##// END OF EJS Templates
Reset the interactive namespace __warningregistry__ before executing code...
Reset the interactive namespace __warningregistry__ before executing code Fixes #6611. Idea: Right now, people often don't see important warnings when running code in IPython, because (to a first approximation) any given warning will only issue once per session. Blink and you'll miss it! This is a very common contributor to confused emails to numpy-discussion. E.g.: In [5]: 1 / my_array_with_random_contents /home/njs/.user-python2.7-64bit-3/bin/ipython:1: RuntimeWarning: divide by zero encountered in divide #!/home/njs/.user-python2.7-64bit-3/bin/python Out[5]: array([ 1.77073316, -2.29765021, -2.01800811, ..., 1.13871243, -1.08302964, -8.6185091 ]) Oo, right, guess I gotta be careful of those zeros -- thanks, numpy, for giving me that warning! A few days later: In [592]: 1 / some_other_array Out[592]: array([ 3.07735763, 0.50769289, 0.83984078, ..., -0.67563917, -0.85736257, -1.36511271]) Oops, it turns out that this array had a zero in it too, and that's going to bite me later. But no warning this time! The effect of this commit is to make it so that warnings triggered by the code in cell 5 do *not* suppress warnings triggered by the code in cell 592. Note that this only applies to warnings triggered *directly* by code entered interactively -- if somepkg.foo() calls anotherpkg.bad_func() which issues a warning, then this warning will still only be displayed once, even if multiple cells call somepkg.foo(). But if cell 5 and cell 592 both call anotherpkg.bad_func() directly, then both will get warnings. (Important exception: if foo() is defined *interactively*, and calls anotherpkg.bad_func(), then every cell that calls foo() will display the warning again. This is unavoidable without fixes to CPython upstream.) Explanation: Python's warning system has some weird quirks. By default, it tries to suppress duplicate warnings, where "duplicate" means the same warning message triggered twice by the same line of code. This requires determining which line of code is responsible for triggering a warning, and this is controlled by the stacklevel= argument to warnings.warn. Basically, though, the idea is that if foo() calls bar() which calls baz() which calls some_deprecated_api(), then baz() will get counted as being "responsible", and the warning system will make a note that the usage of some_deprecated_api() inside baz() has already been warned about and doesn't need to be warned about again. So far so good. To accomplish this, obviously, there has to be a record of somewhere which line this was. You might think that this would be done by recording the filename:linenumber pair in a dict inside the warnings module, or something like that. You would be wrong. What actually happens is that the warnings module will use stack introspection to reach into baz()'s execution environment, create a global (module-level) variable there named __warningregistry__, and then, inside this dictionary, record just the line number. Basically, it assumes that any given module contains only one line 1, only one line 2, etc., so storing the filename is irrelevant. Obviously for interactive code this is totally wrong -- all cells share the same execution environment and global namespace, and they all contain a new line 1. Currently the warnings module treats these as if they were all the same line. In fact they are not the same line; once we have executed a given chunk of code, we will never see those particular lines again. As soon as a given chunk of code finishes executing, its line number labels become meaningless, and the corresponding warning registry entries become meaningless as well. Therefore, with this patch we delete the __warningregistry__ each time we execute a new block of code.

File last commit:

r18257:71dfbb06
r18548:61431d7d
Show More
rwbase.py
187 lines | 6.4 KiB | text/x-python | PythonLexer
"""Base classes and utilities for readers and writers."""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from base64 import encodestring, decodestring
from IPython.utils import py3compat
from IPython.utils.py3compat import str_to_bytes, unicode_type, string_types
def restore_bytes(nb):
"""Restore bytes of image data from unicode-only formats.
Base64 encoding is handled elsewhere. Bytes objects in the notebook are
always b64-encoded. We DO NOT encode/decode around file formats.
Note: this is never used
"""
for ws in nb.worksheets:
for cell in ws.cells:
if cell.cell_type == 'code':
for output in cell.outputs:
if 'png' in output:
output.png = str_to_bytes(output.png, 'ascii')
if 'jpeg' in output:
output.jpeg = str_to_bytes(output.jpeg, 'ascii')
return nb
# output keys that are likely to have multiline values
_multiline_outputs = ['text', 'html', 'svg', 'latex', 'javascript', 'json']
# FIXME: workaround for old splitlines()
def _join_lines(lines):
"""join lines that have been written by splitlines()
Has logic to protect against `splitlines()`, which
should have been `splitlines(True)`
"""
if lines and lines[0].endswith(('\n', '\r')):
# created by splitlines(True)
return u''.join(lines)
else:
# created by splitlines()
return u'\n'.join(lines)
def rejoin_lines(nb):
"""rejoin multiline text into strings
For reversing effects of ``split_lines(nb)``.
