##// END OF EJS Templates
Reset the interactive namespace __warningregistry__ before executing code...
Reset the interactive namespace __warningregistry__ before executing code Fixes #6611. Idea: Right now, people often don't see important warnings when running code in IPython, because (to a first approximation) any given warning will only issue once per session. Blink and you'll miss it! This is a very common contributor to confused emails to numpy-discussion. E.g.: In [5]: 1 / my_array_with_random_contents /home/njs/.user-python2.7-64bit-3/bin/ipython:1: RuntimeWarning: divide by zero encountered in divide #!/home/njs/.user-python2.7-64bit-3/bin/python Out[5]: array([ 1.77073316, -2.29765021, -2.01800811, ..., 1.13871243, -1.08302964, -8.6185091 ]) Oo, right, guess I gotta be careful of those zeros -- thanks, numpy, for giving me that warning! A few days later: In [592]: 1 / some_other_array Out[592]: array([ 3.07735763, 0.50769289, 0.83984078, ..., -0.67563917, -0.85736257, -1.36511271]) Oops, it turns out that this array had a zero in it too, and that's going to bite me later. But no warning this time! The effect of this commit is to make it so that warnings triggered by the code in cell 5 do *not* suppress warnings triggered by the code in cell 592. Note that this only applies to warnings triggered *directly* by code entered interactively -- if somepkg.foo() calls anotherpkg.bad_func() which issues a warning, then this warning will still only be displayed once, even if multiple cells call somepkg.foo(). But if cell 5 and cell 592 both call anotherpkg.bad_func() directly, then both will get warnings. (Important exception: if foo() is defined *interactively*, and calls anotherpkg.bad_func(), then every cell that calls foo() will display the warning again. This is unavoidable without fixes to CPython upstream.) Explanation: Python's warning system has some weird quirks. By default, it tries to suppress duplicate warnings, where "duplicate" means the same warning message triggered twice by the same line of code. This requires determining which line of code is responsible for triggering a warning, and this is controlled by the stacklevel= argument to warnings.warn. Basically, though, the idea is that if foo() calls bar() which calls baz() which calls some_deprecated_api(), then baz() will get counted as being "responsible", and the warning system will make a note that the usage of some_deprecated_api() inside baz() has already been warned about and doesn't need to be warned about again. So far so good. To accomplish this, obviously, there has to be a record of somewhere which line this was. You might think that this would be done by recording the filename:linenumber pair in a dict inside the warnings module, or something like that. You would be wrong. What actually happens is that the warnings module will use stack introspection to reach into baz()'s execution environment, create a global (module-level) variable there named __warningregistry__, and then, inside this dictionary, record just the line number. Basically, it assumes that any given module contains only one line 1, only one line 2, etc., so storing the filename is irrelevant. Obviously for interactive code this is totally wrong -- all cells share the same execution environment and global namespace, and they all contain a new line 1. Currently the warnings module treats these as if they were all the same line. In fact they are not the same line; once we have executed a given chunk of code, we will never see those particular lines again. As soon as a given chunk of code finishes executing, its line number labels become meaningless, and the corresponding warning registry entries become meaningless as well. Therefore, with this patch we delete the __warningregistry__ each time we execute a new block of code.

File last commit:

r18041:eac159d1
r18548:61431d7d
Show More
sysinfo.py
167 lines | 5.1 KiB | text/x-python | PythonLexer
# encoding: utf-8
"""
Utilities for getting information about IPython and the system it's running in.
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2008-2011 The IPython Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file COPYING, distributed as part of this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
import os
import platform
import pprint
import sys
import subprocess
from IPython.core import release
from IPython.utils import py3compat, _sysinfo, encoding
#-----------------------------------------------------------------------------
# Code
#-----------------------------------------------------------------------------
def pkg_commit_hash(pkg_path):
"""Get short form of commit hash given directory `pkg_path`
We get the commit hash from (in order of preference):
* IPython.utils._sysinfo.commit
* git output, if we are in a git repository
If these fail, we return a not-found placeholder tuple
Parameters
----------
pkg_path : str
directory containing package
only used for getting commit from active repo
Returns
-------
hash_from : str
Where we got the hash from - description
hash_str : str
short form of hash
"""
# Try and get commit from written commit text file
if _sysinfo.commit:
return "installation", _sysinfo.commit
# maybe we are in a repository
proc = subprocess.Popen('git rev-parse --short HEAD',
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
cwd=pkg_path, shell=True)
repo_commit, _ = proc.communicate()
if repo_commit:
return 'repository', repo_commit.strip().decode('ascii')
return '(none found)', u'<not found>'
def pkg_info(pkg_path):
"""Return dict describing the context of this package
Parameters
----------
pkg_path : str
path containing __init__.py for package
Returns
-------
context : dict
with named parameters of interest
"""
src, hsh = pkg_commit_hash(pkg_path)
return dict(
ipython_version=release.version,
ipython_path=pkg_path,
commit_source=src,
commit_hash=hsh,
sys_version=sys.version,
sys_executable=sys.executable,
sys_platform=sys.platform,
platform=platform.platform(),
os_name=os.name,
default_encoding=encoding.DEFAULT_ENCODING,
)
def get_sys_info():
"""Return useful information about IPython and the system, as a dict."""
p = os.path
path = p.realpath(p.dirname(p.abspath(p.join(__file__, '..'))))
return pkg_info(path)
@py3compat.doctest_refactor_print
def sys_info():
"""Return useful information about IPython and the system, as a string.
Examples
--------
::
In [2]: print sys_info()
{'commit_hash': '144fdae', # random
'commit_source': 'repository',
'ipython_path': '/home/fperez/usr/lib/python2.6/site-packages/IPython',
'ipython_version': '0.11.dev',
'os_name': 'posix',
'platform': 'Linux-2.6.35-22-generic-i686-with-Ubuntu-10.10-maverick',
'sys_executable': '/usr/bin/python',
'sys_platform': 'linux2',
'sys_version': '2.6.6 (r266:84292, Sep 15 2010, 15:52:39) \\n[GCC 4.4.5]'}
"""
return pprint.pformat(get_sys_info())
def _num_cpus_unix():
"""Return the number of active CPUs on a Unix system."""
return os.sysconf("SC_NPROCESSORS_ONLN")
def _num_cpus_darwin():
"""Return the number of active CPUs on a Darwin system."""
p = subprocess.Popen(['sysctl','-n','hw.ncpu'],stdout=subprocess.PIPE)
return p.stdout.read()
def _num_cpus_windows():
"""Return the number of active CPUs on a Windows system."""
return os.environ.get("NUMBER_OF_PROCESSORS")
def num_cpus():
"""Return the effective number of CPUs in the system as an integer.
This cross-platform function makes an attempt at finding the total number of
available CPUs in the system, as returned by various underlying system and
python calls.
If it can't find a sensible answer, it returns 1 (though an error *may* make
it return a large positive number that's actually incorrect).
"""
# Many thanks to the Parallel Python project (http://www.parallelpython.com)
# for the names of the keys we needed to look up for this function. This
# code was inspired by their equivalent function.
ncpufuncs = {'Linux':_num_cpus_unix,
'Darwin':_num_cpus_darwin,
'Windows':_num_cpus_windows
}
ncpufunc = ncpufuncs.get(platform.system(),
# default to unix version (Solaris, AIX, etc)
_num_cpus_unix)
try:
ncpus = max(1,int(ncpufunc()))
except:
ncpus = 1
return ncpus