass):
def __init__(self, name):
if not hasattr(self.__class__, "instances"):
self.__class__.instances = {}
self.__class__.instances[name] = self
@classmethod
def _ipython_key_completions_(cls):
return cls.instances.keys()
@classmethod
def get_instance(cls, name):
return cls.instances[name]
class KeyCompletable:
def __init__(self, things=()):
self.things = things
def _ipython_key_completions_(self):
return list(self.things)
class TestCompleter(unittest.TestCase):
def setUp(self):
"""
We want to silence all PendingDeprecationWarning when testing the completer
"""
self._assertwarns = self.assertWarns(PendingDeprecationWarning)
self._assertwarns.__enter__()
def tearDown(self):
try:
self._assertwarns.__exit__(None, None, None)
except AssertionError:
pass
def test_custom_completion_error(self):
"""Test that errors from custom attribute completers are silenced."""
ip = get_ipython()
class A:
pass
ip.user_ns["x"] = A()
@complete_object.register(A)
def complete_A(a, existing_completions):
raise TypeError("this should be silenced")
ip.complete("x.")
def test_custom_completion_ordering(self):
"""Test that errors from custom attribute completers are silenced."""
ip = get_ipython()
_, matches = ip.complete('in')
assert matches.index('input') < matches.index('int')
def complete_example(a):
return ['example2', 'example1']
ip.Completer.custom_completers.add_re('ex*', complete_example)
_, matches = ip.complete('ex')
assert matches.index('example2') < matches.index('example1')
def test_unicode_completions(self):
ip = get_ipython()
# Some strings that trigger different types of completion. Check them both
# in str and unicode forms
s = ["ru", "%ru", "cd /", "floa", "float(x)/"]
for t in s + list(map(str, s)):
# We don't need to check exact completion values (they may change
# depending on the state of the namespace, but at least no exceptions
# should be thrown and the return value should be a pair of text, list
# values.
text, matches = ip.complete(t)
nt.assert_true(isinstance(text, str))
nt.assert_true(isinstance(matches, list))
def test_latex_completions(self):
from IPython.core.latex_symbols import latex_symbols
import random
ip = get_ipython()
# Test some random unicode symbols
keys = random.sample(latex_symbols.keys(), 10)
for k in keys:
text, matches = ip.complete(k)
nt.assert_equal(text, k)
nt.assert_equal(matches, [latex_symbols[k]])
# Test a more complex line
text, matches = ip.complete("print(\\alpha")
nt.assert_equal(text, "\\alpha")
nt.assert_equal(matches[0], latex_symbols["\\alpha"])
# Test multiple matching latex symbols
text, matches = ip.complete("\\al")
nt.assert_in("\\alpha", matches)
nt.assert_in("\\aleph", matches)
def test_latex_no_results(self):
"""
forward latex should really return nothing in either field if nothing is found.
"""
ip = get_ipython()
text, matches = ip.Completer.latex_matches("\\really_i_should_match_nothing")
nt.assert_equal(text, "")
nt.assert_equal(matches, ())
def test_back_latex_completion(self):
ip = get_ipython()
# do not return more than 1 matches fro \beta, only the latex one.
name, matches = ip.complete("\\β")
nt.assert_equal(matches, ['\\beta'])
def test_back_unicode_completion(self):
ip = get_ipython()
name, matches = ip.complete("\\â…¤")
nt.assert_equal(matches, ("\\ROMAN NUMERAL FIVE",))
def test_forward_unicode_completion(self):
ip = get_ipython()
name, matches = ip.complete("\\ROMAN NUMERAL FIVE")
nt.assert_equal(matches, ["â…¤"] ) # This is not a V
nt.assert_equal(matches, ["\u2164"] ) # same as above but explicit.
@nt.nottest # now we have a completion for \jmath
@decorators.knownfailureif(
sys.platform == "win32", "Fails if there is a C:\\j... path"
)
def test_no_ascii_back_completion(self):
ip = get_ipython()
with TemporaryWorkingDirectory(): # Avoid any filename completions
# single ascii letter that don't have yet completions
for letter in "jJ":
name, matches = ip.complete("\\" + letter)
nt.assert_equal(matches, [])
class CompletionSplitterTestCase(unittest.TestCase):
def setUp(self):
self.sp = completer.CompletionSplitter()
def test_delim_setting(self):
self.sp.delims = " "
nt.assert_equal(self.sp.delims, " ")
nt.assert_equal(self.sp._delim_expr, r"[\ ]")
def test_spaces(self):
"""Test with only spaces as split chars."""
