##// END OF EJS Templates
Fix HTML import in tour notebook and add video credit to W. Stein.
Fix HTML import in tour notebook and add video credit to W. Stein.

File last commit:

r5486:79538b03
r5795:698e9abe
Show More
mcpricer.ipynb
379 lines | 68.5 KiB | text/plain | TextLexer

Parallel Monto-Carlo options pricing

Problem setup

In [1]:
import sys
import time
from IPython.parallel import Client
import numpy as np
from mckernel import price_options
from matplotlib import pyplot as plt
In [2]:
cluster_profile = "default"
price = 100.0  # Initial price
rate = 0.05  # Interest rate
days = 260  # Days to expiration
paths = 10000  # Number of MC paths
n_strikes = 6  # Number of strike values
min_strike = 90.0  # Min strike price
max_strike = 110.0  # Max strike price
n_sigmas = 5  # Number of volatility values
min_sigma = 0.1  # Min volatility
max_sigma = 0.4  # Max volatility
In [3]:
strike_vals = np.linspace(min_strike, max_strike, n_strikes)
sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas)

Parallel computation across strike prices and volatilities

The Client is used to setup the calculation and works with all engines.

In [4]:
c = Client(profile=cluster_profile)

A LoadBalancedView is an interface to the engines that provides dynamic load balancing at the expense of not knowing which engine will execute the code.

In [5]:
view = c.load_balanced_view()
In [6]:
print "Strike prices: ", strike_vals
print "Volatilities: ", sigma_vals
Strike prices:  [  90.   94.   98.  102.  106.  110.]
Volatilities:  [ 0.1    0.175  0.25   0.325  0.4  ]

Submit tasks for each (strike, sigma) pair.

In [7]:
t1 = time.time()
async_results = []
for strike in strike_vals:
    for sigma in sigma_vals:
        ar = view.apply_async(price_options, price, strike, sigma, rate, days, paths)
        async_results.append(ar)
In [8]:
print "Submitted tasks: ", len(async_results)
Submitted tasks:  30

Block until all tasks are completed.

In [9]:
c.wait(async_results)
t2 = time.time()
t = t2-t1

print "Parallel calculation completed, time = %s s" % t
Parallel calculation completed, time = 4.46057891846 s

Process and visualize results

Get the results using the get method:

In [10]:
results = [ar.get() for ar in async_results]

Assemble the result into a structured NumPy array.

In [11]:
prices = np.empty(n_strikes*n_sigmas,
    dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)]
)

for i, price in enumerate(results):
    prices[i] = tuple(price)

prices.shape = (n_strikes, n_sigmas)

Plot the value of the European call in (volatility, strike) space.

In [12]:
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['ecall'])
plt.axis('tight')
plt.colorbar()
plt.title('European Call')
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
Out[12]:
<matplotlib.text.Text at 0x106b618d0>
No description has been provided for this image

Plot the value of the Asian call in (volatility, strike) space.

In [13]:
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['acall'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Call")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
Out[13]:
<matplotlib.text.Text at 0x106bd90d0>
No description has been provided for this image

Plot the value of the European put in (volatility, strike) space.

In [14]:
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['eput'])
plt.axis('tight')
plt.colorbar()
plt.title("European Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
Out[14]:
<matplotlib.text.Text at 0x106d34150>
No description has been provided for this image

Plot the value of the Asian put in (volatility, strike) space.

In [15]:
plt.figure()
plt.contourf(sigma_vals, strike_vals, prices['aput'])
plt.axis('tight')
plt.colorbar()
plt.title("Asian Put")
plt.xlabel("Volatility")
plt.ylabel("Strike Price")
No description has been provided for this image
In [16]:
plt.show()