##// END OF EJS Templates
Reset the interactive namespace __warningregistry__ before executing code...
Reset the interactive namespace __warningregistry__ before executing code Fixes #6611. Idea: Right now, people often don't see important warnings when running code in IPython, because (to a first approximation) any given warning will only issue once per session. Blink and you'll miss it! This is a very common contributor to confused emails to numpy-discussion. E.g.: In [5]: 1 / my_array_with_random_contents /home/njs/.user-python2.7-64bit-3/bin/ipython:1: RuntimeWarning: divide by zero encountered in divide #!/home/njs/.user-python2.7-64bit-3/bin/python Out[5]: array([ 1.77073316, -2.29765021, -2.01800811, ..., 1.13871243, -1.08302964, -8.6185091 ]) Oo, right, guess I gotta be careful of those zeros -- thanks, numpy, for giving me that warning! A few days later: In [592]: 1 / some_other_array Out[592]: array([ 3.07735763, 0.50769289, 0.83984078, ..., -0.67563917, -0.85736257, -1.36511271]) Oops, it turns out that this array had a zero in it too, and that's going to bite me later. But no warning this time! The effect of this commit is to make it so that warnings triggered by the code in cell 5 do *not* suppress warnings triggered by the code in cell 592. Note that this only applies to warnings triggered *directly* by code entered interactively -- if somepkg.foo() calls anotherpkg.bad_func() which issues a warning, then this warning will still only be displayed once, even if multiple cells call somepkg.foo(). But if cell 5 and cell 592 both call anotherpkg.bad_func() directly, then both will get warnings. (Important exception: if foo() is defined *interactively*, and calls anotherpkg.bad_func(), then every cell that calls foo() will display the warning again. This is unavoidable without fixes to CPython upstream.) Explanation: Python's warning system has some weird quirks. By default, it tries to suppress duplicate warnings, where "duplicate" means the same warning message triggered twice by the same line of code. This requires determining which line of code is responsible for triggering a warning, and this is controlled by the stacklevel= argument to warnings.warn. Basically, though, the idea is that if foo() calls bar() which calls baz() which calls some_deprecated_api(), then baz() will get counted as being "responsible", and the warning system will make a note that the usage of some_deprecated_api() inside baz() has already been warned about and doesn't need to be warned about again. So far so good. To accomplish this, obviously, there has to be a record of somewhere which line this was. You might think that this would be done by recording the filename:linenumber pair in a dict inside the warnings module, or something like that. You would be wrong. What actually happens is that the warnings module will use stack introspection to reach into baz()'s execution environment, create a global (module-level) variable there named __warningregistry__, and then, inside this dictionary, record just the line number. Basically, it assumes that any given module contains only one line 1, only one line 2, etc., so storing the filename is irrelevant. Obviously for interactive code this is totally wrong -- all cells share the same execution environment and global namespace, and they all contain a new line 1. Currently the warnings module treats these as if they were all the same line. In fact they are not the same line; once we have executed a given chunk of code, we will never see those particular lines again. As soon as a given chunk of code finishes executing, its line number labels become meaningless, and the corresponding warning registry entries become meaningless as well. Therefore, with this patch we delete the __warningregistry__ each time we execute a new block of code.

File last commit:

r17614:1162e9e7
r18548:61431d7d
Show More
comm.py
140 lines | 4.5 KiB | text/x-python | PythonLexer
"""Base class for a Comm"""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
import uuid
from IPython.config import LoggingConfigurable
from IPython.core.getipython import get_ipython
from IPython.utils.jsonutil import json_clean
from IPython.utils.traitlets import Instance, Unicode, Bytes, Bool, Dict, Any
class Comm(LoggingConfigurable):
shell = Instance('IPython.core.interactiveshell.InteractiveShellABC')
def _shell_default(self):
return get_ipython()
iopub_socket = Any()
def _iopub_socket_default(self):
return self.shell.kernel.iopub_socket
session = Instance('IPython.kernel.zmq.session.Session')
def _session_default(self):
if self.shell is None or not hasattr(self.shell, 'kernel'):
return
return self.shell.kernel.session
target_name = Unicode('comm')
topic = Bytes()
def _topic_default(self):
return ('comm-%s' % self.comm_id).encode('ascii')
_open_data = Dict(help="data dict, if any, to be included in comm_open")
_close_data = Dict(help="data dict, if any, to be included in comm_close")
_msg_callback = Any()
_close_callback = Any()
_closed = Bool(False)
comm_id = Unicode()
def _comm_id_default(self):
return uuid.uuid4().hex
primary = Bool(True, help="Am I the primary or secondary Comm?")
def __init__(self, target_name='', data=None, **kwargs):
if target_name:
kwargs['target_name'] = target_name
super(Comm, self).__init__(**kwargs)
if self.primary:
# I am primary, open my peer.
self.open(data)
def _publish_msg(self, msg_type, data=None, metadata=None, **keys):
"""Helper for sending a comm message on IOPub"""
if self.session is not None:
data = {} if data is None else data
metadata = {} if metadata is None else metadata
content = json_clean(dict(data=data, comm_id=self.comm_id, **keys))
self.session.send(self.iopub_socket, msg_type,
content,
metadata=json_clean(metadata),
parent=self.shell.get_parent(),
ident=self.topic,
)
def __del__(self):
"""trigger close on gc"""
self.close()
# publishing messages
def open(self, data=None, metadata=None):
"""Open the frontend-side version of this comm"""
if data is None:
data = self._open_data
self._closed = False
ip = get_ipython()
if hasattr(ip, 'comm_manager'):
ip.comm_manager.register_comm(self)
self._publish_msg('comm_open', data, metadata, target_name=self.target_name)
def close(self, data=None, metadata=None):
"""Close the frontend-side version of this comm"""
if self._closed:
# only close once
return
if data is None:
data = self._close_data
self._publish_msg('comm_close', data, metadata)
ip = get_ipython()
if hasattr(ip, 'comm_manager'):
ip.comm_manager.unregister_comm(self)
self._closed = True
def send(self, data=None, metadata=None):
"""Send a message to the frontend-side version of this comm"""
self._publish_msg('comm_msg', data, metadata)
# registering callbacks
def on_close(self, callback):
"""Register a callback for comm_close
Will be called with the `data` of the close message.
Call `on_close(None)` to disable an existing callback.
"""
self._close_callback = callback
def on_msg(self, callback):
"""Register a callback for comm_msg
Will be called with the `data` of any comm_msg messages.
Call `on_msg(None)` to disable an existing callback.
"""
self._msg_callback = callback
# handling of incoming messages
def handle_close(self, msg):
"""Handle a comm_close message"""
self.log.debug("handle_close[%s](%s)", self.comm_id, msg)
if self._close_callback:
self._close_callback(msg)
def handle_msg(self, msg):
"""Handle a comm_msg message"""
self.log.debug("handle_msg[%s](%s)", self.comm_id, msg)
if self._msg_callback:
self.shell.events.trigger('pre_execute')
self._msg_callback(msg)
self.shell.events.trigger('post_execute')
__all__ = ['Comm']