self.sp.delims = " "
t = [("foo", "", "foo"), ("run foo", "", "foo"), ("run foo", "bar", "foo")]
check_line_split(self.sp, t)
def test_has_open_quotes1(self):
for s in ["'", "'''", "'hi' '"]:
nt.assert_equal(completer.has_open_quotes(s), "'")
def test_has_open_quotes2(self):
for s in ['"', '"""', '"hi" "']:
nt.assert_equal(completer.has_open_quotes(s), '"')
def test_has_open_quotes3(self):
for s in ["''", "''' '''", "'hi' 'ipython'"]:
nt.assert_false(completer.has_open_quotes(s))
def test_has_open_quotes4(self):
for s in ['""', '""" """', '"hi" "ipython"']:
nt.assert_false(completer.has_open_quotes(s))
@decorators.knownfailureif(
sys.platform == "win32", "abspath completions fail on Windows"
)
def test_abspath_file_completions(self):
ip = get_ipython()
with TemporaryDirectory() as tmpdir:
prefix = os.path.join(tmpdir, "foo")
suffixes = ["1", "2"]
names = [prefix + s for s in suffixes]
for n in names:
open(n, "w").close()
# Check simple completion
c = ip.complete(prefix)[1]
nt.assert_equal(c, names)
# Now check with a function call
cmd = 'a = f("%s' % prefix
c = ip.complete(prefix, cmd)[1]
comp = [prefix + s for s in suffixes]
nt.assert_equal(c, comp)
def test_local_file_completions(self):
ip = get_ipython()
with TemporaryWorkingDirectory():
prefix = "./foo"
suffixes = ["1", "2"]
names = [prefix + s for s in suffixes]
for n in names:
open(n, "w").close()
# Check simple completion
c = ip.complete(prefix)[1]
nt.assert_equal(c, names)
# Now check with a function call
cmd = 'a = f("%s' % prefix
c = ip.complete(prefix, cmd)[1]
comp = {prefix + s for s in suffixes}
nt.assert_true(comp.issubset(set(c)))
def test_quoted_file_completions(self):
ip = get_ipython()
with TemporaryWorkingDirectory():
name = "foo'bar"
open(name, "w").close()
# Don't escape Windows
escaped = name if sys.platform == "win32" else "foo\\'bar"
# Single quote matches embedded single quote
text = "open('foo"
c = ip.Completer._complete(
cursor_line=0, cursor_pos=len(text), full_text=text
)[1]
nt.assert_equal(c, [escaped])
# Double quote requires no escape
text = 'open("foo'
c = ip.Completer._complete(
cursor_line=0, cursor_pos=len(text), full_text=text
)[1]
nt.assert_equal(c, [name])
# No quote requires an escape
text = "%ls foo"
c = ip.Completer._complete(
cursor_line=0, cursor_pos=len(text), full_text=text
)[1]
nt.assert_equal(c, [escaped])
def test_all_completions_dups(self):
"""
Make sure the output of `IPCompleter.all_completions` does not have
duplicated prefixes.
"""
ip = get_ipython()
c = ip.Completer
ip.ex("class TestClass():\n\ta=1\n\ta1=2")
for jedi_status in [True, False]:
with provisionalcompleter():
ip.Completer.use_jedi = jedi_status
matches = c.all_completions("TestCl")
assert matches == ['TestClass'], jedi_status
matches = c.all_completions("TestClass.")
assert len(matches) > 2, jedi_status
matches = c.all_completions("TestClass.a")
assert matches == ['TestClass.a', 'TestClass.a1'], jedi_status
def test_jedi(self):
"""
A couple of issue we had with Jedi
"""
ip = get_ipython()
def _test_complete(reason, s, comp, start=None, end=None):
l = len(s)
start = start if start is not None else l
end = end if end is not None else l
with provisionalcompleter():
ip.Completer.use_jedi = True
completions = set(ip.Completer.completions(s, l))
ip.Completer.use_jedi = False
assert_in(Completion(start, end, comp), completions, reason)
def _test_not_complete(reason, s, comp):
l = len(s)
with provisionalcompleter():
ip.Completer.use_jedi = True
completions = set(ip.Completer.completions(s, l))
ip.Completer.use_jedi = False
assert_not_in(Completion(l, l, comp), completions, reason)
import jedi
jedi_version = tuple(int(i) for i in jedi.__version__.split(".")[:3])
if jedi_version > (0, 10):
yield _test_complete, "jedi >0.9 should complete and not crash", "a=1;a.", "real"
yield _test_complete, "can infer first argument", 'a=(1,"foo");a[0].', "real"
yield _test_complete, "can infer second argument", 'a=(1,"foo");a[1].', "capitalize"
yield _test_complete, "cover duplicate completions", "im", "import", 0, 2
yield _test_not_complete, "does not mix types", 'a=(1,"foo");a[0].', "capitalize"
def test_completion_have_signature(self):
"""
Lets make sure jedi is capable of pulling out the signature of the function we are completing.
