|
|
import numpy as N
|
|
|
from math import *
|
|
|
|
|
|
class MCOptionPricer(object):
|
|
|
def __init__(self, S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000):
|
|
|
self.S = S
|
|
|
self.K = K
|
|
|
self.sigma = sigma
|
|
|
self.r = r
|
|
|
self.days = days
|
|
|
self.paths = paths
|
|
|
self.h = 1.0/self.days
|
|
|
self.const1 = exp((self.r-0.5*self.sigma**2)*self.h)
|
|
|
self.const2 = self.sigma*sqrt(self.h)
|
|
|
|
|
|
def run(self):
|
|
|
stock_price = self.S*N.ones(self.paths, dtype='float64')
|
|
|
stock_price_sum = N.zeros(self.paths, dtype='float64')
|
|
|
for j in range(self.days):
|
|
|
growth_factor = self.const1*N.exp(self.const2*N.random.standard_normal(self.paths))
|
|
|
stock_price = stock_price*growth_factor
|
|
|
stock_price_sum = stock_price_sum + stock_price
|
|
|
stock_price_avg = stock_price_sum/self.days
|
|
|
zeros = N.zeros(self.paths, dtype='float64')
|
|
|
r_factor = exp(-self.r*self.h*self.days)
|
|
|
self.vanilla_put = r_factor*N.mean(N.maximum(zeros,self.K-stock_price))
|
|
|
self.asian_put = r_factor*N.mean(N.maximum(zeros,self.K-stock_price_avg))
|
|
|
self.vanilla_call = r_factor*N.mean(N.maximum(zeros,stock_price-self.K))
|
|
|
self.asian_call = r_factor*N.mean(N.maximum(zeros,stock_price_avg-self.K))
|
|
|
|
|
|
|
|
|
def main():
|
|
|
op = MCOptionPricer()
|
|
|
op.run()
|
|
|
print "Vanilla Put Price = ", op.vanilla_put
|
|
|
print "Asian Put Price = ", op.asian_put
|
|
|
print "Vanilla Call Price = ", op.vanilla_call
|
|
|
print "Asian Call Price = ", op.asian_call
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
main()
|
|
|
|
|
|
|