##// END OF EJS Templates
bash completion: ipython <tab> shows only subcmds...
bash completion: ipython <tab> shows only subcmds If a partial filename, or an flag or option argument is invoked, those completions will still take place, but by default, to aid the user in the discovery of subcommands, pressing tab immediately after ipython will list *only* the subcommands as possible completions

File last commit:

r9190:20a102a5
r13569:53c89a60
Show More
task_profiler.py
71 lines | 2.3 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""Test the performance of the task farming system.
This script submits a set of tasks via a LoadBalancedView. The tasks
are basically just a time.sleep(t), where t is a random number between
two limits that can be configured at the command line. To run
the script there must first be an IPython controller and engines running::
ipcluster start -n 16
A good test to run with 16 engines is::
python task_profiler.py -n 128 -t 0.01 -T 1.0
This should show a speedup of 13-14x. The limitation here is that the
overhead of a single task is about 0.001-0.01 seconds.
"""
import random, sys
from optparse import OptionParser
from IPython.utils.timing import time
from IPython.parallel import Client
def main():
parser = OptionParser()
parser.set_defaults(n=100)
parser.set_defaults(tmin=1e-3)
parser.set_defaults(tmax=1)
parser.set_defaults(profile='default')
parser.add_option("-n", type='int', dest='n',
help='the number of tasks to run')
parser.add_option("-t", type='float', dest='tmin',
help='the minimum task length in seconds')
parser.add_option("-T", type='float', dest='tmax',
help='the maximum task length in seconds')
parser.add_option("-p", '--profile', type='str', dest='profile',
help="the cluster profile [default: 'default']")
(opts, args) = parser.parse_args()
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
rc = Client()
view = rc.load_balanced_view()
print(view)
rc.block=True
nengines = len(rc.ids)
with rc[:].sync_imports():
from IPython.utils.timing import time
# the jobs should take a random time within a range
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
stime = sum(times)
print("executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines))
time.sleep(1)
start = time.time()
amr = view.map(time.sleep, times)
amr.get()
stop = time.time()
ptime = stop-start
scale = stime/ptime
print("executed %.1f secs in %.1f secs"%(stime, ptime))
print("%.3fx parallel performance on %i engines"%(scale, nengines))
print("%.1f%% of theoretical max"%(100*scale/nengines))
if __name__ == '__main__':
main()