"""
ip = get_ipython()
with provisionalcompleter():
ip.Completer.use_jedi = True
completions = ip.Completer.completions("ope", 3)
c = next(completions) # should be `open`
ip.Completer.use_jedi = False
assert "file" in c.signature, "Signature of function was not found by completer"
assert (
"encoding" in c.signature
), "Signature of function was not found by completer"
def test_deduplicate_completions(self):
"""
Test that completions are correctly deduplicated (even if ranges are not the same)
"""
ip = get_ipython()
ip.ex(
textwrap.dedent(
"""
class Z:
zoo = 1
"""
)
)
with provisionalcompleter():
ip.Completer.use_jedi = True
l = list(
_deduplicate_completions("Z.z", ip.Completer.completions("Z.z", 3))
)
ip.Completer.use_jedi = False
assert len(l) == 1, "Completions (Z.z<tab>) correctly deduplicate: %s " % l
assert l[0].text == "zoo" # and not `it.accumulate`
def test_greedy_completions(self):
"""
Test the capability of the Greedy completer.
Most of the test here does not really show off the greedy completer, for proof
each of the text below now pass with Jedi. The greedy completer is capable of more.
See the :any:`test_dict_key_completion_contexts`
"""
ip = get_ipython()
ip.ex("a=list(range(5))")
_, c = ip.complete(".", line="a[0].")
nt.assert_false(".real" in c, "Shouldn't have completed on a[0]: %s" % c)
def _(line, cursor_pos, expect, message, completion):
with greedy_completion(), provisionalcompleter():
ip.Completer.use_jedi = False
_, c = ip.complete(".", line=line, cursor_pos=cursor_pos)
nt.assert_in(expect, c, message % c)
ip.Completer.use_jedi = True
with provisionalcompleter():
completions = ip.Completer.completions(line, cursor_pos)
nt.assert_in(completion, completions)
with provisionalcompleter():
yield _, "a[0].", 5, "a[0].real", "Should have completed on a[0].: %s", Completion(
5, 5, "real"
)
yield _, "a[0].r", 6, "a[0].real", "Should have completed on a[0].r: %s", Completion(
5, 6, "real"
)
yield _, "a[0].from_", 10, "a[0].from_bytes", "Should have completed on a[0].from_: %s", Completion(
5, 10, "from_bytes"
)
def test_omit__names(self):
# also happens to test IPCompleter as a configurable
ip = get_ipython()
ip._hidden_attr = 1
ip._x = {}
c = ip.Completer
ip.ex("ip=get_ipython()")
cfg = Config()
cfg.IPCompleter.omit__names = 0
c.update_config(cfg)
with provisionalcompleter():
c.use_jedi = False
s, matches = c.complete("ip.")
nt.assert_in("ip.__str__", matches)
nt.assert_in("ip._hidden_attr", matches)
# c.use_jedi = True
# completions = set(c.completions('ip.', 3))
# nt.assert_in(Completion(3, 3, '__str__'), completions)
# nt.assert_in(Completion(3,3, "_hidden_attr"), completions)
cfg = Config()
cfg.IPCompleter.omit__names = 1
c.update_config(cfg)
with provisionalcompleter():
c.use_jedi = False
s, matches = c.complete("ip.")
nt.assert_not_in("ip.__str__", matches)
# nt.assert_in('ip._hidden_attr', matches)
# c.use_jedi = True
# completions = set(c.completions('ip.', 3))
# nt.assert_not_in(Completion(3,3,'__str__'), completions)
# nt.assert_in(Completion(3,3, "_hidden_attr"), completions)
cfg = Config()
cfg.IPCompleter.omit__names = 2
c.update_config(cfg)
with provisionalcompleter():
c.use_jedi = False
s, matches = c.complete("ip.")
nt.assert_not_in("ip.__str__", matches)
nt.assert_not_in("ip._hidden_attr", matches)
# c.use_jedi = True
# completions = set(c.completions('ip.', 3))
# nt.assert_not_in(Completion(3,3,'__str__'), completions)
# nt.assert_not_in(Completion(3,3, "_hidden_attr"), completions)
with provisionalcompleter():
c.use_jedi = False
s, matches = c.complete("ip._x.")
nt.assert_in("ip._x.keys", matches)
# c.use_jedi = True
# completions = set(c.completions('ip._x.', 6))
# nt.assert_in(Completion(6,6, "keys"), completions)
del ip._hidden_attr
del ip._x
def test_limit_to__all__False_ok(self):
"""
Limit to all is deprecated, once we remove it this test can go away.
