|
|
#!/usr/bin/env python
|
|
|
"""Test the performance of the task farming system.
|
|
|
|
|
|
This script submits a set of tasks to the TaskClient. The tasks
|
|
|
are basically just a time.sleep(t), where t is a random number between
|
|
|
two limits that can be configured at the command line. To run
|
|
|
the script there must first be an IPython controller and engines running::
|
|
|
|
|
|
ipcluster -n 16
|
|
|
|
|
|
A good test to run with 16 engines is::
|
|
|
|
|
|
python task_profiler.py -n 128 -t 0.01 -T 1.0
|
|
|
|
|
|
This should show a speedup of 13-14x. The limitation here is that the
|
|
|
overhead of a single task is about 0.001-0.01 seconds.
|
|
|
"""
|
|
|
import random, sys
|
|
|
from optparse import OptionParser
|
|
|
|
|
|
from IPython.genutils import time
|
|
|
from IPython.kernel import client
|
|
|
|
|
|
def main():
|
|
|
parser = OptionParser()
|
|
|
parser.set_defaults(n=100)
|
|
|
parser.set_defaults(tmin=1)
|
|
|
parser.set_defaults(tmax=60)
|
|
|
parser.set_defaults(controller='localhost')
|
|
|
parser.set_defaults(meport=10105)
|
|
|
parser.set_defaults(tport=10113)
|
|
|
|
|
|
parser.add_option("-n", type='int', dest='n',
|
|
|
help='the number of tasks to run')
|
|
|
parser.add_option("-t", type='float', dest='tmin',
|
|
|
help='the minimum task length in seconds')
|
|
|
parser.add_option("-T", type='float', dest='tmax',
|
|
|
help='the maximum task length in seconds')
|
|
|
parser.add_option("-c", type='string', dest='controller',
|
|
|
help='the address of the controller')
|
|
|
parser.add_option("-p", type='int', dest='meport',
|
|
|
help="the port on which the controller listens for the MultiEngine/RemoteController client")
|
|
|
parser.add_option("-P", type='int', dest='tport',
|
|
|
help="the port on which the controller listens for the TaskClient client")
|
|
|
|
|
|
(opts, args) = parser.parse_args()
|
|
|
assert opts.tmax >= opts.tmin, "tmax must not be smaller than tmin"
|
|
|
|
|
|
rc = client.MultiEngineClient()
|
|
|
tc = client.TaskClient()
|
|
|
print tc.task_controller
|
|
|
rc.block=True
|
|
|
nengines = len(rc.get_ids())
|
|
|
rc.execute('from IPython.genutils import time')
|
|
|
|
|
|
# the jobs should take a random time within a range
|
|
|
times = [random.random()*(opts.tmax-opts.tmin)+opts.tmin for i in range(opts.n)]
|
|
|
tasks = [client.StringTask("time.sleep(%f)"%t) for t in times]
|
|
|
stime = sum(times)
|
|
|
|
|
|
print "executing %i tasks, totalling %.1f secs on %i engines"%(opts.n, stime, nengines)
|
|
|
time.sleep(1)
|
|
|
start = time.time()
|
|
|
taskids = [tc.run(t) for t in tasks]
|
|
|
tc.barrier(taskids)
|
|
|
stop = time.time()
|
|
|
|
|
|
ptime = stop-start
|
|
|
scale = stime/ptime
|
|
|
|
|
|
print "executed %.1f secs in %.1f secs"%(stime, ptime)
|
|
|
print "%.3fx parallel performance on %i engines"%(scale, nengines)
|
|
|
print "%.1f%% of theoretical max"%(100*scale/nengines)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
main()
|
|
|
|