This only rejoins lines that have been split, so if text objects were not split
they will pass through unchanged.
Used when reading JSON files that may have been passed through split_lines.
"""
for ws in nb.worksheets:
for cell in ws.cells:
if cell.cell_type == 'code':
if 'input' in cell and isinstance(cell.input, list):
cell.input = _join_lines(cell.input)
for output in cell.outputs:
for key in _multiline_outputs:
item = output.get(key, None)
if isinstance(item, list):
output[key] = _join_lines(item)
else: # text, heading cell
for key in ['source', 'rendered']:
item = cell.get(key, None)
if isinstance(item, list):
cell[key] = _join_lines(item)
return nb
def split_lines(nb):
"""split likely multiline text into lists of strings
For file output more friendly to line-based VCS. ``rejoin_lines(nb)`` will
reverse the effects of ``split_lines(nb)``.
Used when writing JSON files.
"""
for ws in nb.worksheets:
for cell in ws.cells:
if cell.cell_type == 'code':
if 'input' in cell and isinstance(cell.input, string_types):
cell.input = cell.input.splitlines(True)
for output in cell.outputs:
for key in _multiline_outputs:
item = output.get(key, None)
if isinstance(item, string_types):
output[key] = item.splitlines(True)
else: # text, heading cell
for key in ['source', 'rendered']:
item = cell.get(key, None)
if isinstance(item, string_types):
cell[key] = item.splitlines(True)
return nb
# b64 encode/decode are never actually used, because all bytes objects in
# the notebook are already b64-encoded, and we don't need/want to double-encode
def base64_decode(nb):
"""Restore all bytes objects in the notebook from base64-encoded strings.
Note: This is never used
"""
for ws in nb.worksheets:
for cell in ws.cells:
if cell.cell_type == 'code':
for output in cell.outputs:
if 'png' in output:
if isinstance(output.png, unicode_type):
output.png = output.png.encode('ascii')
output.png = decodestring(output.png)
if 'jpeg' in output:
if isinstance(output.jpeg, unicode_type):
output.jpeg = output.jpeg.encode('ascii')
output.jpeg = decodestring(output.jpeg)
return nb
def base64_encode(nb):
"""Base64 encode all bytes objects in the notebook.
These will be b64-encoded unicode strings
Note: This is never used
"""
for ws in nb.worksheets:
for cell in ws.cells:
if cell.cell_type == 'code':
for output in cell.outputs:
if 'png' in output:
output.png = encodestring(output.png).decode('ascii')
if 'jpeg' in output:
output.jpeg = encodestring(output.jpeg).decode('ascii')
return nb
def strip_transient(nb):
"""Strip transient values that shouldn't be stored in files.
This should be called in *both* read and write.
"""
nb.pop('orig_nbformat', None)
nb.pop('orig_nbformat_minor', None)
for ws in nb['worksheets']:
for cell in ws['cells']:
cell.get('metadata', {}).pop('trusted', None)
return nb
class NotebookReader(object):
"""A class for reading notebooks."""
def reads(self, s, **kwargs):
"""Read a notebook from a string."""
raise NotImplementedError("loads must be implemented in a subclass")
def read(self, fp, **kwargs):
"""Read a notebook from a file like object"""
nbs = fp.read()
if not py3compat.PY3 and not isinstance(nbs, unicode_type):
nbs = py3compat.str_to_unicode(nbs)
return self.reads(nbs, **kwargs)
class NotebookWriter(object):
"""A class for writing notebooks."""
def writes(self, nb, **kwargs):
"""Write a notebook to a string."""
raise NotImplementedError("loads must be implemented in a subclass")
def write(self, nb, fp, **kwargs):
"""Write a notebook to a file like object"""
nbs = self.writes(nb,**kwargs)
if not py3compat.PY3 and not isinstance(nbs, unicode_type):
# this branch is likely only taken for JSON on Python 2
nbs = py3compat.str_to_unicode(nbs)
return fp.write(nbs)