"""
ip = get_ipython()
c = ip.Completer
c.use_jedi = False
ip.ex("class D: x=24")
ip.ex("d=D()")
cfg = Config()
cfg.IPCompleter.limit_to__all__ = False
c.update_config(cfg)
s, matches = c.complete("d.")
nt.assert_in("d.x", matches)
def test_get__all__entries_ok(self):
class A:
__all__ = ["x", 1]
words = completer.get__all__entries(A())
nt.assert_equal(words, ["x"])
def test_get__all__entries_no__all__ok(self):
class A:
pass
words = completer.get__all__entries(A())
nt.assert_equal(words, [])
def test_func_kw_completions(self):
ip = get_ipython()
c = ip.Completer
c.use_jedi = False
ip.ex("def myfunc(a=1,b=2): return a+b")
s, matches = c.complete(None, "myfunc(1,b")
nt.assert_in("b=", matches)
# Simulate completing with cursor right after b (pos==10):
s, matches = c.complete(None, "myfunc(1,b)", 10)
nt.assert_in("b=", matches)
s, matches = c.complete(None, 'myfunc(a="escaped\\")string",b')
nt.assert_in("b=", matches)
# builtin function
s, matches = c.complete(None, "min(k, k")
nt.assert_in("key=", matches)
def test_default_arguments_from_docstring(self):
ip = get_ipython()
c = ip.Completer
kwd = c._default_arguments_from_docstring("min(iterable[, key=func]) -> value")
nt.assert_equal(kwd, ["key"])
# with cython type etc
kwd = c._default_arguments_from_docstring(
"Minuit.migrad(self, int ncall=10000, resume=True, int nsplit=1)\n"
)
nt.assert_equal(kwd, ["ncall", "resume", "nsplit"])
# white spaces
kwd = c._default_arguments_from_docstring(
"\n Minuit.migrad(self, int ncall=10000, resume=True, int nsplit=1)\n"
)
nt.assert_equal(kwd, ["ncall", "resume", "nsplit"])
def test_line_magics(self):
ip = get_ipython()
c = ip.Completer
s, matches = c.complete(None, "lsmag")
nt.assert_in("%lsmagic", matches)
s, matches = c.complete(None, "%lsmag")
nt.assert_in("%lsmagic", matches)
def test_cell_magics(self):
from IPython.core.magic import register_cell_magic
@register_cell_magic
def _foo_cellm(line, cell):
pass
ip = get_ipython()
c = ip.Completer
s, matches = c.complete(None, "_foo_ce")
nt.assert_in("%%_foo_cellm", matches)
s, matches = c.complete(None, "%%_foo_ce")
nt.assert_in("%%_foo_cellm", matches)
def test_line_cell_magics(self):
from IPython.core.magic import register_line_cell_magic
@register_line_cell_magic
def _bar_cellm(line, cell):
pass
ip = get_ipython()
c = ip.Completer
# The policy here is trickier, see comments in completion code. The
# returned values depend on whether the user passes %% or not explicitly,
# and this will show a difference if the same name is both a line and cell
# magic.
s, matches = c.complete(None, "_bar_ce")
nt.assert_in("%_bar_cellm", matches)
nt.assert_in("%%_bar_cellm", matches)
s, matches = c.complete(None, "%_bar_ce")
nt.assert_in("%_bar_cellm", matches)
nt.assert_in("%%_bar_cellm", matches)
s, matches = c.complete(None, "%%_bar_ce")
nt.assert_not_in("%_bar_cellm", matches)
nt.assert_in("%%_bar_cellm", matches)
def test_magic_completion_order(self):
ip = get_ipython()
c = ip.Completer
# Test ordering of line and cell magics.
text, matches = c.complete("timeit")
nt.assert_equal(matches, ["%timeit", "%%timeit"])
def test_magic_completion_shadowing(self):
ip = get_ipython()
c = ip.Completer
c.use_jedi = False
# Before importing matplotlib, %matplotlib magic should be the only option.
text, matches = c.complete("mat")
nt.assert_equal(matches, ["%matplotlib"])
# The newly introduced name should shadow the magic.
ip.run_cell("matplotlib = 1")
text, matches = c.complete("mat")
nt.assert_equal(matches, ["matplotlib"])
# After removing matplotlib from namespace, the magic should again be
# the only option.
del ip.user_ns["matplotlib"]
text, matches = c.complete("mat")
nt.assert_equal(matches, ["%matplotlib"])
def test_magic_completion_shadowing_explicit(self):
"""
If the user try to complete a shadowed magic, and explicit % start should
still return the completions.
