##// END OF EJS Templates
Merge pull request #1608 from minrk/ar_sugar_2.6...
Merge pull request #1608 from minrk/ar_sugar_2.6 don't rely on timedelta.total_seconds in AsyncResult (timedelta is new in python 2.7). This maintains compatibility with Python 2.6; the utility function introduced can be removed if/when we drop 2.6 support.

File last commit:

r6457:5303c5dd
r6505:5750e2dd merge
Show More
task_profiler.py
71 lines | 2.3 KiB | text/x-python | PythonLexer
#!/usr/bin/env python
"""Test the performance of the task farming system.
This script submits a set of tasks via a LoadBalancedView. The tasks
are basically just a time.sleep(t), where t is a random number between
two limits that can be configured at the command line. To run
the script there must first be an IPython controller and engines running::
ipcluster start -n 16
A good test to run with 16 engines is::
python task_profiler.py -n 128 -t 0.01 -T 1.0
This should show a speedup of 13-14x. The limitation here is that the
overhead of a single task is about 0.001-0.01 seconds.
"""
import random, sys
from optparse import OptionParser
from IPython.utils.timing import time
from IPython.parallel import Client
def main():
parser = OptionParser()
parser.set_defaults(n=100)
parser.set_defaults(tmin=1e-3)
parser.set_defaults(tmax=1)
parser.set_defaults(profile='default')
parser.add_option("-n", type='int', dest='n',
help='the number of tasks to run')
parser.add_option("-t", type='float', dest='tmin',
help='the minimum task length in seconds')
parser.add_option("-T", type='float', dest='tmax',
help='the maximum task length in seconds')
parser.add_option("-p", '--profile', type='str', dest='profile',
help="the cluster profile [default: 'default']")
(opts, args) = parser.parse_args()
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
rc = Client()
view = rc.load_balanced_view()
print(view)
rc.block=True
nengines = len(rc.ids)
with rc[:].sync_imports():
from IPython.utils.timing import time
# the jobs should take a random time within a range
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
stime = sum(times)
print("executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines))
time.sleep(1)
start = time.time()
amr = view.map(time.sleep, times)
amr.get()
stop = time.time()
ptime = stop-start
scale = stime/ptime
print("executed %.1f secs in %.1f secs"%(stime, ptime))
print("%.3fx parallel performance on %i engines"%(scale, nengines))
print("%.1f%% of theoretical max"%(100*scale/nengines))
if __name__ == '__main__':
main()