##// END OF EJS Templates
add HasTraits.delay_trait_notifications...
add HasTraits.delay_trait_notifications context manager for delaying trait notifications, used to avoid race conditions in dict ordering when loading from kwargs.

File last commit:

r17053:eebdef10
r20805:54beabc8
Show More
map.py
129 lines | 3.7 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""Classes used in scattering and gathering sequences.
Scattering consists of partitioning a sequence and sending the various
pieces to individual nodes in a cluster.
"""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from __future__ import division
import sys
from itertools import islice
from IPython.utils.data import flatten as utils_flatten
numpy = None
def is_array(obj):
"""Is an object a numpy array?
Avoids importing numpy until it is requested
"""
global numpy
if 'numpy' not in sys.modules:
return False
if numpy is None:
import numpy
return isinstance(obj, numpy.ndarray)
class Map(object):
"""A class for partitioning a sequence using a map."""
def getPartition(self, seq, p, q, n=None):
"""Returns the pth partition of q partitions of seq.
The length can be specified as `n`,
otherwise it is the value of `len(seq)`
"""
n = len(seq) if n is None else n
# Test for error conditions here
if p<0 or p>=q:
raise ValueError("must have 0 <= p <= q, but have p=%s,q=%s" % (p, q))
remainder = n % q
basesize = n // q
if p < remainder:
low = p * (basesize + 1)
high = low + basesize + 1
else:
low = p * basesize + remainder
high = low + basesize
try:
result = seq[low:high]
except TypeError:
# some objects (iterators) can't be sliced,
# use islice:
result = list(islice(seq, low, high))
return result
def joinPartitions(self, listOfPartitions):
return self.concatenate(listOfPartitions)
def concatenate(self, listOfPartitions):
testObject = listOfPartitions[0]
# First see if we have a known array type
if is_array(testObject):
return numpy.concatenate(listOfPartitions)
# Next try for Python sequence types
if isinstance(testObject, (list, tuple)):
return utils_flatten(listOfPartitions)
# If we have scalars, just return listOfPartitions
return listOfPartitions
class RoundRobinMap(Map):
"""Partitions a sequence in a round robin fashion.
This currently does not work!
"""
def getPartition(self, seq, p, q, n=None):
n = len(seq) if n is None else n
return seq[p:n:q]
def joinPartitions(self, listOfPartitions):
testObject = listOfPartitions[0]
# First see if we have a known array type
if is_array(testObject):
return self.flatten_array(listOfPartitions)
if isinstance(testObject, (list, tuple)):
return self.flatten_list(listOfPartitions)
return listOfPartitions
def flatten_array(self, listOfPartitions):
test = listOfPartitions[0]
shape = list(test.shape)
shape[0] = sum([ p.shape[0] for p in listOfPartitions])
A = numpy.ndarray(shape)
N = shape[0]
q = len(listOfPartitions)
for p,part in enumerate(listOfPartitions):
A[p:N:q] = part
return A
def flatten_list(self, listOfPartitions):
flat = []
for i in range(len(listOfPartitions[0])):
flat.extend([ part[i] for part in listOfPartitions if len(part) > i ])
return flat
def mappable(obj):
"""return whether an object is mappable or not."""
if isinstance(obj, (tuple,list)):
return True
if is_array(obj):
return True
return False
dists = {'b':Map,'r':RoundRobinMap}