"""
ip = get_ipython()
c = ip.Completer
# Before importing matplotlib, %matplotlib magic should be the only option.
text, matches = c.complete("%mat")
nt.assert_equal(matches, ["%matplotlib"])
ip.run_cell("matplotlib = 1")
# After removing matplotlib from namespace, the magic should still be
# the only option.
text, matches = c.complete("%mat")
nt.assert_equal(matches, ["%matplotlib"])
def test_magic_config(self):
ip = get_ipython()
c = ip.Completer
s, matches = c.complete(None, "conf")
nt.assert_in("%config", matches)
s, matches = c.complete(None, "conf")
nt.assert_not_in("AliasManager", matches)
s, matches = c.complete(None, "config ")
nt.assert_in("AliasManager", matches)
s, matches = c.complete(None, "%config ")
nt.assert_in("AliasManager", matches)
s, matches = c.complete(None, "config Ali")
nt.assert_list_equal(["AliasManager"], matches)
s, matches = c.complete(None, "%config Ali")
nt.assert_list_equal(["AliasManager"], matches)
s, matches = c.complete(None, "config AliasManager")
nt.assert_list_equal(["AliasManager"], matches)
s, matches = c.complete(None, "%config AliasManager")
nt.assert_list_equal(["AliasManager"], matches)
s, matches = c.complete(None, "config AliasManager.")
nt.assert_in("AliasManager.default_aliases", matches)
s, matches = c.complete(None, "%config AliasManager.")
nt.assert_in("AliasManager.default_aliases", matches)
s, matches = c.complete(None, "config AliasManager.de")
nt.assert_list_equal(["AliasManager.default_aliases"], matches)
s, matches = c.complete(None, "config AliasManager.de")
nt.assert_list_equal(["AliasManager.default_aliases"], matches)
def test_magic_color(self):
ip = get_ipython()
c = ip.Completer
s, matches = c.complete(None, "colo")
nt.assert_in("%colors", matches)
s, matches = c.complete(None, "colo")
nt.assert_not_in("NoColor", matches)
s, matches = c.complete(None, "%colors") # No trailing space
nt.assert_not_in("NoColor", matches)
s, matches = c.complete(None, "colors ")
nt.assert_in("NoColor", matches)
s, matches = c.complete(None, "%colors ")
nt.assert_in("NoColor", matches)
s, matches = c.complete(None, "colors NoCo")
nt.assert_list_equal(["NoColor"], matches)
s, matches = c.complete(None, "%colors NoCo")
nt.assert_list_equal(["NoColor"], matches)
def test_match_dict_keys(self):
"""
Test that match_dict_keys works on a couple of use case does return what
expected, and does not crash
"""
delims = " \t\n`!@#$^&*()=+[{]}\\|;:'\",<>?"
keys = ["foo", b"far"]
assert match_dict_keys(keys, "b'", delims=delims) == ("'", 2, ["far"])
assert match_dict_keys(keys, "b'f", delims=delims) == ("'", 2, ["far"])
assert match_dict_keys(keys, 'b"', delims=delims) == ('"', 2, ["far"])
assert match_dict_keys(keys, 'b"f', delims=delims) == ('"', 2, ["far"])
assert match_dict_keys(keys, "'", delims=delims) == ("'", 1, ["foo"])
assert match_dict_keys(keys, "'f", delims=delims) == ("'", 1, ["foo"])
assert match_dict_keys(keys, '"', delims=delims) == ('"', 1, ["foo"])
assert match_dict_keys(keys, '"f', delims=delims) == ('"', 1, ["foo"])
match_dict_keys
def test_match_dict_keys_tuple(self):
"""
Test that match_dict_keys called with extra prefix works on a couple of use case,
does return what expected, and does not crash.
"""
delims = " \t\n`!@#$^&*()=+[{]}\\|;:'\",<>?"
keys = [("foo", "bar"), ("foo", "oof"), ("foo", b"bar"), ('other', 'test')]
# Completion on first key == "foo"
assert match_dict_keys(keys, "'", delims=delims, extra_prefix=("foo",)) == ("'", 1, ["bar", "oof"])
assert match_dict_keys(keys, "\"", delims=delims, extra_prefix=("foo",)) == ("\"", 1, ["bar", "oof"])
assert match_dict_keys(keys, "'o", delims=delims, extra_prefix=("foo",)) == ("'", 1, ["oof"])
assert match_dict_keys(keys, "\"o", delims=delims, extra_prefix=("foo",)) == ("\"", 1, ["oof"])
assert match_dict_keys(keys, "b'", delims=delims, extra_prefix=("foo",)) == ("'", 2, ["bar"])
assert match_dict_keys(keys, "b\"", delims=delims, extra_prefix=("foo",)) == ("\"", 2, ["bar"])
assert match_dict_keys(keys, "b'b", delims=delims, extra_prefix=("foo",)) == ("'", 2, ["bar"])
assert match_dict_keys(keys, "b\"b", delims=delims, extra_prefix=("foo",)) == ("\"", 2, ["bar"])
# No Completion
assert match_dict_keys(keys, "'", delims=delims, extra_prefix=("no_foo",)) == ("'", 1, [])
assert match_dict_keys(keys, "'", delims=delims, extra_prefix=("fo",)) == ("'", 1, [])
keys = [('foo1', 'foo2', 'foo3', 'foo4'), ('foo1', 'foo2', 'bar', 'foo4')]
assert match_dict_keys(keys, "'foo", delims=delims, extra_prefix=('foo1',)) == ("'", 1, ["foo2", "foo2"])
assert match_dict_keys(keys, "'foo", delims=delims, extra_prefix=('foo1', 'foo2')) == ("'", 1, ["foo3"])
assert match_dict_keys(keys, "'foo", delims=delims, extra_prefix=('foo1', 'foo2', 'foo3')) == ("'", 1, ["foo4"])
assert match_dict_keys(keys, "'foo", delims=delims, extra_prefix=('foo1', 'foo2', 'foo3', 'foo4')) == ("'", 1, [])
def test_dict_key_completion_string(self):
"""Test dictionary key completion for string keys"""
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["d"] = {"abc": None}
# check completion at different stages
_, matches = complete(line_buffer="d[")
nt.assert_in("'abc'", matches)
nt.assert_not_in("'abc']", matches)
_, matches = complete(line_buffer="d['")
nt.assert_in("abc", matches)
nt.assert_not_in("abc']", matches)
_, matches = complete(line_buffer="d['a")
nt.assert_in("abc", matches)
nt.assert_not_in("abc']", matches)
# check use of different quoting
_, matches = complete(line_buffer='d["')
nt.assert_in("abc", matches)
nt.assert_not_in('abc"]', matches)
_, matches = complete(line_buffer='d["a')
nt.assert_in("abc", matches)
nt.assert_not_in('abc"]', matches)
# check sensitivity to following context
_, matches = complete(line_buffer="d[]", cursor_pos=2)
nt.assert_in("'abc'", matches)
_, matches = complete(line_buffer="d['']", cursor_pos=3)
nt.assert_in("abc", matches)
nt.assert_not_in("abc'", matches)
nt.assert_not_in("abc']", matches)
# check multiple solutions are correctly returned and that noise is not
ip.user_ns["d"] = {
"abc": None,
"abd": None,
"bad": None,
object(): None,
5: None,
("abe", None): None,
(None, "abf"): None
}
_, matches = complete(line_buffer="d['a")
nt.assert_in("abc", matches)
nt.assert_in("abd", matches)
nt.assert_not_in("bad", matches)
nt.assert_not_in("abe", matches)
nt.assert_not_in("abf", matches)
assert not any(m.endswith(("]", '"', "'")) for m in matches), matches
# check escaping and whitespace
ip.user_ns["d"] = {"a\nb": None, "a'b": None, 'a"b': None, "a word": None}
_, matches = complete(line_buffer="d['a")
nt.assert_in("a\\nb", matches)
nt.assert_in("a\\'b", matches)
nt.assert_in('a"b', matches)
nt.assert_in("a word", matches)
assert not any(m.endswith(("]", '"', "'")) for m in matches), matches
# - can complete on non-initial word of the string
_, matches = complete(line_buffer="d['a w")
nt.assert_in("word", matches)
# - understands quote escaping
_, matches = complete(line_buffer="d['a\\'")
nt.assert_in("b", matches)
# - default quoting should work like repr
_, matches = complete(line_buffer="d[")
nt.assert_in('"a\'b"', matches)
# - when opening quote with ", possible to match with unescaped apostrophe
_, matches = complete(line_buffer="d[\"a'")
nt.assert_in("b", matches)
# need to not split at delims that readline won't split at
if "-" not in ip.Completer.splitter.delims:
ip.user_ns["d"] = {"before-after": None}
_, matches = complete(line_buffer="d['before-af")
nt.assert_in("before-after", matches)
# check completion on tuple-of-string keys at different stage - on first key
ip.user_ns["d"] = {('foo', 'bar'): None}
_, matches = complete(line_buffer="d[")
nt.assert_in("'foo'", matches)
nt.assert_not_in("'foo']", matches)
nt.assert_not_in("'bar'", matches)
nt.assert_not_in("foo", matches)
nt.assert_not_in("bar", matches)
# - match the prefix
_, matches = complete(line_buffer="d['f")
nt.assert_in("foo", matches)
nt.assert_not_in("foo']", matches)
nt.assert_not_in("foo\"]", matches)
_, matches = complete(line_buffer="d['foo")
nt.assert_in("foo", matches)
# - can complete on second key
_, matches = complete(line_buffer="d['foo', ")
nt.assert_in("'bar'", matches)
_, matches = complete(line_buffer="d['foo', 'b")
nt.assert_in("bar", matches)
nt.assert_not_in("foo", matches)
# - does not propose missing keys
_, matches = complete(line_buffer="d['foo', 'f")
nt.assert_not_in("bar", matches)
nt.assert_not_in("foo", matches)
# check sensitivity to following context
_, matches = complete(line_buffer="d['foo',]", cursor_pos=8)
nt.assert_in("'bar'", matches)
nt.assert_not_in("bar", matches)
nt.assert_not_in("'foo'", matches)
nt.assert_not_in("foo", matches)
_, matches = complete(line_buffer="d['']", cursor_pos=3)
nt.assert_in("foo", matches)
assert not any(m.endswith(("]", '"', "'")) for m in matches), matches
_, matches = complete(line_buffer='d[""]', cursor_pos=3)
nt.assert_in("foo", matches)
assert not any(m.endswith(("]", '"', "'")) for m in matches), matches
_, matches = complete(line_buffer='d["foo","]', cursor_pos=9)
nt.assert_in("bar", matches)
assert not any(m.endswith(("]", '"', "'")) for m in matches), matches
_, matches = complete(line_buffer='d["foo",]', cursor_pos=8)
nt.assert_in("'bar'", matches)
nt.assert_not_in("bar", matches)
# Can complete with longer tuple keys
ip.user_ns["d"] = {('foo', 'bar', 'foobar'): None}
# - can complete second key
_, matches = complete(line_buffer="d['foo', 'b")
nt.assert_in('bar', matches)
nt.assert_not_in('foo', matches)
nt.assert_not_in('foobar', matches)
# - can complete third key
_, matches = complete(line_buffer="d['foo', 'bar', 'fo")
nt.assert_in('foobar', matches)
nt.assert_not_in('foo', matches)
nt.assert_not_in('bar', matches)
def test_dict_key_completion_contexts(self):
"""Test expression contexts in which dict key completion occurs"""
ip = get_ipython()
complete = ip.Completer.complete
d = {"abc": None}
ip.user_ns["d"] = d
class C:
data = d
ip.user_ns["C"] = C
ip.user_ns["get"] = lambda: d
def assert_no_completion(**kwargs):
_, matches = complete(**kwargs)
nt.assert_not_in("abc", matches)
nt.assert_not_in("abc'", matches)
nt.assert_not_in("abc']", matches)
nt.assert_not_in("'abc'", matches)
nt.assert_not_in("'abc']", matches)
def assert_completion(**kwargs):
_, matches = complete(**kwargs)
nt.assert_in("'abc'", matches)
nt.assert_not_in("'abc']", matches)
# no completion after string closed, even if reopened
assert_no_completion(line_buffer="d['a'")
assert_no_completion(line_buffer='d["a"')
assert_no_completion(line_buffer="d['a' + ")
assert_no_completion(line_buffer="d['a' + '")
# completion in non-trivial expressions
assert_completion(line_buffer="+ d[")
assert_completion(line_buffer="(d[")
assert_completion(line_buffer="C.data[")
# greedy flag
def assert_completion(**kwargs):
_, matches = complete(**kwargs)
nt.assert_in("get()['abc']", matches)
assert_no_completion(line_buffer="get()[")
with greedy_completion():
assert_completion(line_buffer="get()[")
assert_completion(line_buffer="get()['")
assert_completion(line_buffer="get()['a")
assert_completion(line_buffer="get()['ab")
assert_completion(line_buffer="get()['abc")
def test_dict_key_completion_bytes(self):
"""Test handling of bytes in dict key completion"""
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["d"] = {"abc": None, b"abd": None}
_, matches = complete(line_buffer="d[")
nt.assert_in("'abc'", matches)
nt.assert_in("b'abd'", matches)
if False: # not currently implemented
_, matches = complete(line_buffer="d[b")
nt.assert_in("b'abd'", matches)
nt.assert_not_in("b'abc'", matches)
_, matches = complete(line_buffer="d[b'")
nt.assert_in("abd", matches)
nt.assert_not_in("abc", matches)
_, matches = complete(line_buffer="d[B'")
nt.assert_in("abd", matches)
nt.assert_not_in("abc", matches)
_, matches = complete(line_buffer="d['")
nt.assert_in("abc", matches)
nt.assert_not_in("abd", matches)
def test_dict_key_completion_unicode_py3(self):
"""Test handling of unicode in dict key completion"""
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["d"] = {"a\u05d0": None}
# query using escape
if sys.platform != "win32":
# Known failure on Windows
_, matches = complete(line_buffer="d['a\\u05d0")
nt.assert_in("u05d0", matches) # tokenized after \\
# query using character
_, matches = complete(line_buffer="d['a\u05d0")
nt.assert_in("a\u05d0", matches)
with greedy_completion():
# query using escape
_, matches = complete(line_buffer="d['a\\u05d0")
nt.assert_in("d['a\\u05d0']", matches) # tokenized after \\
# query using character
_, matches = complete(line_buffer="d['a\u05d0")
nt.assert_in("d['a\u05d0']", matches)
@dec.skip_without("numpy")
def test_struct_array_key_completion(self):
"""Test dict key completion applies to numpy struct arrays"""
import numpy
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["d"] = numpy.array([], dtype=[("hello", "f"), ("world", "f")])
_, matches = complete(line_buffer="d['")
nt.assert_in("hello", matches)
nt.assert_in("world", matches)
# complete on the numpy struct itself
dt = numpy.dtype(
[("my_head", [("my_dt", ">u4"), ("my_df", ">u4")]), ("my_data", ">f4", 5)]
)
x = numpy.zeros(2, dtype=dt)
ip.user_ns["d"] = x[1]
_, matches = complete(line_buffer="d['")
nt.assert_in("my_head", matches)
nt.assert_in("my_data", matches)
# complete on a nested level
with greedy_completion():
ip.user_ns["d"] = numpy.zeros(2, dtype=dt)
_, matches = complete(line_buffer="d[1]['my_head']['")
nt.assert_true(any(["my_dt" in m for m in matches]))
nt.assert_true(any(["my_df" in m for m in matches]))
@dec.skip_without("pandas")
def test_dataframe_key_completion(self):
"""Test dict key completion applies to pandas DataFrames"""
import pandas
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["d"] = pandas.DataFrame({"hello": [1], "world": [2]})
_, matches = complete(line_buffer="d['")
nt.assert_in("hello", matches)
nt.assert_in("world", matches)
def test_dict_key_completion_invalids(self):
"""Smoke test cases dict key completion can't handle"""
ip = get_ipython()
complete = ip.Completer.complete
ip.user_ns["no_getitem"] = None
ip.user_ns["no_keys"] = []
ip.user_ns["cant_call_keys"] = dict
ip.user_ns["empty"] = {}
ip.user_ns["d"] = {"abc": 5}
_, matches = complete(line_buffer="no_getitem['")
_, matches = complete(line_buffer="no_keys['")
_, matches = complete(line_buffer="cant_call_keys['")
_, matches = complete(line_buffer="empty['")
_, matches = complete(line_buffer="name_error['")
_, matches = complete(line_buffer="d['\\") # incomplete escape
def test_object_key_completion(self):
ip = get_ipython()
ip.user_ns["key_completable"] = KeyCompletable(["qwerty", "qwick"])
_, matches = ip.Completer.complete(line_buffer="key_completable['qw")
nt.assert_in("qwerty", matches)
nt.assert_in("qwick", matches)
def test_class_key_completion(self):
ip = get_ipython()
NamedInstanceClass("qwerty")
NamedInstanceClass("qwick")
ip.user_ns["named_instance_class"] = NamedInstanceClass
_, matches = ip.Completer.complete(line_buffer="named_instance_class['qw")
nt.assert_in("qwerty", matches)
nt.assert_in("qwick", matches)
def test_tryimport(self):
"""
Test that try-import don't crash on trailing dot, and import modules before
"""
from IPython.core.completerlib import try_import
assert try_import("IPython.")
def test_aimport_module_completer(self):
ip = get_ipython()
_, matches = ip.complete("i", "%aimport i")
nt.assert_in("io", matches)
nt.assert_not_in("int", matches)
def test_nested_import_module_completer(self):
ip = get_ipython()
_, matches = ip.complete(None, "import IPython.co", 17)
nt.assert_in("IPython.core", matches)
nt.assert_not_in("import IPython.core", matches)
nt.assert_not_in("IPython.display", matches)
def test_import_module_completer(self):
ip = get_ipython()
_, matches = ip.complete("i", "import i")
nt.assert_in("io", matches)
nt.assert_not_in("int", matches)
def test_from_module_completer(self):
ip = get_ipython()
_, matches = ip.complete("B", "from io import B", 16)
nt.assert_in("BytesIO", matches)
nt.assert_not_in("BaseException", matches)
def test_snake_case_completion(self):
ip = get_ipython()
ip.Completer.use_jedi = False
ip.user_ns["some_three"] = 3
ip.user_ns["some_four"] = 4
_, matches = ip.complete("s_", "print(s_f")
nt.assert_in("some_three", matches)
nt.assert_in("some_four", matches)
def test_mix_terms(self):
ip = get_ipython()
from textwrap import dedent
ip.Completer.use_jedi = False
ip.ex(
dedent(
"""
class Test:
def meth(self, meth_arg1):
print("meth")
def meth_1(self, meth1_arg1, meth1_arg2):
print("meth1")
def meth_2(self, meth2_arg1, meth2_arg2):
print("meth2")
test = Test()
"""
)
)
_, matches = ip.complete(None, "test.meth(")
nt.assert_in("meth_arg1=", matches)
nt.assert_not_in("meth2_arg1=", matches)